
Foundations and TrendsR© in
Databases
Vol. 4, No. 4 (2011) 295–405
c© 2012 R. Chirkova and J. Yang
DOI: 10.1561/1900000020

Materialized Views

By Rada Chirkova and Jun Yang

Contents

1 Introduction 296

2 Maintaining Materialized Views 303

2.1 Algorithmizing and Implementing Maintenance 307
2.2 Information Available to Maintenance 316
2.3 Materialization Strategies 322
2.4 Timing of Maintenance 327
2.5 Other Issues of View Maintenance 330

3 Using Materialized Views 336

3.1 Background and Theory 336
3.2 Incorporation into Query Optimization 345
3.3 Using Views for Data Integration 347

4 Selecting Views to Materialize 351

4.1 View Selection to Speed Up Queries 353
4.2 Implementation in Commercial Database Systems 363

5 Connections to Other Problems 366

6 Conclusion and Future Directions 373

References 376

Foundations and TrendsR© in
Databases
Vol. 4, No. 4 (2011) 295–405
c© 2012 R. Chirkova and J. Yang
DOI: 10.1561/1900000020

Materialized Views

Rada Chirkova1 and Jun Yang2

1 North Carolina State University, Department of Computer Science,
Raleigh, North Carolina, 27695-8206, USA, chirkova@csc.ncsu.edu

2 Duke University, Department of Computer Science, Durham, North
Carolina, 27708-0129, USA, junyang@cs.duke.edu

Abstract

Materialized views are queries whose results are stored and main-
tained in order to facilitate access to data in their underlying base
tables. In the SQL setting, they are now considered a mature technol-
ogy implemented by most commercial database systems and tightly
integrated into query optimization. They have also helped lay the
foundation for important topics such as information integration and
data warehousing. This monograph provides an introduction and ref-
erence to materialized views. We cover three fundamental problems:
(1) maintaining materialized views efficiently when the base tables
change, (2) using materialized views effectively to improve performance
and availability, and (3) selecting which views to materialize. We also
point out their connections to a few other areas in database research,
illustrate the benefit of cross-pollination of ideas with these areas, and
identify several directions for research on materialized views.

1
Introduction

Materialized views are a natural embodiment of the ideas of pre-
computation and caching in databases. Instead of computing a query
from scratch from base data, a database system can use results that
have already been computed, stored, and maintained. The ability
of materialized views to speed up queries benefit most database
applications, ranging from traditional querying and reporting to web
database caching [255], online analytical processing [89], and data
mining [208, 367]. By reducing dependency on the availability of base
data, materialized views have also laid much of the foundation for
information integration [45, 139, 270] and data warehousing [89, 242]
systems. Because of their wide applicability, materialized views are a
well-studied topic with both a rich research literature and mature com-
mercial implementations. Our goal of this monograph is to provide an
accessible introduction and reference to this topic, explain its core ideas,
highlight its recent developments, and point out its sometimes subtle
connections to other research topics in databases.

Background A database view is defined by a query. When evaluated,
this view definition query returns the contents of the view. Database

296

297

users can pose queries or define other views over views just as they can
over regular database tables. Conceptually, when the database system
executes a query involving views, references to views are replaced by
their definition queries (recursively, if a view is defined using other
views), yielding a final query involving only regular “base tables.”

Example 1.1 (Adapted from [188]). Consider a retailer with mul-
tiple stores across the globe. The stores are grouped into multiple
geographic regions for administrative and accounting purposes. The
retailer consolidates its inventory and sales information across all stores
into a single relational database for auditing and analysis purposes.
Consider some of the tables in such a database and their cardinality:

• pos(itemID, storeID, date, qty, price), with one bil-
lion (109) rows, records point-of-sale transactions. There is
one row for every item sold in a transaction, with the ID
of item, the ID of the store selling it, the date of sale, the
quantity sold, and the unit price.

• stores(storeID, city, region), with 100 rows, records
information about each store: namely, its ID, city, and region.

• items(itemID, name, category, cost), with 50,000
rows, records information about each item: namely, its ID,
name, product category, and cost per unit.

The following view, defined over pos, computes the total sales revenue
generated for each item by each store:

CREATE VIEW TotalByItemStore(itemID,storeID,total) AS

SELECT itemID, storeID, SUM(qty*price)

FROM pos GROUP BY itemID, storeID;

Suppose a business analyst wants to know the total revenue generated
by each store for each item category. This query can be written against
the above view as:

SELECT storeID, category, SUM(total) -- (Q1v)

FROM TotalByItemStore, items

298 Introduction

WHERE TotalByItemStore.itemID = items.itemID

GROUP BY storeID, category;

When evaluating this query, the database system conceptually expands
it to the following equivalent query involving only base tables:

SELECT storeID, category, SUM(qty*price) -- (Q1)

FROM pos, items

WHERE pos.itemID = items.itemID

GROUP BY storeID, category;

Traditionally, views are “virtual” — the database system stores
their definition queries but not their contents. Virtual views are often
used to control access and provide alternative interfaces to base tables.
They also support logical data independence: when the base table
schema changes, views can be redefined to use the new schema, so appli-
cation queries written against these views will continue to function.

Over the years, however, the concept and practice of materialized
views have steadily gained importance. We materialize a view by stor-
ing its contents (though many cases call for alternative materialization
strategies; see Section 2.3). Once materialized, a view can facilitate
queries that use it (or can be rewritten to use it), when the base tables
are expensive or even unavailable for access.

Example 1.2. Continuing with Example 1.1, suppose we materialize
the view TotalByItemStore. Now, query (Q1v) can be evaluated by
joining items with the materialized contents of TotalByItemStore.
This evaluation strategy is more efficient than joining items and pos,
because TotalByItemStore has up to 50,000 × 100 = 5 × 106 rows,
compared with 109 rows in pos.

Although (Q1) is not originally written over TotalByItemStore, it
is possible to recognize that (Q1) can be rewritten as (Q1v) to take
advantage of the materialized TotalByItemStore.

299

Key Problems Example 1.2 above illustrates one important ques-
tion in the study of materialized views: how to answer queries using
views, especially when the queries are not originally written in terms of
the materialized views. The next natural question is, given a database
workload (queries and modifications) as well as resource and perfor-
mance requirements, how to select what views to materialize in the
first place. Instead of relying on database administrators and appli-
cation developers to answer these questions in an ad hoc fashion, we
prefer a more systematic and automatic approach.

Materialized views are not free. Not only do they take additional
space, but they also require maintenance: as base tables change, the
materialized view contents become outdated. Thus, a third important
question is how to maintain materialized views to keep them up to date
with respect to the base tables. The most straightforward way to main-
tain a materialized view is to recompute its definition query over the
new database state whenever the base tables change. However, in prac-
tice, since the numbers of rows changed are often small compared with
the sizes of the entire base tables, incremental view maintenance —
the practice of computing and applying only incremental changes to
materialized views induced by base table changes — may work better
than recomputation.

Example 1.3. Continuing with Examples 1.1 and 1.2, suppose that
five rows have been inserted into base table pos as the result of a sale
transaction δ involving five different items at a particular store. Recom-
puting the materialized view TotalByItemStore from scratch would be
both unnecessary and expensive, because most of its 5 × 106 rows are
not affected by δ. With incremental maintenance, loosely speaking, we
only need to identify the five affected rows in TotalByItemStore and
increment their total by qty*price of their corresponding new pos

rows inserted by δ.

To recap, the examples above reveal three key problems concerning
materialized views: how to maintain them (view maintenance), how to
use them (answering queries using views), and how to select them (view

300 Introduction

selection). Solutions and techniques developed for these questions over
the years have made materialized views an indispensable technology
that greatly enhances the performance and features of database systems
and many data-intensive applications, such as those mentioned in the
opening of this section. Most commercial database systems now offer
built-in support of materialized views; for other systems there exist
popular recipes for “simulating” support of materialized views.

The ideas underlying materialized views are simple: e.g., precom-
putation, caching, and incremental evaluation. However, the great
database tradition of declarative querying is what distinguishes materi-
alized views from generic applications of these ideas in other contexts,
and makes materialized views especially interesting, powerful, and chal-
lenging at the same time. Thanks to standardized, declarative database
languages with clean semantics, study of materialized views has gener-
ated a rich body of theory and practice, aimed at providing efficient,
effective, automated, and general solutions to the three key problems
above.

Scope and Organization There is a vast body of literature on mate-
rialized views dating back to 1980s, not to mention work related to
or influenced by it. There have also been other authoritative refer-
ences to the topic, most notably the 1999 book edited by Gupta and
Mumick [188], the 2001 survey by Halevy [203] on answering queries
using views, as well as relevant entries in the recently compiled Ency-
clopedia of Database Systems [291]. We intend this monograph to serve
as an accessible introduction and reference to the topic of material-
ized views for database researchers. In addition to covering the core
ideas behind materialized views, we will highlight recent developments
(especially those since 2000), and discuss connections to other more
recent research topics in databases. This monograph is a more of a
pedagogical text than a manual: given a problem, instead of presenting
one definitive solution (which in many cases may not be clear or even
exist), we walk the readers through the line of reasoning and research
developments leading to better understanding of the problem. There-
fore, this monograph should be used as a companion to, rather than a
substitute for, the literature on materialized views.

301

The breadth of work on materialized views is as daunting as its
depth. Different data models and query languages — object-oriented,
semistructured, spatiotemporal, streaming, probabilistic, just to name
a few — give rise to a multitude of problem settings that sometimes call
for specialized techniques. To make this monograph approachable and
focused, we limit its scope mostly to nonrecursive SQL views; we also
assume that readers are familiar with relational and bag algebras (see
standard database textbooks such as [159, 335], or, for quick reference,
[370] and [174], respectively). Our hope is that the core ideas we cover
will help readers in further exploring other problem settings.

As mentioned earlier, materialized views now have mature imple-
mentations in most commercial database systems. In fact, the database
industry has contributed significantly — in many cases as leaders — to
the research literature. Written primarily with a research audience in
mind, this monograph focuses on the research literature (including con-
tributions from the industry) rather than the product specifics. While
we give a high-level overview of commercial implementations, we offer
no in-depth comparison of product features.

We note that materialized views are but one form of derived data —
the result of applying some transformation, structural or computa-
tional, to base data. The use of derived data to facilitate access to
base data is a recurring theme in computer science. Besides mate-
rialized views, other examples include caches, replicas, indexes, and
synopses [16, 123]. Despite differences in the form, complexity, and pre-
cision of derived data, the three fundamental questions remain: how to
use derived data, what to maintain as derived data, and how to main-
tain them. Oftentimes, ideas and techniques developed for one form of
derived data can be adapted and applied to another setting with inter-
esting benefits. The repertoire of techniques for materialized views has
been enriched by ideas from other forms of derived data. At the same
time, many research areas, old and new alike, have drawn insights from
materialized views, implicitly or explicitly. This monograph will high-
light a few examples of such cross-pollination.

In the remainder of this monograph, Section 2 covers the view main-
tenance problem. Section 3 covers the view use problem. Section 4

302 Introduction

covers the view selection problem. Section 5 explores connections
between materialized views and a few other topics. Section 6 concludes
with our perspectives on the current state and future directions of the
study of materialized views.

2
Maintaining Materialized Views

We represent a materialized view by a pair (Qv,Tv), where Qv denotes
the view definition query and Tv denotes the currently materialized
view contents. Suppose Tv is currently up to date; i.e., Tv = Qv(D),
where D denotes the current state of the database. As discussed in
Section 1, we need to maintain the materialized view when base tables
change. More specifically, when the underlying database undergoes a
modification — in general consisting of a sequence of insertions, dele-
tions, and updates to base tables — that changes the database state
from D to D′, we need to update Tv to Qv(D′). This setting, illustrated
in Example 1.3, is what we typically mean by “view maintenance.”

Broadly speaking, however, several other situations also require
“maintenance”:

• When the view definition changes from Qv to Q′
v, we need to

update Tv to Q′
v(D). This problem is called view adaptation;

see survey by Ross [338], and more recent work by Green and
Ives [175]. The key is to find a way to leverage the previously
materialized result Tv = Qv(D) to compute Q′

v(D), which
is related to the problem of answering queries using views
(Section 3.1).

303

304 Maintaining Materialized Views

• When the underlying database undergoes a schema change,
we may need to change the view definition Qv so it remains
valid; we then need to update Tv accordingly. This problem
has been considered by Rundensteiner et al. in [311] and a
series of follow-up work (see also Section 2.5.1).

• If we carry the idea of logical data independence to its full
extent, a view should behave like a regular table, so its
contents can be modified. When a user modifies the view
contents from Tv to T ′

v, we could determine a new database
state D′ such that T ′

v = Qv(D′). In general, however, there
may be many or none such database states. Traditionally,
database systems place ad hoc restrictions on what modifi-
cations can be made through views, but quest for better solu-
tions is ongoing; see [389, 390] for overview and [238, 327] for
recent developments.

This section focuses on the first maintenance setting described
above — maintaining views in response to base data modifications.
As illustrated in Example 1.3, the single most important idea in view
maintenance is perhaps incremental view maintenance, which builds
on the observation that computing changes to view contents induced
by small changes to base tables may be more efficient than recom-
puting views from large base tables. Figure 2.1 illustrates incremental
maintenance versus full recomputation of a materialized view. Much of
the discussion in this section is about how to make incremental main-
tenance more efficient, flexible, and general, and how to choose view
maintenance strategies (including recomputation) intelligently.

Fig. 2.1 Incremental view maintenance versus recomputation of materialized view (Qv ,Tv).

305

Besides the potential performance advantage, it is interesting to
note that incremental maintenance, or, more generally, incremental
query computation, also adds to the expressive power of a query lan-
guage [141]. For example, it is well known that the transitive closure
query cannot be expressed in relational algebra, but it can be expressed
in an incremental setting.

Example 2.1. Consider a directed graph represented by a table
edge(v1,v2), where each row corresponds to a directed edge from
vertex v1 to v2. To compute the transitive closure reachable(v1,v2)

of the graph, we start with an empty reachable. We process each row
of edge as an insertion into edge, and maintain reachable as follows:

reachable← reachable

∪∆edge ∪ πv1,v3(∆edge �� ρ(v2,v3)reachable).

Here, ∆edge(v1,v2) denotes a table containing the (single) row
inserted into edge, ρ renames the columns in a table, and ∪, π, and ��

respectively denote relational (and hence duplicate-eliminating) union,
projection, and natural join. Using the same rule above, we can also
maintain reachable as a materialized view with respect to single-row
insertions into edge.

Section Roadmap We now provide a roadmap for our discus-
sion of view maintenance in this section. The survey by Gupta and
Mumick [187] and the overview by Deligiannakis [132] classified work
on view maintenance along multiple dimensions. We highlight three of
these dimensions here: (1) language (and data model) used in defining
views (e.g., relational or XML), (2) information used by the mainte-
nance procedure (e.g., whether base tables are accessible), and (3) tim-
ing of maintenance (e.g., whether a view is maintained immediately
upon base table modifications or upon the first time it is queried).1

1 Gupta and Mumick’s classification in [187] included also allowable modification (what
modifications the algorithm can handle) and database instance (whether the algorithm
works for all or only some of the database instances) as dimensions, but did not include

306 Maintaining Materialized Views

An exhaustive review of all techniques along with the language
dimension is beyond this scope of this survey, so we focus on nonre-
cursive SQL views. The remainder of this section discusses techniques
along with the information and timing dimensions, as well as issues
that do not fit the classification above:

• Section 2.1 begins with a discussion of how incremental view
maintenance is algorithmized and implemented, laying the
foundation for subsequent sections. We start with the alge-
braic (as opposed to procedural) approach toward specifying
view maintenance. Although conceptually clean and influen-
tial, the approach leaves out many implementation issues. We
then highlight derivation counting (a technique for maintain-
ing result rows with multiple derivations from base data) in
Section 2.1.1, and alternative ways for representing base data
changes (which also affect the efficiency of view maintenance)
in Section 2.1.2. Finally, in Section 2.1.3, we outline practical
issues that arise when implementing view maintenance in a
database system, such as how to apply computed changes
to materialized views, how to optimize view maintenance
(including choosing between recomputation and incremen-
tal maintenance), and how to maintain multiple materialized
views efficiently.

• Section 2.2 surveys view maintenance techniques that vary
along with the information dimension. Besides exploit-
ing the knowledge of database constraints, different tech-
niques assume different types of data to be accessible
by view maintenance. Section 2.2.1 discusses detection of
irrelevant updates, which accesses only base table modifica-
tions; Section 2.2.2 discusses self-maintainable views, whose

information or timing. In [188] they further added auxiliary information (what and how
much information the algorithm maintains in addition to aid maintenance) and complex-
ity improvement (whether the algorithm is demonstrably better than recomputation), and
further distinguished view maintenance language from view definition language. Deligian-
nakis’s classification [132] included — in addition to language, information, and timing —
the dimensions of allowable modifications and algorithm applicability (analogous to the
database instance dimension in [187]).

2.1 Algorithmizing and Implementing Maintenance 307

maintenance accesses base table modifications and view con-
tents, but never base tables; Section 2.2.3 discusses run-
time self-maintenance, which does not preclude access to
base tables, but tries to avoid that as much as possible on a
pre-modification basis. By limiting their access to base data,
these approaches can be more efficient and reliable, particu-
larly in distributed settings like a data warehouse.

• Section 2.3 discusses what is actually being materialized —
there are more interesting options than simply storing the
view contents in a table. Section 2.3.1 shows how, instead of
literally materializing the view contents, storing a data struc-
ture in place of the contents may save space and facilitate
queries and maintenance. Section 2.3.2 shows how maintain-
ing more (data in auxiliary views) can mean maintaining less
(in terms of maintenance costs).

• Section 2.4 examines view maintenance policies that differ
in the timing dimension. We begin in Section 2.4.1 with the
straightforward approach of immediate maintenance, which
maintains views in the same transaction as modifications to
the base tables. Then, in Section 2.4.2, we survey the work
on deferred maintenance, which is more flexible and benefits
from efficient batch processing of modifications.

• Section 2.5 covers other issues, including concurrency con-
trol (Section 2.5.1), distributed and parallel processing
(Section 2.5.2), and a brief survey of support for view main-
tenance in database products (Section 2.5.3).

2.1 Algorithmizing and Implementing Maintenance

A popular way of specifying incremental view maintenance algorithms
in the literature is the algebraic approach, which we will focus on in
this section. Examples of nonalgebraic approaches include the counting
algorithm of Gupta et al. [189], which supports views with bag seman-
tics, group-by, and recursion expressed as Datalog programs, and the
method based on production rules by Ceri and Widom [83], which han-
dles SQL views with one level of nesting and one set union or intersect

308 Maintaining Materialized Views

operator. We choose to focus instead on the algebraic approach because
it is more prevalent and easier to explain.

With the “purest” algebraic approach, popularized by Qian and
Wiederhold [331], changes to base data are represented as a pair of so-
called delta tables —∇R and ∆R — for each base table R.∇R contains
deleted rows and ∆R contain inserted rows; in-place updates to rows are
represented as deletion of their old versions in ∇R followed by insertion
of their new versions in ∆R. Under the set semantics (i.e., no table con-
tains duplicate rows), the net effect on R is R← R − ∇R ∪ ∆R. Under
the bag semantics (i.e., tables are bags of rows with possible duplicates,
which is the default in SQL), the net effect on R is R← R ·− ∇R � ∆R,
where ·− and � denote bag difference and union, respectively, to dis-
tinguish them from their relational counterparts − and ∪. In general,
one transaction may modify multiple tables.

With the algebraic approach, we specify view maintenance using
a collection of change propagation equations. Each equation specifies,
for an operator of the view definition language, how to “propagate”
changes from one input table. At compile time, given a view definition
query Qv expressed as an operator tree, we apply the change propaga-
tion equations to the tree in a bottom-up fashion. Roughly speaking,
starting with changes to base tables, we derive queries for computing
changes to progressively larger subexpressions of Qv, and eventually
obtain queries for computing changes to Qv. At run time, given the
changes to base tables, we evaluate these queries to obtain changes
to the view contents, and then “refresh” the view by applying these
changes. The example below illustrates some change propagation equa-
tions and their application.

Example 2.2. The change propagation equations for selection (σp)
and (theta-)join (��θ) in bag algebra are as follows (they also work
under set semantics if operators are replaced by their set counterparts).

σp(R ·− ∇R) = σp(R) ·− σp(∇R) (2.1)

σp(R � ∆R) = σp(R) � σp(∆R) (2.2)

(R ·− ∇R) ��θ S = (R ��θ S) ·− (∇R ��θ S) (2.3)

(R � ∆R) ��θ S = (R ��θ S) � (∆R ��θ S) (2.4)

2.1 Algorithmizing and Implementing Maintenance 309

These equations all have the same form: the left-hand side of each
shows a single operator with one of its input changed (by either ∇R

or ∆R); and the right-hand side begins with the same operator with
inputs unchanged, followed by changes to the result of this operator.

Using the equations above, we show how to derive changes to the
view Qv = σp(R) ��θ S, given ∇R, ∆R, and ∆S:

σp(R ·− ∇R � ∆R) ��θ (S � ∆S)

=
(
σp(R) ·− σp(∇R) � σp(∆R)

)
��θ (S � ∆S) by (2.2), (2.1)

=
(
σp(R) ��θ (S � ∆S)

)

·− (
σp(∇R) ��θ (S � ∆S)

)

� (
σp(∆R) ��θ (S � ∆S)

)
by (2.4), (2.3)

= (σp(R) ��θ S) � (σp(R) ��θ ∆S)
·− (σp(∇R) ��θ S) ·− (σp(∇R) ��θ ∆S)

� (σp(∆R) ��θ S) � (σp(∆R) ��θ ∆S) by (2.4).

There are several subtleties. First, if we want to represent the
changes derived above by a pair of delta tables, some care is required. It
would be wrong to combine all negative change terms — σp(∇R) ��θ S

and σp(∇R) ��θ ∆S — into ∇Tv and all positive change terms —
σp(R) ��θ ∆S, σp(∆R) ��θ S, and σp(∆R) ��θ ∆S — into ∆Tv, and
simply modify the materialized view contents Tv with Tv ← Tv ·−
∇Tv � ∆Tv. The reason is that deleting σp(∇R) ��θ ∆S before insert-
ing σp(R) ��θ ∆S may not achieve the intended effect because of the
proper subtraction semantics of ·−. An excellent reference on how to
handle this problem (and other subtleties) is [180].

Second, note the change terms derived above are defined using the
state of base tables R and S before they are changed. Depending on
its timing, a view maintenance procedure may see newer states of base
tables and therefore needs to compute changes differently from above.
Section 2.4 will have more to say about this issue.

Finally, the above derivation handles multiple base table deltas
simultaneously. Performing view maintenance one delta table at a time
often results in much simpler expressions. For example, Tv can also be
maintained as follows together with the base tables, by processing each

310 Maintaining Materialized Views

of ∇R, ∆R, and ∆R in order:

Tv ← Tv ·− (σp(∇R) ��θ S); R← R ·− ∇R;

Tv ← Tv � (σp(∆R) ��θ S); R← R � ∆R;

Tv ← Tv � (R ��θ ∆S); S ← S � ∆S.

The algebraic approach toward specifying incremental view main-
tenance has been influential. Blakeley et al. [50] gave maintenance
expressions for relational select–project–join views. Qian and Wieder-
hold [331] proposed change propagation equations for relational alge-
bra operators. This approach was perfected by Griffin and colleagues
for bag algebra [180] (including a final aggregation function but no
group-by) and relational algebra [181], and extended with semijoins
and outerjoins [179]. Quass extended the approach to bag algebra plus
the group-by-aggregation operator [332]. Mumick, Quass, and Mumick
considered SQL group-by-aggregation views (whose definitions had
aggregation as the last operator) [307], and proposed an alternative
method of representing changes called summary-deltas, which we shall
discuss further below. Gupta and Mumick [197] generalized the notion
of summary-deltas and developed an algebraic approach that handled
bag algebra plus group-by-aggregation and outerjoin operators. The
latest on maintaining outerjoin views (possibly followed by aggrega-
tion) is by Larson and Zhou [262].

The algebraic approach is attractive for several reasons. Besides
being conceptually simple, it is modular and composable: change prop-
agation equations are defined separately for each operator in the view
definition language, and together they can handle arbitrarily complex
query expressions. In its purest form, this approach expresses all main-
tenance tasks using only the standard query operators, and hence can
leverage existing query execution and optimization engines. However,
in reality, as we shall see below, efficient implementation sometimes
requires giving up the conceptual simplicity of the algebraic approach
and specifying aspects of the maintenance in a more procedural manner.
Therefore, the division between algebraic and procedural approaches
toward specifying incremental view maintenance has been increasingly

2.1 Algorithmizing and Implementing Maintenance 311

blurred. For example, summary-deltas and variants (Section 2.1.2),
which have emerged as the preferred method of representing changes,
require new operators or special procedures to apply.

2.1.1 Derivation Counting

A well-known difficulty in incremental view maintenance is handling
projection in relational algebra or duplicate elimination in bag algebra.
Consider a view πA(R) in relational algebra, which contains the set of
distinct A values in R. Suppose we delete a row r from R. To maintain
the view, we must know how many other rows in R have the same A

value as r: if there is none, then we should delete r.A from the view;
otherwise, the view remains unchanged. This check requires examining
R, which can be expensive in general, e.g., when R itself is a complex
query expression instead of a base table.

A key idea for coping with this difficulty is derivation counting.
That is, for each materialized row, we also keep track of the count of
its derivations. For example, for each row (A value) in the material-
ized πA(R), we also store the number of rows in R that contributes
to this result; i.e., those with the same A value. This count can be
easily maintained when R is modified. If a deletion from R causes the
count associated with a row in πA(R) to become 0, then this row is
deleted. This idea of counting has been used for relational view mainte-
nance since [50], and also underpinned the counting algorithm of Gupta
et al. [189]. Counting is useful not only for maintaining views involving
projection and duplicate elimination, but also group-by-aggregation, as
we will see later in Example 2.5.

Note that derivation counting requires extending the algebraic
approach. The basic change propagation equations can be inefficient if
applied directly, as they do not consider or use extra information such
as counts. For example, the equation for propagating deletion through
relational projection [331] is

πA(R − ∇R) = πA(R) − (πA(R) − πA(R − ∇R)),

which implies recomputing the view. In this case, we must rely on
other techniques (Section 2.3) for deciding what to materialize — in

312 Maintaining Materialized Views

addition to or instead of the view itself — to make view maintenance
more efficient. In this sense, the algebraic approach may not be as
“complete” a solution as a procedural one exemplified by [189].

2.1.2 Alternative Representations of Changes

So far, we have been assuming — as most early work on the alge-
braic approach did — that changes to a table R are represented as
delta tables ∇R and ∆R. This representation is conceptually appeal-
ing, because delta tables have the same schema as their corresponding
tables, and can be applied using operators in the view definition lan-
guage. However, this representation turns out to be inefficient in some
situations.

Example 2.3 (Adapted from [197]). Recall Example 1.1. Suppose
we materialize a view defined by (Q1v), but not TotalByItemStore.
Consider the insertion of five rows, represented by ∆pos, into base
table pos as in Example 1.3. If we maintain (Q1v) by first propagating
changes through TotalByItemStore, and if we represent the changes
to TotalByItemStore using a pair of delta tables ∇TotalByItemStore
and ∆TotalByItemStore, then we have to determine the old total

for each row in ∇TotalByItemStore, which requires recomputing it
from the corresponding group from pos because TotalByItemStore

is not materialized. A better strategy would to be represent only the
net effect on TotalByItemStore, which in this case consists of five
rows, each representing a value to be added to the total of an affected
TotalByItemStore row. This strategy eliminates the need to obtain
the actual total for each affected row, but we need new equations
for propagating this “add-to” style of changes further through other
operators in the view definition expression.

Example 2.4. Consider a view �k
A(R), which returns the top k rows

in R as ranked by their A values (for simplicity, ignore the case of ties).
One of the top k rows in R, say r, is updated, such that its updated
version, r′, continues to remain in the top k. Suppose this update is

2.1 Algorithmizing and Implementing Maintenance 313

represented as a pair of delta tables, ∇R = {r} and ∆R = {r′}, and
propagated in order. When propagating ∇R, we need to compute the
(k + 1)-th ranked row in R because r is deleted. However, when prop-
agating ∆R, we will simply discard this row because of the insertion
of r′. It would be more efficient to detect that the update does not
actually change the membership of the top k rows and hence avoid
querying R for the (k + 1)-th ranked row. Doing so would require that
we do not “break up” an update into a pair of deletion and insertion.

Inefficiency associated with the delta tables has led to the devel-
opment of alternative representations of changes that capture the net
effect of changes more precisely and in a minimalistic manner. Mumick
et al. [307] proposed computing and representing changes to an aggre-
gate view as a summary-delta that encodes the net effect of insertions,
deletions, and updates in a single table, as illustrated by the following
example.

Example 2.5. Consider the following materialized view, modified
from TotalByItemStore (Example 1.1) by adding a column for deriva-
tion count. For simplicity, assume that qty and price cannot contain
NULL values.

CREATE VIEW ISTC(itemID, storeID, total, count) AS

SELECT itemID, storeID, SUM(qty*price), COUNT(*)

FROM pos GROUP BY itemID, storeID;

Inserting row r̂ into pos would generate, for ISTC, a summary-delta
row 〈r̂.itemID, r̂.storeID,(r̂.qty × r̂.price),1〉, while deleting ř from
pos would generate 〈ř.itemID, ř.storeID,−(ř.qty × ř.price),−1〉.

Now, consider a row r in the summary-delta for ISTC. If ISTC

currently contains no row with r.itemID and r.storeID, we insert r

into ISTC. Otherwise, we update the row in ISTC with r.itemID and
r.storeID by adding r.total to its total and r.count to its count. If
the resulting count becomes 0, we delete the row from ISTC.

Because of their efficiency advantage over delta tables, summary-
deltas have become the representation of choice especially for views

314 Maintaining Materialized Views

involving aggregation [253, 307, 314]. Some commercial database
systems use summary-deltas (or their variants) in providing built-in
support for materialized views, e.g., [43, 262, 269, 320]. Gupta and
Mumick [197] generalized the notion of summary-deltas to change
tables, and developed an algebraic framework that allows change tables
to be propagated through complex view definition expressions; a special
“refresh” operator was introduced to apply a change table.

Yet another way to represent changes is to use the SQL state-
ments that produced them. In SQL, rows to be deleted and updated
are selected by a WHERE condition. Reasoning with these modification
conditions and the conditions in the view definition queries sometimes
allows us to simplify maintenance. Blakeley et al. [48, 49] took this
approach in detecting changes whose effect on a view could be com-
puted by just examining the changes and the view definition; more on
detecting such changes will be discussed in Section 2.2.

2.1.3 Implementation and Optimization

We now outline several practical issues that arise when implementing
view maintenance in a database system.

Applying Computed Changes to Materialized Views One
practical problem with implementing incremental maintenance is that
there has been no convenient way to express bag deletion in SQL,2

which is needed for applying computed delta tables to materialized
views. It is not until recently that some database systems have intro-
duced extensions to DELETE that allow bag deletion to be expressed
more directly. In general, it has been observed [253, 314] that most
database systems have a difficult time with modification statements
that arise in view maintenance; efficient application of summary-deltas
requires implementation using stored procedures with cursors.

Optimizing View Maintenance In an algebraic approach, it is
difficult to measure or ensure the efficiency of change propagation

2 Bag difference, as a query operator, is supported by EXCEPT ALL, but it does not lead to
an efficient implementation of bag deletion.

2.1 Algorithmizing and Implementing Maintenance 315

equations and the change expressions they generate. The minimality
requirement was proposed by [180, 331]: if changes to view V are cal-
culated as delta tables ∇V and ∆V , then we require ∇V ⊆ V and
∇V ∩ ∆V = ∅. Intuitively, this condition ensures that the changes we
derive are minimal. However, as pointed out by [180, 331], minimality
can be trivially satisfied by letting∇V = Qv ·− Q′

v and ∆V = Q′
v
·− Qv,

where Q′
v is obtained from Qv by replacing references to base tables

with subexpressions computing their new states (just like the left-hand
sides of change propagation equations in Example 2.2). However, simply
using the above definitions to maintain V is even costlier than recom-
puting V . Ultimately, their efficiency should be vetted by a cost-based
database optimizer.

In general, it would be best to leave the decision on how to maintain
a view to the database optimizer, because the optimal strategy depends
not only on the type of the view but also on the workload and other
information available only at the time of maintenance. As a simple
example, consider the basic question of whether incremental mainte-
nance is always better than recomputation. Not surprisingly, the answer
is no; recomputation may well win for certain views and workloads, e.g.,
when significant portions of the base tables have changed [51, 120].

Traditional database optimizers must be extended to handle view
maintenance. For example, an optimizer can use the algebraic approach
to generate change propagation equations, further optimize them as
queries, and compare the estimated overall maintenance cost with
that of recomputation. Vista [392, 393] considered how to extend a
transformation-based optimizer to handle view maintenance queries. In
particular, knowledge of constraints (such as keys and foreign keys) can
be used by the optimizer in simplifying maintenance queries. Bunger
et al. [65] used dynamic maintenance plans that could make run-time
decisions of strategies (incremental maintenance versus recomputation)
based on the actual intermediate results produced by maintenance.

Maintaining Multiple Views A database with multiple material-
ized views needs to carry out multiple maintenance tasks when the base
tables change. A materialized view defined in terms of other material-
ized views can often be maintained more efficiently by exploiting the

316 Maintaining Materialized Views

availability of these other views. Furthermore, similar subexpressions
within and across maintenance queries can be identified, and their eval-
uation can be shared instead of repeated. Segev et al. [351, 352, 353]
explored how to share the work of maintaining multiple select–project
views defined over the same base table. Labio et al. [254] studied, for
a directed acyclic graph of views defined over base tables and other
views, how to coordinate computation and application of changes in
order to minimize maintenance cost. They also considered the possi-
bility of simplifying maintenance by processing changes for one base
table or view at time (instead of simultaneously) in a particular order,
as illustrated at the end of Example 2.2. Mistry et al. [305] applied
multi-query optimization techniques to optimize multiple view mainte-
nance queries. Lehner et al. [268] considered merging similar subexpres-
sions across maintenance queries into a common, subsuming expression
whose result could be shared; their approach was subsequently extended
by Xu et al. [402] to handle a very large number of views. DeHaan
et al. [131] discussed the maintenance of materialized views defined
over other views. Folkert et al. [151] studied how to schedule mainte-
nance of multiple views such that already maintained views could be
used to support maintenance of others. Recent work on exploiting sim-
ilar subexpressions for query processing by Zhou et al. [416] considered
the optimization of multiple view maintenance queries as one of the
main applications of their techniques.

Discussion Broadly speaking, the problem of rewriting a view main-
tenance query to use the contents of this or other materialized views is
an instance of the problem of answering queries using views (Section 3).
The problem of selecting additional views to materialize for the purpose
of speeding up view maintenance — further discussed in Section 2.3 —
is an instance of the view selection problem (Section 4). To sum up, effi-
cient realization of view maintenance requires many techniques beyond
simple application of the algebraic approach.

2.2 Information Available to Maintenance

Change propagation equations presented earlier in Section 2.1 are
rather generic and only reference base and delta tables. In practice,

2.2 Information Available to Maintenance 317

maintenance can make use of a variety of alternative and additional
information, such as the materialized view contents. knowledge of
database constraints (such as keys and referential integrity constraints).
The following example illustrates this point.

Example 2.6. Consider the items table from Example 1.1 and a mate-
rialized view V defined by πname(σcost>100items), which returns the
distinct (by name) items that are “expensive.” Suppose a new row r̂ is
inserted into items. We can maintain V as follows.

• If name is a key of items, we insert r̂.name into V if and only
if r̂.cost > 100.

• If name is not a key (or we do not know that it is), we must
additionally verify that V does not already contain r̂.name

before inserting it into V .

Now suppose an existing row ř is deleted from items.

• If name is a key of items, we delete ř.name from V if and
only if ř.cost > 100.

• If name is not a key (or we do not know it is), we must
check the base table to see how many remaining expensive
items bear the same name; we delete r̂.name from only if none
remains.

As we can see from above, view maintenance may require access to
different amounts of information. Sometimes the deltas alone suffice,
while sometimes the materialized view contents or even the base tables
are needed. Constraints can simplify view maintenance by reducing the
amount of data that it needs.

There are many scenarios where performing view maintenance with
partial access to data is beneficial, for both efficiency and feasibility
reasons. From deltas to materialized views to base tables, we will likely
find increasing sizes and access costs. For example, consider a scenario
where a central data warehouse maintains a materialized view over base
tables stored at remote data sources. Suppose the sources push deltas

318 Maintaining Materialized Views

to the warehouse. It would be nice for the warehouse to be able to
maintain its view using just the deltas and the view contents stored
locally, without performing expensive queries over remote, and possi-
bly unavailable, base tables. Furthermore, if the data sources can use
the knowledge of constraints and the view definition to determine that
certain deltas will not affect the warehouse view, we can save com-
munication and further processing by not sending such deltas to the
warehouse.

In the remainder of this section, we discuss several concepts and
results on maintaining views using partial information. They vary in
the amount of information required and offer a spectrum of trade-offs
between efficiency and applicability — those that require less data may
be more efficient, but they work for fewer views and modifications.

2.2.1 Irrelevant Updates

Given a base table modification δ, sometimes we can determine that
it has no effect on the contents of a view V for all possible database
states. Such modifications were termed irrelevant updates by Blakeley
et al. [48, 49, 50]. As a simple example, consider the insertion of a
new row into the items table with cost = 99, which does not satisfy
the selection condition of view V in Example 2.6. It is clear that this
insertion is irrelevant to V .

The idea of irrelevant updates can be traced back to the related con-
text of supporting data triggers and alerters, where they were called
readily ignorable updates by Buneman and Clemons [64]. Blakeley
et al. [48, 49] showed how to detect irrelevant updates by testing sat-
isfiability of Boolean expressions constructed from the view definitions
and modification specifications (as mentioned earlier in Section 2.1.2,
deletions and updates are represented in [48, 49] using conditions that
select the rows they apply to). Such tests do not access the contents of
base tables or materialized views. More generally, for recursive views
(defined in Datalog), the problem of detecting irrelevant updates can
be reduced to that of testing equivalence of Datalog programs [273]:
though undecidable in general, algorithms for restricted subclasses have
been developed [144, 273].

2.2 Information Available to Maintenance 319

Fig. 2.2 Comparison of the types of data accessed by irrelevant update detection, self-
maintenance, and unrestricted maintenance. The dashed arcs show what types of data are
involved in computation.

2.2.2 Self-Maintainable Views

A view V is self-maintainable with respect to a modification type (inser-
tion, deletion, or update) to a base table R if, for all possible database
states and modifications δ to R of this type, we can self-maintain V ,
i.e., using its materialized contents and δ but no base tables. Figure 2.2
illustrates the types of data accessed by self-maintenance, in compar-
ison with irrelevant update detection (Section 2.2.1) and unrestricted
maintenance.

Example 2.7. Consider a view defined by (Q1) from Example 1.1.
Since pos(itemID) is a foreign-key reference to items(itemID), this
view is self-maintainable with respect to insertions into items: a new
items row cannot possibly join with existing pos rows and therefore
cannot affect the view. However, if there is no referential integrity con-
straint from pos(itemID) to items(itemID), the view will not be self-
maintainable with respect to insertions into items, because we need to
access base table pos to find rows that join with the new items.

The view is not self-maintainable with respect to insertions into pos

because new pos rows need to be joined with base table items to find
the categories of items sold.

The notion of self-maintainability generalizes to multiple views. A
set V of views is self-maintainable with respect to a modification type to
a base table if, for all such modifications and possible database states,

320 Maintaining Materialized Views

we can self-maintain all views in V, i.e., using their materialized con-
tents and the modifications but no base tables.

Example 2.8. Consider a set of two views: V1 is defined by (Q1) from
Example 1.1 as in Example 2.7, and V2 is defined as follows:

SELECT itemID, category FROM items;

Assuming reasonable key and foreign-key constraints, {V1,V2} is self-
maintainable with respect to insertions into both items and pos. The
contents of V2 can be used to maintain V1 upon insertions into pos. V2

is in fact self-maintainable by itself.
Deletions from pos are tricky. It may appear that we can simply join

a deleted pos row ř with materialized V2 to get the item’s category, and
maintain V1 by decrementing the appropriate sum by ř.qty*ř.price.
However, if ř represents the only sale in its category at its store, we
should remove ř’s corresponding group from V1. If there are database
constraints requiring both pos.qty and pos.price to be non-NULL and
positive, we can handle this case by checking whether the sum drops
to 0, so {V1,V2} is self-maintainable with respect to deletions from
pos. Without these constraints, however, V1 must also have COUNT(*)

and COUNT(qty*price) in its SELECT clause for {V1,V2} to be self-
maintainable.3

Compared with the notion of irrelevancy discussed above, which is a
property of one specific modification, self-maintainability — as defined
here and by Gupta et al. [186] — is a property of a view or set of
views, and it implies the ability to maintain view(s) without access-
ing base tables for all possible modifications. This powerful guarantee
makes self-maintainable views especially attractive to data warehous-
ing, because they completely avoid the need to access remote base
tables, which may be expensive and face consistency issues with asyn-
chronous base table modifications (Section 2.5.1).

3 If a group’s COUNT(*) drops to 0, it needs to be removed; otherwise, if its COUNT(qty*price)
drops to 0, its sum needs to change from 0 to NULL.

2.2 Information Available to Maintenance 321

Gupta et al. [186] showed how to test whether a select–project–
join view (including self-join and outerjoin) is self-maintainable, and
if yes, how to self-maintain it. Unfortunately, most views are not self-
maintainable. Follow-up works [29, 217, 278, 306, 333, 347] address the
closely related problem of making a view self-maintainable if it is not;
they also extended self-maintainability and self-maintenance results to
consider semijoins, aggregates, as well as multiple views and additional
database constraints. We defer their discussion to Section 2.3, because
making a view self-maintainable entails maintaining auxiliary data.

2.2.3 Run-Time Self-Maintenance

Another line of work on self-maintenance takes an alternative approach:
instead of requiring self-maintainability for all possible modifications
of a given type, we examine self-maintainability on a premodification
basis at run time. A view is (run-time) self-maintainable with respect
to a base table modification δ if we can self-maintain the view using
its contents and δ. Compared with the stricter, “compile-time” notion
of self-maintainability in Section 2.2.2, we no longer guarantee self-
maintainability at all times; however, the hope is that we can still avoid
accessing the base tables for many modifications, thereby improving the
average maintenance cost.

Example 2.9. Consider the set {V1,V2} from Example 2.8. As dis-
cussed, this set is not self-maintainable with respect to deletions from
pos in general (e.g., when price may be 0), because of the special
case when a deletion causes a group’s sum to drop to 0. However,
given a particular deletion of row ř from pos, we can test whether the
current sum for ř’s group materialized in V1 is strictly greater than
ř.qty*ř.price. If yes, V1 is self-maintainable with respect to ř, and
we simply decrement the sum by ř.qty*ř.price. Otherwise, V1 is not
self-maintainable with respect to ř.

Example 2.10(Adapted from [48]). Consider base tables R1(H,I)
and R2(J,K) and a view V defined as πJ,K(σH<20R1 ��I=J R2) under
the set semantics. Suppose a modification δ deletes all rows in R1 with

322 Maintaining Materialized Views

I = 20 and H < 30. V is self-maintainable with respect to δ; to maintain
V we simply delete all its rows with J = 20. The justification is that
all such rows must have been derived from R1 rows with I = 20 and
H < 20, which are deleted by the modification because H < 20 implies
H < 30.

On the other hand, consider the deletion of row 〈10,20〉 from R1. V

is not self-maintainable with respect to this deletion. There may be any
number of other R1 rows with I = 20 and H < 30; therefore, without
checking R1, we do not know whether to delete V rows with J = 20.

The idea of run-time self-maintenance was first explored by
Blakeley et al. [48, 49] (and was termed autonomously computable
updates). They developed tests for run-time self-maintainability and
procedures for run-time self-maintenance of select–project–join views,
though they did not exploit the currently materialized view contents.
Tompa and Blakeley [382] extended the approach to make use of view
contents. Gupta and Blakeley [184] further improved the approach,
and also considered the case when some but all of the base tables can
be accessed for view maintenance (which can no longer be classified
as self-maintenance). Huyn [220] proposed more efficient tests for
run-time self-maintenance by separating compile-time test genera-
tion from run-time test evaluation. In [221], Huyn tackled run-time
self-maintenance of multiple views, handled multiple insertions and
deletions in a batch, and considered the case when some base tables
may be available; one key insight was that self-maintainability testing
can be reduced to query containment.

Tests of run-time self-maintainability and irrelevancy (when using
view contents) are hard decision problems; even for select–project–join
views they are co-NP-complete in the size of the view contents. To
make them practical, Huyn developed efficient (polynomial in the size
of the view definition) tests for subclasses of select–project–join views
with no self-joins or a limited form of them [222].

2.3 Materialization Strategies

Suppose we have decided to materialize a view, for example, to speed
up user queries. The simplest strategy is to store it (and it alone)

2.3 Materialization Strategies 323

as a data base table. More sophisticated strategies are often needed,
however. We have already seen examples where materializing additional
view subexpressions (Sections 2.1.3 and 2.2.2) and information such as
counts (Sections 2.1.1 and 2.2.2) can improve view maintenance, even
though they do not directly improve user queries. Moreover, instead of
materializing a view as a table, we can store it using data structures
that can be accessed and/or maintained more efficiently, much like
indexes. We devote this section to discussing strategies that materialize
alternative structures or additional information.

2.3.1 Alternatives to Materializing Contents

Much of the work on materialized views aims at using their contents to
speed up queries. While this “logical” approach to reuse is attractive
for its simplicity and physical data independence, a more “physical”
approach, which reuses both data and access paths, can potentially
offer higher efficiency. A representative of this approach is the ADMS
project of Roussopoulos et al. [341, 340, 342]. Instead of materializing
each actual result row of a select–join view, ADMS uses a ViewCache
to store pointers to base table rows (or entries in other ViewCaches
corresponding to subexpressions) that contributed to the result row.
ViewCache’s restricted query form and compact representation make
it very efficient to store, maintain, and access. Blakeley and Martin [51]
analytically showed workloads where join indexes (which can be seen
as ViewCaches) outperformed both virtual join views and those mate-
rialized as tables.

For complex views, directly materializing their contents is some-
times impractical. We give two specific examples below.

• The data cube [172] for a d-dimensional table (i.e., d possible
group-by columns) is the union of 2d group-by-aggregation
queries, each with a different subset of group-by columns.
Simply materializing this union view as a table is ineffi-
cient, as its size is exponential in d. More compact rep-
resentations are possible by avoiding the redundancies in
the summary data. For example, consider again the schema

324 Maintaining Materialized Views

from Example 1.1. Suppose that a particular item i is
sold exclusively through store s. Then, the total venue
for i (in the result of grouping pos by itemID) must be
the same as that for (i,s) (in the result of grouping by
{itemID,storeID}), and need not be stored redundantly.
A series of work [256, 361, 362, 395] has developed compact
storage structures for data cubes to avoid such redundan-
cies. Both Sismanis et al. [361] and Lakshmanan et al. [256]
also considered incremental maintenance of their structures.
Sismanis et al. [361] showed how to avoid such redundan-
cies when computing the cube in the first place; Sismanis
and Roussopoulos [362] further proved that, for uniform base
data, both the size and construction cost of their structure
were polynomial in d.

• While the above example is motivated primarily by size and
construction cost, the next example is motivated by main-
tenance cost. Consider a table R with a pair of columns TS

and TE that together record, for each row r, the time interval
[r.TS, r.TE) during which r is “valid” (e.g., an item was being
produced during 1992–1996). Suppose we want to material-
ize a temporal aggregate view V (CNT,TS,TE) over R, which
counts the number of R rows valid at each point in time, and
stores with each count the maximal interval [TS,TE) for which
it is correct. Materializing V directly makes maintaining V

expensive. Inserting a new row r̂ into R affects all counts in
V whose intervals overlap with r̂’s. If r̂ has a long valid inter-
val, many rows in V must be updated, so the worst-case cost
is linear in |V |. Instead, Yang and Widom [404, 405] pro-
posed maintaining a B+tree sorted in the time dimension,
whose nodes are augmented with aggregate values (of sub-
trees). This structure enables V to be maintained in time
logarithmic instead of linear in |V | and supports efficient
querying and reconstruction of V .

For all work discussed in this subsection, we could have called
the materialized data structures indexes instead of views. Indeed, the

2.3 Materialization Strategies 325

distinction between materialized view and indexes has become increas-
ingly blurred — a point that we shall come back to in Section 5.

2.3.2 Maintaining Auxiliary Data

Given a view V to materialize, we may find that materializing appropri-
ate auxiliary data in addition to V makes V more efficient to maintain.
Keep in mind that such auxiliary data must be maintained as well. At
a first glance, maintaining more data to reduce maintenance costs may
appear counterintuitive. However, the idea should not be surprising
once we consider an analogy where appropriate indexing — which is
another form of auxiliary data — can facilitate base table modifications.

Making Views Self-Maintainable Much of the work on main-
taining auxiliary data is aimed at making views (together with the
auxiliary data) self-maintainable. Hull and Zhou [217] made a select–
project–join view self-maintainable by pushing selections and projec-
tions down to base tables and maintaining these select–project views as
auxiliary data. To reduce the size of auxiliary data, Quass et al. [333]
exploited key and referential integrity constraints and introduced auxil-
iary views defined using semijoin operators. Akinde et al. [29] extended
the approach to views with a final group-by-aggregation following a
select join. Mohania and Kambayashi [306] considered views defined by
expression trees involving group-by-aggregation as well as set union and
difference operators. Going beyond a single given view, Liang et al. [278]
and Samtani et al. [347] considered how to make a set of select–project–
join views self-maintainable. Garcia-Molina et al. [157] addressed the
complementary problem of identifying data to “expire” from a ware-
house that were no longer needed for maintaining required information.

Reducing Expected Maintenance Costs As discussed in
Section 2.2.2, self-maintainability is a rather strong property; making
views self-maintainable for all possible base table modification may
require maintaining a lot of auxiliary data and may be expensive.
After all, our goal is to lower the cost of maintenance; we can achieve
this goal in the expected sense by reducing the frequency of base
table accesses instead of completely eliminating them. There has been

326 Maintaining Materialized Views

some work on using auxiliary data to reduce expected maintenance
costs without ensuring self-maintainability. Luo and Yu [300] consid-
ered select–join views. Instead of making such a view self-maintainable,
they maintained a compact, hash-based data structure for each base
table in the view. These structures summarize the values of the join
columns for rows passing the local selection conditions. Kept in mem-
ory, these summary structures can quickly determine whether a base
table modification is relevant to the view; if not, expensive accesses to
the corresponding base tables can be avoided.

A series of work considers auxiliary data for MIN/MAX [320, 399]
and, more generally, top-k views (Example 2.4) [406]. A top-k view is
not self-maintainable, because when we delete a row currently in the
view or lower its value for the ranking column to below that of the
currently k-th ranked row, we must access the base table to compute
the new k-th ranked row. This base table access can be avoided by
maintaining the top k′ rows, where k′ ≥ k. Unfortunately, a top-k′ is
not self-maintainable either. The idea [406] is to adjust auxiliary view
definition — k′ in this case — as necessary at run time: k′ is incremented
when an insertion or update causes a row to enter the current top k′,
and k′ is decremented when a deletion or update causes a row to drop
out of the current top k′. We query the base table only when k′ drops
to below k, and in that case, we get more than just the k-th ranked row
and reset k′ to be greater than k. The gap between the initial k′ setting
and k is chosen such that it would take some time for k′ to become k,
allowing the base table access cost to be amortized. As shown by Yi
et al. [406], this technique is effective under assumptions that often
hold in practice.

Automatic, Cost-Based Selection of Auxiliary Views With
techniques for selecting views to materialize (Section 4), an interesting
question is whether we can apply them to the workload of view main-
tenance queries to select appropriate auxiliary views. These techniques
will not be able to find views that are approximate summaries (such
as in [300]) or whose definitions change dynamically (such as in [406]),
but they are attractive because they are automatic and cost-based.
Ross et al. [339] pioneered work in this direction. They formalized the

2.4 Timing of Maintenance 327

problem of selecting a set of auxiliary views to minimize the total main-
tenance cost, and proposed a cost-based optimization approach. Labio
et al. [252] proposed an approach to this problem based on the A�

search, and additionally considered the selection of indexes. A closely
related problem is how to select warehouse views to minimize the total
query and maintenance costs or under a maintenance cost constraint,
which we will further discuss in Section 4.1.1.

2.4 Timing of Maintenance

Different application requirements and workload characteristics call for
flexibility in when we carry out view maintenance. In terms of seman-
tics, not all queries need to see the most up-to-date view contents;
many can tolerate some staleness, as long as the view contents they
access are consistent with some database state not long ago. Even if
the queries require up-to-date view contents, we have the option of
maintaining a view when its base tables are modified, or when its con-
tents are queried. This section explores view maintenance policies that
differ in the timing of maintenance.

2.4.1 Immediate View Maintenance

Among all policies governing the timing of maintenance, the most
straightforward is immediate view maintenance, which we have
assumed implicitly so far: a view is maintained immediately upon any
base table modification, as part of the transaction making that modi-
fication. This policy implies that view contents are always current; it
cannot exploit the applications’ tolerance for staleness. While queries
benefit from the immediate availability of up-to-date view contents,
transactions performing base table modifications must carry the view
maintenance overhead. Thus, immediate maintenance is expensive for
modification heavy workloads. Furthermore, we cannot use this policy
if it is impractical to carry out view maintenance in the same transac-
tion as the base table modifications, e.g., when we maintain warehouse
views over remote data sources.

Even with immediate view maintenance, the question remains
whether maintenance sees the state of the base tables before or after the

328 Maintaining Materialized Views

modifications. Most maintenance algorithms discussed in Section 2.1
assume the premodification database state. However, some mainte-
nance algorithms, e.g., [83, 189], make use of both pre- and postmodifi-
cation states of the base tables. The so-called state bug [119] can result
if one is not careful when applying such algorithms. A possibility is to
compute the premodification base table state from the postmodifica-
tion one (and vice versa) together with the delta tables. Section 2.4.2
below further discusses how to use the postmodification database state
for view maintenance.

2.4.2 Deferred View Maintenance

Overview and Motivation With deferred view maintenance, we
can modify the view contents to reflect the base table modifications
made by a transaction after it commits. This decoupling offers consid-
erable flexibility in the timing of view maintenance. One extreme, which
is diametrically opposite to immediate maintenance, is lazy (deferred)
view maintenance: the contents of a view are brought up to date only
when accessed by a query. Transactions modifying base tables are not
slowed down, although queries requiring up-to-date view contents must
wait for any necessary view maintenance to complete.

Besides lazy, other policies for deferred maintenance are possible.
Maintenance can be triggered according to a regular time schedule
(called periodic or snapshot in [188]), after a prescribed number of
base table modifications (called forced delay in [188]), or in response to
some system event or user request. These policies can support various
notions and levels of staleness tolerable to applications. They can also
be combined with lazy maintenance (i.e., queries always trigger main-
tenance) to provide up-to-date views to queries.

One key advantage of deferred maintenance is batch processing
of modifications. Processing a series of modifications in one batch is
generally more efficient than processing them one by one, because
it reduces overhead by combining multiple maintenance procedures,
allows intermediate states of the view to be skipped, supports conden-
sation of multiple modifications to the same row, and presents more
opportunities to optimize maintenance expressions. Batching does incur

2.4 Timing of Maintenance 329

the overhead of logging base table modifications for later processing.
Although the database recovery log can serve this purpose, extracting
modifications for a particular base table and transaction can be expen-
sive. Thus, a more common approach is to log deltas separately for each
base table [415, 234].

Literature The idea of deferred maintenance has been around since
its application to database snapshots [4], though early work in that
context [234, 286] dealt only with essentially select–project views, and
focused on efficiently identifying relevant base table modifications using
storage and logging techniques. ADMS [341, 340, 342] was the first
system to implement multiple alternative maintenance policies for its
ViewCaches (see also Section 2.3.1). Hanson [209] analytically com-
pared the performance of immediate and lazy maintenance of material-
ized views as well as keeping views virtual. Srivastava and Rotem [364]
carried out an analytical study of various policies using queuing models,
and showed how to pick a policy to minimize a linear combination
of average query response time and system processing cost. Segev
et al. [351, 352, 353] studied deferred maintenance of multiple select–
project views over a remote source; in particular, Segev and Fang [351]
considered constraints specifying the maximum view staleness in terms
of time. Adelberg et al. [3] studied how to schedule maintenance to
balance various factors including the staleness of contents and the
response time of queries. Engström et al. [145] developed a framework
for selecting warehouse maintenance policies incurring minimum costs
in meeting various quality-of-service requirements. An important con-
sideration was the capabilities of data sources, which limit the choice
of policies.

Colby et al. [119] provided a formal treatment of deferred mainte-
nance. They specified how to maintain views in bag algebra with the
algebraic approach (Section 2.1), using the postmodification database
state and avoiding the state bug. To minimize view “downtime” (when
views contents are being changed and inaccessible to queries), they
proposed separating maintenance into two phases executed in different
transactions: propagate, which computes changes to views, and refresh,
which applies the computed changes to views. Only the refresh phase

330 Maintaining Materialized Views

prevents queries from accessing the views. In [120], Colby et al. studied
how to support a combination of immediate, lazy, and periodic mainte-
nance policies for multiple views efficiently. An important subproblem
they addressed is ensuring that queries see consistent data across base
tables and materialized views they access. Salem et al. [346] proposed
maintaining a view in small, asynchronous steps, further reducing the
chance of a long propagate phase blocking concurrent base table modi-
fications. Using their algorithm, a view can be brought up to any point
in time between the last refresh and the present. The trade-off, how-
ever, is that processing deltas in small pieces can be less efficient than
processing them in batch [213, 415].

He et al. [213] proposed asymmetric batch incremental maintenance
for join views. The observation is that asymmetry often exists naturally
among different components of the maintenance cost. For example, con-
sider a join view R �� S, where R has an index on the join column but
S does not. Insertions into S (∆S) would be cheaper to process than
insertions into R (∆R) and would benefit less from batching. To ensure
reasonable query response time, suppose we want to bound the cost of
bringing the view up to date whenever its contents are queried. The
idea is to process ∆S eagerly (as they arrive) and ∆R as lazy as pos-
sible (when the view is queried or the maintenance cost constraint is
about to be violated); doing so allows more ∆R to be batched and
processed more efficiently. In a follow-up work, Munagala et al. [308]
developed a competitive online algorithm for this problem.

Zhou et al. [415] showed how to implement deferred maintenance
efficiently in a database system that supports versioning. Mainte-
nance can be triggered by queries or when the system is lightly
loaded. Versioning greatly simplifies maintenance expressions because
old database states can be readily accessed. Issues like batching,
condensing deltas, and recovery are also considered.

2.5 Other Issues of View Maintenance

2.5.1 Concurrency Control

Centralized Database Setting In the context of immediate main-
tenance (Section 2.4.1), a number of papers specifically address the

2.5 Other Issues of View Maintenance 331

concurrency issues that arise in maintaining aggregate views. Trans-
actions that modify different rows in the same group must update
the same aggregate value. The standard write locks would cause these
transactions to conflict with each other. A key observation is that, for
aggregate functions that are associative and commutative (e.g., SUM),
updates (e.g., increment and decrement) can be applied in any order,
and therefore do not conflict with each other. Luo et al. [298, 299]
proposed a new locking protocol with a new lock mode exploiting this
observation for higher concurrency. While a hash index on the aggre-
gate view was assumed in [299], Luo also studied how to implement
the locking protocol with a conventional B-tree index [295]. Instead of
creating a new locking protocol, Graefe and Zwilling [170] combined
and built on the well-established multiversion concurrency control and
escrow locking techniques, and also considered logging and recovery.

Independent of the timing of maintenance, versioning of material-
ized views is a popular way of improving concurrency between transac-
tions that maintain the views and those that query them. While view
maintenance writes to the new version, queries can proceed on an old
one. Quass and Widom [334] proposed storing two versions of a table
in an extended schema with columns for storing premodification val-
ues; queries against original schema were rewritten to use the extended
schema. This approach can be generalized to multiple versions using
additional columns, as was done by Teschke and Ulbrich [372]. Kulkarni
and Mohania [251] considered the alternative of storing versions of a
view using separate tables. Kang and Chung [235] developed a multi-
version concurrency control mechanism for data cubes materialized as
multidimensional array chunks.

For deferred maintenance, we have already seen in Section 2.4.2
many techniques aimed at improving concurrency. The very idea of
decoupling view maintenance from base table modifications increases
concurrency, and so do separating propagate and refresh phases [119]
and breaking up maintenance in small asynchronous steps [346].
However, deferred maintenance complicates consistency because trans-
actions may see stale view contents. While Colby et al. [120] consid-
ered consistency between views and base tables, Kawaguchi et al. [240]
focused on concurrency control for multiple transactions that read

332 Maintaining Materialized Views

multiple views, or read a view and also read and/or wrote base tables.
The standard strict two-phase locking protocol is no longer enough to
ensure serializability in this case.

Distributed Setting Another line of work, started by Zhuge
et al. [418], studies concurrency control for view maintenance in a dis-
tributed setting, where a data warehouse maintains views over remote
base tables. Deferred maintenance is necessary in this case. To maintain
a join view in response to a base table modification reported by one data
source, the warehouse may need to probe (i.e., query) the other base
tables to find joining rows. Meanwhile, additional modifications may
have taken place at the sources, so the probes may return answers based
on a newer database state. To ensure consistency of the view being
maintained, we must compensate for the effects of interfering modifi-
cations. Zhuge et al. [418] introduced and solved this problem for the
case of a single remote data source. To handle multiple sources, Zhuge
et al. [419, 421] proposed the Strobe family of algorithms, which decom-
pose maintenance queries into probes against individual sources, keep
track of modifications during probe evaluation, and compensate for
them later. Building on Strobe, the same authors [420] studied how to
coordinate maintenance of multiple warehouse views to ensure consis-
tency. Agrawal et al. [18] proposed SWEEP algorithms, which compen-
sate each probe individually instead of the whole maintenance query,
thereby eliminating the need to wait for quiescence before view refresh
while using fewer number of source queries. O’Gorman et al. [313]
developed POSSE, which balances the use of concurrent source probes
(which may yield faster response time by overlapping execution) and
sequential ones (which produce smaller intermediate results). Zhang
et al. [411, 412] further improved these algorithms by parallelizing the
handling of multiple source modifications. Agrawal et al. [17] developed
a formal model for maintaining warehouse views by incorporating for-
malisms from distributed computing. Going beyond data modifications,
a series of work by Rundensteiner et al. [100, 102, 104, 287, 288, 413]
considered how to handle source schema changes as well. While their
early efforts [287, 413] were compensation-based like the algorithms dis-
cussed earlier, the work culminated in TxnWrap [104]; this multiversion

2.5 Other Issues of View Maintenance 333

concurrency control scheme materialized versioned data at the ware-
house, sources, or specialized source wrappers.

Note that the idea of maintaining versions of source data is an
example of self-maintenance (Section 2.3.2), an alternative solution
to the problem of interfering source modifications and probes. Self-
maintenance completely avoids this problem by eliminating the need
to access base table for maintenance. Nonetheless, there remains the
issue of consistency among views dependent on each other for main-
tenance. We have discussed this issue earlier in this section in the
context of deferred maintenance in a centralized database setting, and
in Section 2.4 as well. A multiversion approach analogous to [104, 415]
offers a possible solution.

2.5.2 Distributed and Parallel Processing

We have already covered some early works on view maintenance in dis-
tributed settings in Section 2.4.2, including maintaining remote snap-
shots [234, 286], ADMS [342], and those by Segev et al. [351, 352, 353].
Common to these works is their use of deferred view maintenance
because of its natural fit in distributed settings. Another common tech-
nique they employ is prescreening base table modifications to eliminate
irrelevant ones, thereby reducing communication costs.

In the setting of distributed data warehousing, we have already
discussed a lot of work on self-maintenance (Sections 2.2.2 and 2.3.2)
and consistency (Section 2.5.1). Additional work in this setting deals
with optimization of distributed maintenance queries. When modifi-
cations to multiple base tables are present, Liu et al. [290] showed
how to restructure the maintenance expression for a view defined as
a chain of joins, to reduce the number of source queries. Liu and
Rundensteiner [289] further proposed cost-based optimization for dis-
tributed maintenance of general join views.

In the setting of parallel database systems, Bamha et al. [39] pro-
posed a parallel maintenance algorithm for select–project–join views
under the bulk-synchronous model. Luo et al. [297] considered the task
of maintaining join views over horizontally partitioned data. Depending
on the table partitioning schemes, a single-node base table modification

334 Maintaining Materialized Views

may involve all nodes in maintenance, incurring substantial communi-
cation. To improve performance, Luo et al. proposed maintaining global
indexes or auxiliary views at each node.

In the setting of the emerging very large scale distributed (VLSD)
shared-nothing data storage systems, Agrawal et al. [19] showed how
to extend such systems with materialized views using incremental and
deferred maintenance. Besides scalability, a key challenge unique to
VLSD systems is the stringent fault tolerance requirement, because
failures in these systems are much more common than what have been
assumed in traditional settings. The solution in [19] adopted a record-
level consistency model and built on the asynchronous replication mech-
anism of VLSD systems.

2.5.3 Implementation in Commercial Database Systems

Materialized views have become a standard feature in most commer-
cial database systems since around the turn of the millennium. The
late 1990s and 2000s saw a surge of work from commercial database
vendors and their affiliated research labs on materialized views. This
section provides pointers to such papers concerning materialized view
maintenance (and to sections of this monograph where they are dis-
cussed). For pointers to papers discussing view selection and view use
in commercial database systems, see Sections 4.2 and 3.2, respectively.

Oracle was among the first to offer support for materialized views in
their product. Although the term “materialized views” was first used
in Oracle 8i, the feature existed in Oracle 7 and was called “snap-
shots.” View maintenance in Oracle is discussed in [43, 151] (see also
Sections 2.1.2 and 2.1.3).

In IBM DB2, materialized views were first called “automatic sum-
mary tables” and then “materialized query tables.” Their maintenance
is discussed in [268, 269, 320, 402] (Sections 2.1.2, 2.1.3, and 2.3.2).
View maintenance in Informix (now IBM) Red Brick is described in [65]
(Section 2.1.3).

In Microsoft SQL Server, materialized views are also known as
“indexed views.” View maintenance in SQL Server is discussed in [131,
415, 416, 417, 262] (Sections 2.1, 2.4.2, and Section 5).

2.5 Other Issues of View Maintenance 335

Teradata calls its materialized views “join indexes” (US Patent
6167399; filed 1998 and issued 2000), with a special storage organi-
zation that avoids repeating values across multiple join result rows.
“Aggregate join indexes” (US Patent 6505189; filed 2000 and issued
2003) have also been introduced to support grouping and aggre-
gation. Maintenance is automatic and incremental. Work by Luo
et al. [297, 298, 299] (Sections 2.5.2 and 2.5.1) was conducted on
Teradata.

None of the popular open-source database systems such as Post-
greSQL, MySQL, and SQLite support materialized views at the
time of this survey. However, popular recipes and extensions exist
to “simulate” support of materialized views in these systems. Inter-
estingly, in an online survey (http://postgresql.uservoice.com/
forums/21853-general) of most wanted features in PostgreSQL,
materialized views are the number one by a large margin (as of January
2012).

3
Using Materialized Views

Having discussed how to maintain materialized views, we now turn to
how to use materialized views. This section begins with some back-
ground and theory on answering queries using views (Section 3.1),
and then moves on to two application contexts of this problem:
database query optimization (Section 3.2) and information integration
(Section 3.3). There is already an in-depth survey in 2001 on answering
queries using views by Halevy [203]. This section summarizes some of
the points in [203], and references work published since 2001.

3.1 Background and Theory

As stated in [203], the problem of answering queries using views, in the
relational setting, is as follows. Suppose we are given a query Q over a
database schema S, and a set V of view definitions V1, . . . ,Vn over the
same schema. We are interested in the following three questions:

(1) Is it possible to compute the exact answer to the query Q

using only the contents of the views in V?
(2) Alternatively, what is the maximal set of tuples in the answer

to Q that we can obtain from the views?

336

3.1 Background and Theory 337

(3) If we can access both the views and the database relations,
what is the best execution plan for answering Q?

Questions (1) and (2) arise when we are interested in answering queries
using views for data integration (further discussed in Section 3.3). Ques-
tion (3) and possibly (1) are asked when we are interested in query opti-
mization using materialized views (further discussed in Section 3.2).
This section outlines the formal foundation for answering these ques-
tions (Section 3.1.1) and presents the formal approaches and pointers
to relevant literature (Section 3.1.2).

For Question (2), instead of maximizing answer “completeness” —
as measured by the subset of (correct) answer tuples we can obtain —
we could use a more general notion of answer “accuracy” as our
objective. For example, it may be acceptable to return an approximate
total sales figure that is “close enough” to the exact one. The result-
ing problem is studied by the approximate query processing literature,
which we will discuss separately in Section 5. This section assumes the
completeness-based formulation for Question (2).

Before delving into the formalism, we first illustrate the questions
above with some examples.

Example 3.1 Recall from Example 1.1 the view TotalByItemStore

and the queries (Q1) and (Q1v). To compute the total revenue gener-
ated by each store for each item category, a business analyst may pose
(Q1) on the base relations of the database. It can be rewritten as an
equivalent query (Q1v) that uses the view TotalByItemStore instead.
We reproduce the two queries here for convenience:

SELECT storeID, category, SUM(qty*price) -- (Q1)

FROM pos, items

WHERE pos.itemID = items.itemID

GROUP BY storeID, category;

SELECT storeID, category, SUM(total) -- (Q1v)

FROM TotalByItemStore, items

WHERE TotalByItemStore.itemID = items.itemID

GROUP BY storeID, category;

338 Using Materialized Views

As another example, suppose the analyst is also interested in mon-
itoring the total sales for each region. The query can be posed over
the base relations as (Q2), and rewritten as (Q2v) to use the view
TotalByItemStore:

SELECT region, SUM(qty*price) -- (Q2)

FROM pos, stores

WHERE pos.storeID = stores.storeID

GROUP BY region;

SELECT region, SUM(total) -- (Q2v)

FROM TotalByItemStore, stores

WHERE TotalByItemStore.storeID = stores.storeID

GROUP BY region;

It can be shown formally [117, 115] that for every possible database
instance, (Q1) and (Q1v) return the same answer, and so do (Q2) and
(Q2v).

Clearly, the answer to Question (1) posed at the beginning of this
section is positive for the query (Q1) and view TotalByItemStore. On
the other hand, as it turns out, we cannot compute the exact answer
to (Q2) using only the view TotalByItemStore. Intuitively, the reason
is that the definition of TotalByItemStore uses only the relation pos,
while the definition of (Q2) uses combinations of tuples from relations
pos and stores. Thus, the answer to Question (1) is negative for the
query (Q2) and view TotalByItemStore.

Example 3.2 Continuing with the database of Example 1.1, consider
the following two queries, which compute the total sales by store and
by item, respectively:

SELECT storeID, SUM(qty*price) -- (Q3)

FROM pos GROUP BY storeID;

SELECT itemId, SUM(qty*price) -- (Q4)

FROM pos GROUP BY itemID;

3.1 Background and Theory 339

It turns out that the view TotalByItemStore of Example 1.1 can
be used to answer both queries without involving any other relations:

SELECT storeID, SUM(total) -- (Q3v)

FROM TotalByItemStore GROUP BY storeID;

SELECT storeID, SUM(total) -- (Q4v)

FROM TotalByItemStore GROUP BY itemID;

Thus, the answer to Question (1) is positive for both the query
(Q3) and view TotalByItemStore and for the query (Q4) and view
TotalByItemStore. Consequently, in both cases, the answer to Ques-
tion (2) is that the maximal set of answer tuples we can obtain is
the entire answer. To answer Question (3), we would need to choose
between the best execution plan for the original query and that for the
rewritten query; i.e., between (Q3) and (Q3v), and between (Q4) and
(Q4v).

Next, suppose that instead of TotalByItemStore, we have a differ-
ent materialized view, TotalInAM, defined as follows:

CREATE VIEW TotalInAM(itemID, storeID, total) AS

SELECT itemID, storeID, SUM(qty*price) FROM pos

WHERE storeID IN

(SELECT storeID FROM stores WHERE region = ’Americas’)

GROUP BY itemID, storeID;

The only difference from TotalByItemStore is the presence of the
WHERE clause above which restricts the computation to sales at stores
in the Americas. Now, the answer to Question (1) becomes negative
for both (Q3) and (Q4), given view TotalInAM — as long as pos may
have tuples for stores outside the Americas — because the result of
TotalInAM does not account for such tuples. For Question (2), the max-
imal subset of answer tuples of (Q3) that we can obtain from TotalInAM

alone would be those corresponding to stores in the Americas; on the
other hand, the only answer tuples of (Q4) that we can get directly
from TotalInAM are those corresponding to items that have never been
sold outside the Americas.

340 Using Materialized Views

3.1.1 Formal Foundation

We now discuss the formal foundation of the questions posed at the
beginning of this section. We will start with individual questions, and
show that they have much theoretical underpinning in common.

Questions (1) and (3) In answering both these questions, we are
faced with the following decision problem. Consider a query Q posed
on database schema S. Suppose a set V of views is also defined over S.
Given a particular query R defined in terms of views in V — for Ques-
tion (1) R is defined using only V, while for Question (3) R can use
base relations as well — are Q and R “equivalent”? Here, R is called a
(candidate) view-based rewriting of the query Q.

First, we need to clarify what “equivalence” means. For R to be a
valid rewriting of Q, we generally want R to be such that the answers
to R and to Q are identical on all possible database instances.1 That is,
for each database D with schema S, we would like the result relation
of Q on D to be the same as the result relation of R on D, provided
that we have materialized in D all views involved in defining R. This
concept of equivalence is called equivalence modulo the views used in
(the definition of) R.

Naturally, instead of having to materialize views and test the agree-
ment in R and Q’s answer for every possible database instance, we
would prefer to be able to apply to R and Q some syntactic test that
ensures the equivalence on all databases. Such tests work by compar-
ing the query Q to an “expansion,” R�, of the rewriting R (that is
equivalent to R). We obtain this expansion R� by replacing, in the def-
inition of R, each view name by the query defining the view. The goal
in constructing the query R� is to build a query definition that uses
the names of only the base relations in the database schema S, instead
of views. That is, the definition of R� (unlike the definition of R) is
comparable with the definition of Q, in that both R� and Q use only
the relations in the schema S. This construction of R� from R permits

1 In some contexts, such as in the presence of integrity constraints and/or access restrictions
for users, it makes sense to focus on “just some databases” instead of all databases;
see [138, 337].

3.1 Background and Theory 341

one to compare “apples to apples” when deciding whether the queries
R and Q return the same answers (modulo the views used in R) on all
databases.

Example 3.3 Let us revisit Example 3.2. In that example, query
(Q3v) is a candidate rewriting of the query (Q3) using the view
TotalByItemStore. The equivalent expansion of the rewriting (Q3v)

is the following query (Q3v�):

SELECT storeID, SUM(total) -- (Q3v�)

FROM (SELECT itemID, storeID, SUM(qty*price) AS total

FROM pos GROUP BY itemID, storeID)

GROUP BY storeID;

It is not difficult to see that (Q3v�) is equivalent to (Q3). Thus we con-
clude that the rewriting (Q3v) is equivalent to the query (Q3) modulo
the view TotalByItemStore.

Consider now another candidate rewriting, (Q3v2), which is defined
using the view TotalInAM of Example 3.2:

SELECT storeID, SUM(total) FROM TotalInAM -- (Q3v2)

GROUP BY storeID;

The expansion of (Q3v2), after some simplification, is as follows:

SELECT storeID, SUM(qty*price) -- (Q3v2�)

FROM pos GROUP BY storeID

HAVING storeID IN

(SELECT storeID FROM stores WHERE region = ’Americas’);

Since the queries (Q3) and (Q3v2�) are not equivalent, the rewriting
Q3v2 is not equivalent to the query (Q3) modulo the view TotalInAM.

As we have just discussed, determining view-based equivalence of
queries to their view-based rewritings reduces to determining the equiv-
alence of the queries to the expansions of the rewritings. For this reason,
advances in finding equivalent view-based rewritings of the queries of
interest can happen only when advances have been made in developing
syntactic tests for equivalence of the underlying queries.

342 Using Materialized Views

Question (2) Compared with Questions (1) and (3), Question (2)
further motivated in Section 3.3, calls for a different decision problem.
Instead of testing whether a view-based rewriting R is equivalent to
a query Q, we ask whether R is “maximally contained” in Q. As in
the case of testing equivalence, we first obtain R�, the expansion of R

that is defined using only base relations. Formally, we say that R� is
contained in Q if, for every possible database D, all tuples in the answer
to R� also belong to the answer to Q on D. Further, we say that R

is contained in Q modulo the views if R’s expansion, R�, is contained
in Q. Finally, given a query language L and a set V of views, we say
that R is maximally contained in Q with respect to the language L,
if (1) R is expressed in the language L using only the views in V,
(2) R is contained in Q modulo V, and (3) there is no query R′ such
that R′ satisfies the above two conditions and R′ contains but is not
equivalent to R. (See [203, 271, 388] for more detailed formal discussion
of maximally contained rewritings.)

As an illustration, consider again Example 3.3. Suppose V =
{TotalInAm}, i.e., only the view TotalInAm is available and we have
no direct access to the base relations. In this case, (Q3v2) would be
the maximally contained rewriting of the query (Q3), with respect to
language of rewritings that expresses SQL queries. Thus, (Q3v2) repre-
sents our best option for extracting the answer out of the given views.
On the other hand, if we additionally have the view TotalByItemStore,
i.e., V = {TotalByItemStore,TotalInAM}, then the rewriting (Q3v) of
Example 3.2 is the maximally contained rewriting of (Q3) with respect
to the same language of rewritings.

As we can see from the above definitions, when we are given
a query Q and a view-based query R, the problem of determining
whether R is a maximally contained rewriting of Q (with respect to
the given language of rewritings) reduces in part to the problem of
whether the expansion R� is contained in Q. Thus, in parallel with
the case of (view-based) equivalence of queries and their potential
rewritings discussed earlier for Questions (1) and (2), we want to rely
on syntactic tests for query containment.

Discussion We have shown that the topics of query equivalence and
containment are vital to the questions about how to use views. Because

3.1 Background and Theory 343

of their importance to query optimization and data integration, these
topics have been studied extensively by database researchers. Query
equivalence is well understood for SQL select–project–join queries using
the DISTINCT keyword and for their unions [84, 345], for queries with
arithmetic comparisons [244, 245, 387], and for certain types of queries
with grouping and aggregation [111, 116]. For basic references on gen-
eral query containment, see [106]. Articles [134, 137] and book [1]
provide excellent overviews and pointers for the problems of query
equivalence and containment in the presence of integrity constraints.

Research on query equivalence and containment has tradition-
ally assumed a set-based query evaluation semantics, where both
database relations and query answers are relations without duplicate
tuples. However, SQL by default uses bag semantics, where dupli-
cates are allowed and their counts matter. An important direction of
research is the determination of equivalence and containment between
queries using query evaluation semantics reflecting real SQL. Please
see [95, 112, 114, 223] for query equivalence and containment results
in this direction. The complexity of the containment of SQL select–
project–join queries not using the DISTINCT keyword and not using
subqueries is an open problem as of 2011; please see [111] for an intro-
duction to the problem and for relevant pointers.

3.1.2 Formal Approaches and Further Pointers

Now let us return to the questions formulated in the beginning of
Section 3.1. Consider Question (1): is it possible to compute the exact
answer to the query Q using only the contents of the views in V? Sup-
pose that we have available an algorithm, call it A, for determining
the equivalence (modulo the views) of queries to view-based rewrit-
ings. In general, queries may be defined in a certain language, Lq,
rewritings may be defined in another query language, Lr, and views
may be defined in yet another query language, Lv. Then one approach
to rewriting queries defined in Lq using views would be to develop a
generate-and-test algorithm, call it B, that, given a query Q in that
language and a (generally finite) space of views in the language Lv,
would generate candidate rewritings in the language Lr using the given

344 Using Materialized Views

views. For each such candidate “logical” rewriting R that the algorithm
B generates, we would then be able to use the algorithm A as a sub-
routine for testing whether the expansion R� of R is equivalent to the
query Q. Then each rewriting R that passes the test is a candidate
equivalent rewriting of the query Q modulo the given views.

For Question (2), a similar approach can be taken, where an algo-
rithm A would be used as a subroutine for testing containment (as
opposed to equivalence), both of rewritings in queries, and between
rewritings themselves. As observed in [203], such a generate-and-test
approach is more applicable in data integration than in query opti-
mization, as logical rewritings do not have “built-in” cost estimation,
which is an important parameter in query optimization. We consider in
Section 3.2 those rewriting-building approaches that are more suitable
for query optimization and for answering Question (3).

As an example, each of the three query languages Lq, Lr, and Lv

could be the language of SQL select–project–join queries using the
DISTINCT keyword, or, to state it another way, the language of
conjunctive queries under the set semantics for query evaluation.
Then the classic work [84] provides the algorithm A for checking
whether the expansion of each rewriting R is equivalent to the given
query Q. Further, the Chase & Backchase algorithm due to Deutsch
et al. [137, 138] is a sound and complete algorithm B for finding all
equivalent conjunctive rewritings of a given conjunctive query using the
given conjunctive views.

Articles [203, 274, 388] provide detailed overviews of algorithms
for answering and rewriting queries using views, for the cases where
an equivalent or contained rewriting is sought, and supply pointers.
(Table 1 in [203] contains many helpful references, separately to for-
mal results for different combinations of the languages for the queries
and views.) Generally, major advances have been made over the years
in formal studies of view-based query rewriting and answering. Unfor-
tunately, an in-depth discussion of the relevant projects and publica-
tions would call for a separate full-length survey, which could (at the
very least) introduce the formal problems studied on these topics. In
the meantime, we recommend [202, 203] as good entry points into the
subject matter, as these articles outline the relevant research results

3.2 Incorporation into Query Optimization 345

known as of 2001 and give references to the papers in or before that
year. What we do in this gateway survey is to complement the refer-
ences given in [202, 203], by making a best effort attempt at providing
a list of some representative pointers to more recent work related to the
theory of query rewriting and answering using views. We do so below
by citing and categorizing papers that appeared (mostly) in or after the
year 2001. Note that some papers belong to more than one category.

• Problems concerning query containment in the presence of
results of views or of view definitions [44, 73, 414], including
the problem of answering questions using authorization views
in security applications [337, 414];

• The problem of answering queries using views in the presence
of grouping and aggregation in the definitions of the queries
or views [115, 118, 182, 183, 219];

• Problems concerning answering queries using views where
query or view definitions involve various other query lan-
guage constructs [11, 13, 70, 80, 136, 150, 394], or otherwise
revisiting the problem of answering queries using views [121];

• Problems concerning answering queries using views in the
presence of integrity constraints [80, 136, 156, 219];

• Problems concerning optimizing various metrics for query
rewritings in terms of views [110, 304];

• Problems related to the role of the “information content” of
views in query answering [72, 74, 75, 76, 303, 310, 354];

• Problems concerning desirable transformations of a set of
views [165, 264, 265, 275].

3.2 Incorporation into Query Optimization

Conceptually, for a given query posed on a data-intensive system, the
task of the query optimizer in the system is to generate reformula-
tions of the query, and to choose the reformulation whose cheapest
(for this reformulation) execution plan is the cheapest among all the
reformulations generated. In this process, the costs of execution plans
are estimated by the optimizer, rather than computed exactly. For

346 Using Materialized Views

general introduction to query optimization and reformulation, please
see [86, 214, 224, 229] and references therein.

The idea of using materialized views in query optimization comes
from the simple observation that if a view V is helpful in evaluating
a subexpression of a given query, then the materialized result of V

already contains, in the precomputed form, some contribution to the
answer to this query subexpression. Thus, by reformulating the query
using V , we can avoid computing some query subexpression, or at least
some part of it, by using the materialized result of V .

For instance, Example 1.2 shows how reformulating the query (Q1)

into (Q1v) using the materialized view TotalByItemStore leads to a
dramatically cheaper execution plan. The argument is based on sim-
ple cardinality estimates — TotalByItemStore is orders of magnitude
smaller than the base table pos and therefore cheaper to aggregate
over. The same argument applies to reformulating (Q2) into (Q2v)

(Example 3.1) and to reformulating (Q3), (Q4) into (Q3v), (Q4v)

(Example 3.2) using the same materialized view.
This idea brings us to the notion of a view “being helpful in eval-

uating a query subexpression.” In the examples above, we can show
formally [115, 117] that there exist correspondences between the defi-
nition of the view TotalByItemStore and the definitions of the queries
(Q1)–(Q4), which permit us to use the view in reformulating and
then evaluating these queries. In general, such correspondences (“view
matchings”) are syntactic criteria for the usability of a given view in
rewriting a given query. For a good introduction to how to determine
whether a view is usable in rewriting a query, see Section 4 of [203].

Now if our goal is to use views in evaluating queries more effi-
ciently, then the query optimizer at hand needs to be extended with
view matchings in some form. The extension of the optimizer needs
to be such that all those execution plans for a query that uses views
and that are considered by the optimizer must represent equivalent
(rather than just contained, as in data integration) rewritings of the
query. On the other hand, unlike the rewritings that are used in data
integration, rewritings considered in query optimization do not have to
be in terms of only the views. (As an illustration, the efficient rewrit-
ing (Q1v) of query (Q1) in Example 1.1 is defined using both a view,

3.3 Using Views for Data Integration 347

TotalByItemStore, and a base relation, items.) Finally, in determin-
ing whether to evaluate a given query using a given view (or views),
the optimizer must make decisions based on the cost of the execution
plans for the rewritings. It is possible for a rewriting involving views to
have only expensive execution plans; in that case, the optimizer must
not choose such a rewriting in the presence of cheaper execution plans
for other reformulations of the query.

In [203], Halevy provided a good overview of the work [43, 90, 167,
185, 363, 383, 384, 407] on incorporating views in commercial query
optimizers, both of the System-R type and of other types (such as
transformational). The exposition is accompanied by detailed exam-
ples. For recent work on view-inclusive query optimization with com-
mercial prototypes, please see [131, 416, 261, 263]. The related work
section of [131] provides an overview of, and pointers to, significant
work in the area of determining when a materialized view is usable
in query answering, back to the work [260] published in 1985. Other
recent research results on rewriting queries using views in optimization
include [7, 12, 168, 323, 324]. Please also see [188, 267, 285] for other
introductions to and extended references on the topic, including query
optimization in the online analytical processing (OLAP) setting.

3.3 Using Views for Data Integration

Data integration [45, 139, 270] is one of the most prominent applications
of views. In data integration applications, users may have no control
over a certain assortment of data sources, but would like to pose queries
on the information that is stored collectively in all these data sources.
In such a setting, it is common for a “data hub” to provide a global
schema that serves as a uniform interface to all data sources, without
sacrificing their autonomy. To this end, correspondences, or “schema
mappings,” must be established between the global schema and the
local schema of each of the data sources. A wrapper at each source is
used for querying and/or extracting data from this source and trans-
forming them for integration. The data hub can either be a mediator,
which integrates data on demand by translating user queries against the
global schema into queries against sources and returning the integrated

348 Using Materialized Views

Fig. 3.1 Architecture of a data integration system.

results, or a warehouse, which eagerly extracts data (and changes) from
data sources, and stores (and maintains) the integrated data in a central
repository for querying. This architecture is illustrated in Figure 3.1.

With the warehousing-style data integrating, data stored by the
warehouse are essentially materialized views over source relations.
Section 2 has discussed warehousing in the context of view mainte-
nance, and Section 4 will discuss it in the context of selecting views to
materialize. The remainder of this section focuses on mediator-based
(i.e., integrate-on-demand) data integration.

One approach to establishing the schema correspondences is called
local-as-view (LAV). With this approach, each data source is modeled
as a view defined on the global schema. Then, the process of evaluating
a user query over the global schema starts with the system rewriting
the query in terms of the views that define the data sources. The user
is interested in obtaining the exact answer to the query, but if it is
not possible due to the contents available at the sources, then the user
is interested in obtaining as large a portion as possible of the exact
answer. To reformulate the latter desideratum, as the next-best substi-
tute for an exact answer to his query Q, the user would like to obtain
the answer to a view-based rewriting R of Q that is maximally con-
tained in Q (i.e., Question (2) posed in Section 3.1). We emphasize that
unlike in the query optimization setting (Section 3.2), here (1) the base
relations in the global schema do not actually exist, so they cannot be
used in rewritings; and (2) it is acceptable to return a partial answer

3.3 Using Views for Data Integration 349

to the query when the exact answer is unattainable. In some settings,
the integration system includes numerous data sources, so an impor-
tant consideration in query rewriting is the scalability of the rewriting
algorithms to a large number of views. Please see Section 6 of [203], as
well as [139] and entries [201, 239, 274, 388] in [291], for more detailed
overviews of specific algorithms for query rewriting in the data integra-
tion setting.

In addition to the local-as-view (LAV) approach to building
schema mappings for data integration, the research literature describes
the global-as-view (GAV) and the global-and-local-as-view (GLAV)
approaches. While in LAV, each local schema (i.e., the schema of each
data source) is described using views defined over the global schema,
in the GAV approach the global schema is described using views over
the local schemas. As a result, the process of evaluating a user query
under GAV involves “unfolding” the query using the definitions of the
global schema in terms of the source relations. This unfolding process is
the same in spirit as the process of obtaining an expansion of a rewrit-
ing, which we discussed in Section 3.1. Further, the GLAV approach
generalizes properly each of LAV and GLAV. Please see [239] for a
good introduction to the three approaches to schema mapping, includ-
ing examples and discussions of the query-processing flavors and of the
issues in each of LAV, GAV, and GLAV.

More generally, for in-depth surveys of the formal aspects of using
views in information integration, please see [271, 385]. Genesereth
in [162] provided an extended treatment of one of the traditional
approaches to view-based data integration. Work published since 2001
on the formal foundations of data integration includes [66, 67, 68, 69,
78, 135, 164, 397]. Barcelo in [41] provided an excellent survey and
references for the formal problem of “data exchange,” which is closely
related to data integration and has been explored actively in the recent
years. See also the recent book [30] for an in-depth introduction to
relational and XML data exchange.

Besides the articles [203, 239] that we have used in this section,
excellent overviews and bibliographies of information integration are
contained in [139, 140, 188, 199, 200, 201, 204, 207, 312]. In addition,
Section 21 of [158] contains an extensive introduction to information

350 Using Materialized Views

integration, with numerous examples. Some recent specific projects
related to information integration are Piazza [205, 206, 226, 371],
ORCHESTRA [177, 178, 225, 227], a project centering on peer data
exchange [154, 155], and Youtopia [198, 248].

4
Selecting Views to Materialize

Consider a data-intensive system that uses materialized views. Such a
system may be a standard database system, or a distributed system
integrating data from multiple sources, such as a data warehouse. For
all such systems, our focus in this section is on the selection of views to
materialize — which we also refer to as “view selection” — in the con-
text of some performance objective, e.g., speeding up query processing.
Examples 3.1 and 3.2 in Section 3 illustrate how views can be used in
query answering. Before a data-intensive system can use materialized
views, however, there must be a process in place for adding materialized
views to the collection of stored database tables. Specifically, decisions
must be taken on which views should be materialized.

One ad hoc approach to view selection would be for a database
administrator to assume (or guess) that certain materialized views
would be useful in the context of some performance objective, and
then to define some beneficial views manually and materialize them
in the system. (For instance, for the queries (Q1) and (Q2) and for
the database statistics of Example 1.1, one could guess that the view
TotalByItemStore could be beneficial in improving the performance
of processing both queries.) This approach is workable if sufficient

351

352 Selecting Views to Materialize

resources are available in the system to host and to maintain all the
selected materialized views. But even in this case, it is not guaranteed
that the views that have been selected and materialized truly optimize
the chosen performance objective.

In practice, one cannot afford to materialize all possible views in a
real-life system. The reason is that (at least) two major types of system
resources may be insufficient for servicing the selected views: (1) the
storage space needed for the materialized views; and (2) the system
costs of maintaining the materialized views (to keep them up to date
with respect to changing base data, as discussed in Section 2). As a
result, the problem of selecting views to materialize must be considered
under constraints. That is, to formulate the view-selection problem for
a specific use in a specific data-intensive system, one needs to choose:

• one or more performance measures that one wants to opti-
mize; and

• one or more types of system resources whose usage (with
respect to the views to be materialized) one wants to limit.

Clearly, the approach of manual view selection by database adminis-
trators is not scalable and does not guarantee that the resulting materi-
alized views would actually improve any performance metric in a given
system. We now proceed to overview, in Section 4.1, the state of the
art in automated view selection, with the primary objective of speed-
ing up queries. We then survey the implementation of view selection
in commercial systems in Section 4.2. Note that given a set of views to
materialize, we may also want to select additional views with the objec-
tive of speeding up view maintenance or reducing reliance on base data
availability; we have already discussed this related problem separately
in Section 2.3.2.

View selection and index selection are closely interrelated problems,
though an in-depth discussion of index selection is out of the scope of
this survey. Instead, we provide here some important pointers. Selection
of indexes to create in a data-intensive system has attracted research
interest for a long time; please see [88, 91, 92, 149, 169, 321, 343] and
references therein. The book by Shasha et al. [357] provides an excellent
overview of what performance objectives to pursue in index selection;

4.1 View Selection to Speed Up Queries 353

for a brief summary, please also see [53]. It has long been observed
(e.g., [23]) that indexes can be viewed as a type of materialized views.
As such, it makes sense to select views and indexes together, which has
been done in a number of research projects; see [23, 194] for influential
results. Indexes and views are routinely selected together in commercial
schema-design tools; see Section 4.2.

4.1 View Selection to Speed Up Queries

Use of materialized views can significantly speed up queries, as illus-
trated in Example 1.2. When the performance measure of choice is
query-processing cost, the most general scope of view selection would
consider for materialization all views that may benefit any possible
future query. Adopting this take on the view-selection problem results
in formulations of the problem that, in general, cannot be solved in
practice, simply because too many candidates for materialization must
be considered. Thus, in specifying the view-selection problem with
query-processing costs as the performance measure, it is typical to also
restrict the set of queries that are to be executed more efficiently in the
presence of the views that we plan to materialize. That is, when we con-
duct view selection with the goal of speeding up queries, we generally
have to instantiate the following dimensions in the problem statement:

• we instantiate the performance measure that one wants to
optimize as query-processing costs for a given query workload
(generally a finite set of queries of interest); and

• we instantiate the system resources to be constrained as, for
instance, storage space, or view-maintenance costs for a given
update workload.

Note that sometimes objectives and constraints can be reversed or
mixed. For example, Gupta in [192] and other authors consider an
optimization objective that is a linear combination of query-processing
and view-maintenance costs; see Section 4.1.1 for more pointers to
their work.

In the remainder of this section, we consider two scenarios where
view selection is used for speeding up queries. Section 4.1.1 discusses

354 Selecting Views to Materialize

the OLAP and data-warehousing scenario, where queries and views
involve a lot of grouping and aggregation. Section 4.1.2 discusses more
general query workloads that arise in database systems. In both areas,
we consider materialized views that can be used to rewrite the given
queries equivalently (recall the definition and discussion of equivalent
rewritings from Section 3.1).

4.1.1 View Selection for OLAP and Data Warehousing

Because most OLAP queries involve grouping and aggregation over
large tables, use of materialized views can result in tremendous
improvements in their processing performance [89]. As illustrated in
Examples 1.2, 3.1, and 3.2, dramatic performance improvements are
possible when a useful materialized view, such as TotalByItemStore,
has already carried out much of the grouping and aggregation com-
putation needed to answer the given queries. In the remainder of this
subsection, we outline the intuition behind view selection for group-
by aggregation queries by progressing through the following three
scenarios:

• the case of a “single base table,” where all queries of interest
are defined using the same single base table, without joins;

• the case of a “single join pattern,” where, intuitively, all
queries of interest are defined using the same “join pattern”
on the same set of base tables; and, finally; and

• the general case.

We close this subsection by reviewing specific past approaches in the
literature to view selection.

The Case of a Single Base Table We consider first a special case
where all queries in the workload of interest are defined using the same
single base table, and without using self-joins. Recall Example 3.2 of
Section 3. If {(Q3),(Q4)} is the set of all queries of interest, then two
other views (besides TotalByItemStore) that can be considered for
materialization are defined by the queries (Q3) and (Q4) themselves.
If we materialize the view defined by (Q3), for example, the cost of pro-
cessing the query (Q3) would be just the cost of returning the contents

4.1 View Selection to Speed Up Queries 355

of the materialized view (which would make the cost of processing (Q3)

globally minimal). Together, the three views form the search space of
candidate views to materialize in this case.

We now generalize over this example. Let an instance of the view-
selection problem for OLAP have a set Q of queries of interest. Sup-
pose that all queries in Q are formulated in terms of a single base
table T by grouping by some subset of the “dimension” attributes
in T and aggregating the “measure” attributes in T . (Generally,
additional restrictions also need to be imposed on the aggregation
functions; see [113, 115, 116].) Then it is customary to use a “view
lattice” [173, 212] to explicitly define the search space of all views that
are candidates for materialization. Each view in the lattice is defined
(1) using a GROUP BY clause with a subset of the dimension attributes
of the table T ; and also (2) using a SELECT clause that has all the
view’s GROUP BY attributes, as well as the aggregations that are appro-
priate for the queries in Q. An example of view lattice is shown in
Figure 4.1. Note that our restrictions on the queries in Q ensure that
each of them can be answered without joins by some view from the
lattice (there may be multiple such views). As an example, (Q3) can
be computed from one of the views TotalByStore, TotalByItemStore,
and TotalByItemStoreDate in Figure 4.1.

Given an instance of the OLAP view-selection problem with the set
Q of queries of interest, and having constructed a view lattice S for Q,
we now define what we mean by a solution and a globally optimal

Fig. 4.1 The candidate view lattice for pos, assuming that: (1) the dimension attributes
are itemID, storeID, and date; and (2) the only aggregated measure of interest is
SUM(qty*price). The lattice is induced by the containment relation among the subsets
of dimension attributes used in GROUP BY (shown next to the lattice nodes).

356 Selecting Views to Materialize

solution to the problem. A subset S of the views in S is called a
candidate viewset if S satisfies the input constraint(s) on the system
resources. Then, a candidate viewset S is a solution to this instance of
the view-selection problem whenever S (that is, all the views in S col-
lectively) provides a lower cost of answering the queries in Q than the
cost of answering them using just the original base tables. A solution
S is globally optimal whenever S provides the lowest cost of answering
the queries in Q among all the candidate viewsets.

When the view lattice is taken as the complete search space of
views that are candidates for materialization, approaches to view selec-
tion differ in how they explore the search space. Note that in practical
instances of the view-selection problem for OLAP, exhaustive explo-
ration of the search space of views would result in prohibitive running
times for view selection. Thus, in general, view-selection algorithms
look for “good” solutions, rather than globally optimal solutions. Please
see [194, 195, 212, 237] for details.

The Case of a Single Join Pattern We now take another gen-
eralization step over the case of a single base table. Suppose that in
the given instance of the OLAP view-selection problem, each query of
interest is defined using exactly the same set of base tables and by fol-
lowing the same join pattern on these tables. An instance of this case
that is very frequent in practice is the scenario where the data ware-
house has a “star schema” [242, 328]; that is, the schema has a single
“fact table” and a number of “dimension tables,” which are all related
to the fact table via foreign-key references from the fact table’s dimen-
sion attributes. For example, in Example 1.1, pos is the fact table,
while stores and items are dimension tables. With a star schema, we
encounter queries that are defined over the natural join between the fact
table and all dimension tables along with the foreign-key references.

It is straightforward to generalize the search based on the view
lattice, as explained above for the case of a single base table, to view
selection for this case. Intuitively, the approach is to build a view lattice
where each lattice view is defined using the same join pattern as in all
queries of interest. Thus, any algorithm that works for the view-lattice
setup as discussed above is also applicable in this case.

4.1 View Selection to Speed Up Queries 357

The General Case Now consider what happens when the queries
of interest in a given instance of the OLAP view-selection problem do
not all fit the same join pattern. As an illustration, recall the queries
(Q1) and (Q2) and their rewritings using the view TotalByItemStore,
as discussed in Example 3.1. Such rewritings are obtained by join-
ing materialized views with either base tables or other materialized
views. Such rewritings can be constructed automatically as described
in [5, 6, 115, 117]. The authors of [5, 6] described an approach to view
selection where such join-based rewritings are considered. In general,
approaches to view selection where join-based rewritings are allowed are
much more complex than view-selection methods based on the view lat-
tice. Because of the possibilities of using a materialized view by joining
with other tables, the overall number of candidate materialized views
can be orders of magnitude more than in approaches based on the view
lattice. Section 4.1.2 also provides the intuition behind this explosion
of search space.

Approaches in Literature We now review specific approaches in
the literature to view selection in OLAP and data warehousing. As
we have already mentioned, Harinarayan et al. introduced in [212]
the view lattice, and proposed algorithms for view selection under
the storage limit using the view lattice. The follow-up work [194]
considered selection of indexes alongside views, again using the view
lattice. In [192], Gupta considered view selection that targets mini-
mizing both query-processing and view-maintenance costs. In [195],
Gupta and Mumick proposed methods for view selection under the con-
straint of view-maintenance cost; for alternative approaches to the same
problem, see [279] for two heuristic algorithms and [266] for a random-
ized algorithm. More detailed and extended expositions of the results
of [192, 194, 195] can be found in [193, 196]. Baralis et al. [40] pre-
sented algorithms aimed at reducing the size of the solution space in the
view lattice; see also [322] for related results. In a related development,
Karloff and Mihail in [237] reported on their complexity analysis of
the view-selection problem on view lattices. Among other work, Shukla
et al. proposed in [358] improvements over the algorithms of [212],
and later in [359] considered view selection for a warehouse containing

358 Selecting Views to Materialize

multiple data cubes [173]. Later, Hanusse et al. [211] further improved
the result of [358].

A separate line of work considers doing view and index selection
on the view lattice, where globally optimal solutions can be found up
to realistically large sizes of view lattices. Please see [32, 33, 276] for
reports on this line of work by Asgharzadeh Talebi et al.

While the view lattice is appropriate for the cases of a single base
table or single join pattern, it is no longer sufficient for capturing the
search space of candidate views in the general case. In [192], which
we have already mentioned above, a more general framework based
on AND-OR view graph was proposed, which served as a basis for,
e.g., [192, 195]. Chirkova and Li [109] studied how to select a viewset
with minimal storage cost to support a given set of conjunctive queries
without accessing base tables.

View selection with a focus on minimizing both query-processing
and view-maintenance costs has been considered in a number of
projects. In addition to the work [192] that we have already mentioned,
this problem has been considered in [403, 409] and in a suite of related
projects by Theodoratos et al., see [373, 374, 375, 376, 377, 378]. Excel-
lent overviews can be found in [360, 379].

In data warehouses, views and indexes can also be selected for mate-
rialization in stages over time, to accommodate changes in the prevalent
set of queries of interest. Please see work on DynaMat by Kotidis and
Roussopoulos [249, 250], as well as [215, 326, 408]. Another issue that
has been considered in conjunction with warehouse view selection is
the placement of views in a distributed setting [231].

4.1.2 View Selection for General Database Systems

As a prerequisite to the view-selection problem, we need to know
whether and how a query of interest can be rewritten in term of mate-
rialized views (Section 3.1). However, for general database queries and
views, this question is far from obvious, which makes the view-selection
problem in general very difficult in practice. To illustrate, consider the
following example.

4.1 View Selection to Speed Up Queries 359

Example 4.1 Recall the database in Example 1.1 with tables
pos, stores, and items. Suppose that there are two extra
tables: distributors(distID,city,region) stores address informa-
tion about distributors that supply items to stores, and supply

(storeID,distID,contractType) associates each store with the dis-
tributors that supply items to the store (the relationship is many-to-
many). Key attributes are underlined.

Consider a query (Q5) that asks for the total sales generated by
“locally supplied” stores in each region, where a store is “locally sup-
plied” if it has at least one local distributor (i.e., in the same city and
region as the store):

SELECT region, SUM(qty*price) -- (Q5)

FROM pos, stores S

WHERE pos.storeID = S.storeID AND EXISTS

(SELECT * FROM supply P, distributors D

WHERE P.storeID = S.storeID AND P.distID = D.distID

AND D.city = S.city AND D.region = S.region)

GROUP BY region;

Suppose that relatively few stores have local distributors. It would
be nice to materialize the following view StoresWithLocalDist, which
returns all store information for locally supplied stores:

CREATE VIEW StoresWithLocalDist(storeID,city,region) AS

SELECT DISTINCT S.storeID, S.city, S.region

FROM stores S, supply P, distributors D

WHERE P.storeID = S.storeID AND P.distID = D.distID

AND D.city = S.city AND D.region = S.region;

This view would enable the following equivalent rewriting (Q5v) of
(Q5), which can be cheaper to process than (Q5):

SELECT region, SUM(qty*price) -- (Q5v)

FROM pos, StoresWithLocalDist V

WHERE pos.storeID = V.storeID

GROUP BY region;

360 Selecting Views to Materialize

It is not straightforward to show the equivalence, modulo the view
StoresWithLocalDist, of the queries (Q5) and (Q5v). The use of sub-
queries in (Q5) means that it is no longer sufficient to reject equivalence
simply by inspecting the outermost FROM clauses of queries and view
definitions. Handling duplicates is also tricky: (Q5) uses an EXISTS sub-
query to avoid duplicates that would otherwise be introduced by join-
ing with supply, and StoresWithLocalDist uses DISTINCT to remove
duplicates. In fact, we are not aware of formal results in the open liter-
ature that would provide general methods for ascertaining the equiva-
lence of such queries and rewritings.

Criteria for Restricting the Search Space of Views As we have
seen in Example 4.1, even if a materialized view can in theory help
process a query more efficiency, the query optimizer of the system may
not be able to discover the appropriate rewriting. Naturally, for a given
set of queries of interest, we want to select to materialize only those
views that can be used by the system, specifically by its query opti-
mizer, to efficiently rewrite the queries of interest. This criterion —
implied by the query-rewriting capability of the query optimizer — is
the first criterion by which we restrict the search space of views con-
sidered for materialization. Following this criterion, it is common in
the development of algorithms for view selection to restrict the lan-
guages for defining queries, views, and rewritings (recall Lq, Lv, and
Lr defined in Section 3.1.2). For instance, as discussed in Section 3.1.2,
there is a good understanding [108, 203, 272] of how to rewrite queries
equivalently using views in the case where all three languages are the
language of conjunctive queries; for a query optimizer that knows how
to generate query rewritings only for this case, it would be reasonable
to restrict the search space of views to those defined by conjunctive
queries.

The second criterion for restricting the search space of views con-
sidered for materialization is driven by the practical limit on the cost
of searching the space. Clearly, for the (automated) view-selection
process to be practical, its running time cannot be too long. Even
with well-understood algorithms for rewriting queries using views, this

4.1 View Selection to Speed Up Queries 361

process can be expensive if it needs to consider all admissible (i.e., syn-
tactically appropriate) views and rewritings. For instance, even when
we restrict each of Lq, Lv, and Lr to be the language of conjunctive
queries, the search space of admissible views and rewritings is, in gen-
eral, very large. The reason is that the admissible conjunctive views and
rewritings can be expressed using joins. As an illustration, consider a
query involving n base tables. Views that can potentially be used to
rewrite it may be defined using in their FROM clause any nonempty sub-
set of the n tables. On top of choosing which tables to include into
FROM, we also get to choose the attributes in the SELECT clause of these
views. Furthermore, when rewriting the query, we need to consider com-
binations of these views. In fact, it has been shown [107, 108] that if
we consider in view selection all admissible views in this conjunctive
setting, the number of views in the rewriting can be exponential in the
size of the problem input. The results of [5, 6] for the complexity of
view selection for queries with aggregation build on the above results
of [107, 108]. In contrast, when only admissible views of a certain type
are considered, then in the worst case, the number of views in the
rewriting is polynomial in the size of the problem input [203, 272].

Approaches in Literature As a result of the two criteria that
we have just discussed, most approaches put significant efforts into
restricting the search space of candidate views for general queries.
Agrawal et al. [23] proposed in 2000 an influential end-to-end frame-
work for selection of views, together with indexes, for sets of queries
of interest that could include both OLAP and OLTP (online transac-
tion processing) queries. The architecture has an explicit module that
defines the search space of useful views based on the given queries of
interest. Another influential feature of the approach of [23] is the use
of a “what-if” optimizer [20, 92] to determine which subsets of that
search space are the most promising “configurations” for materializa-
tion. A configuration consists of existing as well as hypothetical physical
structures, and for each configuration the “what-if” query optimizer is
requested to return the best plan (and its cost) for executing each query
of interest, as if the database had the entire configuration materialized.
As is summarized in [20], this approach is possible because the query

362 Selecting Views to Materialize

optimizer does not require the presence of a fully materialized view or
index to be able to generate plans that use the view or index; instead,
the optimizer uses only the metadata stored in the system catalog and
the relevant statistics for each hypothetical structure, often gathered
via sampling.

As pointed out in [23], determining the “quality” of an output con-
figuration (i.e., of a set of views and indexes recommended for materi-
alization) is a hard problem. Here, quality is understood as the costs of
executing the queries of interest using the output configuration, with
respect to the costs using a globally optimal solution/configuration.
(The definitions of “solution” and of “globally optimal solution” for
the case of general queries parallel the definitions of the same terms
in Section 4.1.1.) As a result, many practical approaches to view (and
index) selection focus on producing “good” solutions as opposed to
globally optimal solutions. Not surprisingly, it has been shown experi-
mentally [246, 247] that it is possible to improve the solution quality of
heuristic view-selection algorithms, such as the one used in [23], when
systematic approaches (e.g., dynamic programming and integer linear
programming in case of [246, 247]) are used.

The approach of [23] has been implemented as part of the cost-
based physical database design tool in Microsoft SQL Server. The
implementation has since been enhanced with a number of other
methods associated with automated selection of views for considera-
tion by the DBA to materialize. Detailed reports on these methods
and their implementation and experimental evaluation are available in
the open literature; see, for instance, work by Bruno and Chaudhuri
in [56, 57, 58, 60, 61, 62], as well as references for the Microsoft Research
AutoAdmin project later in Section 4.2.

Given that recent techniques for selecting physical structures have
become increasingly complex, Bruno and Chaudhuri in [55] called for a
radical simplification of the assumptions used in previous approaches,
and took a step in this direction with the proposal of a new framework
for the physical database design problem.

Echoing our discussion at the end of Section 3.1.1 concerning query
equivalence and containment under set versus bag semantics, we note
here that most formal approaches to the view-selection problem assume

4.2 Implementation in Commercial Database Systems 363

set semantics. However, SQL by default uses bag semantics. As we saw
in Example 4.1, proper handling of duplicates can be tricky under bag
semantics. Besides work discussed in Section 3.1.1 on query equivalence
and containment under bag semantics, view selection for conjunctive
queries under bag and bag-set semantics is considered in [9]; view selec-
tion for aggregate queries, where bag and bag-set semantics arise nat-
urally, is considered in [5, 6].

A number of other developments on view selection are worth noting.
Kimura et al. [243] considered exploiting correlation in attribute values
when selecting materialized views and indexes. Chaves et al. [98] stud-
ied the view-selection problem for distributed databases and developed
a solution based on genetic programming; additional pointers to view
selection work in the distributed setting can also be found in [98].

4.2 Implementation in Commercial Database Systems

It has long been recognized that the physical database design can
have a big impact on the overall performance, both of the database
system and of applications. Significant research and implementation
efforts have concentrated on designing algorithms and, more gener-
ally, system architectures that would enable automatic tuning, also
called self-tuning or self-management, of various aspects of the database
system. Automation of physical database design is one aspect of such
self-tuning. The objective of these efforts has been to make obsolete
the error-prone, lengthy, and expensive manual tuning process. Please
see [54, 285, 356, 357] for in-depth coverage of physical database design
and of database tuning, and [63, 93, 94, 96] for introductions to auto-
matic tuning of database systems. Architectures for self-tuning of data-
intensive systems and lessons learned during the history of database
tuning in the industry are discussed in [93, 97, 396].

To address the problem of self-tuning of data-intensive sys-
tems, Microsoft Research launched in 1996 its AutoAdmin research
project [20]. This project has achieved a number of significant results
in self-tuning — including those on automated view selection, which
are most relevant to this section — over the years. The tuning technol-
ogy developed within AutoAdmin has been incorporated successfully

364 Selecting Views to Materialize

into Microsoft SQL Server and into other DBMS products. One of the
achievements of AutoAdmin has been the development of an end-to-
end architecture for physical database design, including the “what-if”
optimizer [92] in the loop during the design process. Such “what-if”
analysis has been incorporated by major players in the industry; see,
for instance, [126, 282]. Paper by Agrawal et al. [20] provides an excel-
lent overview, as well as an extensive bibliography, of the research
and commercial outcomes of the AutoAdmin project as of 2006. As
summarized in [20], the research results from AutoAdmin on physical
database design tuning were first implemented in Microsoft SQL Server
7.0 in 1998, and have been part of Microsoft SQL Server ever since.
For details on specific directions in database tuning and view selection
within the project over the years, please see [87] for an early overview
of the self-tuning technology, [21, 22, 23, 24, 59, 91] for discussions over
the years of the central ideas of the Microsoft database-tuning advisor,
and [55, 58, 61] for approaches to solving various problems in physical
database design. Additional pointers on view selection in AutoAdmin
are provided in Section 4.1.2.

Work on self-management in IBM DB2 products started with the
development of the Index Advisor, which was first implemented in
version V6 of the DB2 Universal Database [386]. The DB2 Autonomic
Computing project was subsequently created as a joint effort between
the IBM Almaden Research Center and the IBM Toronto Software Lab,
and later the Watson Research Center. The focus of the project has
been on making existing database products easier and cheaper to man-
age, generally by automating or semiautomating administrative tasks.
Excellent overviews of the project can be found in [282, 283]. Specific
directions of the project are followed in [281, 284, 293]. In particular,
view and index selection and related problems in DB2 are summa-
rized in the following papers: [386] (index selection), [422, 423] (view
and index selection), [142] (selection of statistical views), and [277]
(autonomic placement of materialized views for load balancing). Some
of the work on view selection in DB2 has its roots in the work [407] by
Zaharioudakis et al., which described an approach to rewriting complex
decision-support queries with grouping and aggregation using materi-
alized views.

4.2 Implementation in Commercial Database Systems 365

In Oracle, views can be defined and materialized either manually or
using Oracle Enterprise Manager 11g. This software suite includes an
SQL Tuning Advisor and an SQL Access Advisor. Together, these tools
use proprietary techniques to analyze representative query workloads
with an eye on performance improvements in query evaluation. The
output of this analysis is in the form of recommendations, along with a
rationale for each recommendation and its expected performance ben-
efit. The recommendations include advice on which indexes and views
can be materialized to improve the system performance. Publications in
academic venues on automatic tuning in Oracle include [42, 125, 126].

A physical design advisor implemented in PostgreSQL is described
in [160], and index tuning in PostgreSQL is introduced in [280].
Performance monitoring for tuning Ingres is discussed in [380].

Advances in self-tuning of data-intensive systems are generally
followed by the International Workshop on Self-managing Database
Systems (SMDB), which has been running on a yearly basis since 2006.
See [2, 27, 28, 36] for reports on some of the past SMDB workshops.

5
Connections to Other Problems

We now explore the connections between materialized views to several
other research problems. This section is not intended to be a survey
of these problems. Therefore, the references herein are not complete;
we provide only enough pointers in order to make the connection with
materialized views clear. We also note that the list of connections cov-
ered in this section is by no means comprehensive. Rather, readers
should regard them as examples and leads, and are encouraged to iden-
tify new connections as well as strength existing ones.

Data Stream Processing The past decade has seen growing popu-
larity of data stream systems [15, 309]. Under the stream model, data
arrive continuously in order, while queries run continuously and return
new results as new data arrive. Because of high data volume, it is infea-
sible for the system to assume access to historical data for processing
queries. Stream queries bear strong resemblance to incrementally main-
tained views. The maintenance procedure for a view can be seen as a
stream query — its input streams are the sequences of base table mod-
ifications, and its output stream is the sequence of resultant modifica-
tions to the view contents. Indeed, recent work by Ghanem et al. [163]

366

367

adopted this interpretation of stream queries when adding view support
to data stream systems.

The restriction that the system can store only a bounded amount of
data online in a “scratch space” to process stream queries translates to
a stronger notion of self-maintenance (Section 2.2.2). Here, given a view
V corresponding to a stream query, we want to find a set of views A
of bounded space (to maintain in the scratch space) such that we can
incrementally maintain {V } ∪ A using only base table modifications
and the contents of A (but not V itself). Compared with the standard
practice of keeping the recent window of stream data online, this defi-
nition allows other forms of auxiliary data to be considered. Extending
it to run-time self-maintenance (Section 2.2.3) is also natural.

The connection does not stop with semantics, of course. For
example, Jagadish et al.’s work on chronicles [228] has been widely
cited by works on view maintenance and on stream processing.
As with streams, append-only modifications with monotonically
increasing sequence numbers greatly simplify and enable processing
with bounded space. A survey of stream joins by Xie and Yang [398]
pointed out more connections: exploiting constraints to reduce stream
join state [37] is analogous to using them in self-maintenance, and
various stream join techniques [35, 47, 236, 391] naturally translate
to ideas in optimizing view maintenance queries. In terms of system
building, recent efforts by Ghanem et al. on adding views to data
stream systems [163] and by Kennedy et al. on building dynamic data
management systems [26, 241] represent the first steps toward uniting
view maintenance and stream processing.

Approximate Query Processing Traditionally, database views
provide precise answers (with respect to some consistent database
state), but many uses for views can tolerate some degree of inaccuracy
just as others can tolerate staleness (Section 2.4.2). There has been
extensive work on approximate querying. For example, much research
on data streams involves approximate query answering, e.g., load shed-
ding [34] and maintaining statistical summaries [16] for streams. Sam-
pling [315] has also been studied extensively for its applications to

368 Connections to Other Problems

approximate query answering and cardinality estimation for query
optimization. The myriad of approximate query processing techniques
using various types of synopses [123] have thus laid a solid algo-
rithmic foundation for studying “approximate materialized views.”
Such views have been considered by Larson et al. [258, 259] to sup-
port cardinality estimation for query optimization, and by Jermaine
et al. [230, 232, 233, 329] as well as Gemulla and Lehner [161] to sup-
port approximate queries. It would be interesting to see whether we will
be able to approach the three basic questions for approximate mate-
rialized views — how to maintain them, how to use them, and how
to select them — with similar levels of generality and automation as
traditional materialized views.

Scalable Continuous Query Processing Triggers, constraint and
event monitors [325], and subscriptions in publish/subscribe sys-
tems [146] all in essence entail continuous queries, whose processing
resembles view maintenance as discussed above in the context of data
streams. A trigger or monitor can be seen as a query that continuously
returns a Boolean value or a sequence of database events matching
the trigger or monitor condition. In traditional publish/subscribe, sub-
scriptions are just selections over events; in modern systems, however,
subscriptions can be complex continuous queries involving join and/or
aggregation of the event history.

One focus of the work in these areas has been scalability in
the number of continuous queries. The key to scalability is group
processing. Work on view maintenance has considered sharing com-
mon subexpressions and other multi-query optimization techniques
(Section 2.1.3). However, to scale up to thousands or even millions of
continuous queries, as some systems (such as publish/subscribe) must
do, exploiting identical subexpressions is no longer sufficient. We need
more general methods for identifying queries whose answers are affected
by an event without examining all queries. A powerful observation is
the interchangeable roles of queries and data, which, for example, was
systematically exploited by Chandrasekaran and Franklin in building
a continuous querying system [85]. Continuous queries can be treated

369

as data, while each new data modification can be treated as a query
requesting the subset of continuous queries affected by its arrival. Thus,
it is natural to apply indexing and processing techniques for data to
continuous queries. For example, consider the problem of maintaining
many continuous range-selection queries of the form σai≤A≤bi

R, where
A is a column of table R and ai and bi are parameters that differ across
views. These queries can be indexed as a set of intervals {[ai, bi]}. Given
an insertion r̂ into R, the set of affected queries are exactly those whose
intervals contain r̂.A. With an appropriate index, this operation can be
done in logarithmic time without examining all queries.

The idea of indexing queries as data has been applied to trigger pro-
cessing (e.g., [210]), continuous query processing (e.g., [101, 301]), and
publish/subscribe (e.g., [25, 147]). The same idea can be applied to scale
up the number of materialized views as well. Indeed, some early work
on multiple select–project view maintenance [352, 353] (Section 2.1.3)
uses simple predicate indexing. Techniques for indexing more complex
queries beyond equality- or range-selection queries have also been devel-
oped (e.g., [14, 133]); it would be interesting to see how well they apply
to view maintenance.

Caching As noted in Section 1, one recurring theme in computer sci-
ence is the use of derived data to facilitate access to base data. Like
materialized views, caches are derived data; thus, we are faced with the
same questions of what to maintain, how to maintain, and how to use
them. Traditionally, caching is done at the object level: a replacement
policy controls which objects are cached; maintenance involves inval-
idating stale object copies or refreshing them with new contents; use
of the cache is limited to accessing objects by identifiers. If the cache
receives a declarative query, e.g., a selection involving non-id attributes,
we cannot tell whether the cache provides a complete answer, and there-
fore must query the source data, which is expensive in a distributed
setting. Dar et al. [129] proposed semantic caching, which combines
the ideas of caching and materialized views. A semantic cache remem-
bers the semantic descriptions of its contents as view definitions, so we
can determine the completeness of query answers (e.g., using the tech-
niques from Section 3), and query the source only when needed. This

370 Connections to Other Problems

idea has been applied to a wide range of settings, including caching
for web and mobile as well as other types of distributed systems. For
example, Li et al. [277] considered automatic placement of materialized
views, which serve as caches, in multitiered database systems. See the
survey of web caching by Labrinidis et al. [255] for additional pointers.

Conversely, traditional caching has also inspired interesting varia-
tions on the application of materialized views. For example, instead
of maintaining materialized views, Candan et al. [77] proposed invali-
dating them whenever their contents are affected by base table mod-
ifications, like an invalid-on-write cache. For another example, while
materializing a view traditionally implies fully materializing its con-
tents, Luo [296] and Zhou et al. [417] proposed materializing only the
subset of the contents most frequently queried, like caching. Partially
materialized views have lower storage and maintenance costs. They may
still support queries requesting specific subsets of rows, and can also
be useful when complete query results are not needed (or not needed
immediately). In [296], the multidimensional space of view contents is
partitioned into regions called “basic condition parts” and selectively
materialized (an upper limit is further placed on the number of rows
materialized for each region). Answering a query using these regions
is efficient because they are defined by simple multicolumn selections.
In [417], “control tables” dictate what contents to cache; the materi-
alized part of a view is defined essentially by the semijoin of the view
with a control table. The system automatically checks if a query posed
against a view can be answered by its materialized part. For decid-
ing what is materialized, both works used policies that resemble cache
replacement policies.

Indexes Indexes are another form of derived data used heavily in
database systems. A single-table index is much like a project view,
while a join index is like a project–join view. One traditional distinction
between indexes and materialized views is that indexes consider how to
store their contents physically using efficient data structures. However,
as we have seen in Section 2.3.1, a lot of work on materializing views
also considers efficient physical representation; therefore, this distinc-
tion from indexes is rather blurred. Because of the similarity between

371

materialized views and index, they share many ideas and techniques.
From the aspect of maintenance, the choice of incremental view mainte-
nance versus recomputation and that of immediate versus deferred view
maintenance also exist for indexes, especially variant indexes designed
for complex analytical query workloads, e.g., [318]. As discussed in
Section 4, the problem of view selection is closely related to that
of index selection; in fact, they are routinely dealt with together by
commercial database tuning tools. As another example, earlier in this
section, we have seen how partially materialized views incorporate the
principles of caching in deciding what to materialize; a similar idea has
long been applied to indexes [355, 365].

Provenance Study of provenance (or lineage) [105, 368] is concerned
with understanding the derivation of some data item as the result of
a sequence of database operations. Sarma et al. [348] pointed out that
many incremental view maintenance algorithms — particularly those
handle deletions, e.g., derivation counting in Section 2.1.1 — exploit
some technique or auxiliary information that is essentially lineage. Con-
versely, incremental view maintenance techniques (Section 2.1) have
been applied to provenance maintenance [176], and materializing aux-
iliary views for view maintenance (Section 2.3.2) can help make lineage
tracing more efficient [124].

Other Connections It is natural to extend materialized views to
other data models; there has been a lot of work on views for spa-
tiotemporal data, semistructured data (such as XML), and probabilis-
tic data, which is beyond the scope of this survey. Here, we briefly note
a couple of lines of recent work that push the envelope of incrementally
maintained materialized views — or more generally, derived data with
declarative specifications — to novel application contexts. To simplify
development and enable optimization of AJAX-based web applications,
Fu et al. [152, 153] proposed treating data-driven AJAX web pages
as views, which could then be specified declaratively and maintained
automatically and incrementally. Loo et al.’s work on declarative net-
working [294] allows declarative programming of network protocols
and services, enabling automatic optimization and safety checks. One

372 Connections to Other Problems

essential feature of declarative networking is the incremental execu-
tion of declarative programs as the underlying network changes. As the
popularity of declarative programming grows, we expect to see more
potential applications of the ideas from materialized views.

6
Conclusion and Future Directions

In this monograph, we have provided an introduction and reference to
the topic of materialized views, which are essentially queries whose
results are materialized and maintained to facilitate access to base
tables. They are a form of derived data that come with semantic
descriptions of their contents — view definition queries — which enable
declarative querying and various maintenance optimizations. We have
covered three fundamental problems that arise in the study of material-
ized views — or any form of derived data — how to maintain them, how
to use them, and how to decide what to maintain. We have pointed out
their connections to a few other research problems, and demonstrated
the benefit of cross-pollination of ideas.

At the time of this writing, materialized views are considered a
mature technology in the traditional SQL setting, with fairly sophisti-
cated implementations by most commercial database systems. Where,
then, does the research on materialized views go from here? Looking
at the recent work on or related to materialized views, we believe that
there are three promising directions.

First, the idea of materialized views naturally extends to dif-
ferent data models and query languages, from the more traditional

373

374 Conclusion and Future Directions

object-oriented and spatiotemporal ones to the more recent semistruc-
tured and probabilistic ones. While we have limited the scope of our
survey mostly to SQL views, there exists a vast body of literature on
materialize views in settings old and new alike. As two examples of work
in this direction, materialized views have been considered in semistruc-
tured (e.g., [8, 10, 31, 38, 52, 71, 79, 81, 82, 99, 103, 143, 148, 166, 171,
190, 191, 216, 218, 257, 292, 302, 319, 344, 349, 350, 366, 369, 400, 401,
410]) and probabilistic database settings (e.g., [127, 128, 336]).

One particularly interesting problem along this direction is how to
extend the idea of materialized views to large-scale data-parallel pro-
cessing which has become prevalent in recent years, thanks to the popu-
larity of cloud computing and parallel programming frameworks such as
MapReduce [130]. We are just beginning to see system support for incre-
mental computation in this setting (e.g., [46, 122, 316, 330]). Although
MapReduce itself is not declarative in the sense of query languages,
more declarative interfaces have been built on top of it (e.g., [317, 381]),
thereby opening up opportunities for automated approaches toward
optimizing incremental computation and deciding what to compute
incrementally in order to support a given workload.

Second, we are seeing increasing cross-pollination between the
research on materialized views and other topics. A natural step fol-
lowing cross-pollination would be consolidation of ideas and meth-
ods for various forms of derived data under various settings into a
unified framework. With such a framework, we can promote sharing
of data and processing among traditionally separate tasks, and make
better joint decisions on the materialization and maintenance of derived
data in order to achieve overall performance objectives under resource
constraints. One example in this direction is the development of auto-
mated database tuning tools that consider both indexes and material-
ized views, which has been well underway (Section 4). However, much
more remains to be done. Specifically, it would be nice for the frame-
work to also consider, holistically, many issues discussed in Section 5:
scalability to a large number of views and triggers, management of
synopsis in support of both query optimization and approximate query
answering, unifying materialized views and caching, etc. The additional
complexity introduced by generalization needs to be better understood

375

and tamed, but the potential benefit of a holistic approach makes this
challenge worthwhile pursuing.

Finally, driven by the widening gap between the cost of compute
power and that of manpower, declarative and data-driven programming
is steadily gaining popularity — concrete examples include declarative
web development and declarative networking discussed at the end of
Section 5. We expect this trend to give rise to more potential applica-
tions of ideas rooted in materialized views — because among various
forms of derived data, materialized views are special in having declar-
ative, semantic descriptions of their contents.

References

[1] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases. Addison-
Wesley, 1995.

[2] A. Aboulnaga and K. Salem, “Report: 4th international workshop on self-
managing database systems (SMDB 2009),” IEEE Data Engineering Bulletin,
vol. 32, no. 4, pp. 2–5, 2009.

[3] B. Adelberg, H. Garcia-Molina, and B. Kao, “Applying update streams in a
soft real-time database system,” in Proceedings of the 1995 ACM SIGMOD
International Conference on Management of Data, pp. 245–256, San Jose,
California, USA, May 1995.

[4] M. E. Adiba and B. G. Lindsay, “Database snapshots,” in Proceedings of the
1980 International Conference on Very Large Data Bases, pp. 86–91, Mon-
treal, Quebec, Canada, October 1980.

[5] F. Afrati and R. Chirkova, “Selecting and using views to compute aggregate
queries,” in Proceedings of the 2005 International Conference on Database
Theory, pp. 383–397, Edinburgh, UK, January 2005.

[6] F. Afrati and R. Chirkova, “Selecting and using views to compute aggregate
queries,” Journal of Computer and System Sciences, vol. 77, no. 6, pp. 1079–
1107, 2011.

[7] F. Afrati, C. Li, and J. Ullman, “Generating efficient plans for queries using
views,” in Proceedings of the 2001 ACM SIGMOD International Conference
on Management of Data, pp. 319–330, Santa Barbara, California, USA, June
2001.

[8] F. N. Afrati, R. Chirkova, M. Gergatsoulis, B. Kimelfeld, V. Pavlaki, and
Y. Sagiv, “On rewriting XPath queries using views,” in Proceedings of the 2009

376

References 377

International Conference on Extending Database Technology, pp. 168–179,
Saint Petersburg, Russia, March 2009.

[9] F. N. Afrati, R. Chirkova, M. Gergatsoulis, and V. Pavlaki, “View selection
for real conjunctive queries,” Acta Informatica, vol. 44, no. 5, pp. 289–321,
2007.

[10] F. N. Afrati, M. Damigos, and M. Gergatsoulis, “Union rewritings for XPath
fragments,” in Proceedings of the 2011 International Database Engineering
and Applications Symposium, pp. 43–51, Lisbon, Portugal, September 2011.

[11] F. N. Afrati, C. Li, and P. Mitra, “Answering queries using views with arith-
metic comparisons,” in Proceedings of the 2002 ACM Symposium on Principles
of Database Systems, pp. 209–220, Madison, Wisconsin, USA, June 2002.

[12] F. N. Afrati, C. Li, and J. D. Ullman, “Using views to generate efficient eval-
uation plans for queries,” Journal of Computer and System Sciences, vol. 73,
no. 5, pp. 703–724, 2007.

[13] F. N. Afrati and V. Pavlaki, “Rewriting queries using views with negation,”
AI Communications, vol. 19, no. 3, pp. 229–237, 2006.

[14] P. K. Agarwal, J. Xie, J. Yang, and H. Yu, “Scalable continuous query process-
ing by tracking hotspots,” in Proceedings of the 2006 International Conference
on Very Large Data Bases, pp. 31–42, Seoul, Korea, September 2006.

[15] C. C. Aggarwal, ed., Data Streams: Models and Algorithms. Springer, 1st ed.,
Novermber 2006.

[16] C. C. Aggarwal and P. S. Yu, “A survey of synopsis construction in data
streams,” in Aggarwal [15], pp. 169–207.

[17] D. Agrawal, A. E. Abbadi, A. Mostéfaoui, M. Raynal, and M. Roy, “The lord
of the rings: Efficient maintenance of views at data warehouses,” in Proceedings
of the 2002 International Symposium on Distributed Computing, pp. 33–47,
Toulouse, France, October 2002.

[18] D. Agrawal, A. E. Abbadi, A. K. Singh, and T. Yurek, “Efficient view mainte-
nance at data warehouses,” in Proceedings of the 1997 ACM SIGMOD Inter-
national Conference on Management of Data, pp. 417–427, Tucson, Arizona,
USA, May 1997.

[19] P. Agrawal, A. Silberstein, B. F. Cooper, U. Srivastava, and R. Ramakrish-
nan, “Asynchronous view maintenance for VLSD databases,” in Proceedings of
the 2009 ACM SIGMOD International Conference on Management of Data,
pp. 179–192, Providence, Rhode Island, USA, June 2009.

[20] S. Agrawal, N. Bruno, S. Chaudhuri, and V. R. Narasayya, “AutoAdmin:
Self-tuning database systems technology,” IEEE Data Engineering Bulletin,
vol. 29, no. 3, pp. 7–15, 2006.

[21] S. Agrawal, S. Chaudhuri, L. Kollár, A. P. Marathe, V. R. Narasayya, and
M. Syamala, “Database tuning advisor for Microsoft SQL Server 2005,” in
Proceedings of the 2004 International Conference on Very Large Data Bases,
pp. 1110–1121, Toronto, Canada, August 2004.

[22] S. Agrawal, S. Chaudhuri, L. Kollár, A. P. Marathe, V. R. Narasayya, and
M. Syamala, “Database tuning advisor for Microsoft SQL Server 2005: demo,”
in Proceedings of the 2005 ACM SIGMOD International Conference on Man-
agement of Data, pp. 930–932, Baltimore, Maryland, USA, June 2005.

378 References

[23] S. Agrawal, S. Chaudhuri, and V. R. Narasayya, “Automated selection of
materialized views and indexes in SQL databases,” in Proceedings of the
2000 International Conference on Very Large Data Bases, pp. 496–505, Cairo,
Egypt, September 2000.

[24] S. Agrawal, S. Chaudhuri, and V. R. Narasayya, “Materialized view and index
selection tool for Microsoft SQL Server 2000,” in Proceedings of the 2001 ACM
SIGMOD International Conference on Management of Data, p. 608, Santa
Barbara, California, USA, June 2001.

[25] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra,
“Matching events in a content-based subscription system,” in Proceedings of
the 1999 ACM Symposium on Principles of Distributed Computing, pp. 53–61,
Atlanta, Georgia, USA, May 1999.

[26] Y. Ahmad, O. Kennedy, C. Koch, and M. Nikolic, “DBToaster: Higher-
order delta processing for dynamic, frequently fresh views,” Proceedings of
the VLDB Endowment, vol. 5, no. 10, pp. 968–979, 2012.

[27] A. Ailamaki, S. Babu, P. Furtado, S. Lightstone, G. M. Lohman, P. Mar-
tin, V. R. Narasayya, G. Pauley, K. Salem, K.-U. Sattler, and G. Weikum,
“Report: 3rd International Workshop on Self-Managing Database Systems
(SMDB 2008),” IEEE Data Engineering Bulletin, vol. 31, no. 4, pp. 2–5, 2008.

[28] A. Ailamaki, S. Chaudhuri, S. Lightstone, G. M. Lohman, P. Martin, K. Salem,
and G. Weikum, “Report on the Second International Workshop on Self-
Managing Database Systems (SMDB 2007),” IEEE Data Engineering Bul-
letin, vol. 30, no. 2, pp. 2–4, 2007.

[29] M. O. Akinde, O. G. Jensen, and M. H. Böhlen, “Minimizing detail data
in data warehouses,” in Proceedings of the 1998 International Conference on
Extending Database Technology, pp. 293–307, Valencia, Spain, March 1998.

[30] M. Arenas, P. Barceló, L. Libkin, and F. Murlak, Relational and XML Data
Exchange. Synthesis Lectures on Data Management. Morgan & Claypool
Publishers, 2010.

[31] A. Arion, V. Benzaken, I. Manolescu, and Y. Papakonstantinou, “Structured
materialized views for XML queries,” in Proceedings of the 2007 International
Conference on Very Large Data Bases, pp. 87–98, Vienna, Austria, September
2007.

[32] Z. Asgharzadeh Talebi, R. Chirkova, and Y. Fathi, “Exact and inexact meth-
ods for solving the problem of view selection for aggregate queries,” Inter-
national Journal of Business Intelligence and Data Mining, vol. 4, no. 3/4,
pp. 391–415, 2009.

[33] Z. Asgharzadeh Talebi, R. Chirkova, Y. Fathi, and M. Stallmann, “Exact
and inexact methods for selecting views and indexes for OLAP performance
improvement,” in Proceedings of the 2008 International Conference on Extend-
ing Database Technology, pp. 311–322, Nantes, France, March 2008.

[34] B. Babcock, M. Datar, and R. Motwani, “Load shedding in data stream sys-
tems,” in Aggarwal [15], pp. 127–147.

[35] S. Babu, K. Munagala, J. Widom, and R. Motwani, “Adaptive caching for
continuous queries,” in Proceedings of the 2005 International Conference on
Data Engineering, Tokyo, Japan, April 2005.

References 379

[36] S. Babu and K.-U. Sattler, “Report: 5th international workshop on self-
managing database systems (SMDB 2010),” IEEE Data Engineering Bulletin,
vol. 33, no. 3, pp. 4–7, 2010.

[37] S. Babu, U. Srivastava, and J. Widom, “Exploiting k-constraints to
reduce memory overhead in continuous queries over data streams,” ACM
Transactions on Database Systems, vol. 29, no. 3, pp. 545–580, 2004.

[38] A. Balmin, F. Özcan, K. S. Beyer, R. Cochrane, and H. Pirahesh, “A
framework for using materialized XPath views in XML query processing,” in
Proceedings of the 2004 International Conference on Very Large Data Bases,
pp. 60–71, Toronto, Canada, August 2004.

[39] M. Bamha, F. Bentayeb, and G. Hains, “An efficient scalable parallel view
maintenance algorithm for shared nothing multi-processor machines,” in Pro-
ceedings of the 1999 International Conference on Database and Expert Systems
Applications, pp. 616–625, Florence, Italy, August 1999.

[40] E. Baralis, S. Paraboschi, and E. Teniente, “Materialized views selection in a
multidimensional database,” in Proceedings of the 1997 International Confer-
ence on Very Large Data Bases, pp. 156–165, Athens, Greece, August 1997.

[41] P. Barceló, “Logical foundations of relational data exchange,” ACM SIGMOD
Record, vol. 38, no. 1, pp. 49–58, 2009.

[42] P. Belknap, B. Dageville, K. Dias, and K. Yagoub, “Self-tuning for SQL perfor-
mance in Oracle Database 11g,” in Proceedings of the 2009 International Con-
ference on Data Engineering, pp. 1694–1700, Shanghai, China, March 2009.

[43] R. G. Bello, K. Dias, A. Downing, J. J. F. Jr., J. L. Finnerty, W. D. Norcott,
H. Sun, A. Witkowski, and M. Ziauddin, “Materialized views in Oracle,” in
Proceedings of the 1998 International Conference on Very Large Data Bases,
pp. 659–664, New York City, New York, USA, August 1998.

[44] M. Benedikt and G. Gottlob, “The impact of virtual views on containment,”
Proceedings of the VLDB Endowment, vol. 3, no. 1, pp. 297–308, 2010.

[45] P. A. Bernstein and L. M. Haas, “Information integration in the enterprise,”
Communications of the ACM, vol. 51, no. 9, pp. 72–79, 2008.

[46] P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and R. Pasquin, “Incoop:
MapReduce for incremental computations,” in Proceedings of the 2011 ACM
Symposium on Cloud Computing, pp. 7:1–7:14, Cascais, Portugal, October
2011.

[47] P. Bizarro, S. Babu, D. DeWitt, and J. Widom, “Content-based routing: Dif-
ferent plans for different data,” in Proceedings of the 2005 International Con-
ference on Very Large Data Bases, Trondheim, Norway, August 2005.

[48] J. A. Blakeley, N. Coburn, and P.-Å. Larson, “Updating derived relations:
Detecting irrelevant and autonomously computable updates,” in Proceedings
of the 1986 International Conference on Very Large Data Bases, pp. 457–466,
Kyoto, Japan, August 1986.

[49] J. A. Blakeley, N. Coburn, and P.-V. Larson, “Updating derived relations:
Detecting irrelevant and autonomously computable updates,” ACM Transac-
tions on Database Systems, vol. 14, no. 3, pp. 369–400, 1989.

[50] J. A. Blakeley, P.-Å. Larson, and F. W. Tompa, “Efficiently updating materi-
alized views,” in Proceedings of the 1986 ACM SIGMOD International Con-
ference on Management of Data, pp. 61–71, Washington DC, USA, May 1986.

380 References

[51] J. A. Blakeley and N. L. Martin, “Join index, materialized view, and hybrid-
hash join: A performance analysis,” in Proceedings of the 1990 International
Conference on Data Engineering, pp. 256–263, Los Angeles, California, USA,
February 1990.

[52] A. Bonifati, M. H. Goodfellow, I. Manolescu, and D. Sileo, “Algebraic incre-
mental maintenance of XML views,” in Proceedings of the 2011 International
Conference on Extending Database Technology, pp. 177–188, Uppsala, Sweden,
March 2011.

[53] P. Bonnet and D. Shasha, “Index tuning,” in Liu and Özsu [291], pp. 1433–
1435.

[54] P. Bonnet and D. Shasha, “Schema tuning,” in Liu and Özsu [291], pp. 2497–
2499.

[55] N. Bruno and S. Chaudhuri, “Automatic physical database tuning: A
relaxation-based approach,” in Proceedings of the 2005 ACM SIGMOD
International Conference on Management of Data, pp. 227–238, Baltimore,
Maryland, USA, June 2005.

[56] N. Bruno and S. Chaudhuri, “Physical design refinement: The “merge-reduce”
approach,” in Proceedings of the 2006 International Conference on Extending
Database Technology, pp. 386–404, Munich, Germany, March 2006.

[57] N. Bruno and S. Chaudhuri, “To tune or not to tune? A lightweight physical
design alerter,” in Proceedings of the 2006 International Conference on Very
Large Data Bases, pp. 499–510, Seoul, Korea, September 2006.

[58] N. Bruno and S. Chaudhuri, “Online approach to physical design tuning,”
in Proceedings of the 2007 International Conference on Data Engineering,
pp. 826–835, Istanbul, Turkey, April 2007.

[59] N. Bruno and S. Chaudhuri, “Online AutoAdmin (physical design tuning),”
in Proceedings of the 2007 ACM SIGMOD International Conference on Man-
agement of Data, pp. 1067–1069, Beijing, China, June 2007.

[60] N. Bruno and S. Chaudhuri, “Physical design refinement: The merge-reduce
approach,” ACM Transactions on Database Systems, vol. 32, no. 4, pp. 28–43,
2007.

[61] N. Bruno and S. Chaudhuri, “Constrained physical design tuning,” Proceed-
ings of the VLDB Endowment, vol. 1, pp. 4–15, 2008.

[62] N. Bruno and S. Chaudhuri, “Constrained physical design tuning,” The VLDB
Journal, vol. 19, no. 1, pp. 21–44, 2010.

[63] N. Bruno, S. Chaudhuri, and G. Weikum, “Database tuning using online algo-
rithms,” in Liu and Özsu [291], pp. 741–744.

[64] P. Buneman and E. K. Clemons, “Efficiently monitoring relational databases,”
ACM Transactions on Database Systems, vol. 4, no. 3, pp. 368–382, 1979.

[65] C. J. Bunger, L. S. Colby, R. L. Cole, W. J. McKenna, G. Mulagund, and
D. Wilhite, “Aggregate maintenance for data warehousing in Informix Red
Brick Vista,” in Proceedings of the 2001 International Conference on Very
Large Data Bases, pp. 659–662, Roma, Italy, September 2001.

[66] A. Cal̀ı, D. Calvanese, G. D. Giacomo, and M. Lenzerini, “Data integration
under integrity constraints,” Information Systems, vol. 29, no. 2, pp. 147–163,
2004.

References 381

[67] D. Calvanese and G. D. Giacomo, “Data integration: A logic-based perspec-
tive,” AI Magazine, vol. 26, no. 1, pp. 59–70, 2005.

[68] D. Calvanese, G. D. Giacomo, M. Lenzerini, D. Nardi, and R. Rosati,
“Data integration in data warehousing,” International Journal of Coopera-
tive Information Systems, vol. 10, no. 3, pp. 237–271, 2001.

[69] D. Calvanese, G. D. Giacomo, M. Lenzerini, and R. Rosati, “Logical foun-
dations of peer-to-peer data integration,” in Proceedings of the 2004 ACM
Symposium on Principles of Database Systems, pp. 241–251, Paris, France,
June 2004.

[70] D. Calvanese, G. D. Giacomo, M. Lenzerini, and R. Rosati, “View-based
query answering over description logic ontologies,” in Proceedings of the 2008
International Conference on Principles of Knowledge Representation and Rea-
soning, pp. 242–251, Sydney, Australia, September 2008.

[71] D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y. Vardi, “Answering
regular path queries using views,” in Proceedings of the 2000 International
Conference on Data Engineering, pp. 389–398, Los Angeles, California, USA,
February 2000.

[72] D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y. Vardi, “Lossless regular
views,” in Proceedings of the 2002 ACM Symposium on Principles of Database
Systems, pp. 247–258, Madison, Wisconsin, USA, June 2002.

[73] D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y. Vardi, “Query contain-
ment using views,” in Proceedings of the 2003 Italian Symposium on Advanced
Database Systems, pp. 467–474, Cetraro (CS), Italy, June 2003.

[74] D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y. Vardi, “View-based
query containment,” in Proceedings of the 2003 ACM Symposium on Princi-
ples of Database Systems, pp. 56–67, San Diego, California, USA, June 2003.

[75] D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y. Vardi, “View-based
query processing: On the relationship between rewriting, answering and loss-
lessness,” in Proceedings of the 2005 International Conference on Database
Theory, pp. 321–336, Edinburgh, UK, Janaury 2005.

[76] D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y. Vardi, “View-based
query processing: On the relationship between rewriting, answering and loss-
lessness,” Theoretical Computer Science, vol. 371, no. 3, pp. 169–182, 2007.

[77] K. S. Candan, D. Agrawal, W.-S. Li, O. Po, and W.-P. Hsiung, “View invalida-
tion for dynamic content caching in multitiered architectures,” in Proceedings
of the 2002 International Conference on Very Large Data Bases, pp. 562–573,
Hong Kong, China, September 2002.

[78] S. Castano, V. D. Antonellis, and S. D. C. di Vimercati, “Global viewing
of heterogeneous data sources,” IEEE Transactions on Knowledge and Data
Engineering, vol. 13, no. 2, pp. 277–297, 2001.

[79] B. Cautis, A. Deutsch, and N. Onose, “XPath rewriting using multiple views:
Achieving completeness and efficiency,” in Proceedings of the 2008 Interna-
tional Workshop on the Web and Databases, Vancouver, Canada, June 2008.

[80] B. Cautis, A. Deutsch, and N. Onose, “Querying data sources that export
infinite sets of views,” in Proceedings of the 2009 International Conference on
Database Theory, pp. 84–97, Saint-Petersburg, Russia, March 2009.

382 References

[81] B. Cautis, A. Deutsch, N. Onose, and V. Vassalos, “Efficient rewriting of
XPath queries using query set specifications,” Proceedings of the VLDB
Endowment, vol. 2, no. 1, pp. 301–312, 2009.

[82] B. Cautis, A. Deutsch, N. Onose, and V. Vassalos, “Querying XML data
sources that export very large sets of views,” ACM Transactions on Database
Systems, vol. 36, no. 1, p. 5, 2011.

[83] S. Ceri and J. Widom, “Deriving production rules for incremental view main-
tenance,” in Proceedings of the 1991 International Conference on Very Large
Data Bases, pp. 577–589, Barcelona, Catalonia, Spain, 1991.

[84] A. Chandra and P. Merlin, “Optimal implementation of conjunctive queries in
relational data bases,” in Proceedings of the 1977 ACM Symposium on Theory
of Computing, pp. 77–90, Boulder, Colorado, USA, May 1977.

[85] S. Chandrasekaran and M. J. Franklin, “PSoup: A system for streaming
queries over streaming data,” The VLDB Journal, vol. 12, no. 2, pp. 140–156,
2003.

[86] S. Chaudhuri, “An overview of query optimization in relational systems,” in
Proceedings of the 1998 ACM Symposium on Principles of Database Systems,
pp. 34–43, Seattle, Washington, USA, June 1998.

[87] S. Chaudhuri, E. Christensen, G. Graefe, V. R. Narasayya, and M. J. Zwilling,
“Self-tuning technology in Microsoft SQL Server,” IEEE Data Engineering
Bulletin, vol. 22, no. 2, pp. 20–26, 1999.

[88] S. Chaudhuri, M. Datar, and V. R. Narasayya, “Index selection for databases:
A hardness study and principled heuristic solution,” IEEE Transactions on
Knowledge and Data Engineering, vol. 16, pp. 1313–1323, 2004.

[89] S. Chaudhuri and U. Dayal, “An overview of data warehousing and OLAP
technology,” ACM SIGMOD Record, vol. 26, no. 1, pp. 65–74, 1997.

[90] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim, “Optimizing
queries with materialized views,” in Proceedings of the 1995 International
Conference on Data Engineering, pp. 190–200, Taipei, Taiwan, March 1995.

[91] S. Chaudhuri and V. R. Narasayya, “An efficient cost-driven index selection
tool for Microsoft SQL server,” in Proceedings of the 1997 International Con-
ference on Very Large Data Bases, pp. 146–155, Athens, Greece, August 1997.

[92] S. Chaudhuri and V. R. Narasayya, “AutoAdmin ‘what-if’ index analysis util-
ity,” in Proceedings of the 1998 ACM SIGMOD International Conference on
Management of Data, pp. 367–378, Seattle, Washington, USA, May 1998.

[93] S. Chaudhuri and V. R. Narasayya, “Self-tuning database systems: A decade
of progress,” in Proceedings of the 2007 International Conference on Very
Large Data Bases, pp. 3–14, Vienna, Austria, September 2007.

[94] S. Chaudhuri, V. R. Narasayya, and G. Weikum, “Database tuning using
combinatorial search,” in Liu and Özsu [291], pp. 738–741.

[95] S. Chaudhuri and M. Y. Vardi, “Optimization of real conjunctive queries,” in
Proceedings of the 1993 ACM Symposium on Principles of Database Systems,
pp. 59–70, Washington DC, USA, May 1993.

[96] S. Chaudhuri and G. Weikum, “Self-management technology in databases,”
in Liu and Özsu [291], pp. 2550–2555.

[97] S. Chaudhuri and G. Weikum, “Rethinking database system architecture:
Towards a self-tuning risc-style database system,” in Proceedings of the 2000

References 383

International Conference on Very Large Data Bases, pp. 1–10, Cairo, Egypt,
September 2000.

[98] L. W. F. Chaves, E. Buchmann, F. Hueske, and K. Böhm, “Towards mate-
rialized view selection for distributed databases,” in Proceedings of the 2009
International Conference on Extending Database Technology, pp. 1088–1099,
Saint Petersburg, Russia, March 2009.

[99] D. Chen and C.-Y. Chan, “ViewJoin: Efficient view-based evaluation of tree
pattern queries,” in Proceedings of the 2010 International Conference on Data
Engineering, pp. 816–827, Long Beach, California, USA, March 2010.

[100] J. Chen, S. Chen, and E. A. Rundensteiner, “A transactional model for data
warehouse maintenance,” in Proceedings of the 2002 International Conference
on Conceptual Modeling, pp. 247–262, Tampere, Finland, October 2002.

[101] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang, “NiagaraCQ: A scalable contin-
uous query system for internet databases,” in Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data, pp. 379–390,
Dallas, Texas, USA, May 2000.

[102] J. Chen, X. Zhang, S. Chen, A. Koeller, and E. A. Rundensteiner, “DyDa:
Data warehouse maintenance in fully concurrent environments,” in Proceed-
ings of the 2001 ACM SIGMOD International Conference on Management of
Data, p. 619, Santa Barbara, California, USA, June 2001.

[103] L. Chen and E. A. Rundensteiner, “XCache: XQuery-based caching system,”
in Proceedings of the 2002 International Workshop on the Web and Databases,
pp. 31–36, Madison, Wisconsin, USA, June 2002.

[104] S. Chen, B. Liu, and E. A. Rundensteiner, “Multiversion-based view main-
tenance over distributed data sources,” ACM Transactions on Database Sys-
tems, vol. 29, no. 4, pp. 675–709, 2004.

[105] J. Cheney, L. Chiticariu, and W. C. Tan, “Provenance in databases: Why, how
and where,” Foundations and Trends in Databases, vol. 1, no. 4, pp. 379–474,
2009.

[106] R. Chirkova, “Query containment,” in Liu and Özsu [291], pp. 2249–2253.
[107] R. Chirkova, “The view-selection problem has an exponential-time lower

bound for conjunctive queries and views,” in Proceedings of the 2002
ACM Symposium on Principles of Database Systems, pp. 159–168, Madison,
Wisconsin, USA, June 2002.

[108] R. Chirkova, A. Y. Halevy, and D. Suciu, “A formal perspective on the view
selection problem,” The VLDB Journal, vol. 11, no. 3, pp. 216–237, 2002.

[109] R. Chirkova and C. Li, “Materializing views with minimal size to answer
queries,” in Proceedings of the 2003 ACM Symposium on Principles of
Database Systems, pp. 38–48, San Diego, California, USA, June 2003.

[110] R. Chirkova, C. Li, and J. Li, “Answering queries using materialized views
with minimum size,” The VLDB Journal, vol. 15, no. 3, pp. 191–210,
2006.

[111] S. Cohen, “Aggregation: Expressiveness and containment,” in Liu and
Özsu [291], pp. 59–63.

[112] S. Cohen, “Equivalence of queries combining set and bag-set semantics,” in
Proceedings of the 2006 ACM Symposium on Principles of Database Systems,
pp. 70–79, Chicago, Illinois, USA, June 2006.

384 References

[113] S. Cohen, “User-defined aggregate functions: Bridging theory and practice,”
in Proceedings of the 2006 ACM SIGMOD International Conference on Man-
agement of Data, pp. 49–60, Chicago, Illinois, USA, June 2006.

[114] S. Cohen, “Equivalence of queries that are sensitive to multiplicities,” The
VLDB Journal, vol. 18, pp. 765–785, 2009.

[115] S. Cohen, W. Nutt, and Y. Sagiv, “Rewriting queries with arbitrary aggrega-
tion functions using views,” ACM Transactions on Database Systems, vol. 31,
no. 2, pp. 672–715, 2006.

[116] S. Cohen, W. Nutt, and Y. Sagiv, “Deciding equivalences among conjunctive
aggregate queries,” Journal of the ACM, vol. 54, no. 2, 2007.

[117] S. Cohen, W. Nutt, and A. Serebrenik, “Rewriting aggregate queries using
views,” in Proceedings of the 1999 ACM Symposium on Principles of Database
Systems, pp. 155–166, Philadelphia, Pennsylvania, USA, June 1999.

[118] S. Cohen, W. Nutt, and A. Serebrenik, “Algorithms for rewriting aggregate
queries using views,” in Proceedings of the 2000 East European Conference on
Advances in Databases and Information Systems Held Jointly with the Interna-
tional Conference on Database Systems for Advanced Applications, pp. 65–78,
Prague, Czech Republic, September 2000.

[119] L. S. Colby, T. Griffin, L. Libkin, I. S. Mumick, and H. Trickey, “Algorithms
for deferred view maintenance,” in Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data, pp. 469–480, Montreal,
Quebec, Canada, June 1996.

[120] L. S. Colby, A. Kawaguchi, D. F. Lieuwen, I. S. Mumick, and K. A. Ross, “Sup-
porting multiple view maintenance policies,” in Proceedings of the 1997 ACM
SIGMOD International Conference on Management of Data, pp. 405–416,
Tucson, Arizona, USA, May 1997.

[121] M. Compton, “Finding equivalent rewritings with exact views,” in Proceedings
of the 2009 International Conference on Data Engineering, pp. 1243–1246,
Shanghai, China, March 2009.

[122] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and
R. Sears, “MapReduce online,” in Proceedings of the 2010 USENIX Sympo-
sium on Networked Systems Design and Implementation, San Jose, California,
USA, April 2010.

[123] G. Cormode, M. N. Garofalakis, P. J. Haas, and C. Jermaine, “Synopses
for massive data: Samples, histograms, wavelets, sketches,” Foundations and
Trends in Databases, vol. 4, no. 1–3, pp. 1–294, 2012.

[124] Y. Cui and J. Widom, “Storing auxiliary data for efficient maintenance and lin-
eage tracing of complex views,” in Proceedings of the 2000 International Work-
shop on Design and Management of Data Warehouses, Stockholm, Sweden,
June 2000.

[125] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zäıt, and M. Ziauddin, “Auto-
matic SQL tuning in Oracle 10g,” in Proceedings of the 2004 International
Conference on Very Large Data Bases, pp. 1098–1109, Toronto, Canada,
August 2004.

[126] B. Dageville and K. Dias, “Oracle’s self-tuning architecture and solutions,”
IEEE Data Engineering Bulletin, vol. 29, no. 3, pp. 24–31, 2006.

References 385

[127] N. N. Dalvi, C. Re, and D. Suciu, “Queries and materialized views on proba-
bilistic databases,” Journal of Computer and System Sciences, vol. 77, no. 3,
pp. 473–490, 2011.

[128] N. N. Dalvi and D. Suciu, “Answering queries from statistics and probabilistic
views,” in Proceedings of the 2005 International Conference on Very Large
Data Bases, pp. 805–816, Trondheim, Norway, August 2005.

[129] S. Dar, M. J. Franklin, B. T. Jónsson, D. Srivastava, and M. Tan, “Semantic
data caching and replacement,” in Proceedings of the 1996 International Con-
ference on Very Large Data Bases, pp. 330–341, Mumbai (Bombay), India,
September 1996.

[130] J. Dean and S. Ghemawat, “MapReduce: A flexible data processing tool,”
Communications of the ACM, vol. 53, no. 1, pp. 72–77, 2010.

[131] D. DeHaan, P.-Å. Larson, and J. Zhou, “Stacked indexed views in Microsoft
SQL Server,” in Proceedings of the 2005 ACM SIGMOD International Confer-
ence on Management of Data, pp. 179–190, Baltimore, Maryland, USA, June
2005.

[132] A. Deligiannakis, “View maintenance aspects,” in Liu and Özsu [291],
pp. 3328–3331.

[133] A. J. Demers, J. Gehrke, B. Panda, M. Riedewald, V. Sharma, and W. M.
White, “Cayuga: A general purpose event monitoring system,” in Proceedings
of the 2007 Conference on Innovative Data Systems Research, pp. 412–422,
Asilomar, California, USA, January 2007.

[134] A. Deutsch, “FOL modeling of integrity constraints (dependencies),” in Liu
and Özsu [291], pp. 1155–1161.

[135] A. Deutsch, Y. Katsis, and Y. Papakonstantinou, “Determining source contri-
bution in integration systems,” in Proceedings of the 2005 ACM Symposium
on Principles of Database Systems, pp. 304–315, Baltimore, Maryland, USA,
June 2005.

[136] A. Deutsch, B. Ludäscher, and A. Nash, “Rewriting queries using views
with access patterns under integrity constraints,” in Proceedings of the 2005
International Conference on Database Theory, pp. 352–367, Edinburgh, UK,
January 2005.

[137] A. Deutsch and A. Nash, “Chase,” in Liu and Özsu [291], pp. 323–327.
[138] A. Deutsch, L. Popa, and V. Tannen, “Query reformulation with constraints,”

ACM SIGMOD Record, vol. 35, no. 1, pp. 65–73, 2006.
[139] A. Doan, A. Halevy, and Z. Ives, Principles of Data Integration. Morgan

Kaufmann, 1st ed., July 2012.
[140] A. Doan and A. Y. Halevy, “Semantic integration research in the database

community: A brief survey,” AI Magazine, vol. 26, no. 1, pp. 83–94, 2005.
[141] G. Dong and J. Su, “Incremental computation of queries,” in Liu and

Özsu [291], pp. 1414–1417.
[142] A. El-Helw, I. F. Ilyas, and C. Zuzarte, “Statadvisor: Recommending statisti-

cal views,” Proceedings of the VLDB Endowment, vol. 2, no. 2, pp. 1306–1317,
2009.

[143] M. El-Sayed, E. A. Rundensteiner, and M. Mani, “Incremental maintenance
of materialized XQuery views,” in Proceedings of the 2006 International Con-
ference on Data Engineering, p. 129, Atlanta, Georgia, USA, April 2006.

386 References

[144] C. Elkan, “Independence of logic database queries and updates,” in Pro-
ceedings of the 1990 ACM Symposium on Principles of Database Systems,
pp. 154–160, Nashville, Tennessee, USA, April 1990.

[145] H. Engström, S. Chakravarthy, and B. Lings, “A systematic approach to select-
ing maintenance policies in a data warehouse environment,” in Proceedings
of the 2002 International Conference on Extending Database Technology,
pp. 317–335, Prague, Czech Republic, March 2002.

[146] P. T. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec, “The many faces
of publish/subscribe,” ACM Computing Surveys, vol. 35, no. 2, pp. 114–131,
2003.

[147] F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D. Shasha,
“Filtering algorithms and implementation for very fast publish/subscribe,” in
Proceedings of the 2001 ACM SIGMOD International Conference on Manage-
ment of Data, Santa Barbara, California, USA, June 2001.

[148] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis, “Rewriting regular XPath
queries on XML views,” in Proceedings of the 2007 International Conference
on Data Engineering, pp. 666–675, Istanbul, Turkey, April 2007.

[149] S. J. Finkelstein, M. Schkolnick, and P. Tiberio, “Physical database design for
relational databases,” ACM Transactions on Database Systems, vol. 13, no. 1,
1988.

[150] S. Flesca and S. Greco, “Rewriting queries using views,” IEEE Transactions
on Knowledge and Data Engineering, vol. 13, no. 6, pp. 980–995, 2001.

[151] N. Folkert, A. Gupta, A. Witkowski, S. Subramanian, S. Bellamkonda,
S. Shankar, T. Bozkaya, and L. Sheng, “Optimizing refresh of a set of mate-
rialized views,” in Proceedings of the 2005 International Conference on Very
Large Data Bases, pp. 1043–1054, Trondheim, Norway, August 2005.

[152] Y. Fu, K. Kowalczykowski, K. W. Ong, Y. Papakonstantinou, and K. K. Zhao,
“Ajax-based report pages as incrementally rendered views,” in Proceedings of
the 2010 ACM SIGMOD International Conference on Management of Data,
pp. 567–578, Indianapolis, Indiana, USA, June 2010.

[153] Y. Fu, K. W. Ong, Y. Papakonstantinou, and M. Petropoulos, “The SQL-
based all-declarative FORWARD web application development framework,”
in Proceedings of the 2011 Conference on Innovative Data Systems Research,
pp. 69–78, Asilomar, California, USA, January 2011.

[154] A. Fuxman, P. G. Kolaitis, R. J. Miller, and W. C. Tan, “Peer data exchange,”
in Proceedings of the 2005 ACM Symposium on Principles of Database Sys-
tems, pp. 160–171, Baltimore, Maryland, USA, June 2005.

[155] A. Fuxman, P. G. Kolaitis, R. J. Miller, and W. C. Tan, “Peer data exchange,”
ACM Transactions on Database Systems, vol. 31, no. 4, pp. 1454–1498,
2006.

[156] A. Fuxman and R. J. Miller, “First-order query rewriting for inconsistent
databases,” in Proceedings of the 2005 International Conference on Database
Theory, pp. 337–351, Edinburgh, UK, January 2005.

[157] H. Garcia-Molina, W. J. Labio, and J. Yang, “Expiring data in a warehouse,”
in Proceedings of the 1998 International Conference on Very Large Data Bases,
pp. 500–511, New York City, New York, USA, August 1998.

References 387

[158] H. Garcia-Molina, J. Ullman, and J. Widom, Database Systems: The Complete
Book. Pearson Prentice Hall, 2009.

[159] H. Garcia-Molina, J. D. Ullman, and J. Widom, Database Systems: The Com-
plete Book. Pearson Education, 2nd ed., 2009.

[160] K. E. Gebaly and A. Aboulnaga, “Robustness in automatic physical database
design,” in Proceedings of the 2008 International Conference on Extending
Database Technology, pp. 145–156, Nantes, France, March 2008.

[161] R. Gemulla and W. Lehner, “Deferred maintenance of disk-based random
samples,” in Proceedings of the 2006 International Conference on Extending
Database Technology, pp. 423–441, Munich, Germany, March 2006.

[162] M. R. Genesereth, Data Integration: The Relational Logic Approach. Synthesis
Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool
Publishers, 2010.

[163] T. M. Ghanem, A. K. Elmagarmid, P.-Å. Larson, and W. G. Aref, “Supporting
views in data stream management systems,” ACM Transactions on Database
Systems, vol. 35, no. 1, 2010.

[164] G. D. Giacomo, D. Lembo, M. Lenzerini, and R. Rosati, “On reconciling data
exchange, data integration, and peer data management,” in Proceedings of
the 2007 ACM Symposium on Principles of Database Systems, pp. 133–142,
Beijing, China, June 2007.

[165] P. Godfrey and J. Gryz, “View disassembly: A rewrite that extracts portions of
views,” Journal of Computer and System Sciences, vol. 73, no. 6, pp. 941–961,
2007.

[166] P. Godfrey, J. Gryz, A. Hoppe, W. Ma, and C. Zuzarte, “Query rewrites with
views for XML in DB2,” in Proceedings of the 2009 International Conference
on Data Engineering, pp. 1339–1350, Shanghai, China, March 2009.

[167] J. Goldstein and P.-Å. Larson, “Optimizing queries using materialized views:
A practical, scalable solution,” in Proceedings of the 2001 ACM SIGMOD
International Conference on Management of Data, pp. 331–342, Santa Bar-
bara, California, USA, June 2001.

[168] G. Gou, M. Kormilitsin, and R. Chirkova, “Query evaluation using overlapping
views: Completeness and efficiency,” in Proceedings of the 2006 ACM SIG-
MOD International Conference on Management of Data, pp. 37–48, Chicago,
Illinois, USA, June 2006.

[169] G. Graefe and H. A. Kuno, “Self-selecting, self-tuning, incrementally opti-
mized indexes,” in Proceedings of the 2010 International Conference on
Extending Database Technology, pp. 371–381, Lausanne, Switzerland, March
2010.

[170] G. Graefe and M. J. Zwilling, “Transaction support for indexed views,” in
Proceedings of the 2004 ACM SIGMOD International Conference on Man-
agement of Data, Paris, France, June 2004.

[171] G. Grahne and A. Thomo, “Query containment and rewriting using views for
regular path queries under constraints,” in Proceedings of the 2003 ACM Sym-
posium on Principles of Database Systems, pp. 111–122, San Diego, California,
USA, June 2003.

388 References

[172] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh, “Data cube: A rela-
tional aggregation operator generalizing group-by, cross-tab, and sub-total,”
in Proceedings of the 1996 International Conference on Data Engineering,
pp. 152–159, New Orleans, Louisiana, USA, February 1996.

[173] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, and M. Venka-
trao, “Data cube: A relational aggregation operator generalizing group-by,
cross-tab, and sub-totals,” Data Mining and Knowledge Discovery, vol. 1,
no. 1, pp. 29–53, 1997.

[174] T. J. Green, “Bag semantics,” in Liu and Özsu [291], pp. 201–206.
[175] T. J. Green and Z. G. Ives, “Recomputing materialized instances after changes

to mappings and data,” in Proceedings of the 2012 International Conference
on Data Engineering, pp. 330–341, Washington DC, USA, April 2012.

[176] T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen, “Update exchange
with mappings and provenance,” in Proceedings of the 2007 International Con-
ference on Very Large Data Bases, pp. 675–686, Vienna, Austria, September
2007.

[177] T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen, “Provenance in
ORCHESTRA,” IEEE Data Engineering Bulletin, vol. 33, no. 3, pp. 9–16,
2010.

[178] T. J. Green, G. Karvounarakis, N. E. Taylor, O. Biton, Z. G. Ives, and V. Tan-
nen, “ORCHESTRA: Facilitating collaborative data sharing,” in Proceedings
of the 2007 ACM SIGMOD International Conference on Management of Data,
pp. 1131–1133, Beijing, China, June 2007.

[179] T. Griffin and B. Kumar, “Algebraic change propagation for semijoin and
outerjoin queries,” ACM SIGMOD Record, vol. 27, no. 3, pp. 22–27, 1998.

[180] T. Griffin and L. Libkin, “Incremental maintenance of views with duplicates,”
in Proceedings of the 1995 ACM SIGMOD International Conference on Man-
agement of Data, pp. 328–339, San Jose, California, USA, May 1995.

[181] T. Griffin, L. Libkin, and H. Trickey, “An improved algorithm for the incre-
mental recomputation of active relational expressions,” IEEE Transactions on
Knowledge and Data Engineering, vol. 9, no. 3, pp. 508–511, 1997.

[182] S. Grumbach, M. Rafanelli, and L. Tininini, “On the equivalence and rewriting
of aggregate queries,” Acta Informatica, vol. 40, no. 8, pp. 529–584, 2004.

[183] S. Grumbach and L. Tininini, “On the content of materialized aggregate
views,” Journal of Computer and System Sciences, vol. 66, no. 1, pp. 133–168,
2003.

[184] A. Gupta and J. A. Blakeley, “Using partial information to update material-
ized views,” Information Systems, vol. 20, no. 8, pp. 641–662, 1995.

[185] A. Gupta, V. Harinarayan, and D. Quass, “Aggregate-query processing in data
warehousing environments,” in Proceedings of the 1995 International Confer-
ence on Very Large Data Bases, pp. 358–369, Zurich, Switzerland, September
1995.

[186] A. Gupta, H. V. Jagadish, and I. S. Mumick, “Data integration using self-
maintainable views,” in Proceedings of the 1996 International Conference on
Extending Database Technology, pp. 140–144, Avignon, France, March 1996.

References 389

[187] A. Gupta and I. S. Mumick, “Maintenance of materialized views: Problems,
techniques, and applications,” IEEE Data Engineering Bulletin, vol. 18, no. 2,
pp. 3–18, 1995.

[188] A. Gupta and I. S. Mumick, eds., Materialized Views: Techniques, Implemen-
tations, and Applications. MIT Press, 1999.

[189] A. Gupta, I. S. Mumick, and V. S. Subrahmanian, “Maintaining views
incrementally,” in Proceedings of the 1993 ACM SIGMOD International Con-
ference on Management of Data, pp. 157–166, Washington DC, USA, May
1993.

[190] A. K. Gupta, A. Y. Halevy, and D. Suciu, “View selection for stream pro-
cessing,” in Proceedings of the 2002 International Workshop on the Web and
Databases, pp. 83–88, Madison, Wisconsin, USA, June 2002.

[191] A. K. Gupta, D. Suciu, and A. Y. Halevy, “The view selection problem for
XML content based routing,” in Proceedings of the 2003 ACM Symposium on
Principles of Database Systems, pp. 68–77, San Diego, California, USA, June
2003.

[192] H. Gupta, “Selection of views to materialize in a data warehouse,” in Proceed-
ings of the 1997 International Conference on Database Theory, pp. 98–112,
Delphi, Greece, January 1997.

[193] H. Gupta, “Selection and maintenance of views in a data warehouse,” PhD
thesis, Department of Computer Science, Stanford University, 1999.

[194] H. Gupta, V. Harinarayan, A. Rajaraman, and J. D. Ullman, “Index selec-
tion for OLAP,” in Proceedings of the 1997 International Conference on Data
Engineering, pp. 208–219, Birmingham, UK, April 1997.

[195] H. Gupta and I. S. Mumick, “Selection of views to materialize under a main-
tenance cost constraint,” in Proceedings of the 1999 International Conference
on Database Theory, pp. 453–470, Jerusalem, Israel, January 1999.

[196] H. Gupta and I. S. Mumick, “Selection of views to materialize in a data
warehouse,” IEEE Transactions on Knowledge and Data Engineering, vol. 17,
no. 1, pp. 24–43, 2005.

[197] H. Gupta and I. S. Mumick, “Incremental maintenance of aggregate and
outerjoin expressions,” Information Systems, vol. 31, no. 6, pp. 435–464,
2006.

[198] N. Gupta, L. Kot, G. Bender, S. Roy, J. Gehrke, and C. Koch, “Coordination
through querying in the Youtopia system,” in Proceedings of the 2011 ACM
SIGMOD International Conference on Management of Data, pp. 1331–1334,
Athens, Greece, June 2011.

[199] L. M. Haas, “Beauty and the beast: The theory and practice of information
integration,” in Proceedings of the 2007 International Conference on Database
Theory, pp. 28–43, Barcelona, Spain, January 2007.

[200] A. Halevy, “Data integration: A status report,” in Datenbanksysteme für Busi-
ness, Technologie und Web, pp. 24–29, Leipzig, Germany, February 2003.

[201] A. Y. Halevy, “Information integration,” in Liu and Özsu [291], pp. 1490–1496.
[202] A. Y. Halevy, “Theory of answering queries using views,” ACM SIGMOD

Record, vol. 29, no. 4, pp. 40–47, 2000.
[203] A. Y. Halevy, “Answering queries using views: A survey,” The VLDB Journal,

vol. 10, no. 4, pp. 270–294, 2001.

390 References

[204] A. Y. Halevy, N. Ashish, D. Bitton, M. J. Carey, D. Draper, J. Pollock,
A. Rosenthal, and V. Sikka, “Enterprise information integration: Successes,
challenges and controversies,” in Proceedings of the 2005 ACM SIGMOD
International Conference on Management of Data, pp. 778–787, Baltimore,
Maryland, USA, June 2005.

[205] A. Y. Halevy, Z. G. Ives, J. Madhavan, P. Mork, D. Suciu, and I. Tatarinov,
“The Piazza peer data management system,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 16, no. 7, pp. 787–798, 2004.

[206] A. Y. Halevy, Z. G. Ives, P. Mork, and I. Tatarinov, “Piazza: Data man-
agement infrastructure for semantic web applications,” in Proceedings of the
2003 International Conference on World Wide Web, pp. 556–567, Budapest,
Hungary, May 2003.

[207] A. Y. Halevy, A. Rajaraman, and J. J. Ordille, “Data integration: The teenage
years,” in Proceedings of the 2006 International Conference on Very Large
Data Bases, pp. 9–16, Seoul, Korea, September 2006.

[208] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques.
Morgan Kaufmann, 3rd ed., 2005.

[209] E. N. Hanson, “A performance analysis of view materialization strategies,” in
Proceedings of the 1987 ACM SIGMOD International Conference on Manage-
ment of Data, pp. 440–453, San Francisco, California, USA, May 1987.

[210] E. N. Hanson, C. Carnes, L. Huang, M. Konyala, L. Noronha,
S. Parthasarathy, J. B. Park, and A. Vernon, “Scalable trigger processing,”
in Proceedings of the 1999 International Conference on Data Engineering,
pp. 266–275, Sydney, Austrialia, March 1999.

[211] N. Hanusse, S. Maabout, and R. Tofan, “A view selection algorithm with
performance guarantee,” in Proceedings of the 2009 International Conference
on Extending Database Technology, pp. 946–957, Saint Petersburg, Russia,
March 2009.

[212] V. Harinarayan, A. Rajaraman, and J. D. Ullman, “Implementing data cubes
efficiently,” in Proceedings of the 1996 ACM SIGMOD International Confer-
ence on Management of Data, pp. 205–216, Montreal, Quebec, Canada, June
1996.

[213] H. He, J. Xie, J. Yang, and H. Yu, “Asymmetric batch incremental view
maintenance,” in Proceedings of the 2005 International Conference on Data
Engineering, pp. 106–117, Tokyo, Japan, April 2005.

[214] J. M. Hellerstein, M. Stonebraker, and J. R. Hamilton, “Architecture of
a database system,” Foundations and Trends in Databases, vol. 1, no. 2,
pp. 141–259, 2007.

[215] K. Hose, D. Klan, and K.-U. Sattler, “Online tuning of aggregation tables for
OLAP,” in Proceedings of the 2009 International Conference on Data Engi-
neering, pp. 1679–1686, Shanghai, China, March 2009.

[216] V. Hristidis and M. Petropoulos, “Semantic caching of XML databases,” in
Proceedings of the 2002 International Workshop on the Web and Databases,
pp. 25–30, Madison, Wisconsin, USA, June 2002.

[217] R. Hull and G. Zhou, “A framework for supporting data integration using
the materialized and virtual approaches,” in Proceedings of the 1996 ACM

References 391

SIGMOD International Conference on Management of Data, pp. 481–492,
Montreal, Quebec, Canada, June 1996.

[218] E. Hung, Y. Deng, and V. S. Subrahmanian, “RDF aggregate queries and
views,” in Proceedings of the 2005 International Conference on Data Engi-
neering, pp. 717–728, Tokyo, Japan, April 2005.

[219] C. A. Hurtado, C. Gutiérrez, and A. O. Mendelzon, “Capturing summariz-
ability with integrity constraints in OLAP,” ACM Transactions on Database
Systems, vol. 30, no. 3, pp. 854–886, 2005.

[220] N. Huyn, “Efficient view self-maintenance,” in Proceedings of the 1996 Work-
shop on Materialized Views, pp. 17–25, 1996.

[221] N. Huyn, “Multiple-view self-maintenance in data warehousing environ-
ments,” in Proceedings of the 1997 International Conference on Very Large
Data Bases, pp. 26–35, Athens, Greece, August 1997.

[222] N. Huyn, “Speeding up view maintenance using cheap filters at the ware-
house,” in Proceedings of the 2000 International Conference on Data Engi-
neering, p. 308, Los Angeles, California, USA, February 2000.

[223] Y. Ioannidis and R. Ramakrishnan, “Containment of conjunctive queries:
Beyond relations as sets,” ACM Transactions on Database Systems, vol. 20,
no. 3, pp. 288–324, 1995.

[224] Y. E. Ioannidis, “Query optimization,” in The Computer Science and Engi-
neering Handbook, (A. B. Tucker, ed.), pp. 1038–1057, CRC Press, 1997.

[225] Z. G. Ives, T. J. Green, G. Karvounarakis, N. E. Taylor, V. Tannen, P. P.
Talukdar, M. Jacob, and F. Pereira, “The ORCHESTRA collaborative data
sharing system,” ACM SIGMOD Record, vol. 37, no. 3, pp. 26–32, 2008.

[226] Z. G. Ives, A. Y. Halevy, P. Mork, and I. Tatarinov, “Piazza: Mediation and
integration infrastructure for semantic web data,” The Journal of Web Seman-
tics, vol. 1, no. 2, pp. 155–175, 2004.

[227] Z. G. Ives, N. Khandelwal, A. Kapur, and M. Cakir, “ORCHESTRA: Rapid,
collaborative sharing of dynamic data,” in Proceedings of the 2005 Confer-
ence on Innovative Data Systems Research, pp. 107–118, Asilomar, California,
USA, January 2005.

[228] H. V. Jagadish, I. S. Mumick, and A. Silberschatz, “View maintenance issues
for the chronicle data model,” in Proceedings of the 1995 ACM Symposium on
Principles of Database Systems, pp. 113–124, San Jose, California, USA, June
1995.

[229] M. Jarke and J. Koch, “Query optimization in database systems,” ACM Com-
puting Surveys, vol. 16, no. 2, pp. 111–152, 1984.

[230] C. Jermaine, A. Pol, and S. Arumugam, “Online maintenance of very large
random samples,” in Proceedings of the 2004 ACM SIGMOD International
Conference on Management of Data, pp. 299–310, Paris, France, June 2004.

[231] H. Jiang, D. Gao, and W.-S. Li, “Exploiting correlation and parallelism
of materialized-view recommendation for distributed data warehouses,” in
Proceedings of the 2007 International Conference on Data Engineering,
pp. 276–285, Istanbul, Turkey, April 2007.

[232] S. Joshi and C. Jermaine, “Materialized sample views for database approx-
imation,” in Proceedings of the 2006 International Conference on Data
Engineering, p. 151, Atlanta, Georgia, USA, April 2006.

392 References

[233] S. Joshi and C. M. Jermaine, “Materialized sample views for database approx-
imation,” IEEE Transactions on Knowledge and Data Engineering, vol. 20,
no. 3, pp. 337–351, 2008.

[234] B. Kähler and O. Risnes, “Extending logging for database snapshot refresh,”
in Proceedings of the 1987 International Conference on Very Large Data Bases,
pp. 389–398, Brighton, England, September 1987.

[235] H.-G. Kang and C.-W. Chung, “Exploiting versions for on-line data warehouse
maintenance in MOLAP servers,” in Proceedings of the 2002 International
Conference on Very Large Data Bases, pp. 742–753, Hong Kong, China,
September 2002.

[236] J. Kang, J. F. Naughton, and S. Viglas, “Evaluating window joins over
unbounded streams,” in Proceedings of the 2003 International Conference on
Data Engineering, pp. 341–352, Bangalore, India, March 2003.

[237] H. J. Karloff and M. Mihail, “On the complexity of the view-selection prob-
lem,” in Proceedings of the 1999 ACM Symposium on Principles of Database
Systems, pp. 167–173, Philadelphia, Pennsylvania, USA, June 1999.

[238] G. Karvounarakis and Z. G. Ives, “Bidirectional mappings for data and update
exchange,” in Proceedings of the 2008 International Workshop on the Web and
Databases, Vancouver, Canada, June 2008.

[239] Y. Katsis and Y. Papakonstantinou, “View-based data integration,” in Liu
and Özsu [291], pp. 3332–3339.

[240] A. Kawaguchi, D. F. Lieuwen, I. S. Mumick, D. Quass, and K. A. Ross, “Con-
currency control theory for deferred materialized views,” in Proceedings of
the 1997 International Conference on Database Theory, pp. 306–320, Delphi,
Greece, January 1997.

[241] O. Kennedy, Y. Ahmad, and C. Koch, “DBToaster: Agile views for a dynamic
data management system,” in Proceedings of the 2011 Conference on Innova-
tive Data Systems Research, pp. 284–295, Asilomar, California, USA, January
2011.

[242] R. Kimball and M. Ross, The Data Warehouse Toolkit: Practical Techniques
for Building Dimensional Data Warehouses. John Wiley, 2nd ed., 2002.

[243] H. Kimura, G. Huo, A. Rasin, S. Madden, and S. B. Zdonik, “CORADD:
Correlation aware database designer for materialized views and indexes,” Pro-
ceedings of the VLDB Endowment, vol. 3, no. 1, pp. 1103–1113, 2010.

[244] A. Klug, “On conjunctive queries containing inequalities,” Journal of the
ACM, vol. 35, no. 1, pp. 146–160, 1988.

[245] P. G. Kolaitis, D. L. Martin, and M. N. Thakur, “On the complexity of the
containment problem for conjunctive queries with built-in predicates,” in Pro-
ceedings of the 1998 ACM Symposium on Principles of Database Systems,
pp. 197–204, Seattle, Washington, USA, June 1998.

[246] M. Kormilitsin, R. Chirkova, Y. Fathi, and M. Stallmann, “View and index
selection for query-performance improvement: Quality-centered algorithms
and heuristics,” in Proceedings of the 2008 International Conference on Infor-
mation and Knowledge Management, pp. 1329–1330, Napa Valley, California,
USA, October 2008.

[247] M. Kormilitsin, R. Chirkova, Y. Fathi, and M. Stallmann, “Systematic
exploration of efficient query plans for automated database restructuring,” in

References 393

Proceedings of the 2009 East European Conference on Advances in Databases
and Information Systems, pp. 133–148, Riga, Latvia, September 2009.

[248] L. Kot and C. Koch, “Cooperative update exchange in the Youtopia system,”
Proceedings of the VLDB Endowment, vol. 2, no. 1, pp. 193–204, 2009.

[249] Y. Kotidis and N. Roussopoulos, “DynaMat: A dynamic view management
system for data warehouses,” in Proceedings of the 1999 ACM SIGMOD
International Conference on Management of Data, pp. 371–382, Philadelphia,
Pennsylvania, USA, May 1999.

[250] Y. Kotidis and N. Roussopoulos, “A case for dynamic view management,”
ACM Transactions on Database Systems, vol. 26, no. 4, pp. 388–423, 2001.

[251] S. Kulkarni and M. K. Mohania, “Concurrent maintenance of views using
multiple versions,” in Proceedings of the 1999 International Database Engi-
neering and Applications Symposium, pp. 254–259, Montreal, Canada, August
1999.

[252] W. Labio, D. Quass, and B. Adelberg, “Physical database design for data
warehouses,” in Proceedings of the 1997 International Conference on Data
Engineering, pp. 277–288, Birmingham, UK, April 1997.

[253] W. J. Labio, J. Yang, Y. Cui, H. Garcia-Molina, and J. Widom, “Perfor-
mance issues in incremental warehouse maintenance,” in Proceedings of the
2000 International Conference on Very Large Data Bases, pp. 461–472, Cairo,
Egypt, September 2000.

[254] W. J. Labio, R. Yerneni, and H. Garcia-Molina, “Shrinking the warehouse
update window,” in Proceedings of the 1999 ACM SIGMOD International
Conference on Management of Data, pp. 383–394, Philadelphia, Pennsylvania,
USA, May 1999.

[255] A. Labrinidis, Q. Luo, J. Xu, and W. Xue, “Caching and materialization
for web databases,” Foundations and Trends in Databases, vol. 2, no. 3,
pp. 169–266, 2009.

[256] L. V. S. Lakshmanan, J. Pei, and Y. Zhao, “QC-trees: An efficient summary
structure for semantic OLAP,” in Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, pp. 64–75, San Diego, Cal-
ifornia, USA, June 2003.

[257] L. V. S. Lakshmanan, W. H. Wang, and Z. J. Zhao, “Answering tree pattern
queries using views,” in Proceedings of the 2006 International Conference on
Very Large Data Bases, pp. 571–582, Seoul, Korea, September 2006.

[258] P.-Å. Larson, W. Lehner, J. Zhou, and P. Zabback, “Cardinality estimation
using sample views with quality assurance,” in Proceedings of the 2007 ACM
SIGMOD International Conference on Management of Data, pp. 175–186,
Beijing, China, June 2007.

[259] P.-Å. Larson, W. Lehner, J. Zhou, and P. Zabback, “Exploiting self-monitoring
sample views for cardinality estimation,” in Proceedings of the 2007 ACM
SIGMOD International Conference on Management of Data, pp. 1073–1075,
Beijing, China, June 2007.

[260] P.-Å. Larson and H. Z. Yang, “Computing queries from derived relations,” in
Proceedings of the 1985 International Conference on Very Large Data Bases,
pp. 259–269, Stockholm, Sweden, August 1985.

394 References

[261] P.-Å. Larson and J. Zhou, “View matching for outer-join views,” in Pro-
ceedings of the 2005 International Conference on Very Large Data Bases,
pp. 445–456, Trondheim, Norway, August 2005.

[262] P.-Å. Larson and J. Zhou, “Efficient maintenance of materialized outer-join
views,” in Proceedings of the 2007 International Conference on Data Engi-
neering, pp. 56–65, Istanbul, Turkey, April 2007.

[263] P.-Å. Larson and J. Zhou, “View matching for outer-join views,” The VLDB
Journal, vol. 16, no. 1, pp. 29–53, 2007.

[264] J. Lechtenbörger and G. Vossen, “On the computation of relational view
complements,” in Proceedings of the 2002 ACM Symposium on Principles of
Database Systems, pp. 142–149, Madison, Wisconsin, USA, June 2002.

[265] J. Lechtenbörger and G. Vossen, “On the computation of relational view
complements,” ACM Transactions on Database Systems, vol. 28, no. 2,
pp. 175–208, 2003.

[266] M. Lee and J. Hammer, “Speeding up materialized view selection in data ware-
houses using a randomized algorithm,” International Journal of Cooperative
Information Systems, vol. 10, no. 3, pp. 327–353, 2001.

[267] W. Lehner, “Query processing in data warehouses,” in Liu and Özsu [291],
pp. 2297–2301.

[268] W. Lehner, R. Cochrane, H. Pirahesh, and M. Zaharioudakis, “fAST refresh
using mass query optimization,” in Proceedings of the 2001 International
Conference on Data Engineering, pp. 391–398, Heidelberg, Germany, April
2001.

[269] W. Lehner, R. Sidle, H. Pirahesh, and R. Cochrane, “Maintenance of auto-
matic summary tables,” in Proceedings of the 2000 ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 512–513, Dallas, Texas, USA,
May 2000.

[270] M. Lenzerini, “Data integration: A theoretical perspective,” in Proceedings of
the 2002 ACM Symposium on Principles of Database Systems, pp. 233–246,
Madison, Wisconsin, USA, June 2002.

[271] M. Lenzerini, “Data integration: A theoretical perspective,” in Proceedings of
the 2002 ACM Symposium on Principles of Database Systems, pp. 233–246,
Madison, Wisconsin, USA, June 2002.

[272] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava, “Answering queries
using views,” in Proceedings of the 1995 ACM Symposium on Principles of
Database Systems, pp. 95–104, San Jose, California, USA, June 1995.

[273] A. Y. Levy and Y. Sagiv, “Queries independent of updates,” in Proceedings
of the 1993 International Conference on Very Large Data Bases, pp. 171–181,
Dublin, Ireland, August 1993.

[274] C. Li, “Rewriting queries using views,” in Liu and Özsu [291], pp. 2438–2441.
[275] C. Li, M. Bawa, and J. D. Ullman, “Minimizing view sets without losing

query-answering power,” in Proceedings of the 2001 International Conference
on Database Theory, pp. 99–113, London, UK, January 2001.

[276] J. Li, Z. Asgharzadeh Talebi, R. Chirkova, and Y. Fathi, “A formal model
for the problem of view selection for aggregate queries,” in Proceedings of the
2005 East European Conference on Advances in Databases and Information
Systems, pp. 125–138, Tallinn, Estonia, September 2005.

References 395

[277] W.-S. Li, D. C. Zilio, V. S. Batra, M. Subramanian, C. Zuzarte, and I. Narang,
“Load balancing for multi-tiered database systems through autonomic place-
ment of materialized views,” in Proceedings of the 2006 International Confer-
ence on Data Engineering, p. 102, Atlanta, Georgia, USA, April 2006.

[278] W. Liang, H. Li, H. Wang, and M. E. Orlowska, “Making multiple views self-
maintainable in a data warehouse,” Data and Knowledge Engineering, vol. 30,
no. 2, pp. 121–134, 1999.

[279] W. Liang, H. Wang, and M. Orlowska, “Materialized view selection under
the maintenance time constraint,” Data and Knowledge Engineering, vol. 37,
pp. 203–216, 2001.

[280] S. Lifschitz and M. A. V. Salles, “Autonomic index management,” in Pro-
ceedings of the 2005 International Conference on Autonomic Computing,
pp. 304–305, Seattle, Washington, USA, June 2005.

[281] S. Lightstone, “Seven software engineering principles for autonomic computing
development,” Innovations in Systems and Software Engineering, vol. 3, no. 1,
pp. 71–74, 2007.

[282] S. Lightstone, G. M. Lohman, P. J. Haas, V. Markl, J. Rao, A. J. Storm,
M. Surendra, and D. C. Zilio, “Making DB2 products self-managing: Strategies
and experiences,” IEEE Data Engineering Bulletin, vol. 29, no. 3, pp. 16–23,
2006.

[283] S. Lightstone, G. M. Lohman, and D. C. Zilio, “Toward autonomic comput-
ing with DB2 universal database,” ACM SIGMOD Record, vol. 31, no. 3,
pp. 55–61, 2002.

[284] S. Lightstone, M. Surendra, Y. Diao, S. S. Parekh, J. L. Hellerstein, K. Rose,
A. J. Storm, and C. Garcia-Arellano, “Control theory: A foundational tech-
nique for self managing databases,” in ICDE Workshops, pp. 395–403, 2007.

[285] S. Lightstone, T. Teorey, and T. Nadeau, Physical Database Design: The
Database Professional’s Guide to Exploiting Indexes, Views, Storage, and
More. Morgan Kaufmann, 2007.

[286] B. G. Lindsay, L. M. Haas, C. Mohan, H. Pirahesh, and P. F. Wilms, “A snap-
shot differential refresh algorithm,” in Proceedings of the 1986 ACM SIGMOD
International Conference on Management of Data, pp. 53–60, Washington DC,
USA, May 1986.

[287] B. Liu, S. Chen, and E. A. Rundensteiner, “Batch data warehouse mainte-
nance in dynamic environments,” in Proceedings of the 2002 International
Conference on Information and Knowledge Management, pp. 68–75, McLean,
Virginia, USA, Novermber 2002.

[288] B. Liu, S. Chen, and E. A. Rundensteiner, “A transactional approach to par-
allel data warehouse maintenance,” in Proceedings of the 2002 International
Conference on Data Warehousing and Knowledge Discovery, pp. 307–316, Aix-
en-Provence, France, September 2002.

[289] B. Liu and E. A. Rundensteiner, “Cost-driven general join view maintenance
over distributed data sources,” in Proceedings of the 2005 International Con-
ference on Data Engineering, pp. 578–579, Tokyo, Japan, April 2005.

[290] B. Liu, E. A. Rundensteiner, and D. Finkel, “Restructuring batch view main-
tenance efficiently,” in Proceedings of the 2004 International Conference on

396 References

Information and Knowledge Management, pp. 228–229, Washington DC, USA,
Novermber 2004.

[291] L. Liu and M. T. Özsu, eds., Encyclopedia of Database Systems. Springer,
2009.

[292] Z. Liu and Y. Chen, “Answering keyword queries on XML using materialized
views,” in Proceedings of the 2008 International Conference on Data Engi-
neering, pp. 1501–1503, Cancun, Mexico, April 2008.

[293] G. M. Lohman and S. Lightstone, “SMART: Making DB2 (more) autonomic,”
in Proceedings of the 2002 International Conference on Very Large Data Bases,
pp. 877–879, Hong Kong, China, September 2002.

[294] B. T. Loo, T. Condie, M. N. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Mani-
atis, R. Ramakrishnan, T. Roscoe, and I. Stoica, “Declarative networking,”
Communications of the ACM, vol. 52, no. 11, pp. 87–95, 2009.

[295] G. Luo, “V locking protocol for materialized aggregate join views on B-tree
indices,” in Proceedings of the 2010 International Conference on Web-Age
Information Management, vol. 6184 of Lecture Notes in Computer Science,
(L. Chen, C. Tang, J. Yang, and Y. Gao, eds.), pp. 768–780, Jiuzhaigou,
Sichuan, China: Springer, July 2010. ISBN 978-3-642-14245-1.

[296] G. Luo, “Partial materialized views,” in Proceedings of the 2007 Interna-
tional Conference on Data Engineering, pp. 756–765, Istanbul, Turkey, April
2007.

[297] G. Luo, J. F. Naughton, C. J. Ellmann, and M. Watzke, “A comparison of
three methods for join view maintenance in parallel RDBMS,” in Proceed-
ings of the 2003 International Conference on Data Engineering, pp. 177–188,
Bangalore, India, March 2003.

[298] G. Luo, J. F. Naughton, C. J. Ellmann, and M. Watzke, “Locking protocols
for materialized aggregate join views,” in Proceedings of the 2003 Interna-
tional Conference on Very Large Data Bases, pp. 596–607, Berlin, Germany,
September 2003.

[299] G. Luo, J. F. Naughton, C. J. Ellmann, and M. Watzke, “Locking protocols
for materialized aggregate join views,” IEEE Transactions on Knowledge and
Data Engineering, vol. 17, no. 6, pp. 796–807, 2005.

[300] G. Luo and P. S. Yu, “Content-based filtering for efficient online material-
ized view maintenance,” in Proceedings of the 2008 International Conference
on Information and Knowledge Management, pp. 163–172, Napa Valley,
California, USA, October 2008.

[301] S. Madden, M. A. Shah, J. M. Hellerstein, and V. Raman, “Continuously adap-
tive continuous queries over streams,” in Proceedings of the 2002 ACM SIG-
MOD International Conference on Management of Data, Madison, Wisconsin,
USA, June 2002.

[302] B. Mandhani and D. Suciu, “Query caching and view selection for XML
databases,” in Proceedings of the 2005 International Conference on Very Large
Data Bases, pp. 469–480, Trondheim, Norway, August 2005.

[303] M. Marx, “Queries determined by views: Pack your views,” in Proceedings
of the 2007 ACM Symposium on Principles of Database Systems, pp. 23–30,
Beijing, China, June 2007.

References 397

[304] G. Mecca, A. O. Mendelzon, and P. Merialdo, “Efficient queries over web
views,” IEEE Transactions on Knowledge and Data Engineering, vol. 14, no. 6,
pp. 1280–1298, 2002.

[305] H. Mistry, P. Roy, S. Sudarshan, and K. Ramamritham, “Materialized view
selection and maintenance using multi-query optimization,” in Proceedings of
the 2001 ACM SIGMOD International Conference on Management of Data,
pp. 307–318, Santa Barbara, California, USA, June 2001.

[306] M. K. Mohania and Y. Kambayashi, “Making aggregate views self-
maintainable,” Data and Knowledge Engineering, vol. 32, no. 1, pp. 87–109,
2000.

[307] I. S. Mumick, D. Quass, and B. S. Mumick, “Maintenance of data cubes and
summary tables in a warehouse,” in Proceedings of the 1997 ACM SIGMOD
International Conference on Management of Data, pp. 100–111, Tucson, Ari-
zona, USA, May 1997.

[308] K. Munagala, J. Yang, and H. Yu, “Online view maintenance under a
response-time constraint,” in Proceedings of the 2005 European Symposium
on Algorithms, pp. 677–688, Palma de Mallorca, Spain, October 2005.

[309] S. Muthukrishnan, “Data streams: Algorithms and applications,” Theoretical
Computer Science, vol. 1, 2006.

[310] A. Nash, L. Segoufin, and V. Vianu, “Views and queries: Determinacy and
rewriting,” ACM Transactions on Database Systems, vol. 35, no. 3, 2010.

[311] A. Nica, A. J. Lee, and E. A. Rundensteiner, “The CVS algorithm for view
synchronization in evolvable large-scale information systems,” in Proceed-
ings of the 1998 International Conference on Extending Database Technology,
pp. 359–373, Valencia, Spain, March 1998.

[312] N. F. Noy, A. Doan, and A. Y. Halevy, “Semantic integration,” AI Magazine,
vol. 26, no. 1, pp. 7–10, 2005.

[313] K. O’Gorman, D. Agrawal, and A. E. Abbadi, “Posse: A framework for opti-
mizing incremental view maintenance at data warehouse,” in Proceedings of
the 1999 International Conference on Data Warehousing and Knowledge Dis-
covery, pp. 106–115, Florence, Italy, September 1999.

[314] K. O’Gorman, D. Agrawal, and A. E. Abbadi, “On the importance of tuning
in incremental view maintenance: An experience case study,” in Proceedings
of the 2000 International Conference on Data Warehousing and Knowledge
Discovery, pp. 77–82, London, UK, September 2000.

[315] F. Olken and D. Rotem, “Random sampling from database files: A survey,” in
Proceedings of the 1990 International Conference on Scientific and Statistical
Database Management, pp. 92–111, Charlotte, North Carolina, USA, April
1990.

[316] C. Olston, G. Chiou, L. Chitnis, F. Liu, Y. Han, M. Larsson, A. Neu-
mann, V. B. N. Rao, V. Sankarasubramanian, S. Seth, C. Tian, T. ZiCornell,
and X. Wang, “Nova: Continuous Pig/Hadoop workflows,” in Proceedings of
the 2011 ACM SIGMOD International Conference on Management of Data,
pp. 1081–1090, Athens, Greece, June 2011.

[317] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig latin: A
not-so-foreign language for data processing,” in Proceedings of the 2008 ACM

398 References

SIGMOD International Conference on Management of Data, pp. 1099–1110,
Vancouver, Canada, June 2008.

[318] P. E. O’Neil and D. Quass, “Improved query performance with variant
indexes,” in Proceedings of the 1997 ACM SIGMOD International Confer-
ence on Management of Data, pp. 38–49, Tucson, Arizona, USA, May 1997.

[319] N. Onose, A. Deutsch, Y. Papakonstantinou, and E. Curtmola, “Rewriting
nested XML queries using nested views,” in Proceedings of the 2006 ACM
SIGMOD International Conference on Management of Data, pp. 443–454,
Chicago, Illinois, USA, June 2006.

[320] T. Palpanas, R. Sidle, R. Cochrane, and H. Pirahesh, “Incremental main-
tenance for non-distributive aggregate functions,” in Proceedings of the 2002
International Conference on Very Large Data Bases, pp. 802–813, Hong Kong,
China, September 2002.

[321] S. Papadomanolakis and A. Ailamaki, “An integer linear programming
approach to database design,” in ICDE Workshops, pp. 442–449, 2007.

[322] S. Paraboschi, G. Sindoni, E. Baralis, and E. Teniente, “Materialized views
in multidimensional databases,” in Multidimensional Databases, pp. 222–251,
Idea Group, 2003.

[323] C.-S. Park, M. Kim, and Y.-J. Lee, “Rewriting OLAP queries using materi-
alized views and dimension hierarchies in data warehouses,” in Proceedings of
the 2001 International Conference on Data Engineering, pp. 515–523, Heidel-
berg, Germany, April 2001.

[324] C.-S. Park, M. Kim, and Y.-J. Lee, “Finding an efficient rewriting of OLAP
queries using materialized views in data warehouses,” Decision Support
Systems, vol. 32, no. 4, pp. 379–399, 2002.

[325] N. W. Paton and O. Dı́az, “Active database systems,” ACM Computing
Surveys, vol. 31, no. 1, pp. 63–103, 1999.

[326] T. Phan and W.-S. Li, “Dynamic materialization of query views for data
warehouse workloads,” in Proceedings of the 2008 International Conference
on Data Engineering, pp. 436–445, Cancun, Mexico, April 2008.

[327] B. C. Pierce, “Linguistic foundations for bidirectional transformations: Invited
tutorial,” in Proceedings of the 2012 ACM Symposium on Principles of
Database Systems, pp. 61–64, Scottsdale, Arizona, USA, May 2012.

[328] V. Poe, Building a Data Warehouse for Decision Support. Prentice Hall, 1996.
[329] A. Pol, C. M. Jermaine, and S. Arumugam, “Maintaining very large ran-

dom samples using the geometric file,” The VLDB Journal, vol. 17, no. 5,
pp. 997–1018, 2008.

[330] L. Popa, M. Budiu, Y. Yu, and M. Isard, “DryadInc: Reusing work in large-
scale computations,” in Proceedings of the 2009 Workshop on Hot Topics on
Cloud Computing, Boston, Massachusetts, USA, June 2009.

[331] X. Qian and G. Wiederhold, “Incremental recomputation of active relational
expressions,” IEEE Transactions on Knowledge and Data Engineering, vol. 3,
no. 3, pp. 337–341, 1991.

[332] D. Quass, “Maintenance expressions for views with aggregation,” in Proceed-
ings of the 1996 Workshop on Materialized Views, pp. 110–118, 1996.

[333] D. Quass, A. Gupta, I. S. Mumick, and J. Widom, “Making views self-
maintainable for data warehousing,” in Proceedings of the 1996 International

References 399

Conference on Parallel and Distributed Information Systems, pp. 158–169,
Miami Beach, Florida, USA, December 1996.

[334] D. Quass and J. Widom, “On-line warehouse view maintenance,” in Proceed-
ings of the 1997 ACM SIGMOD International Conference on Management of
Data, pp. 393–404, Tucson, Arizona, USA, May 1997.

[335] R. Ramakrishnan and J. Gehrke, Database Management Systems. McGraw-
Hill, 3rd ed., 2009.

[336] C. Re and D. Suciu, “Materialized views in probabilistic databases for
information exchange and query optimization,” in Proceedings of the 2007
International Conference on Very Large Data Bases, pp. 51–62, Vienna,
Austria, September 2007.

[337] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy, “Extending query rewriting
techniques for fine-grained access control,” in Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data, pp. 551–562,
Paris, France, June 2004.

[338] K. A. Ross, “View adaptation,” in Liu and Özsu [291], pp. 3324–3325.
[339] K. A. Ross, D. Srivastava, and S. Sudarshan, “Materialized view maintenance

and integrity constraint checking: Trading space for time,” in Proceedings of
the 1996 ACM SIGMOD International Conference on Management of Data,
pp. 447–458, Montreal, Quebec, Canada, June 1996.

[340] N. Roussopoulos, “An incremental access method for ViewCache: Concept,
algorithms, and cost analysis,” ACM Transactions on Database Systems,
vol. 16, no. 3, pp. 535–563, 1991.

[341] N. Roussopoulos, C.-M. Chen, S. Kelley, A. Delis, and Y. Papakonstantinou,
“The ADMS project: Views “R” us,” IEEE Data Engineering Bulletin, vol. 18,
no. 2, pp. 19–28, 1995.

[342] N. Roussopoulos and H. Kang, “Principles and techniques in the design of
ADMS±,” IEEE Computer, vol. 19, no. 12, pp. 19–25, 1986.

[343] S. Rozen and D. Shasha, “A framework for automating physical database
design,” in Proceedings of the 1991 International Conference on Very Large
Data Bases, pp. 401–411, Barcelona, Catalonia, Spain, 1991.

[344] G. Ruberg and M. Mattoso, “XCraft: Boosting the performance of active
XML materialization,” in Proceedings of the 2008 International Conference
on Extending Database Technology, pp. 299–310, Nantes, France, March 2008.

[345] Y. Sagiv and M. Yannakakis, “Equivalences among relational expressions with
the union and difference operators,” Journal of the ACM, vol. 27, no. 4,
pp. 633–655, 1980.

[346] K. Salem, K. S. Beyer, R. Cochrane, and B. G. Lindsay, “How to roll a
join: Asynchronous incremental view maintenance,” in Proceedings of the
2000 ACM SIGMOD International Conference on Management of Data,
pp. 129–140, Dallas, Texas, USA, May 2000.

[347] S. Samtani, V. Kumar, and M. K. Mohania, “Self maintenance of multiple
views in data warehousing,” in Proceedings of the 1999 International Confer-
ence on Information and Knowledge Management, pp. 292–299, Kansas City,
Missouri, USA, Novermber 1999.

400 References

[348] A. D. Sarma, M. Theobald, and J. Widom, “LIVE: A lineage-supported
versioned DBMS,” in Proceedings of the 2010 International Conference on
Scientific and Statistical Database Management, pp. 416–433, Heidelberg,
Germany, June 2010.

[349] A. Sawires, J. Tatemura, O. Po, D. Agrawal, A. E. Abbadi, and K. S. Candan,
“Maintaining XPath views in loosely coupled systems,” in Proceedings of the
2006 International Conference on Very Large Data Bases, pp. 583–594, Seoul,
Korea, September 2006.

[350] A. Sawires, J. Tatemura, O. Po, D. Agrawal, and K. S. Candan, “Incremen-
tal maintenance of path expression views,” in Proceedings of the 2005 ACM
SIGMOD International Conference on Management of Data, pp. 443–454,
Baltimore, Maryland, USA, June 2005.

[351] A. Segev and W. Fang, “Currency-based updates to distributed materialized
views,” in Proceedings of the 1990 International Conference on Data Engi-
neering, pp. 512–520, Los Angeles, California, USA, February 1990.

[352] A. Segev and J. Park, “Maintaining materialized views in distributed
databases,” in Proceedings of the 1989 International Conference on Data Engi-
neering, pp. 262–270, Los Angeles, California, USA, February 1989.

[353] A. Segev and J. Park, “Updating distributed materialized views,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 1, no. 2, pp. 173–184, 1989.

[354] L. Segoufin and V. Vianu, “Views and queries: Determinacy and rewriting,” in
Proceedings of the 2005 ACM Symposium on Principles of Database Systems,
pp. 49–60, Baltimore, Maryland, USA, June 2005.

[355] P. Seshadri and A. N. Swami, “Generalized partial indexes,” in Proceedings of
the 1995 International Conference on Data Engineering, pp. 420–427, Taipei,
Taiwan, March 1995.

[356] D. Shasha, “Tuning database design for high performance,” in The Computer
Science and Engineering Handbook, pp. 995–1011, CRC Press, 1997.

[357] D. Shasha, P. Bonnet, and J. Gray, Database Tuning: Principles, Experiments
and Troubleshooting Techniques. Morgan Kaufmann, 2003.

[358] A. Shukla, P. Deshpande, and J. F. Naughton, “Materialized view selection
for multidimensional datasets,” in Proceedings of the 1998 International Con-
ference on Very Large Data Bases, pp. 488–499, New York City, New York,
USA, August 1998.

[359] A. Shukla, P. Deshpande, and J. F. Naughton, “Materialized view selection for
multi-cube data models,” in Proceedings of the 2000 International Conference
on Extending Database Technology, pp. 269–284, Konstanz, Germany, March
2000.

[360] A. Simitsis and D. Theodoratos, “Data warehouse back-end tools,” in Ency-
clopedia of Data Warehousing and Mining, (J. Wang, ed.), pp. 572–579, IGI
Global, 2009.

[361] Y. Sismanis, A. Deligiannakis, N. Roussopoulos, and Y. Kotidis, “Dwarf:
Shrinking the PetaCube,” in Proceedings of the 2002 ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 464–475, Madison, Wisconsin,
USA, June 2002.

References 401

[362] Y. Sismanis and N. Roussopoulos, “The complexity of fully materialized coa-
lesced cubes,” in Proceedings of the 2004 International Conference on Very
Large Data Bases, pp. 540–551, Toronto, Canada, August 2004.

[363] D. Srivastava, S. Dar, H. V. Jagadish, and A. Y. Levy, “Answering queries with
aggregation using views,” in Proceedings of the 1996 International Conference
on Very Large Data Bases, pp. 318–329, Mumbai (Bombay), India, September
1996.

[364] J. Srivastava and D. Rotem, “Analytical modeling of materialized view mainte-
nance,” in Proceedings of the 1988 ACM Symposium on Principles of Database
Systems, pp. 126–134, Austin, Texas, USA, March 1988.

[365] M. Stonebraker, “The case for partial indexes,” ACM SIGMOD Record,
vol. 18, no. 4, pp. 4–11, 1989.

[366] K. Tajima and Y. Fukui, “Answering XPath queries over networks by sending
minimal views,” in Proceedings of the 2004 International Conference on Very
Large Data Bases, pp. 48–59, Toronto, Canada, August 2004.

[367] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining.
Addison-Wesley, 2005.

[368] W. C. Tan, “Provenance in databases: Past, current, and future,” IEEE Data
Engineering Bulletin, vol. 30, no. 4, pp. 3–12, 2007.

[369] N. Tang, J. X. Yu, M. T. Özsu, B. Choi, and K.-F. Wong, “Multiple materi-
alized view selection for XPath query rewriting,” in Proceedings of the 2008
International Conference on Data Engineering, pp. 873–882, Cancun, Mexico,
April 2008.

[370] V. Tannen, “Relational algebra,” in Liu and Özsu [291], pp. 2369–2370.
[371] I. Tatarinov, Z. G. Ives, J. Madhavan, A. Y. Halevy, D. Suciu, N. N. Dalvi,

X. Dong, Y. Kadiyska, G. Miklau, and P. Mork, “The Piazza peer data man-
agement project,” ACM SIGMOD Record, vol. 32, no. 3, pp. 47–52, 2003.

[372] M. Teschke and A. Ulbrich, “Concurrent warehouse maintenance without
compromising session consistency,” in Proceedings of the 1998 International
Conference on Database and Expert Systems Applications, pp. 776–785,
Vienna, Austria, August 1998.

[373] D. Theodoratos, “Detecting redundant materialized views in data warehouse
evolution,” Information Systems, vol. 26, no. 5, pp. 363–381, 2001.

[374] D. Theodoratos and M. Bouzeghoub, “Data currency quality satisfaction in
the design of a data warehouse,” International Journal of Cooperative Infor-
mation Systems, vol. 10, no. 3, pp. 299–326, 2001.

[375] D. Theodoratos, S. Ligoudistianos, and T. K. Sellis, “View selection for design-
ing the global data warehouse,” Data and Knowledge Engineering, vol. 39,
no. 3, pp. 219–240, 2001.

[376] D. Theodoratos and T. Sellis, “Data warehouse configuration,” in Proceedings
of the 1997 International Conference on Very Large Data Bases, pp. 126–135,
Athens, Greece, August 1997.

[377] D. Theodoratos and T. Sellis, “Designing data warehouses,” Data and Knowl-
edge Engineering, vol. 31, pp. 279–301, 1999.

[378] D. Theodoratos and T. K. Sellis, “Incremental design of a data warehouse,”
Journal of Intelligent Information Systems, vol. 15, no. 1, pp. 7–27, 2000.

402 References

[379] D. Theodoratos, W. Xu, and A. Simitsis, “Materialized view selection for
data warehouse design,” in Encyclopedia of Data Warehousing and Mining,
(J. Wang, ed.), pp. 1182–1187, IGI Global, 2009.

[380] A. Thiem and K.-U. Sattler, “An integrated approach to performance
monitoring for autonomous tuning,” in Proceedings of the 2009 International
Conference on Data Engineering, pp. 1671–1678, Shanghai, China, March
2009.

[381] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy, “Hive — a warehousing solution over a map-reduce
framework,” Proceedings of the VLDB Endowment, vol. 2, no. 2, pp. 1626–
1629, 2009.

[382] F. W. Tompa and J. A. Blakeley, “Maintaining materialized views without
accessing base data,” Information Systems, vol. 13, no. 4, pp. 393–406, 1988.

[383] O. G. Tsatalos, M. H. Solomon, and Y. E. Ioannidis, “The gmap: A versatile
tool for physical data independence,” in Proceedings of the 1994 International
Conference on Very Large Data Bases, pp. 367–378, Santiago de Chile, Chile,
September 1994.

[384] O. G. Tsatalos, M. H. Solomon, and Y. E. Ioannidis, “The GMAP: A versa-
tile tool for physical data independence,” The VLDB Journal, vol. 5, no. 2,
pp. 101–118, 1996.

[385] J. D. Ullman, “Information integration using logical views,” Theoretical Com-
puter Science, vol. 239, no. 2, pp. 189–210, 2000.

[386] G. Valentin, M. Zuliani, D. C. Zilio, G. M. Lohman, and A. Skelley, “DB2 advi-
sor: An optimizer smart enough to recommend its own indexes,” in Proceedings
of the 2000 International Conference on Data Engineering, pp. 101–110, Los
Angeles, California, USA, February 2000.

[387] R. van der Meyden, “The complexity of querying indefinite data about linearly
ordered domains,” in Proceedings of the 1992 ACM Symposium on Principles
of Database Systems, pp. 331–345, San Diego, CA, USA, June 1992.

[388] V. Vassalos, “Answering queries using views,” in Liu and Özsu [291],
pp. 92–98.

[389] Y. Velegrakis, “Side-effect-free view updates,” in Liu and Özsu [291], pp. 2639–
2642.

[390] Y. Velegrakis, “Updates through views,” in Liu and Özsu [291], pp. 3244–3247.
[391] S. D. Viglas, J. F. Naughton, and J. Burger, “Maximizing the output rate of

multi-way join queries over streaming information sources,” in Proceedings of
the 2003 International Conference on Very Large Data Bases, pp. 285–296,
Berlin, Germany, September 2003.

[392] D. Vista, “Optimizing incremental view maintenance expressions in relational
databases,” PhD thesis, University of Toronto, 1996.

[393] D. Vista, “Integration of incremental view maintenance into query opti-
mizers,” in Proceedings of the 1998 International Conference on Extending
Database Technology, pp. 374–388, Valencia, Spain, March 1998.

[394] J. Wang, M. J. Maher, and R. W. Topor, “Rewriting unions of general conjunc-
tive queries using views,” in Proceedings of the 2002 International Conference
on Extending Database Technology, pp. 52–69, Prague, Czech Republic, March
2002.

References 403

[395] W. Wang, H. Lu, J. Feng, and J. X. Yu, “Condensed cube: An efficient
approach to reducing data cube size,” in Proceedings of the 2002 Interna-
tional Conference on Data Engineering, pp. 155–165, San Jose, California,
USA, February 2002.

[396] G. Weikum, A. Mönkeberg, C. Hasse, and P. Zabback, “Self-tuning database
technology and information services: From wishful thinking to viable engineer-
ing,” in Proceedings of the 2002 International Conference on Very Large Data
Bases, pp. 20–31, Hong Kong, China, September 2002.

[397] C. M. Wyss and E. L. Robertson, “Relational languages for metadata integra-
tion,” ACM Transactions on Database Systems, vol. 30, no. 2, pp. 624–660,
2005.

[398] J. Xie and J. Yang, “A survey of join processing in data streams,” in
Aggarwal [15], pp. 209–236.

[399] M. Xu and C. I. Ezeife, “Maintaining horizontally partitioned warehouse
views,” in Proceedings of the 2000 International Conference on Data Ware-
housing and Knowledge Discovery, pp. 126–133, London, UK, September 2000.

[400] W. Xu, “The framework of an XML semantic caching system,” in Proceedings
of the 2005 International Workshop on the Web and Databases, pp. 127–132,
Baltimore, Maryland, USA, June 2005.

[401] W. Xu and Z. M. Özsoyoglu, “Rewriting XPath queries using materialized
views,” in Proceedings of the 2005 International Conference on Very Large
Data Bases, pp. 121–132, Trondheim, Norway, August 2005.

[402] W. Xu, C. Zuzarte, D. Theodoratos, and W. Ma, “Preprocessing for fast
refreshing materialized views in DB2,” in Proceedings of the 2006 Interna-
tional Conference on Data Warehousing and Knowledge Discovery, pp. 55–64,
Krakow, Poland, September 2006.

[403] J. Yang, K. Karlapalem, and Q. Li, “Algorithms for materialized view design
in data warehousing environment,” in Proceedings of the 1997 International
Conference on Very Large Data Bases, pp. 136–145, Athens, Greece, August
1997.

[404] J. Yang and J. Widom, “Incremental computation and maintenance of tempo-
ral aggregates,” in Proceedings of the 2001 International Conference on Data
Engineering, pp. 51–60, Heidelberg, Germany, April 2001.

[405] J. Yang and J. Widom, “Incremental computation and maintenance of tem-
poral aggregates,” The VLDB Journal, vol. 12, no. 3, pp. 262–283, 2003.

[406] K. Yi, H. Yu, J. Yang, G. Xia, and Y. Chen, “Efficient maintenance of mate-
rialized top-k views,” in Proceedings of the 2003 International Conference on
Data Engineering, pp. 189–200, Bangalore, India, March 2003.

[407] M. Zaharioudakis, R. Cochrane, G. Lapis, H. Pirahesh, and M. Urata,
“Answering complex SQL queries using automatic summary tables,” in Pro-
ceedings of the 2000 ACM SIGMOD International Conference on Management
of Data, pp. 105–116, Dallas, Texas, USA, May 2000.

[408] C. Zhang, J. Yang, and K. Karlapalem, “Dynamic materialized view selec-
tion in data warehouse environment,” Informatica (Slovenia), vol. 27, no. 4,
pp. 451–460, 2003.

404 References

[409] C. Zhang, X. Yao, and J. Yang, “An evolutionary approach to materialized
views selection in a data warehouse environment,” IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part C, vol. 31, no. 3, pp. 282–294, 2001.

[410] X. Zhang, K. Dimitrova, L. Wang, M. El-Sayed, B. Murphy, B. Pielech,
M. Mulchandani, L. Ding, and E. A. Rundensteiner, “Rainbow: Multi-XQuery
optimization using materialized XML views,” in Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data, p. 671, San
Diego, California, USA, June 2003.

[411] X. Zhang, L. Ding, and E. A. Rundensteiner, “PVM: Parallel view mainte-
nance under concurrent data updates of distributed sources,” in Proceedings
of the 2001 International Conference on Data Warehousing and Knowledge
Discovery, pp. 230–239, Munich, Germany, September 2001.

[412] X. Zhang, L. Ding, and E. A. Rundensteiner, “Parallel multisource view main-
tenance,” The VLDB Journal, vol. 13, no. 1, pp. 22–48, 2004.

[413] X. Zhang and E. A. Rundensteiner, “DyDa: Dynamic data warehouse main-
tenance in a fully concurrent environment,” in Proceedings of the 2000
International Conference on Data Warehousing and Knowledge Discovery,
pp. 94–103, London, UK, September 2000.

[414] Z. Zhang and A. O. Mendelzon, “Authorization views and conditional
query containment,” in Proceedings of the 2005 International Conference on
Database Theory, pp. 259–273, Edinburgh, UK, January 2005.

[415] J. Zhou, P.-Å. Larson, and H. G. Elmongui, “Lazy maintenance of materialized
views,” in Proceedings of the 2007 International Conference on Very Large
Data Bases, pp. 231–242, Vienna, Austria, September 2007.

[416] J. Zhou, P.-Å. Larson, J. C. Freytag, and W. Lehner, “Efficient exploitation
of similar subexpressions for query processing,” in Proceedings of the 2007
ACM SIGMOD International Conference on Management of Data, pp. 533–
544, Beijing, China, June 2007.

[417] J. Zhou, P.-Å. Larson, J. Goldstein, and L. Ding, “Dynamic materialized
views,” in Proceedings of the 2007 International Conference on Data Engi-
neering, pp. 526–535, Istanbul, Turkey, April 2007.

[418] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom, “View maintenance
in a warehousing environment,” in Proceedings of the 1995 ACM SIGMOD
International Conference on Management of Data, pp. 316–327, San Jose,
California, USA, May 1995.

[419] Y. Zhuge, H. Garcia-Molina, and J. L. Wiener, “The strobe algorithms for
multi-source warehouse consistency,” in Proceedings of the 1996 International
Conference on Parallel and Distributed Information Systems, pp. 146–157,
Miami Beach, Florida, USA, December 1996.

[420] Y. Zhuge, H. Garcia-Molina, and J. L. Wiener, “Multiple view consistency for
data warehousing,” in Proceedings of the 1997 International Conference on
Data Engineering, pp. 289–300, Birmingham, UK, April 1997.

[421] Y. Zhuge, H. Garcia-Molina, and J. L. Wiener, “Consistency algorithms
for multi-source warehouse view maintenance,” Distributed and Parallel
Databases, vol. 6, no. 1, pp. 7–40, 1998.

References 405

[422] D. C. Zilio, J. Rao, S. Lightstone, G. M. Lohman, A. J. Storm, C. Garcia-
Arellano, and S. Fadden, “DB2 Design Advisor: Integrated automatic physical
database design,” in Proceedings of the 2004 International Conference on Very
Large Data Bases, pp. 1087–1097, Toronto, Canada, August 2004.

[423] D. C. Zilio, C. Zuzarte, S. Lightstone, W. Ma, G. M. Lohman, R. Cochrane,
H. Pirahesh, L. S. Colby, J. Gryz, E. Alton, D. Liang, and G. Valentin,
“Recommending views and indexes with IBM DB2 design advisor,” in Pro-
ceedings of the 2004 International Conference on Autonomic Computing,
pp. 180–188, New York City, New York, USA, May 2004.

