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Abstract—As most current query processing architectures are already pipelined, it seems logical to apply them to data streams.

However, two classes of query operators are impractical for processing long or infinite data streams. Unbounded stateful operators

maintain state with no upper bound in size and, so, run out of memory. Blocking operators read an entire input before emitting a single

output and, so, might never produce a result. We believe that a priori knowledge of a data stream can permit the use of such operators

in some cases. We discuss a kind of stream semantics called punctuated streams. Punctuations in a stream mark the end of

substreams allowing us to view an infinite stream as a mixture of finite streams. We introduce three kinds of invariants to specify the

proper behavior of operators in the presence of punctuation. Pass invariants define when results can be passed on. Keep invariants

define what must be kept in local state to continue successful operation. Propagation invariants define when punctuation can be

passed on. We report on our initial implementation and show a strategy for proving implementations of these invariants are faithful to

their relational counterparts.

Index Terms—Continuous queries, stream semantics, continuous data streams, query operators, stream iterators.
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1 INTRODUCTION

THERE are many examples of stream-processing applica-
tions: Financial applications process stock-ticker

streams, telephone monitoring applications process call-
data streams [7], [10], and traffic monitoring applications
process streams from sensors on the highway [16]. These
applications can often be viewed as queries over streams.
Hence, it may be desirable to use a DBMS to implement all
or part of them. However, two properties of streams make
them difficult to process: First, data is often generated from
a source that can potentially produce an unbounded stream.
Second, a stream’s contents can only be accessed sequen-
tially. Traditional queries are comprised of relational
operators that assume a finite data source that can be
accessed randomly. We need operators designed for stream
inputs.

1.1 Streaming Data Examples

Example 1 Tracking Temperature in a Warehouse. A
warehouse containing temperature-sensitive merchan-
dise may deploy temperature sensors to regularly report
the current temperature to a monitoring system, as
shown in Fig. 1a. The monitoring system is implemented
as a query that unions all temperature reports (removing
duplicates), groups all reports for each hour, and outputs
the maximum temperature reported for each group.

Unfortunately, the approach above will fail for two
reasons: First, duplicate elimination requires an un-
bounded amount of state. Thus, the system will
ultimately run out of memory. Second, group-by must

wait until all data from its input has been read before it
can output results. Since the input is a continuous
stream, it will never emit a result.

Example 2 Tracking Bids at an Online Auction. The XMark
benchmark [21] tests queries over stored auction data.
We extend this to an online auction, shown in Fig. 1b.
Sellers post items for sale to the Sellers portal, which
merges submissions into a single output stream. Bidders
post increase bids to the Buyers portal, which merges
bids into a single output stream. A useful query tracks
final prices for items, joining items for sale with item
bids, and then summing up bid-increase values for each
item.

We use the symmetric hash join [27] to join the two
inputs. This implementation does not block on its inputs,
but maintains an unbounded amount of state. Through-
out the auction, hash tables used for the join grow
without bound, so the system eventually runs out of
memory. Further, the group-by operator that calculates
the sum does not output any results until all items have
arrived.

1.2 Motivation for Punctuated Streams

The examples illustrate two kinds of operators that are
impractical for continuous data streams. Blocking operators,
such as group-by, wait until all data from at least one input
has been read before producing a result. Unbounded stateful
operators, such as join, maintain state that grows with no
upper bound. Our goal is to find stream-based analogues
for table-based (finite) operators, exploiting stream seman-
tics to overcome these problems.

Our work builds on a simple observation: When an input
has been read entirely, blocking operators emit results and
unbounded stateful operators discard state. Could query
operators do similar work if the end of a specific subset of
data had been read entirely? A blocking operator might be
able to emit a subset of its result early. An unbounded
stateful operator might reduce state. We use special
annotations embedded in data streams, called punctuations,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 3, MAY/JUNE 2003 1

. P.A. Tucker, D. Maier, and T. Sheard are with the OGI School of Science
and Engineering at OHSU, 20000 NW Walker Road, Beaverton, OR
97006. E-mail: {ptucker, maier, sheard}@cse.ogi.edu.

. L. Fegaras is with the Department of Computer Science and Engineering,
The University of Texas at Arlington, 416 Yates Street, 301 Nedderman
Hall, PO Box 19015, Arlington, TX 76019. E-mail: fegaras@cse.uta.edu.

Manuscript received 15 May 2002; revised 15 Nov. 2002; accepted 4 Dec.
2002.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 117896.

1041-4347/03/$17.00 � 2003 IEEE Published by the IEEE Computer Society



to specify the end of a subset of data. Informally, a
punctuation indicates no more tuples will follow that
match the punctuation. We show that punctuations allow
blocking and unbounded stateful operators to be used over
continuous data streams for a larger range of queries.

1.3 Enhancing the Examples with Punctuations

We can fix the temperature monitoring system (Example 1)
by embedding punctuations in sensor reports. Suppose
reports are of the form < sid; hour; minute; currtmp >. We
enhance the temperature sensors to embed punctuations at
the end of each hour, stating that all reports have been
emitted for that hour. When punctuations from all sensors
for a particular hour have been received by union, we know
that there will be no reports from any sensor for that hour.
Tuples that match those punctuations no longer need be
retained in operator state. Likewise, when group-by
receives punctuation for a particular hour, results can be
emitted for that hour, and state relating to those groups is
no longer needed.

Punctuations also fix the online auction (Example 2).
Items submitted to the Sellers portal are assigned a
unique itemid. Once emitted, a punctuation follows
stating no more items with that itemid will appear. As
mentioned earlier, join maintains two hash tables: one for
items for sale and the other for bids. Punctuation from the
Sellers portal tells the join that items in its bid hash table
with that itemid can be removed since all items with that
itemid have arrived from the Sellers input. Further,
when the auction for an item has closed, a punctuation can
be embedded into the bid stream stating no more bids for
that item will arrive. We can use this information to discard
state in the items-for-sale hash table related to that item.
Finally, once punctuations for a particular item are present
for both inputs, join can emit its own punctuation, stating
that it will not emit any more tuples with that itemid. The
group-by operator can use that punctuation to determine
that no more bid increases will arrive for that item and can
emit its result for that item.

1.4 Organization

The rest of this paper is organized as follows: We formalize
the notion of stream iterators in Section 2. Section 3
introduces punctuation semantics and Section 4 discusses
our stream iterators model. Section 5 presents the theory
behind punctuated data streams. Section 6 discusses
concerns regarding punctuated streams. Section 7 gives
our experiences and results of modifying relational opera-
tors in a query engine to use punctuated streams. We
discuss related work in Section 8 and conclude in Section 9.

2 STREAMS AND STREAM ITERATORS

We first deal with streams and stream iterators without
punctuations. For the moment, we will represent streams as
infinite sequences, like the usual cons-based formulation of
lists, but with no nil list. Thus, a stream over elements of
type T can be defined as Stream(T) = T � Stream(T),
where � is an infix constructor.

We use fj . . . jg to denote stream values, to distinguish
them from finite lists. Thus, for Stream(Int), we write
1� 3� 5� 7� . . . as fj1; 3; 5; 7; . . . jg. We write S[i] for the
function that extracts the first i elements from a stream S,
with type Stream(T) � Int ! List(T). Thus, S[3] is
[1, 3, 5]. Further, for n > i, we use S½i ! n� for the list of
elements from iþ 1 to n. Note that S½i� ¼ S½0 ! i�. We use
S@i to mean the ith element of the stream. We use � to
construct streams from a finite list and another stream. Thus,
[2, 4, 6] � Smeans 2� 4� 6� S.

2.1 Stream Iterators

We do not want to use arbitrary stream-to-stream functions
for operating on data streams. In particular, we want to
avoid formulations that must access the entire stream at
once. Thus, we introduce stream iterators that access the
input incrementally. Function f : StreamðTÞ ! StreamðUÞ
is a stream iterator if there exists q : ListðTÞ ! ListðUÞ such
that for any S 2 StreamðTÞ,

fðSÞ ¼ ðqðS½1�Þ � qðS½2�Þ � . . .� qðS½i�Þ � . . .Þ:
That is, f is a stream iterator if it can be defined as repeated
application of q over all finite prefixes of the input stream.
For example, select can be expressed as a stream iterator.
Given predicate p, we define q by:

qðLþþ½a�Þ ¼ ½a� if pðaÞ; ½ � otherwise:
That is, q just looks at the last element of each prefix and

emits it if it satisfies the predicate (“++” is list concatenation).
There is also a stream iterator for duplicate elimination
(which we will henceforth refer to as dupelim), where q is:

qðLþþ½a�Þ ¼ ½a� if :elemða; LÞ; ½ � otherwise:
That is, q checks that the final element in the prefix does

not appear earlier in the prefix. However, sort and group-by
cannot be expressed as stream iterators in our formulation,
as their results cannot be determined with only a prefix of
the input.

2.2 Representation Issues
The model of a stream as an infinite sequence has an
attractive simplicity to it and is directly supported in
languages with lazy evaluation, such as Haskell. However,
we found it had certain limitations for stream iterators.
Those limitations concerned both modeling capabilities and
pragmatic programming issues.

Representation of finite streams: A stream that actually
has only a finite number of elements in it is not directly
representable as an infinite sequence. We considered
various alternatives, such as “stalling” after the last input
element, padding the sequence with an infinite number
of null values, or using both finite and infinite sequences.
All of these options tended to complicate the program-
ming model for streams.

Independence of iterator and stream rates: We do not want
to build any assumption into our model that operator
iterators are synchronized with stream arrival. There
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may be multiple arrivals between iterator steps. More
problematically, there may be no stream elements
arriving at a given step. With an infinite sequence
representation, no available input means blocking on its
arrival (creating problems for operators with multiple
inputs) or requiring a change in the sequence interface.

Interleaving of multiple units: Just as we do not want to
assume an input stream is synchronized with operator
iterations, different inputs need not necessarily proceed
“in step.” “Desynchronizing” multiple inputs requires
some kind of extension to infinite sequences as input to
ensure fairness and avoid blocking on one stream when
input is available on the other.

To deal with these difficulties, we model a data stream as
an infinite sequence of finite lists of elements—sort of a
“sliced list.” For example, the sequence fj1; 2; 3; 4; 5; . . . jg
might appear in sliced form as fj½1; 2�; ½3�; ½ �; ½4; 5�; . . . jg or as
fj½1; 2; 3�; ½4; 5�; . . . jg or in many other forms.

We still use S[i] to represent a finite prefix of a stream,
but now it refers to the first i slices. So, if

S ¼ fj½1; 2�; ½3�; ½�; ½4; 5�; ½6�; . . . jg;
then S½4� ¼ ½1; 2; 3; 4; 5�. Stream iterators with multiple
inputs take slices from each input in turn. Thus, an iterator
with n inputs will consume n � i slices after completing
stage i.

This sliced representation overcomes the problems
mentioned above. It can model a finite stream using a
trailing sequence of empty slices: fj½1; 2�; ½3�; ½ �; ½ �; ½ �; . . . jg.
The slices model the variability in stream arrivals relative to
iterator steps. Finally, it can capture different interleavings
of multiple inputs with alternative slicings of the streams.
We use this representation mainly for modeling stream
iterators and reasoning about them. In our prototype (see
Section 7), operators use nonblocking reads from buffers to
retrieve data.

We did consider a variety of other representations, but
they all seemed to add complexity without discernable
improvement in modeling stream behavior or iterator
implementation. Interleaving inputs into a single sequence
requires tagging elements for which input they belong to,
and development of a notion of “fair merge” of streams. We
considered adding an extra input sequence to each iterator
that could indicate which stream sequence to access next or
where input was available, but that approach led to
considerable complication in iterator implementation. La-
beling stream elements with an arrival time proved to be
essentially equivalent to sliced streams. We also considered
capturing input interleaving inside iterators rather than in
the data stream representation. Strict element-at-a-time
alternation was unrealistic. Deciding which input to read
from next by a random choose function leads to problems in
repeatability.

The change to stream iterators is to not provide the entire
stream prefix at each iteration. Some iterators, such as
select, only require the most recent input element to
determine the next output. Other iterators only need a
summary of the prefix. For example, dupelim only needs
the distinct values in the prefix. Thus, we let iterators keep
state from iteration to iteration. That state might be empty,
or all input seen to that point, or some summary. The
explicit representation of state also points up that there exist
table operators with stream analogues, but where the
stream iterator must keep track of arbitrary amounts of
the prefix, such as dupelim. Keeping state does not change

the set of expressible stream functions. Any function in the
prefix version can be converted to the stateful version and
vice versa.

3 PUNCTUATION SEMANTICS

A punctuation can be seen as a predicate on stream
elements that must evaluate to false for every element
following the punctuation. Thus, we might represent
punctuations as “black box” Boolean functions. We instead
represent punctuations as data to allow their easy storage,
searching, and manipulation. There are many choices for
what punctuation to represent. The scheme in our current
implementation is fairly simple, but has the important
property that the “and” of any two punctuations is also a
punctuation.

Our stream elements are tuples of scalars and punctua-
tions for such tuples. A punctuation is an ordered set of
patterns, each pattern corresponding to an attribute of a
tuple. We define five kinds of patterns and the values they
match as:

. A wildcard, denoted as �, matches all values.

. A constant is a single value and matches only that
value.

. A range is denoted with ½a; b� for inclusive ranges or
ða; bÞ for exclusive ranges and matches values that
fall in the range.

. A list is denoted as fa; b; cg and matches values in
the list.

. The empty pattern, denoted as ;, does not match any
values.

A punctuation p thus describes a set of tuples where, for
each tuple t, value t.A matches pattern p.A for every
attribute A. In Example 2, if the bid structure is:

< itemid; increase; buyerid >;

the punctuation < f1001; 2004g; �; � > describes all bids on
items 1001 and 2004.

3.1 Manipulating Punctuations

We define two basic functions for manipulating punctua-
tions in streams. The match function takes a tuple t and a
punctuation p, and returns True if t belongs to the subset
described by p. The combine function takes two punctua-
tions and returns a new punctuation that is either the
intersection of the two inputs (if the sets they describe
intersect) or the special punctuation �, indicating that no
nonempty combination exists. Thus,

matchðt; ðcombineðp1; p2ÞÞÞ , matchðt; p1Þ ^ matchðt; p2Þ:

We define auxiliary functions for single and lists of inputs
based on match and combine, as defined in Table 1.
Additionally, since our input is now a mixture of tuples and
punctuations, we need two functions to split them out. The
function tups takes a list of stream elements and returns
only the tuples, and puncts takes a list of stream elements
and returns only the punctuations in its input.

A punctuated stream is a data stream that contains
additional information describing a (possibly empty) subset
of data over the domain of the stream. A punctuated stream
S is grammatical if for all i, for all j > i, if p 2 S½i� and t 2
S½i ! j�, then nomatchðt; pÞ. Stream sources and stream
iterators must output grammatical streams.
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3.2 Puncutation Behaviors: Pass, Propagate,
and Keep

We have found it helpful to separate three aspects of stream
iterator behavior, in the presence of punctuated streams:

Pass behavior. Tuples that can be output based on
punctuation received.

Propagate behavior. Punctuations that can be properly
output based on punctuation (and possibly tuples)
received.

Keep behavior. The portion of state that must be retained
based on punctuation.

These three behaviors manifest themselves in our work
in two ways. First, in Section 4, we present a generic
framework for punctuated-stream iterators. In this frame-
work, we show that the specific behavior of each iterator
can be defined using behavior functions, called pass, prop,
and keep. Behavior functions are called repeatedly as the
iterator works through its input(s). Second, in Section 5, we
define invariants that specify the cumulative behavior of an
iterator enhanced for punctuated streams. We call these
formal invariants cpass, cprop, and ckeep. We use these
invariants to prove that our implementations of stream
iterators are reasonable counterparts to relational operators.

4 OUR STREAM PROCESSING FRAMEWORK

We initially made ad hoc extensions to the Niagara query
engine [18] to test the feasibility of our approach (see
Section 7). After encouraging results, we abstracted the
behavior of stream iterators into a high-level model. The
result is a common control structure for stream iterators,
customized by plugging in functions specific to each
iterator. We chose the Haskell programming language
[14], a lazy evaluation functional language, to express our
semantics, though any other languages or formalisms could
have been used. We chose Haskell for three reasons: First,
lazy evaluation languages do not evaluate expressions until
required. Functions that take streams as arguments evaluate
items from the stream only as needed. Thus, they are very
suitable for modeling stream processing systems and have
been used to model streams elsewhere [12], [15], [20]. This
behavior is similar to Graefe’s iterator function next [11],
which retrieves only the next item from its input. Second,
since functions are first-class objects, they can be arguments
to other functions. We can formulate the general behavior of
all stream iterators in a single function and pass iterator
specifics as function arguments to the general function.
Finally, since it is a language with formal semantics (at least

the part we use), it helps us prove our implementations
conform to the appropriate punctuation behaviors.

It is appropriate to give a very brief explanation of the
Haskell features used in our framework, defined in the
standard Haskell library (prelude.hs). The fst function
takes a tuple and returns the first value from the tuple. For
example, fstðð1; 2ÞÞ returns the value 1. The infix function
“þþ” concatenates two lists. The infix function “\\”
removes items from its first argument that exist in its
second argument. We also use the infix “:” operator, which
takes an item and a list and adds the item to the head of the
list. In this discussion, we modified the Haskell syntax
slightly to better match the logic notation often used in
database semantics. We explain other Haskell features as
they are encountered.

4.1 A Formulation for Stream Iterators

Without punctuations, stream iterators closely resemble
Parker’s stream transducers [19]. A unary stream iterator is a
triple ðinitial state; step; finalÞ, where:

. initial state is the iterator state before tuples
arrive from the input.

. step is called when new data arrives. It takes the
new tuples and the current state, and returns any
new output tuples and a modified state.

. final is called when the stream ends. It takes the
current state and returns any new tuples and a
modified state.

The general behavior of unary stream iterators is
modeled by the unary function, which takes a state
variable (st), the step and final functions, and the
input stream:

unary(st, step, final, []) = fst(final(st))

unary(st, step, final, (xs:rest)) =

out ++ unary(new_st, step, final, rest)

where (out,new_st) = step(xs, st)

Note there are two equations that define unary. Haskell uses
pattern-matching to determine which of the equations to
evaluate. If the fourth parameter to unary matches the
pattern[], then the first equation is evaluated. In this case,we
have reached the end of the input and output the tuples
returned from final. If the fourth parameter is a nonempty
list, then the secondequation is evaluated.The first item in the
list is matched to the variable xs and the rest of the list is
matched to the variable rest. In this case, we call the step
functionwithxsand the state.Weoutput any results fromthe
step function, then recursively callunarywith thenewstate
and the rest of the input. Note, we also take advantage of
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Haskell’s where syntax, which allows us to assign values to
variables.

We can define dupelim in terms of unary as follows:

sdupelim(xs) =unary([], step, final, xs)

where step(ts, st) =

((� (ts - st)), st [ ts)

final (tsSeen) = ([], [])

We maintain a list of all unique values that have arrived
from the input so far in state (st), with the empty list as the
initial state. The step function returns any tuples not
currently in the state and a new state containing the union
of new tuples and tuples in the original state. The final

function clears the state. We use � to mean duplicate
elimination over a finite list, as per Albert [1]. That is, given
some finite list A, �ðAÞ ¼ ftjt 2 Ag.

Let us see how sdupelim works with an example.
Suppose we have the input stream

S ¼ fj½1; 5�; ½3�; ½�; ½5; 6; 7�; . . . jg:
To evaluate sdupelim(S), each slice of the stream and the
current state will be passed to the step function as follows:

function input state output newstate
step ½1; 5� ½ � ½1; 5� ½1; 5�
step ½3� ½1; 5� ½3� ½1; 5; 3�
step ½ � ½1; 5; 3� ½ � ½1; 5; 3�
step ½5; 6; 7� ½1; 5; 3� ½6; 7� ½1; 5; 3; 6; 7�
. . .

A binary stream iterator is defined as a five-tuple:
(initial_state, stepL, stepR, finalL, finalR). The
meanings of stepL and stepR are the same as step for a
unary operator, defined for each input. Likewise, finalL
and finalR are the same as final, defined for each input.
The formal definition of binary is similar to unary and is
omitted. We can implement stream difference (sdiff)
using binary:

sdiff(lxs,rxs) =

sdupelim(binary((False,[],[]), stepL,

finalL, stepR, finalR))

where stepL(ts,(False, xs, ys)) =

([], (False, ts [ xs, ys))

stepL(ts,(True, xs, ys)) = ((ts - ys),

(True, [], ys))

stepR(ts,(fYs, xs, ys)) = ([], (fYs, xs,

ts [ ys))

finalL(f, xs, ys) = ([], (f, xs, ys))

finalR(f, xs, ys) =(xs - ys, (True, [],

ys))

We maintain a structure with a Boolean and two lists of
tuple in state. The Boolean is set to True when the negative
input reaches its end. The two lists store tuples from each
input. We see from stepL and stepR that sdiff blocks on
its negative input—results are emitted only after the
negative input has been read completely. Additionally,
sdiff maintains an unbounded amount of state. The two
lists grow as more input arrives.

4.2 Extension to Punctuated Streams
To enhance stream iterators for punctuated streams, we
define three new behavior functions: pass, prop, and

keep, and we redefine unary stream iterators to

ðinitial state; step; pass; prop; keepÞ, where:

. initial state and step have the same meaning as
before.

. pass takes new punctuations and state, and returns
any additional tuples that can be output based on
the punctuations.

. prop takes new punctuations and state, and returns
punctuations to be output.

. keep takes new punctuations and state, and returns
a modified state.

Changes to unary and binary for punctuated streams

are similar, so we focus on unary. Input slices may now

contain both tuples and punctuation, so they are first

separated. Then, step is called with new tuples and the

state, followed by calls to pass, prop, and keep with new

punctuations and the state. The execution order of the

punctuation functions is important: The prop function

could output punctuation that matches tuples output by

pass, so pass must be executed before prop. Further,

keep must follow pass and prop since both depend on

state that keep might modify. Note final, called when the

input stream ended, was removed. Clearly final performs

the equivalent tasks to pass, prop, and keep combined at

the end of stream.
Some stream iterators do not need to implement

particular behavior functions. For example, dupelim is not

a blocking operator. It does not need to implement a special

pass function. We define trivial behavior functions for

cases such as this:

passTðps; stÞ ¼ ½ �; propTðps; stÞ ¼ ½ �; keepTðps; stÞ ¼ st

We redefine sdupelim to exploit punctuations as

follows:

sdupelim(xs) = unary([],step,passT,

prop,keep,xs)

where step(ts,st) = ((�

(ts - st)), st [ ts)

prop(ps,st) = ps

keep(ps,st) = st -

setMatchTs(st,ps)

In the original version, we kept all unique tuples that had

arrived. However, punctuations tell us what tuples will

never again appear in the stream. Any tuples in state that

we know can have no more duplicate values in the stream

can be removed, and that is what the keep function does.

The prop function propagates all punctuation as it arrives.
Let us revisit sdupelim with the same example

enhanced with punctuations. We add a punctuation that

no elements follow between 0 and 4, so

S ¼ fj½1; 5�; ½3�; ½Pð0; 4Þ�; ½5; 6; 7�; . . . jg:

In this illustration, we omit calls to passT.
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function input state output newstate
step ½1; 5� ½ � ½1; 5� ½1; 5�
prop ½ � ½1; 5� ½ �
keep ½ � ½1; 5� ½1; 5�

step ½3� ½1; 5� ½3� ½1; 5; 3�
prop ½ � ½1; 5; 3� ½ �
keep ½ � ½1; 5; 3� ½1; 5; 3�

step ½ � ½1; 5; 3� ½ � ½1; 5; 3�
prop ½Pð0; 4Þ� ½1; 5; 3� ½Pð0; 4Þ�
keep ½Pð0; 4Þ� ½1; 5; 3� ½5�

step ½5; 6; 7� ½5� ½6; 7� ½5; 6; 7�
prop ½ � ½5; 6; 7� ½ �
keep ½ � ½5; 6; 7� ½5; 6; 7�

. . .

For the first two slices of input, execution follows the
nonpunctuated case. Since no punctuations arrive during
the first two slices, the prop and keep functions have no
effect. When a punctuation arrives, however, we see new
behavior. The prop function receives the new punctuation
and returns it. The keep function receives the punctuation
and keeps only tuples that do not match the punctuation in
the new state.

Now, consider the enhanced version of sdiff with new
behavior functions:

sdiffðlxs; rxsÞ ¼ sdupelimðbinaryðð½ �; ½ �; ½ �; ½ �Þ;
stepL; passT; propT; keepL;

stepR; passR; propR; keepR; lxs; rxsÞÞ
where stepLðts; ðlts; rts; lps; rpsÞÞ ¼

ð½ �; ðtsþþ lts; rts; lps; rpsÞÞ
stepRðts; ðlts; rts; lps; rpsÞÞ ¼

ð½ �; ðlts; tsþþ rts; lps; rpsÞÞ
passRðps; ðlts; rts; lps; rpsÞÞ ¼

setMatchTsððlts nnrtsÞ; ðpsþþ rpsÞÞ
propRðps; ðlts; rts; lps; rpsÞÞ ¼

setCombineðlps; ðpsþþ rpsÞÞ
keepLðps; ðlts; rts; lps; rpsÞÞ ¼

ðlts; rts; psþþ lps; rpsÞ
keepRðps; ðlts; rts; lps; rpsÞÞ ¼

ðltsNew; rtsNew; lps; psþþ rpsÞ
where ltsNew ¼ setNomatchTsððlts nnrtsÞ;

ðpsþþ rpsÞÞ
rtsNew ¼ setNomatchTsðrts; lpsÞ

The data structure for state has changed. We no longer need
a Boolean value to tell us when we have reached the end of
the negative input. Punctuations tell us this. However, we
do need to maintain two additional lists for punctuations
from each input. We can see that the stepL and stepR

functions still do not produce output. However, passR

outputs tuples before the end of the stream. Tuples can be
emitted from the positive input that match punctuation
from the negative input and have not appeared so far from
the negative input. Thus, sdiff is no longer blocking. The
propR function only outputs certain punctuations. We
cannot simply output punctuations as they arrive, as we did
for sdupelim. Instead, we output punctuations that are

nonempty combinations of punctuations received from
each input. Finally, keepR decreases the amount of state
required when punctuations arrive. We only keep tuples
that do not match punctuations from the opposite input.

5 CORRECTNESS OF PUNCTUATED ITERATORS

There is a significant issue we have not yet addressed,
namely: When is a stream iterator a “reasonable” counter-
part of the corresponding relational operator? We hope the
examples presented thus far seem sensible, but clearly, one
can define stream versions of operators with obviously
inappropriate behavior. We use three kinds of invariants to
specify how a stream iterator should process punctuation:
pass invariants, propagation invariants, and keep invariants.
These invariants are defined below in terms of the allowable
action on any given prefix of the input stream(s). We use the
invariants in our proofs that specific stream iterators satisfy
correctness conditions.

The correspondence between cpass and ckeep invar-
iants and pass and keep functions is not quite direct. Our
framework is based upon the definitions for the nonpunc-
tuated case, captured in the step function. Thus, the cpass
and ckeep invariants actually specify the desired behavior
of the pass and keep functions in combination with step.

5.1 Faithfulness and Propriety
We base our notions of correctness of a stream iterator
(termed “faithfulness” and “propriety”) upon its series of
partial outputs after processing each slice of its input(s). The
output of iterators at any point in the input should be
consistent with any possible further input.

We first define faithfulness for streams without punctua-
tion. Let f be a unary stream iterator from Stream(T) to
Stream(U), and let g be a relational operator from
List(T) to List(U). We say f is faithful to g if the
following two conditions are met (note, we interpret � as
prefix or subset depending on whether order is significant
for g or not):

Safety. For all streams S in Stream(T), for all subsets
(prefixes) of S of size (length) i, and for every finite
addition A in List(T), fðSÞ½i� � gðS½i� þ þ AÞ. That is,
we never emit output unless we can be sure it will not
conflict with any later input.

Completeness. For all streams S in Stream(T), for all
subsets (prefixes) of S of size (length) i, and for all M, if M
� gðS½i� þ þ AÞ for all finite additions A in List(T),
then M � fðSÞ½i�. That is, we always emit an output if it
will necessarily be generated by the relational operator
under any additional input, including no input.
The corresponding conditions for binary operators are

similar:

fðS1; S2Þ½2i� � gðS1½i� þ þ A1; S2½i� þ þ A2Þ

for all A1 and A2, and M � fðS1; S2Þ½2i� if M �
gðS1½i� þ þ A1; S2½i� þ þ A2Þ. (Note the 2i index is because
f will emit a slice of output for both the ith slices of S1 and
S2.)

Every monotone relational operator g has a faithful
stream counterpart. For unary operators, it is the iterator f
where fðSÞ@i ¼ gðS½i�Þ � gðS½i� 1�Þ. Thus, fðSÞ½i� ¼ gðS½i�Þ,
satisfying the two conditions.

With punctuation, we modify the conditions of faithful-
ness such that any possible additional input is constrained
to obey any punctuation already seen.
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Safety. For all S in Stream(T), for all subsets (prefixes) of
S of size (length) i, and for every possible finite addition
A in List(T) such that setMatchTsðA; punctsðS½i�ÞÞ = ;,
tupsðfðSÞ½i�Þ � gðtupsðS½i�Þ þ þ AÞ.

Completeness. For all S in Stream(T), for all subsets
(prefixes) of S of size (length) i, and for all M, if for all
possible finite additions A in List(T) such that
setMatchTsðA; punctsðS½i�ÞÞ = ; and M � gðtupsðS½i�Þ
þ þ AÞ, then M � tupsðfðSÞ½i�Þ.

The definition for binary operators is extended in a similar
way. We will provide correctness proofs for some stream
iterators later in this section.

The other condition we want to enforce on our stream
operators is that they are well-behaved with respect to
punctuation. We say that a stream iterator f is proper if
f(S) is guaranteed to be grammatical whenever S is
grammatical. Note that propriety is not a very strong
condition. An iterator that emits no punctuation will always
be proper. We are currently investigating stronger notions
regarding punctuation, such as requiring an iterator to emit
the maximal amount of punctuation that can be inferred
from the input punctuation.

5.2 Pass Invariants
Pass invariants define the allowed output for a stream
iterator after seeing a prefix of the input. Pass invariants
have the form:

tsOut ¼ cpassðts1; ps1; . . . ; tsn; psnÞ;
where tsOut represents tuples that can be output, given
tuples tsj and punctuations psj that have arrived from the
jth input so far. Table 2 lists some nontrivial pass
invariants.

Two pass invariants require further explanation. The
group-by iterator can output a result when all tuples have
been received for that group. Some kinds of punctuations
determine which groups are complete. The groupPs

function in the group-by pass invariant returns those kinds
of punctuations. In the auction example, we group on items.
If a punctuation arrives that says all tuples have arrived for
items #1001 and #1004, then results for those groups can be
output. However, if a punctuation arrives that says all
tuples have arrived for seller #9932, no results can be
output.

In order for sort to output correct results early, we need to
know when the values that appear first in sort order have
arrived. Punctuations that match a prefix of the final sorted
output give us this information. The init function returns
punctuations based on the sort order and the input punctua-
tions such that no tuple can still arrive that would be sorted
before tuples that match those punctuations. In the ware-
house example, suppose we have a query that sorts its input
on the hour attribute in ascending order. If we receive a
punctuation that reads< �; ½2; 4�; �; � > (recall the schema is
< sid; hour; minute; currtmp > ), then we cannot output
anything. If we later receive a punctuation that reads
< �; ½0; 3�; �; � > , then we can output results through the
fourth hour.We know by the attribute’s type that 0 is the first
value for the sorted output. Theinit function, given the two

punctuations shown above, will return < �; ½0; 4�; �; � > .

5.3 Propagation Invariants
Propagation invariants specify what punctuations can be
output by a stream iterator. Propagation invariants have the
form:

psOut ¼ cpropðts1; ps1; . . . ; tsn; psnÞ;
where psOut represents punctuations that can be output
given tsj and psj. Propagation invariants assume the
corresponding pass invariant has already been satisfied.
Table 3 lists propagation invariants. We consider union to
be a combination of merge and dupelim.

The propagation invariant for project outputs punctua-
tions returned by projPs. Output punctuations must have
the same structure as output tuples. If the stream iterator is
projecting out attributes, then the same attributes must be
projected out of punctuations. However, we cannot simply
modify all punctuations. If an attribute being projected out
contains a pattern that is not the wildcard, then the
punctuation cannot be output. (We are developing a more
informative propagation invariant that attempts to combine
patterns in projected-away attributes to get a wildcard.) The
invariant for join uses modPs1 and modPs2. They are similar,
so we focus on modPs1. Like project, the structure of output
punctuations must be modified to match output tuples. The
modPs1 function modifies tuples from one join input,
appending attributes from the other input with wildcards.

5.4 Keep Invariants
Keep invariants specify the state a stream iterator must
preserve, which will be a subset of the state preserved in the
nonpunctuated case. Unlike pass invariants, we specify one
invariant for each input of an iterator. They have the form:

tsOut ¼ ckeepjðts1; ps1; . . . ; tsn; psnÞ;

where ckeepj specifies the state kept for the jth input given
tsj and psj are as defined before. Table 4 lists nontrivial
keep invariants.

The keep invariant for join uses a function called
joinPs. It returns punctuations with wildcards for all
attributes not participating in the join. Thus, join only keeps
tuples that do no match punctuations from the other input
in states that describe only the join attribute(s).

5.5 The Minimality Condition
In addition to the specific behavior invariants for each kind
of operator, we assume an additional condition on iterator
implementations. The minimality condition states that an
iterator never produces more output than needed to satisfy
its behavior invariants. This condition is necessary to
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prevent an operator from gratuitously repeating an output
tuple after punctuation matching that tuple has been
emitted. We note that it is generally straightforward to
prove that iterators defined in our framework observe the
minimality condition. We henceforth assume that all stream
iterators satisfy the minimality condition.

5.6 Proving Correctness of Stream Iterators
We prove sdupelim is faithful and proper and we provide
a portion of our proof for sdiff. Our general strategy for
such proofs is to specify cumulative invariants and show
that any stream iterators that obey these cumulative
invariants are faithful and proper, then show that our
particular iterator implementation obeys the cumulative
invariants. This two-stage approach allows us some flex-
ibility in the implementation of our iterators. We only have
to prove once that any iterator satisfying the invariants is
faithful and proper relative to its relational counterparts.
Then, for each implementation of a particular iterator, we
only have to prove it conforms to the invariants for that
iterator to have a complete proof.

Theorem 1. The stream iterator sdupelim is proper and
faithful to dupelim.

Proof. Consider the cumulative invariants for dupelim:

cpassðts; psÞ ¼ �ðtsÞ
cpropðts; psÞ ¼ ps

ckeepðts; psÞ ¼ ts� setMatchðts; psÞ

We will first show that any stream iterator that
conforms to these invariants and theminimality condition
is faithful and proper to dupelim. We then show that the
particular implementation of sdupelim given in Section
4.2 conforms to the invariants. For this proof, it is useful to
denote the tuples and punctuations present in the first i
slices of input. We use the notation tsi ¼ tupsðS½i�Þ and
psi ¼ punctsðS½i�Þ, where S is the input stream. Also, for
j > i, let tsij ¼ tupsðS½i ! j�Þ.

As noted earlier, any monotone relational operator
such as dupelim has a faithful stream counterpart. If
ckeepðts; psÞ ¼ ts, we would have the “standard”
faithful version. We need to show for faithfulness that
retaining less state does not change the output. Consider
what is output between two points i and j (assuming
minimality):

cpassðtsjÞ � cpassðtsiÞ ¼ �ðtsjÞ � �ðtsiÞ
¼ �ðtsj � tsiÞ
¼ �ðtsij � tsiÞ;
since tsj ¼ tsijþþ tsi:

This equivalent expression indicates how state is used
in an iterator implementation: Past input is kept and
used to filter subsequent input. So, the question is, what
is output if our state is per ckeep:

�ðtsij � ckeepðtsi; psiÞÞ
¼ �ðtsij � ðtsi � setMatchTsðtsi; psiÞÞÞ
¼ �ððtsij � tsiÞ [ ðtsij \ tsi \ setMatchTsðtsi; psiÞÞÞ
½since A� ðB� CÞ ¼ ðA� BÞ [ ðA \ B \ CÞ�

¼ �ððtsij � tsiÞ [ ;Þ
½since tsij and setMatchTsðtsi; psiÞ
can have no tuples in common�

¼ �ðtsij � tsiÞ:

This value is the same as the standard version, so
reducing state per ckeep does not affect faithfulness.

For propriety, we see that punctuations emitted by
stage i are all the punctuations received, namely psi.
Can a tuple t such that setMatchðt; psiÞ be emitted
after stage i? If so, it is emitted by some stage j > i.
So, it must be that t 2 cpassðtsj; psjÞ. So, t 2 tsj.
However, t =2 tsij, by grammaticality of the input.
Hence, t 2 tsi, and t 2 cpassðtsi; psiÞ. So, t must
already be emitted at stage i, and by the minimality
condition, will not be output again later. Thus, the
output of any iterator satisfying cpass and cprop is
grammatical given grammatical input, and is therefore
proper.

Conformance: We show that sdupelim conforms to
the invariants, hence is faithful. First, we show that the
output at each iteration i+1 (call it incrtsiþ1) is
equivalent to the pass rule at i+1 minus the pass rule
for the previous iteration i. That is,

incrtsiþ1 ¼ cpassðtsiþ1; psiþ1Þ � cpassðtsi; psiÞ:

Note the output tuples at any iteration are tuples
returned by step and pass. The state value in our
proof is denoted as sti. New tuples and punctuations
arriving at slice i are denoted as tsNewi and psNewi,
therefore

tsi [ tsNewiþ1 ¼ tsiþ1

and

psi [ psNewiþ1 ¼ psiþ1:

Pass:

incrtsiþ1 ¼ stepðtsNewiþ1; stiÞþ þ passðpsNewiþ1; stiÞ
¼ �ðtsNewiþ1 � stiÞþ þ ½ �
¼ �ðtsNewiþ1 � ðtsi � setMatchTsðtsi; psiÞÞÞ
¼ �ððtsNewiþ1 � tsiÞ [ ðtsNewiþ1 \ tsi \

setMatchTsðtsi; psiÞÞÞ
½since A� ðB� CÞ ¼ ðA� BÞ [ ðA \ B \ CÞ�

¼ �ððtsNewiþ1 � tsiÞ [ ;Þ
½since tsNewiþ1 and setMatchTsðtsi; psiÞ
have no common tuples�

¼ �ðtsNewiþ1 � tsiÞ
¼ cpassðtsiþ1; psiþ1Þ � cpassðtsi; psiÞ

½from the equality shown earlier�:

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 3, MAY/JUNE 2003

TABLE 4
Keep Invariants for Traditional Query Operators



Showing conformance to cprop is trivial since
sdupelim outputs punctuations as they arrive, and so
is omitted. To prove conformance to ckeep, we show by
induction that if the current state at any stage i equals
ckeepðtsi; psiÞ, then the result of keepðpsNewiþ1; stiÞ is
ckeepðtsiþ1; psiþ1Þ.

Base case: i ¼ 0, so tsi ¼ psi ¼ ½ �, and the initial state
st0 ¼ ½ �. Then:

keepððst0 [ tsNew1Þ; psNew1Þ
¼ keepðð½ � [ tsNew1Þ; ð½ � [ psNew1ÞÞ
¼ keepððts0 [ tsNew1Þ; ðps0 [ psNew1ÞÞ
¼ keepðts1; ps1Þ
¼ ts1 � setMatchTsðts1; ps1Þ
¼ ckeepðts1; ps1Þ:

Induction step: Assume sti ¼ ckeepðtsi; psiÞ. Show
that keepðpsNewiþ1; stiÞ ¼ ckeepðtsiþ1; psiþ1Þ.

keepðpsNewiþ1; ðsti [ tsNewiþ1ÞÞ

¼ ðsti [ tsNewiþ1Þ � setMatchTsððsti [ tsNewiþ1Þ;

psNewiþ1Þ

¼ ðckeepðtsi; psiÞ [ tsNewiþ1Þ�

setMatchTsððckeepðtsi; psiÞ [ tsNewiþ1Þ; psNewiþ1Þ

¼ ðtsiþ1 � setMatchTsðtsi; psiÞÞ�

setMatchTsððtsiþ1�setMatchTsðtsi; psiÞÞ; psNewiþ1Þ

½By properties of [ and \�

¼ ðtsiþ1 � setMatchTsðtsi; psiÞÞ�

setMatchTsðtsiþ1; psNewiþ1Þ � setMatchTsðtsi; psiÞ

½Consequence of the definition of setMatchTs�

¼ ðtsiþ1 � setMatchTsðtsi; psiÞÞ�

setMatchTsðtsiþ1; psNewiþ1Þ

¼ tsiþ1 � ðsetMatchTsðtsi; psiÞ[

setMatchTsðtsiþ1; psNewiþ1ÞÞ

½Consequence of the definition of setMatchTs�

¼ tsiþ1 � setMatchTsððtsi [ tsiþ1Þ; ðpsi [ psNewiþ1ÞÞ

¼ tsiþ1 � setMatchTsðtsiþ1; psiþ1Þ

¼ ckeepðtsiþ1; psiþ1Þ:
ut

Theorem 2. The stream iterator sdiff is faithful to the

relational operator difference.

We present here only the faithfulness part of our proof,

which, unlike Theorem 1, is nontrivial. Our pass invariant

for difference is:

cpassðlts; lps; rts; rpsÞ ¼
½tjt 2 lts ^ t =2 rts ^ setMatchðt; rpsÞ�:

Here, we use the “l” and “r” prefix to distinguish left and
right inputs. Thus, ltsi and lpsi are analogs to tsi and psi
for the left input and, similarly, rtsi and rpsi for the right.

Faithfulness (safety):We need to show that at any stage i

cpassðltsi; lpsi; rtsi; rpsiÞ � ðltsiþþ lsÞ � ðrtsiþþ rsÞ

for any Lists ls, rs where setMatchTsðls; lpsiÞ ¼ ½ � and
setMatchTsðrs; rpsiÞ ¼ ½ �. Suppose t is a tuple in the left-
hand side above. It must be that t 2 ltsi, t =2 rtsi, and
setMatchðt; rpsiÞ. Therefore, t 2 ltsiþþ ls.Wehave t =2 rs

since itmatches somepunctuation inrpsi. So, t =2 rtsiþþ rs.
Thus, t is in ðltsiþþ lsÞ � ðrtsiþþ rsÞ and the contain-
ment is proven.

Fa i th fu lnes s ( comple t enes s ) : Suppose t 2
ðltsiþþ lsÞ � ðrtsiþþ rsÞ for every ls and rs where

setMatchTsðls; lpsiÞ ¼ setMatchTsðrs; rpsiÞ ¼ ½ �:

Choosing ls to be [], we must have

t 2 ðltsiþþ ½�Þ � ðrtsiþþ rsÞ;

hence t 2 ltsiþþ ½ � and, thus, t 2 ltsi. We know t =2 rtsi,
otherwise, it would be in rtsiþþ rs. Now, consider any
tuple s where setMatchðs; rpsiÞ ¼ False. We must have
t 2 ðltsiþþ ½ �Þ � ðrtsiþþ ½s�Þ, hence t =2 rtsiþþ ½s�, so
t 6¼ s. Thus, setMatchðt; rpsiÞ ¼ True. Since t 2 ltsi,
t =2 rtsi, and setMatchðt; rpsiÞ, we have

t 2 cpassðltsi; lpsi; rtsi; rpsiÞ;

as required for completeness.
The complete proof can be found elsewhere [25].

6 CONCERNS FOR PUNCTUATING DATA STREAMS

We have assumed in our examples that punctuations
already exist in the data stream. We have not addressed
how punctuations are embedded in the first place. We
address two main issues: how punctuations get into streams
and how frequently should punctuations be embedded.
Before we consider these issues, we compare punctuated
streams to other techniques proposed to query over data
streams.

6.1 Punctuated Streams versus Other Stream
Techniques

Many current stream processing systems [9], [16], [24] use
fixed windows and sliding windows for the same reasons we
propose punctuated streams: They regulate the size of state
and they allow blocking operators to emit results before the
end of the stream. With fixed windows, stream inputs are
divided into consecutive subsets, which can be marked
explicitly with landmarks or implicitly with specific data
values. In the warehouse example, we could implicitly
define the end of a window at the end of each hour. Sliding
windows allow query operators to process a bounded
interval of tuples. When new tuples arrive, old tuples are
discarded and the operator computes over the current
window of tuples.

When a complete window (sliding or fixed) of tuples is
available, a query operator computes its result for that
window and emits the result. The operator then clears out
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any state it might be maintaining for that window and starts
over with the next window. In starting over, the semantics

of some query operators change. For simple operators, such
as select and project, the semantics remain the same. Tuples

are processed and output immediately. However, more
complex operators only process the current window, and

not the entire data set. The group-by operator only groups
within the current window rather than the entire input, and

dupelim only removes duplicates within the window.
Operators that exploit punctuations in a data stream may

be able to process the entire stream. Group-by groups the
entire input, and dupelim removes duplicates from the

entire input.
Windows also add complexity to many operators, espe-

cially operators that accept more than one input. N-ary

operators such as merge and join must maintain the
semantics of the windows over all inputs. Suppose in the

warehouse example we had only one sensor reporting
temperatures. It would be straightforward to use the value

of the hour attribute to denote a fixed window. Then, we
group the input data on the hour attribute and output the

maximum temperature when the hour attribute changes.
However, if we have many sensors, we need the merge

operator to combine all input streams.Mergemust wait until
it receives the end of a window from all inputs before

outputting the end of the window. Data that pertains to the
original window is output, but data that pertains to the new

window must be held in state until all data for the current
windowhas arrived fromall inputs. This behavior introduces

latency in the merge operator.
Sequence database systems [22] could also solve the

warehouse query since it is time-based. Sequence database

systems require the stream be globally sorted on sensor
time. To preserve order throughout the query, each

operator’s output must be sorted on the sequence attribute.
Therefore, n-ary operators must do extra work to maintain

the sort order.
The auction example cannot be solved with either

technique. In that example, we join bids and items on

itemid. A join operator in a sequence database joins on the
sequence value and cannot be used. Further, the items for

sale in an online auction do not align neatly into a window.
Some items may sell sooner than others. Punctuated

streams is the only technique we are aware of that can give
completely accurate results to this query.

6.2 Embedding Punctuations in Data Streams

We have discussed how punctuations embedded into a data
stream can assist stream iterators. So far, we have ignored

how punctuations get into a data stream. Let us suppose a
logical operator existed that embedded punctuations, and

could be placed in a variety of places: at the stream source,
at the edge of the query processor, or after query operators

within the query itself. We will call this operator the
punctuate operator.

There are many different schemes we could use to

implement the punctuate operator. Which scheme to choose
depends on where the information resides for generating

the punctuation. We list several possibilities below:

Source or sensor intelligence. As data items in a stream are

often generated, the source may know enough to emit

punctuation. Sources in the warehouse example (Exam-

ple 1) were emitting data based on time. When an hour

ended, the sensor emitted punctuation that all reports for

that time period have been output.

Knowledge of access order. Scan or fetch operations may

know something about the source and generate punctua-

tions based on that knowledge. For example, if scan is

able to use an index to read a source, it may use

information from that index to tell when all values for an

attribute have been read.

Knowledge of stream or application semantics. A punc-

tuate operator may know something about the semantics

of its source. In the warehouse example, the temperature

sensors likely have temperature limits. Suppose the

limits are 20F and 95F. A punctuate operator can output

punctuations that say there will not be any temperature

reports above 95F and there will not be any reports

below 20F.

Auxiliary information. Punctuation may be genereated

from sources other than the input stream, such as

relational tables or other files. In the warehouse example,

we might have a list of all the sensor units. A punctuate

operator could use that list to determine when all sensor

reports for a particular hour have arrived and embed the

punctuation. This approach can remove punctuation

logic from the sensors.

Stream iterator semantics. Some stream iterators impose

semantics on output tuples. The select iterator, for

example, can embed a punctuation that no tuples will

appear in the stream that would fail its selection

predicate. Additionally, the sort iterator can embed

punctuations based on its sort order. When it emits a

tuple, it can follow it with a punctuation stating that no

more tuples will appear that precede that tuple accord-

ing to the sort order.

6.3 Frequency of Punctuations

There is an obvious trade off in how often to embed

punctuations in a data stream. If punctuations arrive

frequently, then blocking operators can output data more

often, and unbounded stateful operators are able to keep

less state. However, punctuations also take up bandwidth

in the data stream and, so, slow the arrival rate of tuples.

This flexibility is an advantage of punctuations over other

more static approaches. If the system executing a query

over the data stream has a large amount of resident

memory, then punctuations can be emitted less frequently.

However, if the system executing a query over the data

stream has a small amount of memory, such as a wireless

telephone, then the number of punctuations will have to

increase to minimize the amount of state required by the

query. We are working on formal descriptions of the effects

of different punctuation schemes over entire queries.

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 3, MAY/JUNE 2003



7 PROTOTYPE IMPLEMENTATION

To understand the complexity of implementing punctua-
tions and their effect on performance, we used the Niagara
Query Engine [18], which queries XML data. We defined a
punctuation format for XML and enhanced some of
Niagara’s operators to exploit punctuation. We then
simulated the warehouse example.

7.1 XML Punctuation Format

We have three goals in designing our XML punctuation
format: First, punctuation size should be similar to the size
of the tuples it describes. Second, punctuations should not
affect the results of iterators that do not process punctua-
tions. Third, iterators that do understand punctuations
should be able to easily determine which tuples match a
punctuation.

We achieve these goals using the Namespaces for XML
recommendation [5]. We define a namespace called punct

and define an element in it that mirrors a tuple structure.
Iterators will not confuse punctuations with tuples since
they are in a different namespace. For example, given
elements of tempdata, we define punctuation elements
punct:tempdata. Samples of an XML tuple and punctua-
tion follow:

tuple punctuation
<tempdata> <punct :tempdata>
<sid>S01<=sid> <sid>�<=sid>
<hour>17<=hour> <hour> ½17;20Þ<=hour>
<min>30<=min> <min>�<=min>
<currtmp>77<=currtmp> <currtmp>�<=currtmp>

<=tempdata> <=punct : tempdata>

7.2 Enhancements to Niagara Operators

The query (in SQL) for this experiment is as follows:

SELECT MAXðcurrtmpÞAS maxtemp; hour FROM

SELECT currtmp; hour FROM sensor1 UNION

SELECT currtmp; hour FROM sensor2

GROUP BY hour;

7.2.1 Union

The union operator in Niagara performs duplicate elimina-
tion, so it is an unbounded stateful operator. Tuples that
have arrived are stored in a hash table. If a new tuple
arrives that is already in the hash table, it is not output. If it
is not in the hash table, it is output and added to the hash
table. When union receives punctuations from all inputs
that match the same set of tuples, it removes tuples in the
hash table that match the punctuations. Then, union passes
the punctuation to the next stream iterator. As we have
discussed, punctuations output from union must agree with
punctuations received from all inputs.

7.2.2 Group-By

Group-by is both a blocking and an unbounded stateful
operator. We use punctuations to output results early and
to reduce state size. Group-by must wait until it has read
the entire input to ensure that no more values appear for a

group. However, if a punctuation arrives that guarantees

that all tuples for a given group have been seen, we can

output the result for that group early. In the warehouse

simulation, we are grouping on the hour attribute. There-

fore, when a punctuation arrives guaranteeing that no more

tuples will arrive for a particular hour we can output the

result for that hour along with corresponding punctuation.

Further, we can use that same punctuation to reduce the

state for that group.

7.2.3 Join

The Niagara Query Engine uses two implementations for

the join operator: nested loops and symmetric hash join

[27]. The symmetric hash join implementation is more

appropriate for queries over data streams since it does

not block on either input. We implement symmetric hash

join using one hash table for each input. Tuples are

stored in the appropriate hash table as they arrive, then

used to probe the other hash table to determine if there

are new tuples to output. The hash key is based on the

value of the join attributes for each tuple. Thus, the hash

tables can grow without bound. We use punctuations to

decide when tuples can be removed from hash tables,

according to the keep invariant for join shown earlier in

Table 4. If a punctuation arrives from one input

specifying that all tuples have arrived for a particular

set of join attribute values, then we remove tuples from

the hash table for the other input using the join values

described by the punctuation as the hash key.

7.3 Results

We simulated sensors with Java applications that stream

data into the Niagara Query Engine. These sensors output

tuples as described earlier, reporting the current tempera-

ture at that sensor every minute. For these tests, we varied

the frequency of embedded punctuations from 0 to 30 per

hour. We wanted to evaluate the performance cost of

embedding punctuations into data streams. Thus, our

sensor applications output data immediately, rather than

outputting a single data item every minute. The data was

over 60 hours.
We see from Fig. 2a that the amount of memory used by

the hash table in union is greatly reduced. If the stream is

not punctuated, the size of the hash table grows until the

stream ends. If the stream is punctuated, the size of the hash

table is much smaller since tuples are removed from state

that match punctuations.
We see from Fig. 2b that embedding punctuations in the

stream unblocks group-by, allowing it to output results

early. Without punctuations, the operator must wait until

the input has completed before outputting results. We also

see that embedding punctuations does not affect the overall

performance of the query. In fact, when using a minimal

number of punctuations, the performance improves. This

improvement is because the hash table used by union is

smaller when punctuations exist in the data stream.

Without punctuations, the hash table grows, forcing more

frequent memory allocations.
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8 RELATED WORK

Data stream processing systems have been researched for a
number of years, though interest has increased recently.
The Tangram stream query processing system by Parker
et al. [20] is an early investigation attempting to use
database technology on a data stream. They discuss a
number of stream transducer implementations. They
include blocking relational operators such as sort and
difference, but do not discuss how these behave in the
presence of continuous streams. Parker also discusses in
more detail a model for stream transducers [19] that is very
similar to the one we present, though he limits the
discussion to unary stream transducers and does not
address how they interact with continuous data streams.

In the architecture describe by Babu et al. [4], a query
over a data stream has: one or more input streams, an
output stream, a store for holding tuples that might be part
of the result, and a scratch for holding state. Punctuations
could enhance this architecture in two ways: First,
implementing pass invariants could reduce the size of store
by outputting tuples sooner. Second, implementing keep
invariants could reduce the size of scratch.

Like the Tangram system, most stream database systems
use a window or summarization scheme to handle blocking
and unbounded stateful operators. The Tribeca system [24]
is another early example of such a system. The authors
introduce a high-level query language for data streams, but
add operators specifically for defining stream windows.
The system discussed by Madden and Franklin [16]
implements operators that efficiently combine data from
static (file-based) and streaming sources. Additionally, they
have enhanced their adaptive query processing system [3]
to support queries over data streams [17]. Finally, work on
the Aurora system [6] investigates optimization tactics for
queries over data streams and ways to intelligently shed
load when the system is about to run out of memory.

Work on partial results by Shanmugasundaram et al. [23]
specifically addresses blocking operators. In their system,
query operators waiting for output from other operators can
request a partial result. Online computation work [13] also

addresses blocking operators by reporting partial results at
regular intervals. The user interface reports progress with a
confidence interval and allows users to cancel queries when
the result is “good enough.” A priori knowledge of input
data is required to determine the confidence level and
interval. Punctuations in a data stream could be used to
present that knowledge to the query.

Arasu et al. [2] specifically address the problem of
unbounded stateful operators. They propose an algorithm
to determine if a given select-project-join query can be
processed in bounded memory for all possible inputs. In
cases where the query can be processed in bounded
memory, their algorithm also produces an evaluation plan
for the query, characterizing the memory requirements.
Their discussion is limited to the select, project, and join
operators and does not address other operators such as
union, set difference, and grouping.

9 CONCLUSIONS AND FUTURE WORK

We have presented a novel way to execute queries on
continuous data streams. Our method improves many
traditional relational operators, specifically targeting block-
ing and unbounded stateful operators. We define stream
iterators as a foundation for our work and describe a
specific framework for modeling stream iterators on
continuous data streams. We define desirable properties
for stream iterators and give proofs that our invariants meet
those properties for two operators and that the correspond-
ing iterators satisfy the invariants.

There is more work to be done in this area. We need to
expand our formal model and prove invariants for more
operators, as well as prove the iterators defined in our
framework satisfy the invariants. We also need to make
more Niagara operators aware of punctuations, to further
show the practicality of our approach.

The punctuations we present here are strict—they say
that no more tuples will arrive matching a punctuation
from the stream. A more relaxed punctuation might tell an
operator that there will not be any matching tuples arriving
after it for an extended time. Operators could use that
information to enhance buffer eviction policies. Tuples that
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are not needed for a while are good candidates for
swapping to disk. For example, the XJoin implementation
[26] might be able to use this kind of punctuation to
determine which partition can be written to disk. Another
kind of punctuation might convey a constraint about the
data that is about to arrive, such as a sort order or a bound
on the range of a particular attribute.

Another use for punctuations is to declare information
about the arriving data, rather than the data that has been
seen. For example, Fegaras et al. [8] use annotations in the
data stream to declare the incoming data structure, and
whether the data fragment following the annotation is a
repeat or an update. One could pursue this direction further
to specify other constraints, such as a sort order over
particular attributes or even attribute domains.

One issue we ran into during the implementation phase
was in evaluating our work. We presented some results that
show output arriving early and decreased state throughout
the execution of the query, but how do we compare our
work to other stream processing systems? How do we know
what “good” performance is? We are designing a bench-
mark for stream processing systems based on the scenario
in XMark [21].

Another interesting direction is to be able to determine,
given a query over a data stream, whether a given
punctuation scheme will be helpful. Stream generators
may be able to output different kinds of punctuation to a
query. We would like to be able to determine which would
be most beneficial.

There is common work with partial evaluation of queries
[13], [23]. Both address applying blocking operators to long
or continuous inputs. Punctuation might be used to help
partial operators communicate output that is “partial”
versus output that is “correct,” or assist in computing
how close we are to the “correct” output.
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