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Abstract

This paper describes the Query Rewrite facility of the Starburst
extensible database system, a novel phase of query optimization.

We present a suite of rewrite rules used in Starburst to transform
queries into equivalent queries for faster execution, and also describe

the production rule engine which is used by Starburst to choose
and execute these rules. Examples we provided demonstrating that
these Query Rewrite transformations lead to query execution time
improvements of orders of magnitude, suggesting that Query Rewrite
in general — and these rewrite rules in particular — are an essential

step in query optimization for modern database systems.

1 Introduction

In traditional database systems, query optimization typically con-

sists of a single phase of processing in which access methods, join

orders and join methods are chosen to provide an efficient plan for
executing a user’s declarative query. We refer to this phase as plan

optimization. In this paper we present a distinct phase of query
optimization, Query Rewrite, which has been impletnented in the
Starburst DBMS [HCL+ 90] to precede plan optimization in the pro-
cessing of a query.

The goal of Query Rewrite is twofold:

1.

2.

Make queries as declarative as possible: In database languages

such as SQL, it is often possible for a poorly expressed query,

though ostensibly declarative, to force typical plan optimizers
into choosing sub-optimal execution plans. A major goal of

Query Rewrite is the transformation of such “procedural” queries

into equivalent but more declarative queries.

Perform natural heuristics: Certain heuristics can be performed
in Query Rewrite and are generally accepted in the literature as
being valuable. A typical example is that of “predicate push-
down”, in which predicates are applied as early as possible in the

query (i.e. they are “pushed” from their original positions into
table accesses, subqueries, views, etc.) Such rules can signifi-

cantly improve query execution time, and while a few of these
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heuristics are done in typical plan optitnizers, they often can be
applied in a more general way during Query Rewrite.

Although it is accepted doctrine that query languages should be
declarative, we shall see in our examples that alternative but equiv-

alent expressions of a query can have widely varying performance,

often differing by orders of magnitude. It is therefore our conviction
that Query Rewrite is an essential step in query optimization, since it
further ensures that the expression of the query will be insignificant
with respect to its performance.

1.1 Queries with Path Expressions

The goals of Query Rewrite explained above are even more signifi-
cant in Object Oriented applications, which typically generate com-

plicated queries with “path expressions” connecting various collec-

tions of objects [BTA90, LLOW91, LLPS91]. In such applications,

both the complexity of the logic and the volume of the data are far

greater than in traditional DBMS applications ~SS88]. As a resul~
query optimization becomes increasingly important.

The following is an example of a query involving ath expres-
rsions, using the Object SQL syntax defined in [BTA90]. This query

is a small variation of an example presented in [BTA90]. The ex-
ample database contains records of patients. Medical records are set

afti”bufes of patients. All accesses to data are via methods. Given
a patient’s record, the medical records are returned by the function

getmedicaJ-records. The example retrieves male patients who have

been diagnosed with malaria or smallpox prior to ‘10/10/89’. The

FROM clause enumerates the patients and the WHERE clause re-

stricts the patients to males and checks for the existence of a malaria
or smallpox diagnosis prior to a given date.

SELECT DISTINCT P
FROM Patient p IN Patient_Set

WHERE p.sex == ‘male’ &&
EXISTS ( SELECT r

FROM Medicrd.xecord r IN p.getmedical-recordo
WHERE r.get_dateo < ‘10/10/89’ &&

( r.get-diagnosiso == ‘Malaria’ II
r.get-diagnosiso == ‘Smallpox’ );

Queries such as this essentially involve path expressions in which,

given a record, the related information is obtained through a path
(e.g., getting the medical records of a patient). Queries involving

path expressions are very common in complex applications such as
CAD/CAM. In general, many path expressions may be involved in
a query, and each may have a length of more than one. Finding
an efficient execution plan for such path expressions is a problem
very similar to that of optimizing (nested) SQL subquenes. The

above query is commonly executed by enumerating the male patients,

*This is a proposal for a standard 00 query
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and checking the medical records for each patient testing for the
predicates on date and diagnosis. This amounts to a nested-loop join,
with the join order dictated by the user — the subquery is necessarily
the inner of the join. However, if there are a large number of male

patients, this could be very inefficien~ since most of the records
accessed are not qualified. Assuming both smallpox and malaria are

rare diseases, the performance of such a query can be improved by
orders of magnitude by first searching the medical records through

an index on the diagnosis attribute of the medical records, and then

finding the associated patients. This basically requires converting
such queries to joins if possible, which can then be executed by a
greater variety of plans.

Changing the join order in the above example improves the per-

formance considerably, but has an undesirable side-effect. A given
patient may have been diagnosed with both smallpox and malaria,
and for each diagnosis, the associated patient record is sent to the
outpu~ resulting in duplicate patient records in the output. This is

not correc~ for example, this would cause the wrong result to be
given by a query that counted the output records of the above query.

Duplicates may occur even without query transformations. Du-
plicate records frequently appear in base or intermediate results in

applications, and are of great significance to queries involving ag-

gregate functions, such as a query requesting an average of values of

some column. Duplicates are part of SQL [1S091 ] and 00 models
such as ~LOW91 ] (as “bags of objects”). The need and importance

of having duplicates in a realistic implementation is widely recog-
nized, particularly in relational DBMSS (RDBMSS). Hence, careful
treatment of duplicates is essential, and is one focus of the work
presented in this paper.

1.2 System Design

Naturally we do not propose to find an optimal expression of a query,

just as traditional plan “optimizers” do not find an optimal execu-
tion plan for a query. Rather, we have built a set of Query Rewrite

heuristics, expressed as production rules, which work together to

address both of the rewrite goals stated above. These production

rules are controlled by a rule engine written for the purpose and inte-

grated into Starburst. Our rule system design has been instrumental

in facilitating our experimentation with que~ transformations for
two reasons. Firs~ the rule system paradigm has made it easy for

us to exploit the complicated triggering interactions between rewrite
rules, saving us from the task of explicitly laying out the flow of
control between rules. This is often cited as a dangerous complexity

of rule systems ([ZH90], ~as90], ~91], etc.) but in our exper-

ience has been not only manageable but inherently useful. Second,
a rule system is an excellent platform for extensibility, one of the

key goals of Starburst’s design. This extensibility has allowed us
to write and test dozens of que~ transformations over the past two

years, including those presented in this paper, magic sets transfor-

mations [MFPR90~ MPR90, MFPR90b], and numerous others.

As we shall see, the roles presented in this paper demonstrate
that Query Rewrite can often speed up query execution by orders of
magnitude, suggesting that query transformation schemes form anpe
area of research. Our extensible Query Rewrite system is designed
with this in mind, and we expect to continue adding transformations

to it.

1.3 Related Work

Designers of early RDBMSS such as System R [ABC+ 76] and IN-
GRES [SWK76] recognized the importance of merging views, and

achieved this under limited circumstances. In spite of the acknowl-
edged importance of such transformations, few systems have ex-
panded upon these early transformation designs.

Kim [Kim82] originally studied the question of when quantified
subquenes could be replaced by joins (or anti-joins). Ganski and
Wong [GW87] and Dayal [Day87] did additional work on eliminat-

ing nested subqueries. These papers recognize the importance of
merging of subquenes. [Kim82, GW87] also deal with subqueries
containing aggregation. We have reported our set of rules that deal
with such subquenes in [MFPR904 MPR90, MFPR90b].

Ganski’s paper illustrates the complexity of query rewrite, since it

has to emend some previous transformations which were incorrect.
This complexity supports our approach of decomposing transforma-

tions into an extensible set of distinct rules, such that each rule can
be shown to be correct separately.

We have paid particular attention to language orthogonality.

Hence, operations such as UNION, INTERSECT, and EXCEPT
(SQL’s equivalent of set difference) may appear in subqueries, as is

required by the SQL2 standard [1S091 ]. The work mentioned above
does not deal with these more complicated subquenes. Furthermore,

our rules guarantee the merge of existential subquery conjuncts con-
sisting of restriction, projection and join. This is partially due to our
careful treatment of duplicates.

Anfindsen [AnfS9] also has done a study of subquery transfor-

mations using IBM’s DB2 RDBMS for performance measurements.
Like us, Anfindsen reports orders of magnitude improvement in per-

formance. However, [AnfS9] restricts itself to those transformations
which result in a SQL que~ that can be handled byDB2. In contrast

our approach is an internal and integrated part of an RDBMS, taking
advantage of a richer internal language, and hence allowing for con-

siderably more optimization. Anfindsen defines a concept similar

to our one-tuple-condition, explained below, and gives sufficient
conditions for which it is satisfied.

Many extensions have been added to Starburst [LLPS91], includ-
ing XNF, a system supporting complex object queries which often
generates extremely complicated SQL queries. Our Query Rewrite
system has withstood the test of being used by these extensions, and

in fact is key to making some of them work efficiently.

The work presented here should not be confused with the query
rewrite facility of POSTGRES [SJGP90]. POSTGRES’s query

rewrite is part of an implementation for an active database. In POST-

GRES, one can define a rule stating that certain incoming queries

should perform additional or entirely different actions from what the
user has specified. In some situations, POSTGRES implements this

notion by rewriting the user’s que~. Note well that POSTGRES’s
query transformations are intended to change a query’s scman[ics,

not its performance. For example, POSTGRES’s rewrite may be
used to implement user-defined semantics for update of views. In

contras~ our emphasis is on transformation for the purpose of opti-

mizing query execution.

An earlier design of the Starburst Query Rewrite rule system is

reported in [HP88].

1.4 Structure of the Paper

Section 2 presents the abstract representation of queries used by

the rewrite rules. The rules themselves are presented in Section 3.
Section 4 describes the rule engine designed for Query Rewrite.

Summary and conclusions appear in Section 5.

2 Starburst’s Query Graph Model

Queries are internally represented in a Query Graph Model (QGM).
The goal of QGM is to provide a more powerful and conceptually
more manageable representation of queries in order to reduce the

complexity of query compilation and optimization. QGM supports
arbitrary table operations, where the inputs are tables and outputs are
tables. Examples of operations are SELECT, GROUP BY, UNION,

INTERSECT and EXCEPT. The operation SELECT is that part of
Starburst SQL which handles restriction, projection and join.

We present the QGM graph through an example. Suppose we

have the following SQL query:
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q4, the predicate represented by the edge between q2 and q4 is true.

In Box 3, ql and q2 participate in joins, and their columns are used

in the output tuples. These quantifiers have type F, since they come
from the query’s FROIkfclause. Quantifier 4 has type A, representing
a universal (ALL) quantifier. SQL’s predicates EXISTS, IN, ANY
and SOME are true if at least one tuple of the subquery satisfies

the predicate. Hence, all of these predicates are existential, and
the quantifiers associated with such subqueries have type E. Each
quantifier is labeled with the columns that it needs from the table it
ranges over.

Box 4 represents the subquery. It contains an F quantifier q3 over

/QuANT’F’ER’hFH
the quotations table, and ha; a predicate that refers-to q2 and q3.

The body of every box has an attribute called distinct which

has a value of ENFORCE, PRESERVE or PERMIT. ENFORCE
: means that the operation must eliminate duplicates in order to enforce

SELECT: headOdi5tinct = TRUE. pRESERvE ~ean5 that the operation can

(1) ~~ i“ve.tory
. . . . . . . . . . . ..

. . . . . . . . . . . . . . . . . . . . . . .

Figure 1:

SELECT DISTINCT ql.

.................... ...

Example QGM graph

partno, ql .descr, q2.suppno
FROM inventory ql, quotations q2
WHERE ql .partno = qz.partno AND ql .descr=’engine’

AND q2.price ~ ALL

( SELECT q3.price FROM quotations q3
WHERE q2.partno=q3.partno);

This query gives information about suppliers and parts for which
the supplier price is less than that of all other suppliers. Figure 1

shows the QGMfor this query. The graph contains four boxes. Boxes

1 and 2 are associated with base tables invenfory and quotations. Box

3 is a SELECT box associated with the main part of the query, and

Box 4 is a SELECT box associated with the subquery. Each box has
a head and a body. The head describes the output table produced by

the box, and the body specifies the operation required to compute

the output table. Base tables can be considered to have empty or

non-existent bodies.

Let’s study Box 3. The head specifies output columns partno,
descr and suppno, as specified in the select list of the query. The

specification of these columns includes column names, types, smd
output ordering information. The head has a Boolerm attribute called

distinct which indicates whether the associated table contains only

distinct tuples (head.distinct = TRUE), or whether it contains dupli-

cates (head.distinct = FALSE).

The body of a box contains a graph. The vertices of this graph
(dark circles in our diagrams) represent quantified tuple variables,
called quantifiers. In Box 3, we have quantifiers gl, q2, and q4.
Quantifiers ql and q2 range over the base tables inventory and quo-
tations respectively, and correspond to the table references in the

FROM clause of the SQL query. Note that nodes ql and q2 are
connected via an inter-box edge to the head of the inventory and
quotations boxes. The edge between ql and q2 specifies the join
predicate. The (loop) edge attached to ql is the local predicate on
ql. In fac~ each inter-quantifier edge represents a conjunct of the
WHERE clause in the query block — the conjuncts being repre-
sented in the diagram by the Iabelled rectangle along the edge. Such

edges are also referred to as Boolean factors [SAC+79]. Quantifier

3 is a universal quantifier, associated with the ALL subquery in the
WHERE clause. This represents that for all tuples associated with

preserve the number of duplicates it generates. This cou~d be because

head.distinct = FALSE, or because head.distinct = TRUE and no
duplicates could exist in the output of the operation even without
duplicate elimination. PERMIT means that the operation is permitted

to eliminate (or generate) duplicates arbitrarily. For example, the
dishirct attribute of Box 4 can have the value PERMIT because its

output is used in a universal quantifier (q4 in Box 3), and universal
quantifiers are insensitive to duplicate tuples. This will be covered

in more detail in Section 3.

Like each box body, each quantifier also has an attribute called

distinct which has a value of ENFORCE, PRESERVE or PERMIT.
ENFORCE means that the quantifier requires the table over which it
ranges to enforce duplicate elimination. PRESERVE means that the
quantifier requires that the exact number of duplicates in the lower

table be preserved. PERMIT means that the table below may have an
arbitrary number of duplicates. Existential and universal quantifiers

can always have distinct = PERMIT, since they are insensitive to
duplicates.

In the body, each output column may have an associated expres-

sion corresponding to expressions allowed in the select list of the
query. In Figure 1, all of these expressions are simple identity func-

tions over the referenced quantifier columns.

SQL2 has table expressions, which are similar to view definitions,
and can be defined anywhere a table can be used. In Starburs4

table expressions and views, just like queries and subqueries, have a

QGM, with one or many boxes, and become part of the QGM graph

of queries referring to them.

The output of a box can be used multiple times (e.g., a view

may be used multiple times in the same query), creating common
subexpressions. Recursive queries create cycles in QGM. As the

size of the graph grows, the cost of optimization also grows. The

number of QGM boxes in a query typically ranges from 2 to 10. For

much more complex queries, such as those produced by XNF, this

number oflen ranges from 10 to 100.

2.1 Environment for Performance Measurements

It is not uncommon for queries to take hours or even days to com-
plete. Query Rewrite can improve performance by several orders of
‘magnitude ——in many cases converting an over-night query to an

interactive one. We will be demonstrating this fact during the course
of the discussion by measuring the performance effect of our rewrite
rules on vurious queries. In this section we present the environment
used for these measurements.

A comprehensive performance evaluation requires a definition of
a benchmurk database and a set of queries for a particulm work-
load. We focus on a complex query workload (involving subqueries,
views, etc), rather than a transaction workload, where queries are

relatively simple. There is no accepted standard complex query
workload, although several have been proposed ([TOB89, O’N89]).

To measure the performance effect of the rewrite rules, we employ a



uTable I Tuple Size #Tuples I #4K Pgs I #Indices u
Itm 34 170000 I 1850 1
itl 78 2550000 57980 2

itp 43 339440 4250 3

Dur 398 128000 11640 1

II wor 119 120000 \ 4000 1

Table 1: Benchmark Database

version of the IBM DB2 benchmark database described in ~oo86],

scaled up by a factor of 10.

The DB2 benchmark database is based on an inventory tracking
and stock control application. Workcenters have locations (Iocatn).

Items (itm) are worked on at locations within workcenters, and the
table itl captures this relationship. The record of the items worked

on by a particular employee is captured in table wor. Each item may

have orders (itp). Some physical characteristics of the database are
shown in Table 1.

Since Starburst’s Quety Rewrite system can produce SQL repre-

sentations of its output we can easily measure its effects on a widely-
used commercial DBMS. This allows us to demonstrate the general

applicability of Query Rewrite to typical DBMSS, not just Starburst.
Our performance measurements were done on the DB2 relational
DBMS. We measured the elapsed time (total time taken by system to
evaluate the query), and CPU time (the time for which CPU is busy)
of each query both before and after applying the rewrite roles. Both

representations of the query went through the usu al DB2 query com-

pilation process, including plan optimization. Performance figures

for several of the queries we measured are given in Section 3.

3 A Suite of Rewrite Rules for Guaranteeing

SELECT Merge

In designing our rewrite engine and rules, we attempted to abide by

the following:

Rewrite Philosophy
Whenever possible, a query should be conver~ed to a single

SELECT operator.

A single SELECT operator ranging over base tables represents

the prototypical relational query, involving straightforward restric-
tion, projection, and join. There are a variety of high-performance

algorithms for executing such queries, and methods for choosing

among these are well understood. Also, as noted above, more com-
plex queries often force the plan optimizer into choosing a particular

plan — for example subqueries force particular join methods and
orders, and views (as we shall see) unnecessarily restrict the possible

join orders for the query. Finally, plan optimizers typically can only
make decisions based on the environment of a single query block
(i.e. a single QGM box). As a resul~ multi-operator queries usually
do not result in optimal plans, and should be converted to single

SELECT operators whenever possible. There are, of course, many
optimization that can be applied to SELECT operators Memselves.
But we consider conversion to a single SELECT, when possible, to
be among the most important goals of query transformation.

As a result. we focus in this paper on those rewrite rules in Star-

burst which are used to guarantee that all views (table expressions)
and existential subqueries are merged whenever possible. The only
queries in Starburst which do not get rewritten as single SELECT
queries are those which contain non-existential or non-Boolean fac-
tor subqueries, set operators,2 aggregates, 01 user-defined extension
operators (such as OUTER JOIN). The system allows rewrite rules

aEven some of these get converted to a single SELECT, as we

shall see!

GE’
( DISTPDFR )

Figure 2: Triggering Interactions Between Rules

if@ a SELECT box (upper box)
a quantifier has type F

AND ranges over a SELECT box (lower box)
AND no other quantifier ranges over lower box
AND

( upper.head.distinct = TRUE
OR

upper.body.distinct = PERMIT
OR

lower.body.distinct != ENFORCE))

{merge the lower box into the upper box;

if ( lower.body.distinct = ENFORCE

AND upper.body.distinct != PERMIT)

{upper.body.distinct= ENFORCE;}}

Table 2: Rule 1 — SELMERGE

to be defined for such queries as well, so even though these are not
converted to a single SELECT, they are often subject to some useful
transformation. For example, Rosenthal [RGL90] defines a set of
such transformations for outer join.

In this section we will describe the set of rules in Starburst which

lead up to the merger of SELECT boxes. In Figure 2 we show the
dependencies among the roles, particularly when the execution of one

rule (at the tail of an arrow) can cause another (at the arrow’s head)

to have its condition satisfied. We make no claim to be exhaustive

in presenting these dependencies. The goal is rather to present the
most important dependencies as an illustration of the utility of each

rule in causing the merger of SELECT boxes. Since the goal of this
suite of rules is the merger of SELECT boxes, the “SELECT merge”

(SELMERGE) rule presented first will be transitively dependent
on each of the other rules here, and will form the focus of our

measurements.

Before proceeding it should be noted that the number of rules we
require is kept tractably low by enforcing locality of reference: each
rule is written with reference to a specific context (e.g. a box, or a
quantifier), and as a result rules which involve more than one box can

be written in a box-by-box tnanner, rather than a paired-box manner.
This keeps the number of rules on the order of the number of box
types, rather than the square of that number or worse. We shall see

many examples of rule locality in the suite of rules presented here,

and in the next section we will see how our rule engine supports it.

3.1 Rules to Guarantee View Merge

Rule 1. SELECT Merge

The SELMERGE rule (Table 2) takes two SELECT boxes con-
nected by an F quantifier (e.g. a query over a view) and merges them

42



into one box. The benefit of this transformation is that it makes more

join orders possible; in the resulting single SELECT box the plan

optimizer can choose as a join order any permutation of the tables

under F quantifiers, whereas in the original query the tables refer-

enced in the table expression (lower box) could not be interleaved
with those of the box above. Note that if we can apply this rule to all

boxes in a que~, we end up with a single SELECT box, so this rule
leads directly to the realization of our Rewrite Philosophy. In order
to exploit the utility of this rule, the rest of the rules in this section
will attempt to make the condition of this rule satisfied in as many

situations as possible.3

The issue of duplicates forces us to introduce some complexity
to ensure the rule’s correctness. Ignoring duplicates for a momen~
it should be clear why this rule works: it follows directly from the

commutativity of joins and predicate applications. Since joins and

predicate applications are commutative, we can interleave those of

the lower and upper boxes, which is equivalent to saying that we can
merge the two. This argument applies directly to the case in which

neither the upper nor the lower box removes duplicates.
Some analysis is required to see that this rule handles duplicates

correctly. We break down the cases for duplicates and argue the
correctness of each case:

●

●

b

upper. head. distinct = TRUE This can happen in one of two

ways:

- If upper. body. distinct= ENFORCE, then any duplicates pro-
ducedby the lower box in the original query will be removed
by the upper box, and thus no duplicates are lost or intro-

duced by the merge.

- If upper. body. distinct = PRESERVE, then all the F quan-
tifiers in the upper box produce sets without duplicates.
If lower body. distinct = PRESERVE then we can simply

merge the lower box into the upper box, without any effect

on duplicates. If lower. body. disdrrct = ENFORCE then we

must set upper. body. distinct to ENFORCE to ensure that

no duplicates will be produced after merge occurs. Note
that we cannot have lower. body. disdrrct = PERMIT — if

we did, then the lower box could produce as many dupli-
cates as it found convenien~ meaning that we could not
have upped]ead.distitrct = TRUE and upper. body, distinct =
PRESERVE, a contradiction.

uppenbody.distinct = PERM~ In this case we may ignore the

issue of duplicates by definition.

Jower.body.disdnct != ENFORCE In this remaining case,
the previous two conditions must be false, i.e. we know

that upperhead.distinct = FfiSE and uppe~body.distinct =

PRESERVE. As a result we cannot merge the boxes if

lowe~body.distinct = ENFORCE, since we would be unable in
a single box to remove the duplicates from the quantifiers of the

lower box, and preserve those of the remaining quantifiers of the
upper box. However, if lowe~ body. distinct != ENFORCE we

need not worry about this issue, and thus can merge.

Note that the only cases in which we cannot apply SELMERGE
to two SELECT boxes connected by F quantifiers are when the
lower box has multiple quantifiers ranging over i~ or when up-

per.head.distincf = FUSE, upper. body. distinct = PRESERVE and
Jower.body.distinct = ENFORCE. We shall see that these cases are

handled by the BOXCOPY and ADDKEYS rules respectively, guar-
anteeing that SELMERGE will eventually get to be executed.

We have chosen a relatively simple query to measure the effect
of the above rule in the performance environment explained in Sec-

tion 2. In practice, queries are typically more complicated, and the

3As noted in [HP88], the importance of triggering this rule is

emphasized when we remember that early relational systems such as
System R supported only mergable views.

Query CPU Time Elapsed time

Before Rewrite 20 min 34.51 sec 24 min 19.80 sec

After Rewrite O min 1.10 sec O min 7.20 sec

Table 3: Example 1, Before and After Rewrite

if ( in a SELECT box

either quantifier-nodup-condition
or one-tuple-condition
holds for all F quantifiers)

{ head.distinct = TRUE;

body.distinct = PRESERVE;}

Table 4: Rule 2 — DISTPU

merge rule only becomes applicable after many of the rules enu-

merated below are applied. Although this example is simple, many
commercial DBMSS miss this optimization.

Consider a view which gives the item number and vendors for
an item which vendors have supplied since the year 85. This view

is used in a query which gives information about certain items and
their vendors.

Example 1.
CREATE VIEW itpv AS
( SELECT DISTINCT itp.itemn, pur.vendn

FROM itp, pur
WHERE itp.ponum = pur.ponum AND pur.odate >’85 ‘);

SELECT itm.itmn, itpv.vendn FROM itm, itpv

WHERE itm.itemn = itpv.itemn

AND itm.itemn > ‘O1‘ AND itm.itemn < ‘20’;

The rewrite logic first recognizes that the result of the query is
DISTINCT by applying the DISTPU rule explained below. Then the
merge rule is applied. The resulting query is:

SELECT DISTINCT itm.itmn, pur.vendn

FROM itm, itp, pur
WHERE itp.ponum = pur.ponum AND itrn.itemn = itp.itemn

AND pur.odate >’85’
AND itm.itemn ~ ’01’ AND itm.itemn < ‘20’;

As a result of merging the view with the query, the plan optimizer
can use an index to access the tables within the view, and therefore it

chooses a plan which exploits this fact while doing a join on behalf

of the query. The results of executing this query with and without

rewrite are shown in Table 3. After applying the rewrite rule, we get
an 1100x improvement in CPU time (and hence in pathlength) and

a 200x improvement in the elapsed time.

Rule 2. Distinct Pulhsp
In the DISTPU rule (Table 4) a SELECT box upper infers that no

duplicate elimination is needed to guarantee that its output tuples are
distinct. It does this by isolating the following properties:

o one-tuple-condition: given a quantifier and a set of predicates,

this condition is TRUE iff at most one tuple of the quantifier
satisfies the set of predicates.

● quantifier-nodup-condition: given an F quantifier in a SE-
LECT box, this condition is TRUE iff at least the primary key
or a candidate key of the F quantifier appears in the output.

Upper must find that either quantifier-nodup-condition or one-
tuple-condition holds for each of its F quantifiers and their asso-
ciated predicates. If this is not true of some F quantifier, then the
projection of the Cartesian product of the boxes below will have
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/“ DISTPDFR */
if ( in a box with type SELECT, UNION,

INTERSECT or EXCEPT,
body. distinct = PERMIT or ENFORCE)

{ for (each F quantifier in the body)
quantifier. distinct = PERMI~}

/* DISTPDT() */

if ( in a box with type SELECT, UNION,
INTERSECT or EXCEPT,
all quantifiers ranging over the box
have quantifier.distinct = PERMIT)

{body.distinct = PER~}

Table 5: Rule 3 — DISTPDFR/DISTPDTO

duplicates, and upper must remove them; if one of the two condi-
tions is true for each F quantifier in upper, then the projection of the
Cartesian product will have no duplicates.

Note the “locality” of this rule – in writing the rule we need not
worry about the type of the boxes below us, rather we focus on the

F quantifiers over those boxes.

Rtrle 3. Distinct Pushdown From/To

In this pair of rules (Table 5), a box informs the boxes under it

that it does not require them to eliminate duplicates. It does so by

“pushing” the distinct attribute ji-om itself to the boxes below it.

This may save the lower boxes below from needing a sort or hash

for duplicate elimination, and may also allow the lower boxes to be
subject to rules which can introduce duplicates (such as EtoF below.)

For the DISTINCT set operators (UNION, INTERSECT, andEX-

CEPT) the DISTPDFR rule is correct because of the semantics of
duplicate elimination in those operators. The DISTINCT set opera-
tors are defined as removing duplicates from all their inputs before
any further processing [1S091]. Thus these boxes will disregard any
duplicates produced by boxes below them, and can safely signal this
by pushing DISTINCT down along their quantifiers.

In the case of a SELECT box with body.distinct = PERMIT, we do

not worry about the issue of duplicates. To seethe correctness of the

DISTPDFR rule for a SELECT box with body.distinct = ENFORCE,

it suffices to notice that any tuple resulting from such a box is a
projection of the concatenation of tuples tl,....tnfiorn the n inputs
(under F quantifiers) to the box. Regardless of how many copies of

each t,there are in the corresponding input table i, no more than one
tuple projected from tl . . . . . tn will be in the output of the SELECT

DISTINCT box. Thus each input can safely remove or introduce
duplicates without affecting the output of the SELECT box above.

The DISTPDTO rule is quite simple — if all boxes ranging over
a given box indicate their indifference to the number of duplicates

produced by their inputs, then that box may introduce or remove du-

plicates at will, and hence can set its body’s distinct flag to PERMIT,
and its head’s distinct flag to FALSE.

Note the use of mle locality here: the task involves two boxes, and
thus is broken into two separate rules, with the information passed via
the quantifier between the boxes. Each operator need only concern
itself with its own behavior in the activity of pushing down the
DISTINCT attribute, and need not know anything about the other
operators involved in the activity. Note further that if processing
halts after DISTPDFR but before DISTPDTO (as can happen in our
rule engine, see below), the QGM is still consistent and valid.

Rule 4. E or A Distinct Pushdown From

This rule (Table 6) is a special case of distinct pushdown “from”,
which exploits the fact that existential and universal quantifications

are blind to duplicates. That is, the number of tuples in a subquery

if ( in a SELECT box
a quantifier has type = E or A)

{quantifier.distinct = PERMIT}

Table 6: Rule 4 — EorAPDFR

if ( in a SELECT box

more than one quantifier

ranges over the box)
{ Make a copy of the box;

Take one of the quantifiers
ranging over the original box

and change it to range over the new copy;}

Table 7: Rule 5 — BOXCOPY

which satisfy the existential predicate is insignifican~ existential
predicates merely require that one of the tuples of the subquery

match. Similarly the number of duplicates in a subquery has no
bearing on a universal predicate; either all tuples in the subquery
match the universal predicate, or not all do.

Example 2.

CREATE VIEW richemps AS

( SELECT DISTINCT empno, salary, workdept

FROM employee

WHERE salary > 50000);

SELECT mgrno FROM department dept
wHERE NOT (EXISTS (

SELECT * FROM richemps rich, project proj
WHERE proj.deptno = rich. workdept

AND rich.workdept = dept. deptno));

This example returns those managers who have no rich employees
in their department. By applying EorAPDFR and DISTPDTO, we
make the subquery have body. distinct = PERMIT, which results in

the view richemps being merged into the subquery. After rewrite,
the query is:

SELECT mgmo FROM department dept

WHERE NOT (EXISTS (
SELECT * FROM employee emp, project proj

WHERE proj.deptno = emp.workdept

AND emp,workdept = dept.deptno

AND emp.salary > 50000));

Rule 5. Common Sttbexpression Replication
This rule (Table 7) breaks common subexpressions in a QGM by

replicating them. Doing so can allow one or both of the resulting
boxes to merge.4

Rttle 6. Add Keys
Given two SELECT boxes upper and lower, such ttrat lower is

ranged over only by an F quantifier in upper, ADDKEYS (Table 8)
guarantees that upper and lower will be merged. It does so by

modifying any SELECT box which preserves duplicates to be able
to safely eliminate duplicates. We achieve this by adding “key”
columns (or unique tuple ID’s) to the inputs, which are passed up
into the SELECT box. Once this is done, we can eliminate duplicates

from the SELECT box without any effect since each tuple in the

41f queries are correlated, the copy logic is more complicated.
This issue is beyond the scope of this paper, but is treated correctly
in Starburst’s version of this rule.
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if ( in a SELECT box

head. distinct = FALSE)

{ for(each F quantifier)

if ( the key of the F quantifier

does not appear in the output)

{ Add the key to the head;

head.distinct = TRUE;} }

Table 8: Rule 6 — ADDKEYS

box has a unique key formed by the concatenation of the keys of the

inputs.
Again, note the “locality” of this rule-boxes below are referenced

by the F quantifiers which range over them, and thus the types of the
boxes below become insignificant.

In the following example, a view is declared, giving distinct nego-
tiated prices of ordered items. The query uses the view to calculate
the negotiated price for each item type.

Example 3.

CREATE VIEW itemprice AS
( SELECT DISTINCT itp.itemno, itp.NegotiatedPrice

FROM itp
WHERE NegotiatedPrice > 1000);

SELECT itempnce.NegotiatedPrice, itm.type

FROM itempnce, itm

WHERE itemprice.itemno = itm.itemno;

The ADDKEYS rule is applied to the (upper) SELECT box of

the query, allowing SELMERGE to merge the view item price into
the query. Note that SELMERGE changes the query’s body. disfincf

attribute to be ENFORCE, thus removing the duplicates originally
removed in the view. The resulting query is:

SELECT DISTINCT itp.NegotiatedPrice, itm.type, itm.itemno
FROM itp, itm

WHERE itp.NegotiatedPrice >1000 AND itp.itemno = itm.itemno;

This SQL representation of the rewritten query does not exactly

capture the semantics of the transformed QGM. In the actual rewrit-
ten query, the output column itm.itemno is used during duplicate
elimination, but its values are not delivered to the output of the

query.

3.2 Guaranteeing Existential Subquery Merge

The rules in the previous section guarantee that SELECT boxes

get merged whenever the only quantifiers over the lower box are
F quantifiers. The following rule attempts to facilitate merging by

creating this situation as often as possible. In particular, we shall
see that the next rule guarantees the merger of existential subquery

conjuncts and the SELECT boxes above them.

Rule 7. E to F Quantifier Conversion
In this rule (Table 9) we convert Boolean factor existential sub-

quenes to table expressions, by changing the type of quantifier over

the subquery from E to F. Note that the ADDKEYS rule guarantees
that the condition of this rule will eventually be satisfied for all such

subquenes. As noted above, converting a subquery to a table ex-

pression (and hence a member of a join) increases possible orders
of join execution. It may also allow for additional merging, if the

subquery is another SELECT box.
This rule is the QGM equivalent of a rule proven correct

in [Day87].5 We do not prove its correctness here, but an intuition of

5The exact rule is Semijoin ( R, S; J) = Deh-pmjecf(hin

if ( in a SELECT box

there is a quantifier of type E

forming a Boolean factor

AND

( head.distinct = TRUE

OR

body. distinct = PERMIT
OR

one-tuple-condition))
{ set quantifier type to R

if ( one-tuple-condition is FALSE
AND head.distinct = TRUE)

{body.distinct = ENFORCE;}}

Table 9: Rule 7 — EtoF

Query CPU Time Elapsed time

Before Rewrite 88 min 01.25 sec 91 min 49.20 sec

After Rewrite 2 min 42.97 sec 6 min 24.60 sec

Table 10: Example 4, Before and After Rewrite

the rule’s correctness can be seen by considering the two-quantifier

case. As an example, consider the following query, which gives the

order information for items built at certain locations and worked on

at certain workcenters. Note that the itp table has a key, and hence
contains no duplicates.

Example 4.
SELECT * FROM itp

WHERE itp.itemn IN

( SELECT itl.itemn FROM itl
WHERE itl.wkcen = ‘WK468’ AND itl.locan = ‘LOCAOOOIN’]

In order to execute this query we must output one copy of a tuple
from itp iff there is at least one tuple in itt. itemn which satisfies the

appropriate predicates. If we apply DISTPU to convert this subquery
to a table expression, and then apply SELMERGE, we get a single

SELECT query, i.e.

SELECT DISTINCT itp.* FROM itp, itl

WHERE itp.itemn = itl.itemn
AND itl.wkcen = ‘WK468’ AND itl.locan = ‘LOCAOOOIN’;

In the transformed query, we output one copy of a tuple from

itp x itl such that the appropriate predicates are satisfied (including
“itp.itemn = itl.itemn”, which was implied previously by the “IN”

construct). Since all columns from itl are projected away and du-
plicates are removed, this produces the same results as the original

query.

The above example is from the performance environment ex-
plained in Section 2. The results of the performance measurements
are shown in Table 10. After rewrite we get a 32x improvement
in CPU time and a 14x improvement in elapsed time. d During

transformation, the DISTPU rule recognizes that the result of the
query is distinct. Then the EtoF rule converts the subquery to a table

expression, without adding any extra keys to the outpu~ since it has

already recognized that the output is distinct. Then the SELMERGE

rule merges the table expression, greatly enhancing the performance
of the query.

We can now observe why Boolean factor existentird subqueries
over SELECT boxes are guaranteed to merge. Consider any SE-

(A?, ~ .7); R.*). We actually generalize slightly hereby isolating
the case where one-tuple-condition is satisfied.

‘Again, many RDBMS, including the commercial ones, are un-
able to perform this optimization.
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if ( in an INTERSECT box
body.distinct != PRESERVE)

{ set the box to be of type SELECT
choose an arbitrary quantifier Q1;

/* Q1 will keep type F *I
for ( each quantifier Q != Q1 in the box)

{ Q.type = E;
add the predicate

EXISTS(SELECT * FROM Q
WHERE

Q1.cl = Q.cl
AND Q1.c2 = Q.c2
AND ...

AND Q1.cn = Q.en);}}

Table 11: Rule 8 — INT2EXIST

LECT box upper with a Boolean factor SELECT subquery (i.e. a SE-

LECT box lower over which it ranges with an E quantifier). Because

of the EorAPDFR and DISTPDFRf10 rules, we can assume that the

subque~ has body. distinct = PERMIT. Now, we want to be able to
tire theEtoF rule, but we cannot do so if upper. head. distinct =FALSE,

uppe~ body. distinct = PRESERVE and the one-tuple-condition does
not hold for the quantifier between the two boxes. In this case, we can
apply the ADDKEYS rule to force upper. head. distinct = TRUE, and
at that point we can apply EtoF. After EtoF is applied, we have up-

per ranging over lower with an F quantifier, and lower. body. distinct
!= E~ORCE, so the conditions for sELMERGE are satisfied, and

lower can be merged into upper.

Rule 8. INTERSECT to Exists

This rule (Table 11)converts a set INTERSECT operator (which

may be n-ary) into an existential subquery, which can subsequently
be converted (via EtoF and SELMERGE) into a single SELECT box.
Typically, RDBMSS execute the INTERSECT operation by sorting
the operands and then merging them. This method of execution is a
variant of the sort merge join. We rewrite the INTERSECT operation
as a join, and therefore benefit from other join methods besides

sort-merge. This can improve the performance by many orders of

magnitude, and hence is an essential query transformation.7

Recall that the semantics of SQL’s INTERSECT operator are to
first remove duplicates from the inputs and then send to the output

one copy of every tuple that appears in all of the inputs. This is

equivalent to choosing any one input and sending to the output one
copy of each of its tuples which appears in all other inputs. This

rule simply captures that equivalence — it produces a SELECT
DISTINCT box with one F quantifier (the arbitrarily chosen input)
and E quantifiers over all other inputs, which filter out tuples of
the F-quantified input that do not have a match in all of the other

inputs. Note that matching tuples require the large conjunction in
the predicate of the subquery — tuples must match on all columns

to be equals

As an example, consider the following query which finds the
intersection of the items that employee 1279 works on and the items
that are scheduled to be worked on in workcenter WK195 on date

9773.

7A similti rule @xc2NEXIST) exists in Starburst for converting

an EXCEPT operator into a negated existential subquery, which can
subsequently be involved in SELECT merge.

8This can be simplified by including in the conjunction only the
key columns of the tables.

D Query CPU Time I Elapsed time 0
Before Rewrite I 9.65 sec I 13.92 sec ]]

II After Rewrite I .42 sec I 1.77 sec II

Table 12: Example 5, Before and After Rewrite

Example 5.
SELECT items FROM wor
WHERE empno = ‘EMPN1279’

INTERSECT
SELECT itemn FROM itl
WHERE entry.tirne = ‘9773’ AND wkctr = ‘WK195’;

The intersect rewrite rule converts the query to an existential
subque~, which in turn is converted to join by the EtoF rule, and

merged by the SELMERGE rule. The que~ after rewrite is:

SELECT DISTINCT itemn FROM itl, wor

WHERE empno = ‘EMPN1279’ AND entry-time= ‘9773’
AND wkctr = ‘WK195’ AND itl.itemn = wor.itemn;

The results of executing this query with and without rewrite are

shown in Table 12.9 After conversion to join, the plan optimizer
considers both merge join and nested loop join methods. Due to
the presence of an index on the join column, itemn, nested loop is
chosen, resulting in much better performance.10

4 The Rule Engine

In keeping with the extensibility goals of the Starburst project it
was decided that a rule system was the appropriate platform for

allowing query transformations to be easily added to the system,

and subsequently reordered or modified. Existing rule engines did

not appear to be appropriate for our needs, and thus we designed
our own. As will become apparent in the following discussion, we
required numerous capabilities not available in typical rule systems
(such as 0PS5 [BFKM85]). Starburst’s Query Rewrite rule engine

incorporates the following features:

1.

2.

—

Rules of Arbitrary Complexity: Rules in our engine are pairs

of functions in a procedural language such as C: a condition

function, which does an arbitrary check and sets a flag TRUE or

FALSE, and an action function, which, if the condition function
sets the flag TRUE, is invoked to take arbitrary action. The

fact that our rules are C functions is essential — we require

our rules to be able to manipulate QGM, which is represented

in Starburst as a network of C structures. Although rules are
written in a language such as C, they are compiled into native
machine language for efficient execution.

Contex( Facility: The data structure passed into any invocation
of the rule system includes a pointer for user information, which

is in turn passed into the rule functions themselves, where it can
be read and/or modified. For our purposes in Query Rewrite,
we use this pointer to store a current “context” in the QGM (a

box, quantifier, or predicate), and our rewrite rules are written
with reference to this context. This allows for the rule local-
ity discussed earlier, Special rules are added to the rule set to

9For this experiment we used the original benchmark database,

not the one scaled up by 10.
10DB2 does not suPPort INTERSECT. In the experirnen~ we chose

UNION instead, which can be executed by a nearly identical strategy.

Obviously, the number of output tuples for UNION is differen~
however, since this number is small in our experimen~ the error in
the cost difference is negligible. In fact DB2 chose abetter execution
strategy for UNION than the one sketched above, and therefore the
performance numbers for the original query are conservative.
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3.

4.

5.

“advance” the context once we exhaust possibilities of modifi-

cation to the current context. Thus these rules “traverse” a QGM

graph.ll

Rule Classes and Extensible Conjlict Resolution: We partition

our set of rules into rule classes, each of which can be thought

of as a separate rule set. This gives us a number of advantages.
First it allows us to group rules into sensible units, allowing

for better comprehension of rule activity. Second, since rules
are arbitrary C procedures, a rule can invoke another rule class

as a subroutine. This results in better modularity and increased
comprehensibility. Finally, different rule sets can have different

conjlict resolution schemes [MF78] for choosing the next rule
to fire. Starburst currently supports two schemes, a sequential

scheme which cycles through a set of ordered rules, and apriority
scheme, which always tires the highest order rule that has its

condition satisfied. New conflict resolution schemes can be
easily added to the system.

The rule class mechanism provides some optional structure for
the rules, giving us a measure of control without resorting to
a fully procedural system. A glance at Figure 2 should illus-

trate that our rule interactions make it very difficult to explicitly

express the order in which rules should be applied. The con-
cept of production rules frees us of this burden. However, we

do wish to exercise some control over the order in which rules
are fired. For instance, we want to apply INT2EXIST before

SELMERGE, in order to ensure that an INTERSECT box above

a SELECT box will be converted and merged into one SELECT
box. By carefully organizing our rule classes and their conflict
resolution schemes, we ensure this ordering.

Note that the full spectrum of control is supported by our engine,

from totally data-driven to totally procedural: a totally data-
driven scheme could be modelled with a single rule class in which

the control scheme was randomized, and a totally procedural
scheme would be a rule set made up of one rule which was

triggered once and performed an arbitrary procedure or program.
In Starburst’s Query Rewrite, we use the rule engine to strike a

balance between these extremes — we have multiple rule classes,
some of which use the sequential control scheme, others of which

use the priori!y scheme. The resulting system retains much of the
organization of a procedural program, while taking advantoge of

the easy extensibility and flexible interactions inherent in a rule
system.

Guaranteed Termination: After a specified number of rules

have been considered, our rule engine will terminate execution,
whether or not there remain rules eligible for execution. This

number is under the control of the rule programmer. Note that

since execution can end after any rule is checked or executed,
we are forced to make each rule be an atomic change mapping a

valid QGM to an equivalent valid QGM. There can be no invalid

or “transitory” states of the QGM between rules. This restric-
tion turns out to be quite positive, as it enforces a conceptual

cleanliness on each rule.

Rule Engine Controls: Starburst users can locally enable or
disable r;les “on the fly” without affecting other &ers. This

allows rule developers to enjoy the convenience of the rule sys-
tem paradigm without affecting concurrent users of the database.

The controls also allow us to trace and explain rule activity, a use-
ful method for debugging the potentially complex interactions

between rules.

Our experience with this rule system has been quite positive. Once
all the rule engine controls were added to the system, it became fairly
easy to add new rules to the existing set without causing unusual rule

11The choice of traversal is itself extensible. We cumently suPPOrt

both depth-first and breadth-first traversal of QGM.

interactions. The time required to add a rule to the system was

determined largely by the complexity of the rule’s transformation to

QGM typically we did not need to spend much time debugging our

mle set as a whole. The success we have had with our rule system

is unusual, and can be attributed both to the unique features of the
system design listed above, and also to our application of the rule

system. Since all of our rewrite rules produce valid QGMs, and since
each individual rule does not degrade query performance, the worst
behavior our rule system can dkplay is to leave a query untouched.
In practice this happens only to simple queries which require no

optimization.

5 Conclusions: Engine and Rules

We have built an extensible Query Rewrite system for Starburs~ and

shown that it can provide query execution improvements of orders
of magnitude. Others have proposed query transformations before

( [Kim82, GW87, Day87, Anf89]) but our work subsumes many of
these transformations, and is the first system itnplementation (to our
knowledge)to organically incorporate query transformation schemes

into a full RDBMS. We have put considerable effort into design-

ing the system to address the probletns faced by comprehensive
research prototypes and industrial grade RDBMSS, particularly in

handling of complex queries, and queries associated with complex

objects [LLPS9 1]. The capabilities of our Query Rewrite system sur-

pass by a significant margin those of current RDBMSS, commercial
systems included.

Among the query transformations presented in this paper, we
generalize previous work to handle duplicates correctly, and thus

are able to guarantee the merge of existential subquery conjuncts.
Furthermore, we convert set operators (INTERSECT, EXCEPT) to

subquenes, allowing a rich set of join methods to be used for exe-
cuting set operators. Although this is quite simple, it has not been
dealt with in the past.

Our decision to design a rule engine for Query Rewrite seems
to have been sound. We have encountered few of the oft-cited

problems of rule systems (nondeterminism of outcome, difficulty

of comprehending system execution, slow performance, etc.), and

made significant use of the inherent advantages of a rule system (ease
of extensibility, abstraction of rule programmer horn control flow,

etc.) The extensibility of a Query Rewrite system is key — it allows

new functionality to be added easily both to the query language

and the underlying technology (e.g. faster and cheaper memory),

and should also allow plan optimizers to be “taught” to avoid their
shortcomings, which may only be discovered when the system is

used in production ~ir89, HCL+90]. Our extensible Query Rewrite
system addresses both of these issues.
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