
CS 286, UC Berkeley, Spring 2007 , R. Ramakrishnan 1

Evaluation of Recursive Queries
Part 2: Pushing Selections

CS 286, UC Berkeley, Spring 2007 , R. Ramakrishnan 2

Aggregate Operators

� The < … > notation in the head indicates
grouping; the remaining arguments (Part, in
this example) are the GROUP BY fields.

� In order to apply such a rule, must have all of
Assembly relation available.

� Stratification with respect to use of < … > is the
usual restriction to deal with this problem;
similar to negation.

NumParts(Part, SUM(<Qty>)) :- Assembly(Part, Subpt, Qty).

SELECT A.Part, SUM(A.Qty)
FROM Assembly A
GROUP BY A.Part

CS 286, UC Berkeley, Spring 2007 , R. Ramakrishnan 3

Datalog vs. SQL Notation

� Don’t let the rule syntax of Datalog fool you: a
collection of Datalog rules can be rewritten in
SQL syntax, if recursion is allowed.

WITH RECURSIVE Comp(Part, Subpt) AS

(SELECT A1.Part, A1.Subpt FROM Assembly A1)
UNION
(SELECT A2.Part, C1.Subpt
FROM Assembly A2, Comp C1
WHERE A2.Subpt=C1.Part)

SELECT * FROM Comp C2
CS 286, UC Berkeley, Spring 2007 , R. Ramakrishnan 4

Evaluation of Datalog Programs

� Repeated inferences: When recursive rules
are repeatedly applied in the naïve way, we
make the same inferences in several
iterations.

� Unnecessary inferences: Also, if we just want
to find the components of a particular part,
say wheel, computing the fixpoint of the
Comp program and then selecting tuples
with wheel in the first column is wasteful, in
that we compute many irrelevant facts.

CS 286, UC Berkeley, Spring 2007 , R. Ramakrishnan 5

Avoiding Repeated Inferences
� Seminaive Fixpoint Evaluation: Avoid repeated

inferences by ensuring that when a rule is
applied, at least one of the body facts was
generated in the most recent iteration. (Which
means this inference could not have been carried
out in earlier iterations.)
• For each recursive table P, use a table delta_P to store

the P tuples generated in the previous iteration.
• Rewrite the program to use the delta tables, and

update the delta tables between iterations.

Comp(Part, Subpt) :- Assembly(Part, Part2, Qty),
delta_Comp(Part2, Subpt).

CS 286, UC Berkeley, Spring 2007 , R. Ramakrishnan 6

Avoiding Unnecessary Inferences

� There is a tuple (S1,S2) in
SameLev if there is a path
up from S1 to some node
and down to S2 with the
same number of up and
down edges.

SameLev(S1,S2) :- Assembly(P1,S1,Q1), Assembly(P1,S2,Q2).
SameLev(S1,S2) :- Assembly(P1,S1,Q1),

SameLev(P1,P2), Assembly(P2,S2,Q2).

trike

wheel frame

spoke tire seat pedal

rim tube

3 1

2 1 1 1

1 1

CS 286, UC Berkeley, Spring 2007 , R. Ramakrishnan 7

Avoiding Unnecessary Inferences

� Suppose that we want to find all SameLev
tuples with spoke in the first column. We
should “push” this selection into the fixpoint
computation to avoid unnecessary inferences.

� But we can’t just compute SameLev tuples
with spoke in the first column, because some
other SameLev tuples are needed to compute
all such tuples:

SameLev(spoke,seat) :- Assembly(wheel,spoke,2),
SameLev(wheel,frame), Assembly(frame,seat,1).

CS 286, UC Berkeley, Spring 2007 , R. Ramakrishnan 8

“Magic Sets” Idea

� Idea: Define a “filter” table that computes all
relevant values, and restrict the computation
of SameLev to infer only tuples with a
relevant value in the first column.
Magic_SL(P1) :- Magic_SL(S1), Assembly(P1,S1,Q1).
Magic_SL(spoke).

SameLev(S1,S2) :- Magic_SL(S1), Assembly(P1,S1,Q1),
Assembly(P1,S2,Q2).

SameLev(S1,S2) :- Magic_SL(S1), Assembly(P1,S1,Q1),
SameLev(P1,P2), Assembly(P2,S2,Q2).

CS 286, UC Berkeley, Spring 2007 , R. Ramakrishnan 9

The Magic Sets Algorithm

� Generate an “adorned” program
• Program is rewritten to make the pattern of bound and

free arguments in the query explicit; evaluating
SameLevel with the first argument bound to a constant
is quite different from evaluating it with the second
argument bound

• This step was omitted for simplicity in previous slide
� Add filters of the form “Magic_P” to each rule in

the adorned program that defines a predicate P to
restrict these rules

� Define new rules to define the filter tables of the
form Magic_P

CS 286, UC Berkeley, Spring 2007 , R. Ramakrishnan 10

Generating Adorned Rules

� The adorned program for the query pattern SameLevbf,
assuming a left-to-right order of rule evaluation :

SameLevbf (S1,S2) :- Assembly(P1,S1,Q1), Assembly(P1,S2,Q2).

SameLevbf (S1,S2) :- Assembly(P1,S1,Q1),

SameLevbf (P1,P2), Assembly(P2,S2,Q2).

� An argument of (a given body occurrence of) SameLev is b
if it appears to the left in the body, or in a b arg of the head
of the rule.

� Assembly is not adorned because it is an explicitly stored
table.

CS 286, UC Berkeley, Spring 2007 , R. Ramakrishnan 11

Defining Magic Tables

� After modifying each rule in the adorned program
by adding filter “Magic” predicates, a rule for
Magic_P is generated from each occurrence O of P
in the body of such a rule:
• Delete everything to the right of O
• Add the prefix “Magic” and delete the free columns of O
• Move O, with these changes, into the head of the rule

SameLevbf (S1,S2) :- Magic_SLbf(S1), Assembly(P1,S1,Q1),
SameLevbf (P1,P2), Assembly(P2,S2,Q2).

Magic_SLbf(P1) :- Magic_SLbf(S1), Assembly(P1,S1,Q1).

CS 286, UC Berkeley, Spring 2007 , R. Ramakrishnan 12

Nested Queries in SQL (No Recursion)

SELECT E, Sal, Avg, Ecnt
FROM emp(E, Sal, D, J),

dinfo(D, Avg, Ecnt)
WHERE J = “Sr pgmer”

dinfo(D, A, C) AS
SELECT D, AVG(Sal), count(*)
FROM emp
GROUPBY D

“Find senior programmers and their salary, and also
average salary and headcount in their depts.”

CS 286, UC Berkeley, Spring 2007 , R. Ramakrishnan 13

Example – Datalog and Magic

� Datalog
Einfo(E, Sal, Avg, Ecnt) :- J=“Sr pgmer”, emp(E, Sal, D, J), dinfo(D, Avg,

Ecnt).
dinfo(D, A, C) :- …

� MAGIC
m_empfffb(J) :- J=“Sr pgmer”.
m_dinfobff(D) :- { J = “Sr pgmer” }, m_empfffb(J), emp(E, Sal, D, J).
dinfobff(D, A, C) :- m_dinfobff(D), …

CS 286, UC Berkeley, Spring 2007 , R. Ramakrishnan 14

Magic
1. Identifies subqueries

Idea: Use rules of the form:
If <…> is a (sub)query and also conditions <…> hold,
Then <…> are also subqueries.

2. Restricts computation
Idea: Modify the view definition by joining with the table of queries.
This join acts as a “Filter”.

3. Classify queries
Idea: Using “Adornments”, or “Query forms”. All queries of the form
pbf(c,y)? are “MAGIC” tuples m_pbf(c).

4. Magic on subqueries :- …, p(x, y, z), q1(y, u), q2(z, y) …
Can use magic for q1 subqueries:
m_q1(y) :- … p(x, y, z).
q1(x, y) :- m_q1(x), …
q2 subqueries handled some other way.

So, suitable for rule-based optimizer.

CS 286, UC Berkeley, Spring 2007 , R. Ramakrishnan 15

Dealing with Subqueries – Other ways

� CORRELATION
When a subquery is generated, compute all
answers , then continue.

• Not (gasp!) set-oriented.
• Current DB solution. (DB2 etc.)

� PROLOG
When a subquery is generated, compute one
answer, then continue.

• May have to “BACKTRACK”.

CS 286, UC Berkeley, Spring 2007 , R. Ramakrishnan 16

Example – Recursion, Duplicates

SELECT P, S, count(*)
FROM contains(P, S)
GROUPBY [P, S]

Contains(p, s) AS
(SELECT P, S

FROM subpart(P, S)) UNION
(SELECT P, S

FROM subpart(P, T),
contains(T, S))

“Find all subparts of a part along with a count of how often the
subpart is used.”

CS 286, UC Berkeley, Spring 2007 , R. Ramakrishnan 17

Correlation

SELECT Ename
FROM emp e1
WHERE Job = “Sr pgmer” AND

Sal >
(SELECT AVG(e2,Sal)

FROM emp e2
WHERE e2.D = e1.D)

OUTER

INNER

For each senior programmer, the average salary of her/his
department is computed.

•Not set-oriented.

•Possible redundancy.

CS 286, UC Berkeley, Spring 2007 , R. Ramakrishnan 18

Decorrelation

SELECT Ename
FROM emp, dep_avgsal
WHERE Job = “Sr pgmer” AND

Sal > Asal AND
emp.D = dep_avgsal.D

dep_avgsal AS
SELECT D, AVG(Sal)
FROM emp
GROUPBY D

•Set-oriented, no redundancy.

•But…, irrelevant computation.

CS 286, UC Berkeley, Spring 2007 , R. Ramakrishnan 19

Voila! Magic!

msg(D) AS
SELECT DISTINCT D
FROM emp
WHERE Job = “Sr pgmer”

dep_avgsal(D, ASal) AS
SELECT D, AVG(Sal)
FROM msg, emp
WHERE msg.D = emp.D
GROUPY D

SELECT Ename
FROM emp, dep_avgsal
WHERE Job = “ Sr pgmer” AND

Sal > Asal AND emp.D = dep_avgsal.D

CS 286, UC Berkeley, Spring 2007 , R. Ramakrishnan 20

From Datalog to SQL

• Conditions
• X + Y >10

• Grouping and aggregation

• Multisets
• If you don’t remove duplicates. That is a feature!

John toy 20
Joe toy 30

Susan cs 50
David cs *

avgsal = 25

CS 286, UC Berkeley, Spring 2007 , R. Ramakrishnan 21

Example- Conditions
SELECT Ename, Mgr
FROM emp, dept
WHERE Job = “Sr pgmer” AND

Sal > 50000 AND
emp.D = dept.D

Cast Magic

m_empfbfb(Sal, Job) AS

Job = “Sr Pgmer” AND

Sal > 50000 What really happens?

�
job=“Sr Pgmer”emp

Sal>50000

�������
dept “Grounding”

CS 286, UC Berkeley, Spring 2007 , R. Ramakrishnan 22

Datalog to SQL: A summary

Conditions
• Magic transformation is followed by some “GROUNDING”

steps.
Multisets (Duplicates)
Semantics

• # copies of a tuple = # of derivations
Operationally

• Just skip duplicate checks
Magic

• All “magic” tables are DISTINCT
Groupby, Aggregates

• Must check if restrictions (selections, conditions) can be
“pushed down”

• With recursion, may need stratification.

CS 286, UC Berkeley, Spring 2007 , R. Ramakrishnan 23

Comparing Magic and Correlation

We must consider three factors:
1. Binding propagation
2. Repeated work (duplicates)
3. Set-Orientation

Correlation* Magic

1.

2.

3.

� �

�
�

�
	 ���

�

CS 286, UC Berkeley, Spring 2007 , R. Ramakrishnan 24

Experiments

Experiments run on DB V2R2 DBMS.

Benchmark DB

4,25014339,44043itp

57,980132,550,00078Itl

51050028wkc

1,8504170,00034itm

Table Tuple Size #Tuples #Column #4k Pages

CS 286, UC Berkeley, Spring 2007 , R. Ramakrishnan 25

Results
Experiment 1

Binding propagation, no
duplicates, set-orientation not
significant.

Query Time I/O

0.250.46Magic

0.060.40Correlated

100100Original

Experiment 2
Binding set contains
duplicates (~100), set-
orientation not significant.

Query Time I/O

0.0690.25Magic

0.0052.10Correlated

100100Original

CS 286, UC Berkeley, Spring 2007 , R. Ramakrishnan 26

Results – Cont.
Experiment 3

Binding set has some
duplicates, set-orientation is
significant. (Bindings on non-
index column)

Query Time I/O

4655Magic
453513Correlated
100100Original

Experiment 4
Variant of experiments 3 with
more expensive subquery. (10
binding).

Query Time I/O

5.28.6Magic
22.752.5Correlated
100100Original

62111Magic

45265136Correlated

100100Original

10 bindings
100 bindings

CS 286, UC Berkeley, Spring 2007 , R. Ramakrishnan 27

Conclusions

� Magic is:
• Applicable to full SQL.
• Suitable for rule-based optimization.
• Efficient.
• Stable.
• Parallelizable.

