

Avoiding Repeated Inferences

Seminaive Fixpoint Evaluation: Avoid repeated inferences by ensuring that when a rule is applied, at least one of the body facts was generated in the most recent iteration. (Which means this inference could not have been carried out in earlier iterations.)

- For each recursive table P, use a table delta_P to store the P tuples generated in the previous iteration.
- Rewrite the program to use the delta tables, and update the delta tables between iterations.

S 286, UC Berkeley, Spring 2007 , R. Ramakrishi

Comp(Part, Subpt) :- Assembly(Part, Part2, Qty), delta_Comp(Part2, Subpt).

Avoiding Unnecessary Inferences

- Suppose that we want to find all SameLev tuples with spoke in the first column. We should "push" this selection into the fixpoint computation to avoid unnecessary inferences.
- But we can't just compute SameLev tuples with spoke in the first column, because some other SameLev tuples are needed to compute all such tuples:
 - SameLev(spoke,seat) :- Assembly(wheel,spoke,2), <u>SameLev(wheel,frame)</u>, Assembly(frame,seat,1).

S 286, UC Berkeley, Spring 2007 , R. Ramakrishnar

* Idea: Define a "filter" table that computes all relevant values, and restrict the computation of SameLev to infer only tuples with a relevant value in the first column. Magic_SL(P1) :- Magic_SL(S1), Assembly(P1,S1,Q1). Magic_SL(spoke). SameLev(S1,S2) :- Magic_SL(S1), Assembly(P1,S1,Q1), Assembly(P1,S2,Q2). SameLev(S1,S2) :- Magic_SL(S1), Assembly(P1,S1,Q1), Assembly(P1,S1,Q1), Assembly(P1,S2,Q2).

SameLev(P1,P2), Assembly(P2,S2,Q2).

286, UC Berkeley, Spring 2007 , R. Ramakrishnan

The Magic Sets Algorithm Generate an "adorned" program Program is rewritten to make the pattern of bound and free arguments in the query explicit; evaluating SameLevel with the first argument bound to a constant is quite different from evaluating it with the second argument bound This step was omitted for simplicity in previous slide Add filters of the form "Magic_P" to each rule in the adorned program that defines a predicate P to restrict these rules Define new rules to define the filter tables of the form Magic_P

5, UC Berkeley, Spring 2007 , R. Ramakrishr

S 286, UC Berkeley, Spring 2007, R. Ramakrishnan

Defining Magic Tables

 After modifying each rule in the adorned program by adding filter "Magic" predicates, a rule for Magic_P is generated from each occurrence O of P in the body of such a rule:

- Delete everything to the right of O
- Add the prefix "Magic" and delete the free columns of O
- Move O, with these changes, into the head of the rule

SameLev^{bf} (S1,S2) :- Magic_SL^{bf}(S1), Assembly(P1,S1,Q1), SameLev^{bf} (P1,P2), Assembly(P2,S2,Q2).

Magic_SL^{bf}(P1) :- Magic_SL^{bf}(S1), Assembly(P1,S1,Q1).

CS 286, UC Berkeley, Spring 2007, R. Ramakrishnan

Nested Queries in SQL (No Recursion) **SELECT** E, Sal, Avg, Ecnt FROM emp(E, Sal, D, J), dinfo(D, Avg, Ecnt) J = "Sr pgmer" WHERE dinfo(D, A, C) AS SELECT D, AVG(Sal), count(*) FROM emp GROUPBY D "Find senior programmers and their salary, and also average salary and headcount in their depts. UC Berkeley, Spring 2007, R. Ramakrishna

Example – Datalog and Magic

 Datalog Einfo(E, Sal, Avg, Ecnt) :- J="Sr pgmer", emp(E, Sal, D, J), dinfo(D, Avg, Ecnt). dinfo(D, A, C) :- ...

\$ MAGIC m_emp^{fffb}(J) :- J="Sr pgmer". m_dinfo^{bff}(D) :- { J = "Sr pgmer" }, m_emp^{fffb}(J), emp(E, Sal, D, J). dinfo^{bff}(D, A, C) :- m_dinfo^{bff}(D), ...

5 286, UC Berkeley, Spring 2007 , R. Ramakrishna

Voila! Magic!	<u>SELECT</u> Ename <u>FROM</u> emp, dep_avgsal <u>WHERE</u> Job = "Sr pgmer" <u>AND</u> Sal > Asal <u>AND</u> emp.D = dep_avgsal.D
msg(D)	AS
SELECT	DISTINCT D
FROM	emp
WHERE	Job = "Sr pgmer"
dep_avgsal(D, ASal) <u>SELECT</u> <u>FROM</u> <u>WHERE</u> <u>GROUPY</u>	AS D, AVG(Sal) msg, emp msg.D = emp.D D
CS 286, UC Berkeley, Spring 2007, R. Ramakri	shnan 19

L	Experiment 1 Binding propagation, no duplicates, set-orientation not significant.				Experiment 2 Binding set contains duplicates (~100), set- orientation not significant.			
	Query	Time	I/O		Query	Time	I/O	
0	Driginal	100	100	1	Original	100	100	
C	Correlated	0.40	0.06	1	Correlated	2.10	0.005	
N	Magic	0.46	0.25		Magic	0.25	0.069	

