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Data-Stream Management

« Traditional DBMS - data stored in finite, persistent data sets

« Data Streams - distributed, continuous, unbounded, rapid, time
varying, noisy, . ..

« Data-Stream Management - variety of modern applications

- Network monitoring and traffic engineering
- Telecom call-detail records

- Network security

Financial applications

Sensor networks

Manufacturing processes

Web logs and clickstreams

Massive data sets

Networks Generate Massive Data Streams

Network Operations

SNMP/RMON, Center (NOC)

NetFlow records

Example NetFlow IP Session Data
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* SNMP/RMON/NetFlow data records arrive 24x7 from different parts
of the network
« Truly massive streams arriving at rapid rates
- AT&T collects 600-800 GigaBytes of NetFlow data each day!

« Typically shipped to a back-end data warehouse (off site) for off-line
analysis

Packet-Level Data Streams

* Single 26b/sec link; say avg packet size is 50bytes
* Number of packets/sec = 5 million
* Time per packet = 0.2 microsec

* If we only capture header information per packet:
src/dest IP, time, no. of bytes, etc. - at least 10bytes.

-Space per second is 50Mb
-Space per day is 4.5Tb per link
-ISPs typically have hundred of links!

* Analyzing packet content streams - whole different
ballgamel!

Real-Time Data-Stream Analysis

Back-end Data Warel

What are the top (most frequent) 1000 (source,
\ dest) pairs seen by R1 over the last month?
Off-line analysis - Data
access is slow, expensive oo How many distinct (source, dest) pairs have
been seen by both R1 and R2 but not R3?

Set-Expression Query)|
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Networks
* Need ability to process/analyze network-data streams in real-time
- Asrecords stream in: look at records only once in arrival order!
- Within resource (CPU, memory) limitations of the NOC
« Critical to important NM tasks
- Detect and react to Fraud, Denial-of-Service attacks, SLA violations
- Real-time traffic engineering to improve load-balancing and utilization

DSL/Cable SQL Join Query)|
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IP Network Data Processing

« Traffic estimation
- How many bytes were sent between a pair of IP addresses?
- What fraction network IP addresses are active?
- List the top 100 IP addresses in terms of traffic
« Traffic analysis
- What is the average duration of an IP session?
- What is the median of the number of bytes in each IP session?
+ Fraud detection
- List all sessions that transmitted more than 1000 bytes
- Identify all sessions whose duration was more than twice the normal
+ Security/Denial of Service
- List all IP addresses that have witnessed a sudden spike in traffic

- Identify IP addresses involved in more than 1000 sessions




Overview

* Introduction & Motivation
* Data Streaming Models & Basic Mathematical Tools
* Summarization/Sketching Tools for Streams
-Sampling
-Linear-Projection (aka AMS) Sketches
« Applications: Join/Multi-Join Queries, Wavelets
-Hash (aka FM) Sketches
* Applications: Distinct Values, Set Expressions

The Streaming Model

* Underlying signal: One-dimensional array A[1..N]with
values A[i] allinitially zero

-Multi-dimensional arrays as well (e.g., row-major)
* Signal is implicitly represented via a stream of updates
-j-th update is <k, c[j]> implying
+ ALk]:= A[k]+c[j] (c[j] can be>0,<0)

* Goal: Compute functions on A[] subject to
-Small space
-Fast processing of updates
-Fast function computation

Example IP Network Signals

* Number of bytes (packets) sent by a source IP address
during the day

-27(32) sized one-d array; increment only

* Number of flows between a source-IP, destination-IP
address pair during the day

-27(64) sized two-d array: increment only, aggregate
packets into flows

* Number of active flows per source-IP address

-27(32) sized one-d array; increment and decrement

Streaming Model: Special Cases

* Time-Series Model

-Only j-th update updates A[j] (i.e., A[j]:= c[j])
* Cash-Register Model

- c[j]is always >= O (i.e., increment-only)

- Typically, c[j]=1, so we see a multi-set of items in one
pass

* Turnstile Model
-Most general streaming model
- c[j] can be >0 or <0 (i.e., increment or decrement)
* Problem difficulty varies depending on the mode/
-E.g., MIN/MAX in Time-Series vs. Turnstile!

Data-Stream Processing Model

Stream Synopses
(in memory)

(GigaBytes) (KiloBytes)

Continuous Data Streams
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a
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Query Q

Approximate Answer
with Error Guarantees
"Within 2% of exact
answer with high
probability”

+ Approximate answers often suffice, e.g., trend analysis, anomaly detection

+ Requirements for stream synopses
- Single Pass: Each record is examined at most once, in (fixed) arrival order
- Small Space: Log or polylog in data stream size
- Real-time: Per-record processing time (to maintain synopses) must be low
- Delete-Proof: Can handle record deletions as well as insertions
- Composable: Built in a distributed fashion and combined later

Data Stream Processing Algorithms

* Generally, algorithms compute approximate answers

- Provably difficult to compute answers accurately with
limited memory

+ Approximate answers - Deterministic bounds

- Algorithms only compute an approximate answer, but
bounds on error

* Approximate answers - Probabilistic bounds

- Algorithms compute an approximate answer with high
probability

+ With probability at least 1— 9, the computed answer
is within a factor & of the actual answer

* Single-pass algorithms for processing streams also
applicable to (massive) terabyte databases!




Sampling: Basics
. Tdear A small random sample S of the data offen well-represents all the

data
- For a fast approx answer, apply "modified” query to S

- Example: select agg from R where R.e is odd
Datastream{9 3 5 2 7 1 6 5 8 4 9 1] (n-12)

- If agg is avg, return average of odd elements in S

- If agg is count, return average over all elements e in S of

+ nif eis odd answer: 12*3/4 =9

Unbiased: For expressions involving count, sum, avg: the estimator

+ Oif eiseven

is unbiased, i.e., the expected value of the answer is the actual answer
N

Probabilistic Guarantees

» Example: Actual answer is within 5 + 1 with prob 2 0.9

* Randomized algorithms: Answer returned is a specially-
built random variable

* Use Tail Inequalities to give probabilistic bounds on
returned answer

- Markov Inequality

- Chebyshev's Inequality
- Chernoff Bound

- Hoeffding Bound

Basic Tools: Tail Inequalities

* General bounds on fai/ probability of a random variable
(that is, probability that a random variable deviates far

from its expectation)
Probability
distribution

Tail probability

3 H HE

* Basic Inequalities: Let X be a random variable with
expectation 4 and variance Var[X]. Then for any £>0

Markov:  Pr(X =z ¢) < £
£

Var[ X]

,UZ £2

Chebyshev: Pr(| X -y |z ue) <

Tail Inequalities for Sums

« Possible to derive stronger bounds on tail probabilities for the sum
of independent random variables
» Hoeffding's Inequality: Let X1, ..., Xm be independent random
variables with O<=Xi <= r.Let X==3%" X, and i be the expectation
of X. Then, foranye >0, me
-2me?

Pr(X-ulze)<2exp *°

« Application to avg queries:
- mis size of subset of sample S satisfying predicate (3 in example)
- ris range of element values in sample (8 in example)
+ Application fo count queries:
- mis size of sample S (4 in example)
- ris number of elements n in stream (12 in example)

* More details in [HHW97]

Tail Inequalities for Sums

« Possible to derive even stronger bounds on tail probabilities for the
sum of independent Bernoulli trials

* Chernoff Bound: Let X1, ..., Xm be independent Bernoulli trials such
that Pr[Xi=1] = p (Pr[Xi=0] = 1-p). Let X=X, and 4 = MP be the
expectation of X . Then, for any £>0,

—pe?

Pr(| X - p |z pe) < 2exp 2

« Application to count queries:
- mis size of sample S (4 in example)

- pis fraction of odd elements in stream (2/3 in example)

» Remark: Chernoff bound results in tighter bounds for count queries
compared to Hoeffding's inequality

Overview

* Introduction & Motivation
+ Data Streaming Models & Basic Mathematical Tools
» Summarization/Sketching Tools for Streams
-Sampling
-Linear-Projection (aka AMS) Sketches
« Applications: Join/Multi-Join Queries, Wavelets
-Hash (aka FM) Sketches

« Applications: Distinct Values, Set Expressions




Computing Stream Sample

+ Reservoir Sampling [Vit85]: Maintains a sample S of a fixed-size M

Add each new element to S with probability M/n, where n is the
current number of stream elements

- If add an element, evict a random element from S

- Instead of flipping a coin for each element, determine the number of
elements fo skip before the next to be added to S

+ Concise sampling [6M98]: Duplicates in sample S stored as <value, count> pairs
(thus, potentially boosting actual sample size)

- Add each new element o S with probability 1/T (simply increment
count if element already in S)

- If sample size exceeds M
« Select new threshold T'> T

« Evict each element (decrement count) from S with probability
1-T/T

- Add subsequent elements to S with probability 1/T' 1

Synopses for Relational Streams

+ Conventional data summaries fall short

- Quantiles and 1-d histograms [MRL98,99], [6KO1], [6KMS02]
+ Cannot capture attribute correlations
« Little support for approximation guarantees

- Samples (e.g., using Reservoir Sampling)
« Perform poorly for joins [AGMS99] or distinct values [CCMNOO]
« Cannot handle deletion of records

- Multi-d histograms/wavelets
« Construction requires multiple passes over the data

« Different approach: Pseudo-random sketch synopses
- Only logarithmic space
- Probabilistic guarantees on the quality of the approximate answer

- Support insertion as well as deletion of records (ie., Turnstile model/)

Linear-Projection (aka AMS) Sketch Synopses

+ Goal: Build small-space summary for distribution vector f(i) (I ..... N) seenasa
stream of i-values 2

1 1 1

Datastream:[3, 1, 2, 4, 2, 3, 5, ... | o

f(1) £(2) f(3) f(4) f(5)

« Basic Construct: Randomized Linear Projection of f() = project onto inner/dot
product of f-vector

<f. &E>=S f(i)& Where & = vector of random values from an
< Z 04 appropriate distribution

- Simple to compute over the stream: Add & whenever the i-th value is seen
| & +25,+425,+&,+&

- Generate & 's in small (logN) space using pseudo-random generators

Data sTr‘eam:|3, 1,2,4, 2, 3,5, ...

- Tunable probabilistic guarantees on approximation error
- Delete-Proof: Just subtract & to delete an i-th value occurrence
- Composable: Simply add independently-built projections

Example: Binary-Join COUNT Query

* Problem: Compute answer for the query COUNT(R D4, S)
+ Example:

Data stream R.A: 4 12 414 0 I:I:LJ:I

. 2 2
Data stream S.A: f(0): Iﬁl:l:llzl
1 2 3 4
COUNT(R pa, 5)=>"£(I) F (i)
=10 (2+2+0+6)

« Exact solution: too expensive, requires O(N) space!
- N = sizeof(domain(A))

Basic AMS Sketching Technique [AMS96]

« Key Intuition: Use randomized linear projections of f() to define
random variable X such that

- X is easily computed over the stream (in small space)

- E[X] = COUNT(R p4 S) ::> Probabilistic error guarantees
(e.g., actual answer is 101 with

- Var[X] is small
probability 0.9)

* Basic Idea:
- Define a family of 4-wise independent {-1, +1} random variables
{&:i=1,..N}
-Pr[&=+1]=Pr[=-1]=1/2
+ Expected value of each &, E[ £]=0
- Variables & are 4-wise independent
+ Expected value of product of 4 distinct & = 0

- Variables ¢ can be generated using pseudo-random generator using
only O(log N) space (for seeding)!

AMS Sketch Construction

+ Compute random variables: X, = > ()& and Xg = Z:‘fs(t)g‘I

- Simply add & to Xg(Xs) whenever the i-th value is observed in the
R.A (S.A) stream

+ Define X = XpXs to be estimate of COUNT query

+ Example:
Data stream RA:[4 1 2 (4\1 4] R(0): I:I:LJ:I

X=X +&y XR:2{1+§(2+3<{4

2

o R By

1 2 3 4
Xs=6+25,+6+2,

Data stream S.A:

X=X+




Binary-Join AMS Sketching Analysis

* Expected value of X = COUNT(R D4, S)
E[X]1=E[X:X]
=B R0&D 1))
=B R SHIMAOEARLES
=2 ROEO ﬂ
0

1

« Using 4-wise independence, possible to show that
Var[X]1<2[SJ(R) [ST(S)

*+SJI(R) = 2‘1';20)2 is self-join size of R




