Data Stream Processing (Part I)

- Alon, Matias, Szegedy. "The space complexity of approximating the frequency moments", ACM STOC1996.
 Alon, Gibbons, Matias, Szegedy. "Tracking Join and Self-join Sizes in Limited Storage", ACM PODS1999.
 SURVEY-1: S. Muthukrishnan. "Data Streams: Algorithms and

 - Applications"

 SURVEY-2: Babcock et al. "Models and Issues in Data Stream Systems", ACM PODS'2002.

Data-Stream Management

- Traditional DBMS data stored in finite, persistent data sets
- Data Streams distributed, continuous, unbounded, rapid, time varying, noisy, . . .
- Data-Stream Management variety of modern applications
 - Network monitoring and traffic engineering
 - Telecom call-detail records
 - Network security
 - Financial applications
 - Sensor networks
 - Manufacturing processes
 - Web loas and clickstreams
 - Massive data sets

- SNMP/RMON/NetFlow data records arrive 24x7 from different parts of the network
- Truly massive streams arriving at rapid rates
- AT&T collects 600-800 GigaBytes of NetFlow data each day!
- Typically shipped to a back-end data warehouse (off site) for off-line analysis

Packet-Level Data Streams

- •Single 2Gb/sec link; say avg packet size is 50bytes
- Number of packets/sec = 5 million
- Time per packet = 0.2 microsec
- If we only capture header information per packet: src/dest IP, time, no. of bytes, etc. - at least 10bytes.
- -Space per second is 50Mb
- -Space per day is 4.5Tb per link
- -ISPs typically have hundred of links!
- Analyzing packet content streams whole different ballgame!!

- Need ability to process/analyze network-data streams in real-time
 - As records stream in: look at records only once in arrival order!
 - Within resource (CPU, memory) limitations of the NOC
- Critical to important NM tasks
 - Detect and react to Fraud, Denial-of-Service attacks, SLA violations
 - Real-time traffic engineering to improve load-balancing and utilization

IP Network Data Processing

- - How many bytes were sent between a pair of IP addresses?
 - What fraction network IP addresses are active?
 - List the top 100 IP addresses in terms of traffic
- Traffic analysis
 - What is the average duration of an IP session?
 - What is the median of the number of bytes in each IP session?
- - List all sessions that transmitted more than 1000 bytes
 - Identify all sessions whose duration was more than twice the normal
- Security/Denial of Service
 - List all IP addresses that have witnessed a sudden spike in traffic
 - Identify IP addresses involved in more than 1000 sessions

Overview

- •Introduction & Motivation
- Data Streaming Models & Basic Mathematical Tools
- Summarization/Sketching Tools for Streams
 - -Sampling
 - -Linear-Projection (aka AMS) Sketches
 - · Applications: Join/Multi-Join Queries, Wavelets
 - -Hash (aka FM) Sketches
 - · Applications: Distinct Values, Set Expressions

The Streaming Model

- Underlying signal: One-dimensional array A[1...N] with values A[i] all initially zero
 - -Multi-dimensional arrays as well (e.g., row-major)
- Signal is implicitly represented via a stream of updates
- -j-th update is <k, c[j]> implying
 - A[k] := A[k] + c[j] (c[j] can be >0, <0)
- Goal: Compute functions on A[] subject to
 - -Small space
- -Fast processing of updates
- -Fast function computation
- _

Example IP Network Signals

- Number of bytes (packets) sent by a source IP address during the day
 - -2^(32) sized one-d array; increment only
- Number of flows between a source-IP, destination-IP address pair during the day
- -2^(64) sized two-d array; increment only, aggregate packets into flows
- Number of active flows per source-IP address
 - -2^(32) sized one-d array; increment and decrement

Streaming Model: Special Cases

- Time-Series Model
 - -Only j-th update updates A[j] (i.e., A[j] := c[j])
- Cash-Register Model
 - c[j] is always >= 0 (i.e., increment-only)
 - Typically, c[j]=1, so we see a multi-set of items in one pass
- Turnstile Model
 - Most general streaming model
 - c[j] can be >0 or <0 (i.e., increment or decrement)
- Problem difficulty varies depending on the model
- -E.g., MIN/MAX in Time-Series vs. Turnstile!

Data-Stream Processing Model (GigaBytes) Continuous Data Streams RI Data-Stream Processing Model (KiloBytes) (KiloBytes) (KiloBytes) Approximate Answer With 2% of exact answer with Error Guarantees Within 2% of exact answer with high probability*

- Approximate answers often suffice, e.g., trend analysis, anomaly detection
- Requirements for stream synopses
- Single Pass: Each record is examined at most once, in (fixed) arrival order
- Small Space: Log or polylog in data stream size
- Real-time: Per-record processing time (to maintain synopses) must be low
- Delete-Proof: Can handle record deletions as well as insertions
- Composable: Built in a distributed fashion and combined later

Data Stream Processing Algorithms

- Generally, algorithms compute approximate answers
 - Provably difficult to compute answers accurately with limited memory
- Approximate answers Deterministic bounds
 - Algorithms only compute an approximate answer, but bounds on error
- Approximate answers Probabilistic bounds
 - Algorithms compute an approximate answer with high probability
 - With probability at least $1-\delta$, the computed answer is within a factor $\,\mathcal{E}$ of the actual answer
- Single-pass algorithms for processing streams also applicable to (massive) terabyte databases!

Sampling: Basics

- Idea: A small random sample S of the data often well-represents all the data
 - For a fast approx answer, apply "modified" query to S
 - Example: select agg from R where R.e is odd Data stream: 9 3 5 2 7 1 6 5 8 4 9 1 (n=12) Sample 5: 9 5 1 8
 - If <u>agg</u> is avg, return average of odd elements in S <u>answer: 5</u>
 - If agg is count, return average over all elements e in S of
 - · n if e is odd
 - answer: 12*3/4 =9 · 0 if e is even

Unbiased: For expressions involving count, sum, avg: the estimator is unbiased, i.e., the expected value of the answer is the actual answer

Probabilistic Guarantees

- Example: Actual answer is within 5 ± 1 with prob ≥ 0.9
- Randomized algorithms: Answer returned is a speciallybuilt random variable
- Use Tail Inequalities to give probabilistic bounds on returned answer
 - Markov Inequality
 - Chebyshev's Inequality
 - Chernoff Bound
 - Hoeffding Bound

Basic Tools: Tail Inequalities

• General bounds on tail probability of a random variable (that is, probability that a random variable deviates far from its expectation)

• Basic Inequalities: Let X be a random variable with expectation μ and variance Var[X]. Then for any $\varepsilon > 0$

Markov: $Pr(X \ge \varepsilon) \le \frac{\mu}{2}$

Chebyshev: $Pr(|X - \mu| \ge \mu \varepsilon) \le \frac{Var[X]}{\mu^2 \varepsilon^2}$

Tail Inequalities for Sums

- Possible to derive stronger bounds on tail probabilities for the sum of independent random variables
- <u>Hoeffding's Inequality:</u> Let X1, ..., Xm be independent random variables with 0=Xi <= r. Let $\overline{X} = \frac{1}{m} \sum_i X_i$ and μ be the expectation of \overline{X} . Then, for any $\varepsilon > 0$,

$$\Pr(|\overline{X} - \mu| \ge \varepsilon) \le 2 \exp^{\frac{-2m\varepsilon^2}{r^2}}$$

- Application to ava gueries:
- m is size of subset of sample S satisfying predicate (3 in example)
- r is range of element values in sample (8 in example)
- Application to count queries:
 - m is size of sample 5 (4 in example)
 - r is number of elements n in stream (12 in example)
- More details in [HHW97]

Tail Inequalities for Sums

- Possible to derive even stronger bounds on tail probabilities for the sum of independent *Bernoulli trials*
- Chernoff Bound: Let X1, ..., Xm be independent Bernoulli trials such that P(X)=1=p (P(X)=1=p). Let $X=\sum_i X_i$ and $\mu=mp$ be the expectation of X. Then, for any $\mathcal{E}>0$,

$$\Pr(|X - \mu| \ge \mu \varepsilon) \le 2 \exp^{\frac{-\mu \varepsilon^2}{2}}$$

- Application to count queries:
 - m is size of sample 5 (4 in example)
 - p is fraction of odd elements in stream (2/3 in example)
- Remark: Chernoff bound results in tighter bounds for count queries compared to Hoeffding's inequality

Overview

- •Introduction & Motivation
- Data Streaming Models & Basic Mathematical Tools
- Summarization/Sketching Tools for Streams
 - -Sampling
 - -Linear-Projection (aka AMS) Sketches
 - · Applications: Join/Multi-Join Queries, Wavelets
 - -Hash (aka FM) Sketches
 - · Applications: Distinct Values, Set Expressions

Computing Stream Sample

- Reservoir Sampling [Vit85]: Maintains a sample S of a fixed-size M
 - Add each new element to S with probability M/n, where n is the current number of stream elements
- If add an element, evict a random element from S
- Instead of flipping a coin for each element, determine the number of elements to skip before the next to be added to 5
- Concise sampling [GM98]: Duplicates in sample 5 stored as <value, count> pairs boosting actual sample size)
 - Add each new element to S with probability 1/T (simply increment count if element already in S)
 - If sample size exceeds M
 - · Select new threshold T' > T
 - · Evict each element (decrement count) from S with probability
 - Add subsequent elements to S with probability 1/T

Synopses for Relational Streams

- · Conventional data summaries fall short
 - Quantiles and 1-d histograms [MRL98,99], [GK01], [GKM502]
 - · Cannot capture attribute correlations
 - · Little support for approximation guarantees
 - Samples (e.g., using Reservoir Sampling)
 - Perform poorly for joins [AGMS99] or distinct values [CCMN00]
 - · Cannot handle deletion of records
 - Multi-d histograms/wavelets
 - · Construction requires multiple passes over the data
- Different approach: Pseudo-random sketch synopses
 - Only logarithmic space
 - Probabilistic guarantees on the quality of the approximate answer
 - Support insertion as well as deletion of records (i.e., Turnstile model)

Linear-Projection (aka AMS) Sketch Synopses

Goal: Build small-space summary for distribution vector f(i) (i=1,..., N) seen as a stream of i-values

Data stream: 3, 1, 2, 4, 2, 3, 5, f(1) f(2) f(3) f(4) f(5)

<u>Basic Construct:</u> Randomized Linear Projection of f() = project onto inner/dot

 $\langle f, \xi \rangle = \sum_{i} f(i) \xi_{i}$ where ξ = vector of random values from an appropriate distribution

- Simple to compute over the stream: Add ξ_i whenever the i-th value is seen Data stream: 3, 1, 2, 4, 2, 3, 5, ... $\xi_1 + 2\xi_2 + 2\xi_3 + \xi_4 + \xi_5$
- Generate ξ_i 's in small (logN) space using pseudo-random generators
- Tunable probabilistic quarantees on approximation error
- *Delete-Proof:* Just subtract ξ_i to delete an i-th value occurrence
- Composable: Simply add independently-built projections

Example: Binary-Join COUNT Query

- Problem: Compute answer for the guery COUNT(R ⋈ ≤ S)
- Example:

Data stream R.A: 4 1 2 4 1 4

Data stream S.A: 3 1 2 4 2 4

COUNT(R $\bowtie_A S$) = $\sum_i f_R(i) \cdot f_S(i)$ = 10 (2 + 2 + 0 + 6)

- Exact solution: too expensive, requires O(N) space!
 - N = sizeof(domain(A))

Basic AMS Sketching Technique [AMS96]

- <u>Key Intuition</u>: Use randomized linear projections of f() to define random variable X such that
 - X is easily computed over the stream (in small space)
- E[X] = COUNT(R ⋈A S) - Var[X] is small

Probabilistic error guarantees (e.g., actual answer is 10±1 with probability 0.9)

- Basic Idea:
 - Define a family of 4-wise independent {-1, +1} random variables $\{\xi_i: i=1,...,N\}$
 - $Pr[\xi_i = +1] = Pr[\xi_i = -1] = 1/2$
 - Expected value of each ξ_i , E[ξ_i] = 0
 - Variables ξ_i are 4-wise independent
 - Expected value of product of 4 distinct ξ_i = 0
 - Variables $\xi_{\rm i}$ can be generated using pseudo-random generator using only O(log N) space (for seeding)!

AMS Sketch Construction

- Compute random variables: $X_R = \sum_i f_R(i)\xi_i$ and $X_S = \sum_i f_S(i)\xi_i$
 - Simply add $\xi_{\rm i}$ to ${\rm X_R}({\rm X_S})$ whenever the i-th value is observed in the R.A (S.A) stream
- Define $X = X_R X_S$ to be estimate of COUNT query
- Example:

Data stream R.A: 4 1 2 (4) 1 4

Data stream S.A: 3 (1) 2 4 2 4

Binary-Join AMS Sketching Analysis

• Expected value of X = COUNT(R \bowtie_A S)

$$\begin{split} E[X] &= E[X_R : X_S] \\ &= E[\sum_i f_R(i) \xi_i \cdot \sum_i f_S(i) \xi_i] \\ &= E[\sum_i f_R(i) \cdot f_S(i) \xi_i^2] \\ &= \sum_i f_R(i) \cdot f_S(i) \end{split}$$

• Using 4-wise independence, possible to show that

$$Var[X] \le 2 \cdot SJ(R) \cdot SJ(S)$$

• SJ(R) = $\sum_{i} f_{R}(i)^{2}$ is <u>self-join size of R</u>