Data Stream Processing
(Part III)

-Gibbons. "Distinct sampling for highly accurate answers to distinct
values queries and event reports”, VLDB'2001.
Ganguly, Garofalakis, Rastogi. "Tracking Set Expressions over
Continuous Update Streams”, ACM SIGMOD2003.
*SURVEY-1:S. Muthukrishnan. "Data Streams: Algorithms and
Applications”
* SURVEY-2.: Babcock et al. "Models and Issues in Data Stream
Systems”, ACM PODS'2002.

The Streaming Model

« Underlying signal: One-dimensional array A[1..N] with
values A[i] all initially zero

- Multi-dimensional arrays as well (e.g., row-major)
 Signal is implicitly represented via a stream of updates
-j-th update is <k, c[j]> implying
+ A[Kk] := A[k]+c[j] (c[j] can be >0, <0)

* Goal: Compute functions on A[] subject to
-Small space
-Fast processing of updates
-Fast function computation

Streaming Model: Special Cases

* Time-Series Model

-Only j-th update updates A[j] (i.e., A[j]:= c[j])
» Cash-Register Model

- c[j] is always >= O (i.e., increment-only)

- Typically, c[j]=1, so we see a multi-set of items in one
pass

e Turnstile Model
-Most general streaming model
- ¢[j] can be >0 or <0 (i.e., increment or decrement)
* Problem difficulty varies depending on the mode/
-E.g., MIN/MAX in Time-Series vs. Turnstilel

Data-Stream Processing Model

Stream Synopse-s

(GigaBytes) (in memory) (KiloBytes)
Continuous Data Streams
R1 [
- \
o ?:::::s‘in g Approximate Answer
o Engine with Error Guarantees
"Within 27% of exact
RK [I answer with high
Query Q probability”

« Approximate answers often suffice, e.g., frend analysis, anomaly detection

* Requirements for stream synopses

Single Pass: Each record is examined at most once, in (fixed) arrival order
Small Space: Log or polylog in data stream size

Real-time: Per-record processing time (to maintain synopses) must be low
Delete-Proof: Can handle record deletions as well as insertions
Composable: Built in a distributed fashion and combined later

Probabilistic Guarantees

« Example: Actual answer is within 5 + 1 with prob = 0.9

* Randomized algorithms: Answer returned is a specially-
built random variable

« User-tunable (g,6)—approximations

- Estimate is within a relative error of € with
probability >= 1-5

» Use Tail Inequalities to give probabilistic bounds on
returned answer

- Markov Inequality

- Chebyshev's Inequality
- Chernoff Bound

- Hoeffding Bound

Linear-Projection (aka AMS) Sketch Synopses

e Goal: Build small-spdce summary for distribution vector f(i) (i=1,..., N) seenasa
stream of i-values 2 2

1 1 1

Data stream:|3, 1, 2, 4, 2, 3, 5, ... S

f(1) 1(2) £(3) f(4) f(3)

 Basic Construct: Randomized Linear Projection of f() = project onto inner/dot
product of f-vector

< f,&f>= Z f(i)é& where € = vector of random values from an
’ ' appropriate distribution

- Simple to compute over the stream: Add & whenever the i-th value is seen
Data stream:|3, 1, 2, 4, 2, 3, 5, ... m—)> 51 + 252 + 253 +f4 +f5

- Generate & 's in small (logN) space using pseudo-random generators

- Tunable probabilistic guarantees on approximation error

Delete-Proof: Just subtract & to delete an i-th value occurrence

Composable: Simply add independently-built projections

Overview

* Introduction & Motivation
* Data Streaming Models & Basic Mathematical Tools
« Summarization/Sketching Tools for Streams
- Sampling
-Linear-Projection (aka AMS) Sketches
* Applications: Join/Multi-Join Queries, Wavelets

-Hash (aka FM) Sketches

- Applications: Distinct Values, Distinct sampling, Set Expressions

Distinct Value Estimation
+ Problem: Find the number of distinct values ind---s’rr'eam of values with
domain [O,... N-1]
- Zeroth frequency moment |, LO (Hamming) stream norm
- Statistics: number of species or classes in a population

- Important for query optimizers

- Network monitoring: distinct destination IP addresses,
source/destination pairs, requested URLs, etc.

» Example (N=64) patastream:|3 0 5 3 0 1 7 51 0 3 7

Number of distinct values: 5

* Hard problem for random sampling! [CCMNOO]

- Must sample almost the entire table to %uar'an‘ree the estimate is
within a factor of 10 with probability >1/2, regardless of the
estimator used!

Hash (aka FM) Sketches for Distinct
Value Estimation [FM85]

uniformly across [0,..., 2"L-1], where L = O(logN)

 Let Isb(y) denote the position of the least-significant 1 bit in the binary
representation of y

- A value x is mapped to Isb(h(x))

* Maintain Hash Sketch= BITMAP array of L bits, initialized to O
- For each incoming value x, set BITMAP[Isb(h(x))]1=1 BITMAP

4 3 2 1 0
x =5 = h(x) = 101100— Isb(h(x)) = 2 |_?) 0 oll‘o\o

Hash (aka FM) Sketches for Distinct
Value Estimation [FM85]

+ By uniformity through h(x): Prob[BITMAP[k]=1] = Prob[10%] = =
- Assuming d distinct values: expect d/2 to map to BITMAP[O],

d/4 to map to BITMAP[1], ... BITMAP
L-1 0
oooooololgo}11111111
- — - —
Y fringe of 0/1s Y
position > log(d) around log(d) position <« log(d)

« Let R = position of rightmost zero in BITMAP
- Use as indicator of log(d)

« [FM85] prove that E[R] = log(gd) , where ¢ =.7735
- Estimate d = 2R/go

- Average several iid instances (different hash functions) to reduce
estimator variance

10

Hash Sketches for Distinct Value
Estimation

« [FM85] assume “ideal” hash functions h(x) (N-wise independence)
- [AMS96]. pairwise independence is sufficient

- h(x)= (alx+b)modN , where a, b are random binary vectors
in [O,...,.27L-1]

- Small-space (&,0) estimates for distinct values proposed based on
FM ideas

o Delete-Proof: Just use counters instead of bits in the sketch locations
- +1 for inserts, -1 for deletes

« Composable: Component-wise OR/add distributed sketches together
- Estimate |S1U S2U..U Sk| = set-union cardinality

1

Generalization: Distinct Values Queries

SELECT COUNT(DISTINCT target-attr)
FROM relation Template

WHERE predicate

SELECT COUNT(DISTINCT o_custkey)

FROM orders TPC-H example
WHERE o_orderdate >= '2002-01-01'

- "How many distinct customers have placed orders this year?"
- Predicate not necessarily only on the DISTINCT target attribute

Approximate answers with error guarantees over a stream of tuples?

12

Distinct Sampling [Gib01]

Key Ideas

« Use FM-like technique to collect a specially-tailored sample over the distinct
values in the stream

Use hash function mapping to sample values from the data domain//

Uniform random sample of the distinct values

Very different from traditional random sample: each distinct value is chosen
uniformly regardless of its frequency

DISTINCT query answers: simply scale up sample answer by sampling rate

« To handle additional predicates

- Reservoir sampling of tuples for each distinct value in the sample

- Use reservoir sample to evaluate predicates

13

Building a Distinct Sample [6ibO1]

. Use FM-like hash function h() for each streaming value x
- Prob[h(x) =k]= ok+l

« Key Invariant: "All values with h(x)>= level (and only these) are in the
distinct sample”

DistinctSampling(B , r)
// B = space bound, r = tuple-reservoir size for each distinct value
level =0; S=(
for each new tuple t do
let x = value of DISTINCT target attribute in t
if h(x)>=level then // x belongs in the distinct sample
use t to update the reservoir sample of tuples for x
if |S|>=Bthen //out of space
evict from S all tuples with h(target-attribute-value) = level

set level = level + 1

14

Using the Distinct Sample [Gib01]

If level =1 for our sample, then we have selected all distinct values x such
that h(x)>= |

- Prob[h(x)>=1]= 2—]]

- By h()'s randomizing properties, we have uniformly sampled fraction

of the distinct values in our stream
Our sampling ratel!

Query Answering. Run distinct-values query on the distinct sample and scale the
result up by 2

Distinct-value estimation: Guarantee € relative error with probability 1-06
using O(log(1/3)/€”2) space

- For q% selectivity predicates the space goes up inversely with q

Experimental results: 0-10% error vs. 50-250% error for previous best
approaches, using 0.2% to 10% synopses

15

Distinct Sampling Example

« B=3,N=8 (r=0 to simplify example)

Data stream:

hash:

Data stream:

305301751037

O|1 (3|57
Ol]1{0) 1[0

1{7 5103 7

S={3,0,5}, level=0

U

S={15}, level=1

« Computed value: 4

Processing Set Expressions over
Update Streams [GGRO3]

« Estimate cardinalﬁy of general set expressions over streams of updates

- E.g., number of distinct (source,dest) pairs seen at both R1 and R2
but not R3? | (R1()R2)-R3 |

o 2-Level Hash-Sketch (ZLHS) stream synopsis: Generalizes FM sketch

- First level: ©(logN) buckets with exponentially-decreasing
probabilities (using Isb(h(x)), as in FM)

- Second level: Count-signature array (logN+1 counters)

- One “total count” for elements in first-level bucket

* logN "bit-location counts” for 1-bits of incoming elements

insert(17) — Isb(h(17))

-1 for deletesl!
o | |

/ +1 +1
TotCount | count7 | count6 | countb | count4 | count3 count2 | countl | countO

17 = 0 0 0 1 0 0 0 1 v

Processing Set Expressions over
Update Streams: Key Ideas

e Build several indebenden’r 2LI:IS, fix ailevel |, anglook for singleton
first-level buckets at that level |

............ rre AT = N - I ~ 17/ oY |

 Singleton buckets and singleton element (in the bucket) are easily
identified using the count signature

Singleton bucket count signature
Total=11 | 0] 0o o0[11]0 [110 | mmmp Singleton element = 1010,=10

« Singletons discovered form a distinct-value sample from the union of
the streams

- Frequency-independent, each value sampled with probability }ém

« Determine the fraction of ‘witnesses” for the set expression E in the
sample, and scale-up to find the estimate for |E|

18

Example: Set Difference, |A-B|

* Parallel (same hash fdnc’rion),-i:ndependen‘r 2LHS synopses for input
streams A, B

* Assume robust estimate u for |AUB| (using known FM techniques)
« Look for buckets that are singletons for AUB at level |= llog G |
- Prob[singleton at level I] > constant (e.g., 1/4)

- Number of singletons (i.e., size of distinct sample) is at least a
constant fraction (e.g., > 1/6) of the number of 2LHS (w.h.p.)

» "Witness” for set difference A-B: Bucket is singleton for stream A and
empty for stream B

- Prob[witness | singleton] = |A-B| / |AUB|

withesses for A-B N

« Estimat A-B| =
imate for [A-B] # singleton buckets

19

Estimation Guarantees

* Our set-difference cardinality estimate is within a relative error of €
with probability >1-8 when the number of 2LHS is O(I AUB log(1/9)

|AUB| |A-B|¢?
IA-B|e) space, usihg communication-complexity

)

« Lower bound of Q(
arguments

* Natural generalization to arbitrary set expressions E = f(S1,..,5Sn)
- Build parallel, independent 2LHS for each S1,..., Sn

- Generalize "witness" condition (inductively) based on E's structure

|S1U...USn| log(l/J))
|E | €°

- (&£,0) estimate for |E| using O(
2LHS synopses

» Worst-case bounds! Performance in practice is much better [GGR03]

20

Extensions

 Key property of FM-based sketch structures: Duplicate-insensitivel/

- Multiple insertions of the same value don't affect the sketch or the
final estimate

- Makes them ideal for use in broadcast-based environments

- E.g., wireless sensor networks (broadcast to many neighbors is
critical for robust data transfer)

- Considine et al. ICDE'O4; Manjhi et al. SIGMOD'05

* Main deficiency of traditional random sampling. Does
not work in a Turnstile Model (inserts+deletes)

- "Adversarial” deletion stream can deplete the
sample

 Exercise: Can you make use of the ideas discussed
today to build a "delete-proof” method of maintaining
a random sample over a stream?? ’

