Data Stream Processing (Part III)

- •Gibbons. "Distinct sampling for highly accurate answers to distinct values queries and event reports", VLDB'2001.
 - •Ganguly, Garofalakis, Rastogi. "Tracking Set Expressions over Continuous Update Streams", ACM SIGMOD'2003.
 - SURVEY-1: S. Muthukrishnan. "Data Streams: Algorithms and Applications"
 - SURVEY-2: Babcock et al. "Models and Issues in Data Stream Systems", ACM PODS'2002.

The Streaming Model

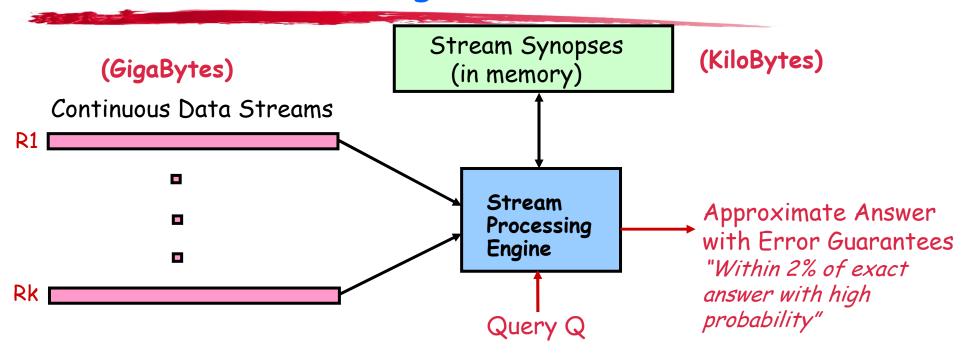
- Underlying signal: One-dimensional array A[1...N] with values A[i] all initially zero
 - -Multi-dimensional arrays as well (e.g., row-major)
- Signal is implicitly represented via a stream of updates
 - -j-th update is <k, c[j]> implying
 - A[k] := A[k] + c[j] (c[j] can be >0, <0)
- Goal: Compute functions on A[] subject to
 - -Small space
 - -Fast processing of updates
 - -Fast function computation

- ...

Streaming Model: Special Cases

- Time-Series Model
 - -Only j-th update updates A[j] (i.e., A[j] := c[j])
- Cash-Register Model
 - c[j] is always >= 0 (i.e., increment-only)
 - -Typically, c[j]=1, so we see a multi-set of items in one pass
- Turnstile Model
 - -Most general streaming model
 - c[j] can be >0 or <0 (i.e., increment or decrement)
- Problem difficulty varies depending on the model
 - -E.g., MIN/MAX in Time-Series vs. Turnstile!

Data-Stream Processing Model



- Approximate answers often suffice, e.g., trend analysis, anomaly detection
- Requirements for stream synopses
 - Single Pass: Each record is examined at most once, in (fixed) arrival order
 - Small Space: Log or polylog in data stream size
 - Real-time: Per-record processing time (to maintain synopses) must be low
 - Delete-Proof: Can handle record deletions as well as insertions
 - Composable: Built in a distributed fashion and combined later

Probabilistic Guarantees

- Example: Actual answer is within 5 ± 1 with prob ≥ 0.9
- Randomized algorithms: Answer returned is a speciallybuilt random variable
- User-tunable (ε, δ) -approximations
 - Estimate is within a relative error of ϵ with probability >= $1\!-\!\delta$
- Use Tail Inequalities to give probabilistic bounds on returned answer
 - Markov Inequality
 - Chebyshev's Inequality
 - Chernoff Bound
 - Hoeffding Bound

Linear-Projection (aka AMS) Sketch Synopses

<u>Goal:</u> Build small-space summary for distribution vector f(i) (i=1,..., N) seen as a stream of i-values

Data stream: 3, 1, 2, 4, 2, 3, 5, ...

f(1) f(2) f(3) f(4) f(5)

• <u>Basic Construct:</u> Randomized Linear Projection of f() = project onto inner/dot product of f-vector

 $< f, \xi> = \sum f(i)\xi_i$ where ξ = vector of random values from an appropriate distribution

- Simple to compute over the stream: Add ξ_i whenever the i-th value is seen

Data stream: 3, 1, 2, 4, 2, 3, 5, ... $\xi_1 + 2\xi_2 + 2\xi_3 + \xi_4 + \xi_5$

- Generate ξ_i 's in small (logN) space using pseudo-random generators
- Tunable probabilistic guarantees on approximation error
- Delete-Proof: Just subtract ξ_i to delete an i-th value occurrence
- Composable: Simply add independently-built projections

Overview

- Introduction & Motivation
- Data Streaming Models & Basic Mathematical Tools
- Summarization/Sketching Tools for Streams
 - -Sampling
 - -Linear-Projection (aka AMS) Sketches
 - · Applications: Join/Multi-Join Queries, Wavelets
 - -Hash (aka FM) Sketches
 - · Applications: Distinct Values, Distinct sampling, Set Expressions

Distinct Value Estimation

- Problem: Find the number of distinct values in a stream of values with domain [0,...,N-1]
 - Zeroth frequency moment $F_{\scriptscriptstyle 0}$, LO (Hamming) stream norm
 - Statistics: number of species or classes in a population
 - Important for query optimizers
 - Network monitoring: distinct destination IP addresses, source/destination pairs, requested URLs, etc.
- Example (N=64) Data stream: 3 0 5 3 0 1 7 5 1 0 3 7

Number of distinct values: 5

- Hard problem for random sampling! [CCMN00]
 - Must sample almost the entire table to guarantee the estimate is within a factor of 10 with probability > 1/2, regardless of the estimator used!

Hash (aka FM) Sketches for Distinct Value Estimation [FM85]

- Assume a hash function h(x) that maps incoming values x in [0,..., N-1] uniformly across $[0,..., 2^L-1]$, where L = O(logN)
- Let Isb(y) denote the position of the least-significant 1 bit in the binary representation of y
 - A value x is mapped to lsb(h(x))
- Maintain Hash Sketch = BITMAP array of L bits, initialized to 0
 - For each incoming value x, set BITMAP[lsb(h(x))] = 1 BITMAP

$$x = 5 \longrightarrow h(x) = 101100 \longrightarrow lsb(h(x)) = 2$$

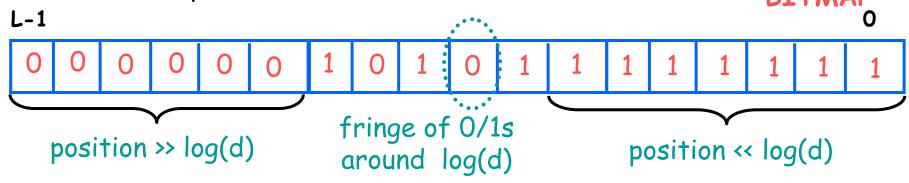
$$5 \quad 4 \quad 3 \quad 2 \quad 1 \quad 0$$

$$0 \quad 0 \quad 1 \quad 0 \quad 0$$

Hash (aka FM) Sketches for Distinct Value Estimation [FM85]

- By uniformity through h(x): Prob[BITMAP[k]=1] = Prob[10^k] = $\frac{1}{2^{k+1}}$
 - Assuming d distinct values: expect d/2 to map to BITMAP[0],
 d/4 to map to BITMAP[1], ...

 BITMAP



- Let R = position of rightmost zero in BITMAP
 - Use as indicator of log(d)
- [FM85] prove that E[R] = $\log(\phi d)$, where $\phi = .7735$
 - Estimate d = $2^R/\phi$
 - Average several iid instances (different hash functions) to reduce estimator variance

Hash Sketches for Distinct Value Estimation

- [FM85] assume "ideal" hash functions h(x) (N-wise independence)
 - [AMS96]: pairwise independence is sufficient
 - $h(x) = (a \cdot x + b) \mod N$, where a, b are random binary vectors in [0,...,2^L-1]
 - Small-space (\mathcal{E},δ) estimates for distinct values proposed based on FM ideas
- Delete-Proof: Just use counters instead of bits in the sketch locations
 - +1 for inserts, -1 for deletes
- Composable: Component-wise OR/add distributed sketches together
 - Estimate $|S1 \cup S2 \cup ... \cup Sk| = set$ -union cardinality

Generalization: Distinct Values Queries

- SELECT COUNT(DISTINCT target-attr)
- FROM relation
- WHERE predicate
- SELECT COUNT(DISTINCT o_custkey)
- FROM orders
- WHERE o_orderdate >= '2002-01-01'
 - Where o_orderdate = 2002 of of
 - "How many distinct customers have placed orders this year?"
 - Predicate not necessarily only on the DISTINCT target attribute
- Approximate answers with error guarantees over a stream of tuples?

Template

TPC-H example

Distinct Sampling [Gib01]

Key Ideas

- Use FM-like technique to collect a specially-tailored sample over the distinct values in the stream
 - Use hash function mapping to sample values from the data domain!!
 - Uniform random sample of the distinct values
 - Very different from traditional random sample: each distinct value is chosen uniformly regardless of its frequency
 - DISTINCT query answers: simply scale up sample answer by sampling rate
- To handle additional predicates
 - Reservoir sampling of tuples for each distinct value in the sample
 - Use reservoir sample to evaluate predicates

Building a Distinct Sample [Gib01]

- Use FM-like hash function h() for each streaming value x
 - Prob[h(x) = k] = $\frac{1}{2^{k+1}}$
- Key Invariant: "All values with $h(x) \ge level$ (and only these) are in the distinct sample"

```
DistinctSampling(B,r)

// B = space bound, r = tuple-reservoir size for each distinct value

level = 0; S = Ø

for each new tuple t do

let x = value of DISTINCT target attribute in t

if h(x) >= level then // x belongs in the distinct sample

use t to update the reservoir sample of tuples for x

if |S| >= B then // out of space

evict from S all tuples with h(target-attribute-value) = level

set level = level + 1
```

Using the Distinct Sample [Gib01]

- If level = | for our sample, then we have selected all distinct values x such that $h(x) \ge 1$
 - Prob[h(x) >= 1] = $\frac{1}{2^{l}}$
 - By h()'s randomizing properties, we have uniformly sampled a 2^{-l} fraction of the distinct values in our stream

Our sampling rate!

- Query Answering: Run distinct-values query on the distinct sample and scale the result up by 2^l
- Distinct-value estimation: Guarantee ϵ relative error with probability 1δ using $O(\log(1/\delta)/\epsilon^2)$ space
 - For q% selectivity predicates the space goes up inversely with q
- Experimental results: 0-10% error vs. 50-250% error for previous best approaches, using 0.2% to 10% synopses

Distinct Sampling Example

• B=3, N=8 (r=0 to simplify example)

Data stream: 3 0 5 3 0 1 7 5 1 0 3 7

hash:

0	1	3	5	7
0	1	0	1	0

Data stream: 1 7 5 1 0 3 7

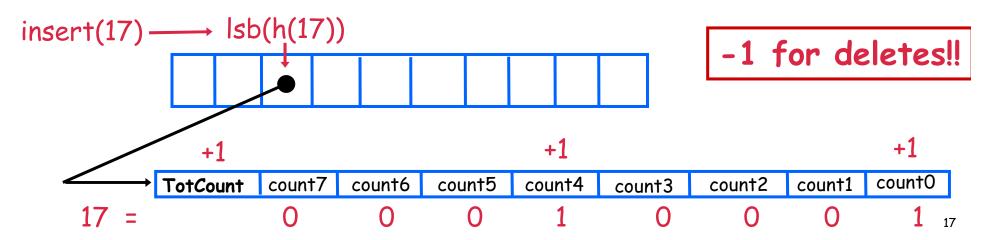
$$S={3,0,5}, level = 0$$

$$S=\{1,5\}$$
, level = 1

• Computed value: 4

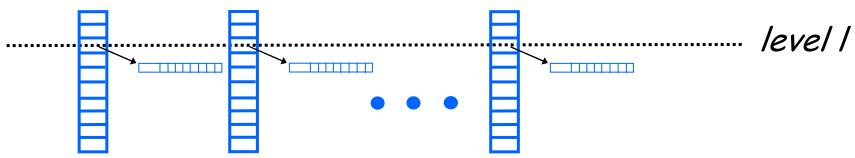
Processing Set Expressions over Update Streams [GGR03]

- Estimate cardinality of general set expressions over streams of updates
 - E.g., number of distinct (source,dest) pairs seen at both R1 and R2 but not R3? \mid (R1 \cap R2) R3 \mid
- 2-Level Hash-Sketch (2LHS) stream synopsis: Generalizes FM sketch
 - First level: $\Theta(\log N)$ buckets with exponentially-decreasing probabilities (using lsb(h(x)), as in FM)
 - Second level: Count-signature array (logN+1 counters)
 - One "total count" for elements in first-level bucket
 - logN "bit-location counts" for 1-bits of incoming elements



Processing Set Expressions over Update Streams: Key Ideas

 Build several independent 2LHS, fix a level I, and look for singleton first-level buckets at that level I



 Singleton buckets and singleton element (in the bucket) are easily identified using the count signature

Singleton bucket count signature

- Singletons discovered form a distinct-value sample from the union of the streams
 - Frequency-independent, each value sampled with probability $\frac{1}{2^{l+1}}$
- Determine the fraction of "witnesses" for the set expression E in the sample, and scale-up to find the estimate for |E|

Example: Set Difference, |A-B|

- Parallel (same hash function), independent 2LHS synopses for input streams A, B
- Assume robust estimate \hat{u} for $|A \cup B|$ (using known FM techniques)
- Look for buckets that are *singletons for* $A \cup B$ at level $I \approx \lceil \log \hat{u} \rceil$
 - Prob[singleton at level 1] > constant (e.g., 1/4)
 - Number of singletons (i.e., size of distinct sample) is at least a constant fraction (e.g., > 1/6) of the number of 2LHS (w.h.p.)
- "Witness" for set difference A-B: Bucket is singleton for stream A and empty for stream B
 - Prob[witness | singleton] = $|A-B|/|A\cup B|$
- Estimate for $|A-B| = \frac{\# \text{ witnesses for } A-B}{\# \text{ singleton buckets}} \times \hat{u}$

Estimation Guarantees

- Our set-difference cardinality estimate is within a relative error of ϵ with probability $\geq 1-\delta$ when the number of 2LHS is $O(\frac{|A \cup B| \log(1/\delta)}{|A-B| \epsilon^2})$
- Lower bound of $\Omega(\frac{|A \cup B|}{|A B|\epsilon})$ space, using communication-complexity arguments
- Natural generalization to arbitrary set expressions E = f(S1,...,Sn)
 - Build parallel, independent 2LHS for each S1,..., Sn
 - Generalize "witness" condition (inductively) based on E's structure
 - (ε, δ) estimate for |E| using $O(\frac{|S1 \cup ... \cup Sn| \log(1/\delta)}{|E| \varepsilon^2})$ 2LHS synopses
- Worst-case bounds! Performance in practice is much better [GGR03]

Extensions

- Key property of FM-based sketch structures: Duplicate-insensitive!!
 - Multiple insertions of the same value don't affect the sketch or the final estimate
 - Makes them ideal for use in broadcast-based environments
 - E.g., wireless sensor networks (broadcast to many neighbors is critical for robust data transfer)
 - Considine et al. ICDE'04; Manjhi et al. SIGMOD'05
- Main deficiency of traditional random sampling: Does not work in a Turnstile Model (inserts+deletes)
 - "Adversarial" deletion stream can deplete the sample
- Exercise: Can you make use of the ideas discussed today to build a "delete-proof" method of maintaining a random sample over a stream??