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� Traditional DBMS: data stored in finite, persistent data sets

� Data Streams: distributed, continuous, unbounded, rapid, 
time varying, noisy, . . . 

� Data-Stream Management: variety of modern applications

– Network monitoring and traffic engineering
– Sensor networks
– Telecom call-detail records
– Network security 
– Financial applications
– Manufacturing processes
– Web logs and clickstreams
– Other massive data sets…
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� 24x7 IP packet/flow data-streams at network elements
� Truly massive streams arriving at rapid rates

– AT&T collects 600-800 Gigabytes of NetFlow data each day.

� Often shipped off-site to data warehouse for off-line analysis

Source        Destination Duration Bytes       Protocol
10.1.0.2            16.2.3.7             12                20K            http
18.6.7.1            12.4.0.3             16                24K            http
13.9.4.3            11.6.8.2             15                20K            http
15.2.2.9            17.1.2.1             19                40K            http
12.4.3.8            14.8.7.4             26                58K            http
10.5.1.3            13.0.0.1             27                100K          ftp
11.1.0.6            10.3.4.5             32                300K          ftp
19.7.1.2            16.5.5.8             18                80K            ftp

Example NetFlow
IP Session Data

DSL/Cable
Networks

• Broadband
Internet Access

Converged IP/MPLS
Core

PSTNEnterprise
Networks

• Voice over IP• FR, ATM, IP VPN

Network Operations
Center  (NOC)

SNMP/RMON,
NetFlow records

Peer
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DBMS
(Oracle, DB2)

Back-end Data Warehouse

Off-line analysis –
slow, expensive

DSL/Cable
Networks

Enterprise
Networks

Peer

Network Operations
Center  (NOC)

What are the top (most frequent) 1000 (source, dest) 
pairs seen over the last month?

SELECT COUNT (R1.source, R2.dest)
FROM  R1, R2
WHERE R1.dest = R2.source

SQL Join Query

How many distinct (source, dest) pairs have 
been seen by both R1 and R2 but not R3?

Set-Expression Query

PSTN
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� Must process network streams in real-time and one pass
� Critical NM tasks: fraud, DoS attacks, SLA violations

– Real-time traffic engineering to improve utilization

� Tradeoff communication and computation to reduce load
– Make responses fast, minimize use of network resources
– Secondarily, minimize space and processing cost at nodes

IP Network

PSTN

DSL/Cable
Networks

Network Operations
Center  (NOC)

BGP
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� Wireless sensor networks becoming ubiquitous in 
environmental monitoring, military applications, …

� Many (100s, 103, 106?) sensors scattered over terrain 
� Sensors observe and process a local stream of readings: 

– Measure light, temperature, pressure…
– Detect signals, movement, radiation…
– Record audio, images, motion…



7

����
�	� �
#�����������	���

� Query sensornet through a (remote) base station
� Sensor nodes have severe resource constraints

– Limited battery power, memory, processor, radio range…
– Communication is the major source of battery drain
– “transmitting a single bit of data is equivalent to 800 

instructions” [Madden et al.’02]

base station
(root, coordinator…)

ht
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://
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� Approximate answers– e.g. trend analysis, anomaly detection
� Requirements for stream synopses

– Single Pass: Each record is examined at most once
– Small Space: Log or polylog in data stream size
– Small-time: Low per-record processing time (maintain synopses)
– Also:  delete-proof, composable, …

Stream Processor

Approximate Answer
with Error Guarantees
“Within 2% of exact
answer with high
probability”

Stream Synopses
(in memory)Continuous Data Streams

Query Q

R1

Rk

(Terabytes) (Kilobytes)
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� Large-scale querying/monitoring: Inherently distributed!
– Streams physically distributed across remote sites

E.g., stream of UDP packets through subset of edge routers

� Challenge is “holistic” querying/monitoring
– Queries over the union of distributed streams Q(S1 � S2 � …)

– Streaming data is spread throughout the network

Network 
Operations

Center  (NOC)

Query site Query

0 1
1

1 1

0
0

1

1 0

0

1
1

0

1
1

0

1
1

0

1
1

Q(S1 � S2 �…)

S6

S5S4

S3
S1

S2
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� Need timely, accurate, and efficient query answers 
� Additional complexity over centralized data streaming!
� Need space/time- and communication-efficient solutions

– Minimize network overhead
– Maximize network lifetime (e.g., sensor battery life)
– Cannot afford to “centralize” all streaming data

Network 
Operations

Center  (NOC)

Query site Query

0 1
1

1 1

0
0

1

1 0

0

1
1

0

1
1

0

1
1

0

1
1

Q(S1 � S2 �…)

S6

S5S4

S3
S1

S2
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“One-shot” vs. Continuous Querying
� One-shot queries:  On-demand “pull”

query answer from network
– One or few rounds of communication
– Nodes may prepare for a class of queries

� Continuous queries: Track/monitor
answer at query site at all times 
– Detect anomalous/outlier behavior in 

(near) real-time, i.e., “Distributed triggers”
– Challenge is to minimize communication 

Use “push-based” techniques
May use one-shot algs as subroutines

Querying 
Model

Communication
Model

Class of
Queries
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Minimizing communication often needs 
approximation and randomization

� E.g., Continuously monitor average value
– Must send every change for exact answer
– Only need ‘significant’ changes for approx 

(def. of “significant” specifies an algorithm)

� Probability sometimes vital to reduce 
communication
– count distinct in one shot model 

needs randomness
– Else must send complete data

Querying 
Model

Communication
Model

Class of
Queries
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Class of Queries of Interest
� Simple algebraic vs. holistic aggregates

– E.g., count/max vs. quantiles/top-k

� Duplicate-sensitive vs. duplicate-insensitive
– “Bag” vs.  “set” semantics

� Complex correlation queries
– E.g., distributed joins, set expressions, …

Querying 
Model

Communication
Model

Class of
Queries 1S

0 1
1

1 1

0
0

1

1 0

2S

0

1
1

0

1
1

0

1
1

0

1
1

3S
6S

5S
4S

Query

|(S1 � S2) ���� (S5 � S6)|
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Communication Network Characteristics
Topology:  “Flat” vs. Hierarchical 

vs. Fully-distributed (e.g., P2P DHT)

Querying 
Model

Communication
Model

Class of
Queries

Coordinator

Fully DistributedHierarchical“ Flat”

Other network characteristics:  
– Unicast (traditional wired), multicast, broadcast (radio nets)
– Node failures, loss, intermittent connectivity, …



15

% �	���

� Introduction, Motivation, Problem Setup

� One-Shot Distributed-Stream Querying

– Tree Based Aggregation

– Robustness and Loss

– Decentralized Computation and Gossiping

� Continuous Distributed-Stream Tracking

� Probabilistic Distributed Data Acquisition

� Conclusions
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� Tree structured networks are a basic primitive
– Much work in e.g. sensor nets on building communication 

trees
– We assume that tree has been built, focus on issues with a 

fixed tree

Flat 
Hierarchy

Base Station

Regular Tree



18

&�� ��	�	�������"
�

� Goal is for root to compute a 
function of data at leaves

� Trivial solution: push all data up 
tree and compute at base station

– Strains nodes near root: batteries drain, disconnecting 
network
– Very wasteful: no attempt at saving communication

� Can do much better by “In-network” query processing
– Simple example: computing max
– Each node hears from all children, computes max and 
sends to parent (each node sends only one item)
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� What are aggregates of interest?
– SQL Primitives: min, max, sum, count, avg

– More complex: count distinct, point & range queries,
quantiles, wavelets, histograms, sample

– Data mining: association rules, clusterings etc.

� Some aggregates are easy – e.g., SQL primitives

� Can set up a formal framework for in network 
aggregation
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� Abstract in-network aggregation.  Define functions:
– Generate, g(i): take input, produce summary (at leaves)
– Fusion, f(x,y): merge two summaries (at internal nodes)
– Evaluate, e(x): output result (at root)

� E.g. max: g(i) = i f(x,y) = max(x,y) e(x) = x 
� E.g. avg: g(i) = (i,1) f((i,j),(k,l)) = (i+k,j+l) e(i,j) = i/j

� Can specify any function with 
g(i) ={i}, f(x,y) = x � y
Want to bound |f(x,y)|

g(i)

f(x,y)

e(x)
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� Different properties of aggregates 
(from TAG paper [Madden et al ’02])
– Duplicate sensitive – is answer same if multiple identical 

values are reported?
– Example or summary – is result some value from input 

(max) or a small summary over the input (sum)

– Monotonicity – is F(X � Y) monotonic compared to F(X)
and F(Y) (affects push down of selections)

– Partial state – are |g(x)|, |f(x,y)| constant size, or growing? 
Is the aggregate algebraic, or holistic?
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algebraic?NoExample(s)Yessample

holisticNoSummaryYeshistogram

holisticYesSummaryNocount distinct

holisticNoExampleYesmedian, quantiles

algebraicNoSummaryYesaverage

algebraicYesSummaryYessum, count

algebraicYesExampleNomin, max

Partial 
State

MonotonicExample or 
summary

Duplicate 
Sensitive

adapted from [Madden et al.’02]
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Simulation Results

2500 Nodes

50x50 Grid

Depth = ~10

Neighbors = ~20

Uniform Dist.

Total Bytes Sent against Aggregation Function

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

EXTERNAL MAX AVERAGE DISTINCT MEDIAN

Aggregation Function

T
o

ta
l B

yt
es

 X
m

itt
ed

Holistic

Algebraic

Slide adapted from http://db.lcs.mit.edu/madden/html/jobtalk3.ppt
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� Holistic aggregates need the whole input to compute (no 
summary suffices)
– E.g., count distinct, need to remember all distinct items 

to tell if new item is distinct or not

� So focus on approximating aggregates to limit data sent
– Adopt ideas from sampling, data reduction, streams etc.

� Many techniques for in-network aggregate approximation:
– Sketch summaries (AMS, FM, CountMin, Bloom filters, …)
– Other mergeable summaries
– Building uniform samples, etc…
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� Some methods too heavyweight for today’s sensor nets, 
but as technology improves may soon be appropriate

� Most are well suited for, e.g., wired network monitoring
– Trees in wired networks often treated as flat, i.e. send 

directly to root without modification along the way

� Techniques are fairly well-developed owing to work on 
data reduction/summarization and streams

� Open problems and challenges: 
– Improve size of larger summaries
– Avoid randomized methods?  

Or use randomness to reduce size?
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� Tree aggregation techniques assumed a reliable network
– we assumed no node failure, nor loss of any message

� Failure can dramatically affect the computation
– E.g., sum – if a node near the root fails, then a whole 

subtree may be lost

� Clearly a particular problem in sensor networks
– If messages are lost, maybe can detect and resend
– If a node fails, may need to rebuild

the whole tree and re-run protocol
– Need to detect the failure, 

could cause high uncertainty 
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� Sensor nets typically based on radio communication
– So broadcast (within range) cost the same as unicast
– Use multi-path routing: improved reliability, reduced impact 

of failures, less need to repeat messages

� E.g., computation of max
– structure network into rings of nodes 

in equal hop count from root
– listen to all messages from ring below, 

then send max of all values heard
– converges quickly, high path diversity
– each node sends only once, so same cost as tree
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� It works because max is Order and Duplicate Insensitive 
(ODI)   [Nath et al.’04]

� Make use of the same e(), f(), g() framework as before
� Can prove correct if e(), f(), g() satisfy properties:

– g gives same output for duplicates: i=j � g(i) = g(j)

– f is associative and commutative: 
f(x,y) = f(y,x); f(x,f(y,z)) = f(f(x,y),z)

– f is same-synopsis idempotent: f(x,x) = x

� Easy to check min, max satisfy these requirements, 
sum does not
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� Only max and min seem to be “naturally” ODI

� How to make ODI summaries for other aggregates?
� Will make use of duplicate insensitive primitives:

– Flajolet-Martin Sketch (FM)
– Min-wise hashing
– Random labeling
– Bloom Filter 
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� Estimates number of distinct inputs (count distinct)

� Uses hash function mapping input items to i with prob 2-i

– i.e. Pr[h(x) = 1] = ½, Pr[h(x) = 2] = ¼, Pr[h(x)=3] = 1/8 …
– Easy to construct h() from a uniform hash function by 

counting trailing zeros  

� Maintain FM Sketch =  bitmap array of L = log U bits 
– Initialize bitmap to all 0s
– For each incoming value x, set FM[h(x)] = 1

x = 5 h(x) = 3 0 0 0 001

FM BITMAP

6      5     4     3     2      1
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� If d distinct values, expect d/2 map to FM[1], d/4 to FM[2]…

– Let R = position of rightmost zero in FM, indicator of log(d)
– Basic estimate d = c2R for scaling constant c � 1.3

– Average many copies (different hash fns) improves accuracy

fringe of 0/1s 
around  log(d)

0 0 0 00 1

FM BITMAP

0 00 111 1 11111

position � log(d)position � log(d)

1L R
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� Fits into the Generate, Fuse, Evaluate framework.
– Can fuse multiple FM summaries (with same hash h() ): 

take bitwise-OR of the summaries

� With O(1/ε2 log 1/δ) copies, get (1±ε) accuracy with 
probability at least 1-δ
– 10 copies gets � 30% error, 100 copies < 10% error

– Can pack FM into eg. 32 bits.  Assume h() is known to all.

00 0 1 11

6    5    4    3    2     1

00 1 1 10

6    5    4    3    2     1

00 1 1 11

6    5    4    3    2     1

+ =
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� What if we want to count, not count distinct? 
– E.g., each site i has a count ci, we want �i ci

– Tag each item with site ID, write in unary: (i,1), (i,2)… (i,ci)
– Run FM on the modified input, and run ODI protocol

� What if counts are large?
– Writing in unary might be too slow, need to make efficient

– [Considine et al.’05]: simulate a random variable that tells which 
entries in sketch are set

– [Aduri, Tirthapura ’05]: allow range updates, treat (i,ci) as range. 
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� Can take sketches and other summaries and make them 
ODI by replacing counters with FM sketches

– CM sketch + FM sketch = CMFM, ODI point queries etc. 
[Cormode, Muthukrishnan ’05]

– Q-digest + FM sketch = ODI quantiles 
[Hadjieleftheriou, Byers, Kollios ’05]

– Counts and sums 
[Nath et al.’04, Considine et al.’05]

00 1 1 11

6    5    4    3    2     1
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� Tributaries and Deltas idea
[Manjhi, Nath, Gibbons ’05]

� Combine small synopsis of 
tree-based aggregation 
with reliability of ODI

– Run tree synopsis at 
edge of network, where connectivity is limited (tributary)

– Convert to ODI summary in dense core of network (delta)

– Adjust crossover point adaptively

Delta
(Multi-path region)

Tributary 
(Tree region)
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� Bloom filters compactly encode set membership
– k hash functions map items to bit vector k times
– Set all k entries to 1 to indicate item is present
– Can lookup items, store set of size n in ~ 2n bits

� Bloom filters are ODI, and merge like FM sketches

item

1 1 1
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� Characterize all queries – can everything be made ODI 
with small summaries?

� How practical for different sensor systems?
– Few FM sketches are very small (10s of bytes)
– Sketch with FMs for counters grow large (100s of KBs)
– What about the computational cost for sensors?

� Amount of randomness required, and implicit 
coordination needed to agree hash functions etc.?

00 1 1 11

6    5    4    3    2     1
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� All methods so far have a single point of failure: if the 
base station (root) dies, everything collapses

� An alternative is Decentralized Computation
– Everyone participates in computation, all get the result
– Somewhat resilient to failures / departures

� Initially, assume anyone can talk to anyone else directly
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� “Uniform Gossiping” is a well-studied protocol for 
spreading information
– I know a secret, I tell two friends, who tell two friends …
– Formally, each round, everyone who knows the data 

sends it to one of the n participants chosen at random
– After O(log n) rounds, all n participants know the 

information (with high probability)  [Pittel 1987]
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� Naïve approach: use uniform gossip to share all the 
data, then everyone can compute the result. 
– Slightly different situation: gossiping to exchange n secrets
– Need to store all results so far to avoid double counting
– Messages grow large: end up sending whole input around
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� If we have an ODI summary, we can gossip with this.
– When new summary received, merge with current summary
– ODI properties ensure repeated merging stays accurate

� Number of messages required is same as uniform gossip
– After O(log n) rounds everyone knows the merged summary
– Message size and storage space is a single summary
– O(n log n) messages in total
– So works for FM, FM-based sketches, samples etc. 
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� ODI gossiping doesn’t always work
– May be too heavyweight for really restricted devices
– Summaries may be too large in some cases

� An alternate approach due to [Kempe et al. ’03]
– A novel way to avoid double counting: split up the counts 

and use “conservation of mass”. 
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� Setting: all n participants have a value, want to compute 
average

� Define “Push-Sum” protocol
– In round t, node i receives set of (sumj

t-1, countj
t-1) pairs

– Compute sumi
t = �j sumj

t-1, counti
t = �j countj

– Pick k uniformly from other nodes
– Send (½ sumi

t, ½counti
t) to k and to i (self)

� Round zero: send (value,1) to self

� Conservation of counts: �i sumi
t stays same

� Estimate avg = sumi
t/countit

i

x y

(x+y)/2

(x+y)/2
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8,1 8,1

8,18,1

10,1 8,1

2,112,1

6,1
9, 1

11,3/26, ½

11½,3/2 7½,1

5½,3/47½,3/4

8½,9/8 7½,7/8

8½,9/8
7½,7/8
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� Can show that after O(log n + log 1/ε + log 1/δ) rounds, 
the protocol converges within ε
– n = number of nodes

– ε = (relative) error

– δ = failure probability

� Correctness due in large part to conservation of counts
– Sum of values remains constant throughout

– (Assuming no loss or failure)
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� Some resilience comes for “free”
– If node detects message was not delivered, delay 1 round 

then choose a different target
– Can show that this only increases number of rounds by a 

small constant factor, even with many losses
– Deals with message loss, and “dead” nodes without error

� If a node fails during the protocol, some “mass” is lost, 
and count conservation does not hold
– If the mass lost is not too large, error is bounded…

i

x y
x+y lost from 
computation
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� Can run Push-Sum independently on each entry of vector

� More strongly, generalize to Push-Vector:

– Sum incoming vectors

– Split sum: half for self, half for randomly chosen target

– Can prove same conservation and convergence properties

� Generalize to sketches: a sketch is just a vector

– But ε error on a sketch may have different impact on result

– Require O(log n + log 1/ε + log 1/δ) rounds as before

– Only store O(1) sketches per site, send 1 per round
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� How realistic is complete connectivity assumption?
– In sensor nets, nodes only see a local subset

– Variations: spatial gossip ensures nodes hear about local 
events with high probability [Kempe, Kleinberg, Demers ’01]

� Can do better with more structured gossip, but impact of 
failure is higher [Kashyap et al.’06]

� Is it possible to do better when only a subset of nodes 
have relevant data and want to know the answer? 


