Managing Distribufed Data
Streams - |

User Query Q(fi, fj, ...) Global Streams
Approximate Answer f1 - mm fs
for Q(fi,], ...) PN EAAN

State-Update
Site 1 Messages Site k

Gater o [wow o w [
T T T

local update streams local update streams

Coordinator

Slides based on the Cormode/Garofalakis
VLDB'2006 tutorial

L]
Distributed Streams Model

Network
Operations
Center (NOC)

m Large-scale querying/monitoring: Inherently distributed!

— Streams physically distributed across remote sites
E.qg., stream of UDP packets through subset of edge routers

m Challenge is “holistic” querying/monitoring
— Queries over the union of distributed streams Q(S; U S, U ...)
— Streaming data is spread throughout the network

L]
Distributed Streams Model

Network
Operations
Center (NOC)

m Need timely, accurate, and efficient query answers

m Additional complexity over centralized data streaming!

m Need space/time- and communication-efficient solutions
— Minimize network overhead

— Maximize network lifetime (e.g., sensor battery life)

— Cannot afford to “centralize” all streaming data
3

L]
Outline

m Introduction, Motivation, Problem Setup
m One-Shot Distributed-Stream Querying

— Tree Based Aggregation
— Robustness and Loss

m Continuous Distributed-Stream Tracking

m Conclusions

Robusitness and Loss

]
Unreliability

m Tree aggregation techniques assumed a reliable network
— we assumed no node failure, nor loss of any message

m Failure can dramatically affect the computation

- E.g., sum-if a node near the root fails, then a whole
subtree may be lost

m Clearly a particular problem in sensor networks
— If messages are lost, maybe can detect and resend

— If a node fails, may need to rebuild
the whole tree and re-run protocol

— Need to detect the failure,
could cause high uncertainty

L]
Sensor Network Issues

m Sensor nets typically based on radio communication
— So broadcast (within range) cost the same as unicast

— Use multi-path routing: improved reliability, reduced impact
of failures, less need to repeat messages

m E.g., computation of max

— structure network into rings of nodes
In equal hop count from root

— listen to all messages from ring below,
then send max of all values heard

— converges quickly, high path diversity
— each node sends only once, so same cost as tree

]
Order and Duplicate Insensitivity

m It works because nax is Order and Duplicate Insensitive
(ODI) [Nath et al.’04]

m Make use of the same €(), f(), g() framework as before

m Can prove correct if (), f(), g() satisfy properties:
— g gives same output for duplicates: i=] = g(i) = g(j)
— fis associative and commutative:
f(x,y) = 1(y.x); 1(x,f(y,z)) = f(f(x,y),2)
— fis same-synopsis idempotent: f(x,x) = X
m Easy to check m n, max satisfy these requirements,
sumadoes not

]
Applying ODI idea

m Only max and m n seem to be “naturally” ODI
m How to make ODI summaries for other aggregates?

m Will make use of duplicate insensitive primitives:
— Flajolet-Martin Sketch (FM)
—~ Min-wise hashing
— Random labeling
— Bloom Filter

L]
FM Sketch

m Estimates number of distinct inputs (count di sti nct)
m Uses hash function mapping input items to i with prob 2-
_ i.e. Prih(x) = 1] = %, Pr[h(x) = 2] = ¥, Prh(x)=3] = 1/8 ...

— Easy to construct h() from a uniform hash function by
counting trailing zeros

m Maintain FM Sketch = bitmap array of L = log U bits

— Initialize bitmap to all Os
— For each incoming value x, set FM[h(x)] = 1

6 5 4 3 1

2
x=5 =—> h(x)=3 0]0 011‘0 0
\ FM BITMAP

10

FM Analysis
m If d distinct values, expect d/2 map to FM[1], d/4 to FM[2]...
. R FM BITMAP 1
olofo|lo]o |1|lo|l1]{o}1 1112 1
\— _/ l _/
Y Y

— Let R = position of rightmost zero in FM, indicator of log(d)

— Basic estimate d = c2R for scaling constant ¢ = 1.3

— Average many copies (different hash fns) improves accuracy

11

]
FM Sketch - ODI Properties

ololx1f|olalal +|0]1]2]|0O]O

[
o
=

m Fits into the Generate, Fuse, Evaluate framework.

— Can fuse multiple FM summaries (with same hash h()):
take bitwise-OR of the summaries

m With O(1/¢? log 1/d) copies, get (1+€) accuracy with
probability at least 1-0
— 10 copies gets = 30% error, 100 copies < 10% error
— Can pack FM into eg. 32 bits. Assume h() is known to all.

12

[
FM within ODI

m What if we want to count, not count distinct?
- E.g., each site i has a count c;, we want 2, c.
— Tag each item with site ID, write in unary: (i,1), (i,2)... (i,c;)
— Run FM on the modified input, and run ODI protocol
m What if counts are large?
— Writing in unary might be too slow, need to make efficient

— [Considine et al.’05]: simulate a random variable that tells which
entries in sketch are set

— [Aduri, Tirthapura 05]: allow range updates, treat (i,c;) as range.

13

]
Other applications of FM in ODI

m Can take sketches and other summaries and make them
ODI by replacing counters with FM sketches

— CM sketch + FM sketch = CMFM, ODI point queries etc.
[Cormode, Muthukrishnan '05]

— Q-digest + FM sketch = ODI quantiles
[Hadjieleftheriou, Byers, Kollios '05]

— Counts and sums
[Nath et al.’04, Considine et al.’05]

6 5 4 3 2 1
01

14

]
Combining ODI and Tree

Delta
“F(Multi-path region)

m Tributaries and Deltas idea
[Manjhi, Nath, Gibbons '05]

m Combine small synopsis of
tree-based aggregation Tributary__..
with reliability of oD~ {17¢¢ re9on@

— Run tree synopsis at
edge of network, where connectivity is limited (tributary)

Figure due to Amit Manjhi

— Convert to ODI summary in dense core of network (delta)
— Adjust crossover point adaptively

15

L]
Bloom Filters

m Bloom filters compactly encode set membership
— k hash functions map items to bit vector k times
— Set all k entries to 1 to indicate item is present
— Can lookup items, store set of size n in ~ 2n bits

m Bloom filters are ODI, and merge like FM sketches

16

]
Open Questions and Extensions

m Characterize all queries — can everything be made ODI
with small summaries?
m How practical for different sensor systems?
— Few FM sketches are very small (10s of bytes)
— Sketch with FMs for counters grow large (100s of KBs)
— What about the computational cost for sensors?

= Amount of randomness required, and implicit
coordination needed to agree hash functions etc.?

17

L]
Tutorial Outline

m Introduction, Motivation, Problem Setup
m One-Shot Distributed-Stream Querying
m Continuous Distributed-Stream Tracking

— Adaptive Slack Allocation
— Predictive Local-Stream Models

m Conclusions

18

L]
Continuous Distributed Model

Track Q(S;,...,Sy,)

local stream(s)

: seen at each
m sites site

S 00000000000
== = o
m Other structures possible (e.g., hierarchical)
m Could allow site-site communication, but mostly unneeded

Goal: Continuously track (global) query over streams at
the coordinator

— Large-scale network-event monitoring, real-time anomaly/
DDoS attack detection, power grid monitoring, ...

19

L]
Continuous Distributed Streams

m But... local site streams continuously change!
- E.g., new readings are made, new data arrives
— Assumption: Changes are somewhat smooth and gradual

m Need to guarantee an answer at the coordinator that is
always correct, within some guaranteed accuracy bound

m Naive solutions must continuously centralize all data
— Enormous communication overhead!

> Track Q(S,,...,S,)

©c 0 0 0 0 0 0 0 O 0O O

20

]
Challenges

m Monitoring is Continuous...

- Real-time tracking, rather than one-shot query/response
m ...Distributed...

— Each remote site only observes part of the global stream(s)

— Communication constraints: must minimize monitoring burden
m ...Streaming...

— Each site sees a high-speed local data stream and can be
resource (CPU/memory) constrained

m ... Holistic...
— Challenge is to monitor the complete global data distribution
— Simple aggregates (e.g., aggregate traffic) are easier

21

]
How about Periodic Polling?

m Sometimes periodic polling suffices for simple tasks
- E.g., SNMP polls total traffic at coarse granularity
m Still need to deal with holistic nature of aggregates
m Must balance polling frequency against communication

- Very frequent polling causes high communication,
excess battery use in sensor networks

— Infrequent polling means delays in observing events

m Need techniques to reduce communication
while guaranteeing rapid response to events

22

|
Communication-Efficient Monitoring

m Exact answers are not needed
— Approximations with accuracy guarantees suffice
— Tradeoff accuracy and communication/ processing cost

m Key Insight: “Push-based” in-network processing
— Local filters installed at sites process local streaming updates
m Offer bounds on local-stream behavior (at coordinator)
— “Push” information to coordinator only when filter is violated
— Coordinator sets/adjusts local filters to guarantee accuracy

m \N @ x

Filters p—=avy - —y .y aea o
23

Adaptive Slack Allocation

u

L]
Slack Allocation

m A key idea is Slack Allocation

m Because we allow approximation, there is slack: the
tolerance for error between computed answer and truth

— May be absolute: |Y - Y | < €: slack is €

— Or relative: Y /Y < (1+¢): slack is Y

m For a given aggregate, show that the slack can be
divided between sites

m Will see different slack division heuristics

25

Top-k Monitoring

m Influential work on monitoring [Babcock, Olston’03]
Introduces some basic heuristics for dividing slack
Use local offset parameters so that all local distributions

26

look like the global distribution

Attempt to fix local slack violations by negotiation with

coordinator before a global readjustment

Showed that message delay does not affect correctness

Bilboard

Top 100

TS & -
=
‘!} Dswntown | 70002% | Laus

Cassie

Images from http://www.billboard.com

]
Top-k Scenario

m Each site monitors n objects with local counts Vi,j

m Values change over time with updates seen at site |
m Global count V, =2, V;;

m Want to find topk, an e-approximation to true top-k set:
— OK provided i] topk, | U topk, V, + £ =2V,

gives a little

“wiggle room”

27

]
Adjustment Factors

m Define a set of ‘adjustment factors’, ¢,
- Make top-k of V;; + ¢,; same as top-k of V;

. = -

m Maintain invariants:
1. Foritem i, adjustment factors sum to zero
2. Qof non-topk item|< 9, + € of topk item |
Invariants and local conditions used to prove correctness

28

L]
Local Conditions and Resolution

Local Conditions: 3 ¥
At each site j check adjusted v ’ > i
topk counts dominate non-topk E

| L] topk | L] topk

If any local condition violated at site j, resolution is triggered

m Local resolution: site | and coordinator only try to fix
- Try to “borrow” from ¢, , and g, , to restore condition

m Global resolution: if local resolution fails, contact all sites
— Collect all affected Vs, ie. topk plus violated counts
— Compute slacks for each count, and reallocate (next)

-~ Send new adjustment factors &', ., continue

I,j?

29

]
Slack Division Strategies

m Define “slack” based on current counts and adjustments

m \What fraction of slack to keep back for coordinator?
- 04 =0: No slack left to fix local violations

- 0,9 = 100% of slack: Next violation will be soon

- Empirical setting: ¢, , = 50% of slack when € very small
0 o =0 when g is large (¢ > V,/1000)

m How to divide remainder of slack? U”ifﬂn,
— Uniform: 1/m fraction to each site
- Proportional: V; /V; fraction to site] for | proportional

N

30

L]
Pros and Cons

m Result has many advantages:
— Guaranteed correctness within approximation bounds
— Can show convergence to correct results even with delays

— Communication reduced by 1 order magnitude
(compared to sending V;; whenever it changes by &/m)

m Disadvantages:
— Reallocation gets complex: must check O(km) conditions
-~ Need O(n) space at each site, O(mn) at coordinator
— Large (= O(k)) messages
— Global resyncs are expensive: m messages to k sites

31

General Lessons

32

Break a global (holistic) aggregate into “safe” local
conditions, so local conditions = global correctness

Set |local parameters to help the tracking

Use the approximation to define slack, divide slack
between sites (and the coordinator)

Avoid global reconciliation as much as possible, try to
patch things up locally

Predictive Local-Stream
Models

]
More Sophisticated Local Predictors

m Slack allocation methods use simple “static” prediction
— Site value implicitly assumed constant since last update
— No update from site = last update (“predicted” value) is within
required slack bounds = global error bound
m Dynamic, more sophisticated prediction models for local

site behavior?
— Model complex stream patterns, reduce number of updates
to coordinator
— But... more complex to maintain and communicate (to
coordinator)

34

]
Tracking Complex Aggregate Queries

O Track |R=S]

m Continuous distributed tracking of complex aggregate

gueries using AMS sketches and local prediction models
[Cormode, Garofalakis’'05]

m Class of queries: Generalized inner products of streams
IR=S| = fg s = 2, fr[V] f5[V]

— Join/multi-join aggregates, range queries, heavy hitters,
histograms, wavelets, ...

35

L]
Local Sketches and Sketch Prediction

m Use (AMS) sketches to summarize local site distributions
- Synopsis=small collection of random linear projections sk(fy ;)
— Linear transform: Simply add to get global stream sketch

m Minimize updates to coordinator through Sketch Prediction

— Try to predict how local-stream distributions (and their
sketches) will evolve over time

— Concise sketch-prediction models, built locally at remote sites
and communicated to coordinator

— Shared knowledge on expected stream behavior over time:
Achieve “stability”

36

Sketch Prediction

fr

Predicted Distribution

fRi
L(\J -

True Distribution (at site)

37

Skp(fRi)

|~

Prediction used at
coordinator for query
answering

Predicted Sketch \

SK(fqi)

True Sketch (at site)

Prediction error
tracked locally

by sites (local
‘\—/ constraints)

]
Query Tracking Scheme

Tracking. At site | keep sketch of stream so far, sk(fy ;)
—Track local deviation between stream and prediction:

|| sk(fr;) —skP(fr)ll, < 67 K| sk(fr)) Il
- Send current sketch (and other info\{if violated

Querying. At coordinator, query error < (€ + 20)||f:ll, |[fsl>
— € = local-sketch summarization error (at remote sites)

— 0 = upper bound on local-stream deviation from prediction
(“Lag” between remote-site and coordinator view)

m Key Insight: With local deviations bounded, the
predicted sketches at coordinator are guaranteed accurate

38

L]
Sketch-Prediction Models

m Simple, concise models of local-stream behavior
— Sent to coordinator to keep site/coordinator “in-sync”
— Many possible alternatives

m Static model: No change in distribution since last update
- Naive, “no change” assumption:
- No model info sent to coordinator, skP(f(t)) = sk(f(t,,))

—
T (Cev) fP(t)

39

L]
Sketch-Prediction Models

m Velocity model: Predict change through “velocity” vectors
from recent local history (simple linear model)

~ Velocity model: fP(t) = f(t,,,) + At v

- By sketch linearity, skP(f(t)) = sk(f(tye,)) + At * sk(v)
— Just need to communicate one extra sketch

— Can extend with acceleration component

—]

f(t,e) fP(t) = f(t,,)+AtV

40

Sketch-Prediction Models

Model Info Predicted Sketch
Static 2 sk”(f(t)) =sk(f(t,q))
Velocity sk(v) |skP(f(t)) =sk(f(t,s)) +Atisk(v)

m 1 - 2 orders of magnitude savings over sending all data

41

]
Lessons, Thoughts, and Extensions

m Dynamic prediction models are a natural choice for
continuous in-network processing

— Can capture complex temporal (and spatial) patterns to
reduce communication

m Many model choices possible
— Need to carefully balance power & conciseness
— Principled way for model selection?
m General-purpose solution (generality of AMS sketch)

— Better solutions for special queries
E.g., continuous quantiles [Cormode et al.’05]

42

Conclusions

43

Many new problems posed by developing technologies
Common features of distributed streams allow for general
techniques/principles instead of “point” solutions

- In-network query processing
Local filtering at sites, trading-off approximation with
processing/network costs, ...

— Models of “normal” operation
Static, dynamic (“predictive”), probabillistic, ...

— EXxploiting network locality and avoiding global resyncs

Many new directions unstudied, more will emerge as new
technologies arise

Lots of exciting research to be done! ©

