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� Large-scale querying/monitoring: Inherently distributed!
– Streams physically distributed across remote sites

E.g., stream of UDP packets through subset of edge routers

� Challenge is “holistic” querying/monitoring
– Queries over the union of distributed streams Q(S1 � S2 � …)

– Streaming data is spread throughout the network
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� Need timely, accurate, and efficient query answers 
� Additional complexity over centralized data streaming!
� Need space/time- and communication-efficient solutions

– Minimize network overhead
– Maximize network lifetime (e.g., sensor battery life)
– Cannot afford to “centralize” all streaming data
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� Introduction, Motivation, Problem Setup

� One-Shot Distributed-Stream Querying

– Tree Based Aggregation

– Robustness and Loss

– Decentralized Computation and Gossiping

� Continuous Distributed-Stream Tracking

� Probabilistic Distributed Data Acquisition

� Conclusions
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� Tree aggregation techniques assumed a reliable network
– we assumed no node failure, nor loss of any message

� Failure can dramatically affect the computation
– E.g., sum – if a node near the root fails, then a whole 

subtree may be lost

� Clearly a particular problem in sensor networks
– If messages are lost, maybe can detect and resend
– If a node fails, may need to rebuild

the whole tree and re-run protocol
– Need to detect the failure, 

could cause high uncertainty 
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� Sensor nets typically based on radio communication
– So broadcast (within range) cost the same as unicast
– Use multi-path routing: improved reliability, reduced impact 

of failures, less need to repeat messages

� E.g., computation of max
– structure network into rings of nodes 

in equal hop count from root
– listen to all messages from ring below, 

then send max of all values heard
– converges quickly, high path diversity
– each node sends only once, so same cost as tree
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� It works because max is Order and Duplicate Insensitive 
(ODI)   [Nath et al.’04]

� Make use of the same e(), f(), g() framework as before
� Can prove correct if e(), f(), g() satisfy properties:

– g gives same output for duplicates: i=j � g(i) = g(j)

– f is associative and commutative: 
f(x,y) = f(y,x); f(x,f(y,z)) = f(f(x,y),z)

– f is same-synopsis idempotent: f(x,x) = x

� Easy to check min, max satisfy these requirements, 
sum does not
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� Only max and min seem to be “naturally” ODI

� How to make ODI summaries for other aggregates?
� Will make use of duplicate insensitive primitives:

– Flajolet-Martin Sketch (FM)
– Min-wise hashing
– Random labeling
– Bloom Filter 
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� Estimates number of distinct inputs (count distinct)

� Uses hash function mapping input items to i with prob 2-i

– i.e. Pr[h(x) = 1] = ½, Pr[h(x) = 2] = ¼, Pr[h(x)=3] = 1/8 …
– Easy to construct h() from a uniform hash function by 

counting trailing zeros  

� Maintain FM Sketch =  bitmap array of L = log U bits 
– Initialize bitmap to all 0s
– For each incoming value x, set FM[h(x)] = 1

x = 5 h(x) = 3 0 0 0 001

FM BITMAP

6      5     4     3     2      1
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� If d distinct values, expect d/2 map to FM[1], d/4 to FM[2]…

– Let R = position of rightmost zero in FM, indicator of log(d)
– Basic estimate d = c2R for scaling constant c � 1.3

– Average many copies (different hash fns) improves accuracy

fringe of 0/1s 
around  log(d)

0 0 0 00 1

FM BITMAP

0 00 111 1 11111

position � log(d)position � log(d)

1L R
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� Fits into the Generate, Fuse, Evaluate framework.
– Can fuse multiple FM summaries (with same hash h() ): 

take bitwise-OR of the summaries

� With O(1/ε2 log 1/δ) copies, get (1±ε) accuracy with 
probability at least 1-δ
– 10 copies gets � 30% error, 100 copies < 10% error

– Can pack FM into eg. 32 bits.  Assume h() is known to all.

00 0 1 11

6    5    4    3    2     1

00 1 1 10

6    5    4    3    2     1

00 1 1 11

6    5    4    3    2     1

+ =
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� What if we want to count, not count distinct? 
– E.g., each site i has a count ci, we want �i ci

– Tag each item with site ID, write in unary: (i,1), (i,2)… (i,ci)
– Run FM on the modified input, and run ODI protocol

� What if counts are large?
– Writing in unary might be too slow, need to make efficient

– [Considine et al.’05]: simulate a random variable that tells which 
entries in sketch are set

– [Aduri, Tirthapura ’05]: allow range updates, treat (i,ci) as range. 
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� Can take sketches and other summaries and make them 
ODI by replacing counters with FM sketchesreplacing counters with FM sketches

– CM sketch + FM sketch = CMFM, ODI point queries etc. 
[Cormode, Muthukrishnan ’05]

– Q-digest + FM sketch = ODI quantiles 
[Hadjieleftheriou, Byers, Kollios ’05]

– Counts and sums 
[Nath et al.’04, Considine et al.’05]

00 1 1 11

6    5    4    3    2     1
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� Tributaries and Deltas idea
[Manjhi, Nath, Gibbons ’05]

� Combine small synopsis of 
tree-based aggregation 
with reliability of ODI

– Run tree synopsis at 
edge of network, where connectivity is limited (tributary)

– Convert to ODI summary in dense core of network (delta)

– Adjust crossover point adaptively

Delta
(Multi-path region)

Tributary 
(Tree region)
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� Bloom filters compactly encode set membership
– k hash functions map items to bit vector k times
– Set all k entries to 1 to indicate item is present
– Can lookup items, store set of size n in ~ 2n bits

� Bloom filters are ODI, and merge like FM sketches

item

1 1 1
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� Characterize all queries – can everything be made ODI 
with small summaries?

� How practical for different sensor systems?
– Few FM sketches are very small (10s of bytes)
– Sketch with FMs for counters grow large (100s of KBs)
– What about the computational cost for sensors?

� Amount of randomness required, and implicit 
coordination needed to agree hash functions etc.?

00 1 1 11

6    5    4    3    2     1
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� Introduction, Motivation, Problem Setup

� One-Shot Distributed-Stream Querying

� Continuous Distributed-Stream Tracking

– Adaptive Slack Allocation

– Predictive Local-Stream Models

– Distributed Triggers

� Probabilistic Distributed Data Acquisition

� Conclusions



19

%��	�������� ��	
���	������

� Other structures possible (e.g., hierarchical)
� Could allow site-site communication, but mostly unneeded 

Goal:: Continuously track (global) query over streams at 
the coordinator
– Large-scale network-event monitoring,  real-time anomaly/ 

DDoS attack detection, power grid monitoring, …

Coordinator

m sites

local stream(s) 
seen at each 

site

S1 Sm

Track Q(S1,…,Sm)
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� But… local site streams continuously change!
– E.g., new readings are made, new data arrives
– Assumption: Changes are somewhat smooth and gradual

� Need to guarantee an answer at the coordinator that is 
always correct, within some guaranteed accuracy bound

� Naïve solutions must continuously centralize all data 
– Enormous communication overhead!

S1 Sm

Track Q(S1,…,Sm)
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� Monitoring is Continuous…
– Real-time tracking, rather than one-shot query/response

� …Distributed…
– Each remote site only observes part of the global stream(s)
– Communication constraints: must minimize monitoring burden

� …Streaming…
– Each site sees a high-speed local data stream and can be 

resource (CPU/memory) constrained

� …Holistic…
– Challenge is to monitor the complete global data distribution
– Simple aggregates (e.g., aggregate traffic) are easier
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� Sometimes periodic polling suffices for simple tasks
– E.g., SNMP polls total traffic at coarse granularity

� Still need to deal with holistic nature of aggregates

� Must balance polling frequency against communication 

– Very frequent polling causes high communication, 
excess battery use in sensor networks

– Infrequent polling means delays in observing events

� Need techniques to reduce communication 
while guaranteeing rapid response to events
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Filters
x

“ push”

Filters
x

adjust

� Exact answers are not needed
– Approximations with accuracy guarantees suffice
– Tradeoff accuracy and communication/ processing cost

� Key Insight: “Push-based” in-network processing
– Local filters installed at sites process local streaming updates

� Offer bounds on local-stream behavior (at coordinator)

– “Push” information to coordinator only when filter is violated

– Coordinator sets/adjusts local filters to guarantee accuracy 
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� A key idea is Slack Allocation

� Because we allow approximation, there is slack: the 
tolerance for error between computed answer and truth

– May be absolute: |Y - | ≤ ε: slack is ε

– Or relative: /Y ≤ (1±ε): slack is εY

� For a given aggregate, show that the slack can be 
divided between sites

� Will see different slack division heuristics
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� Influential work on monitoring [Babcock, Olston’03]
– Introduces some basic heuristics for dividing slack
– Use local offset parameters so that all local distributions 

look like the global distribution
– Attempt to fix local slack violations by negotiation with 

coordinator before a global readjustment
– Showed that message delay does not affect correctness

Top 100

Im
ag

es
 fr

om
 h

ttp
://

ww
w.

bi
llb

oa
rd

.c
om



27

&��-������
��

� Each site monitors n objects with local counts Vi,j

� Values change over time with updates seen at site j

� Global count Vi = �j Vi,j

� Want to find topk, an ε-approximation to true top-k set:
– OK provided i∈ topk, l ∉ topk, Vi + ε ≥ Vl

item i ∈ [n]
site j ∈ [m]

gives a little 
“wiggle room”
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� Define a set of ‘adjustment factors’, δi,j

– Make top-k of Vi,j + δi,j same as top-k of Vi

� Maintain invariants: 
/0 For item i, adjustment factors sum to zero

10 δl,0 of non-topk item l ≤ δi,0 + ε of topk item i
– Invariants and local conditions used to prove correctness
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If any local condition violated at site j, resolution is triggered

� Local resolution: site j and coordinator only try to fix
– Try to “borrow” from δi,0 and δl,0 to restore condition

� Global resolution: if local resolution fails, contact all sites
– Collect all affected Vi,js, ie. topk plus violated counts

– Compute slacks for each count, and reallocate (next)

– Send new adjustment factors δ’i,j, continue

δi,j

Vi,j

i ∈ topk

≥≥≥≥ Vl,j

δl,j

l ∉ topk

Local Conditions:
At each site j check adjusted 
topk counts dominate non-topk
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� Define “slack” based on current counts and adjustments
� What fraction of slack to keep back for coordinator?

– δ
i,0

= 0: No slack left to fix local violations
– δi,0 = 100% of slack: Next violation will be soon
– Empirical setting: δi,0 = 50% of slack when ε very small 

δi,0 = 0 when ε is large (ε � Vi/1000)

� How to divide remainder of slack?
– Uniform: 1/m fraction to each site
– Proportional: Vi,j/Vi fraction to site j for i

uniform

proportional
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� Result has many advantages:
– Guaranteed correctness within approximation bounds

– Can show convergence to correct results even with delays

– Communication reduced by 1 order magnitude 
(compared to sending Vi,j whenever it changes by ε/m)

� Disadvantages:

– Reallocation gets complex: must check O(km) conditions

– Need O(n) space at each site, O(mn) at coordinator

– Large (� O(k)) messages

– Global resyncs are expensive: m messages to k sites
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� Break a global (holistic) aggregate into “safe” local 
conditions, so local conditions � global correctness 

� Set local parameters to help the tracking
� Use the approximation to define slack, divide slack 

between sites (and the coordinator)
� Avoid global reconciliation as much as possible, try to 

patch things up locally
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� Slack allocation methods use simple “static” prediction
– Site value implicitly assumed constant since last update 
– No update from site � last update (“predicted” value) is within 

required slack bounds � global error bound

� Dynamic, more sophisticated prediction models for local 
site behavior?
– Model complex stream patterns, reduce number of updates         

to coordinator
– But... more complex to maintain and communicate (to 

coordinator)
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� Continuous distributed tracking of complex aggregate 
queries using AMS sketches and local prediction models          
[Cormode, Garofalakis’05]

� Class of queries: Generalized inner products of streams

|R�S| = fR ⋅ fS = �v fR[v] fS[v] (± ε ||fR||2 ||fS||2 )

– Join/multi-join aggregates, range queries, heavy hitters, 
histograms, wavelets, …

R S

Track |R�S|
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� Use (AMS) sketches to summarize local site distributions
– Synopsis=small collection of random linear projections sk(fR,i)
– Linear transform:  Simply add to get global stream sketch

� Minimize updates to coordinator through Sketch Prediction
– Try to predict how local-stream distributions (and their 

sketches) will evolve over time
– Concise sketch-prediction models, built locally at remote sites 

and communicated to coordinator
– Shared knowledge on expected stream behavior over time:

Achieve “stability”
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Predicted Distribution Predicted Sketch

True Sketch (at site)

Prediction used at 
coordinator for query 

answering

Prediction error 
tracked locally     
by sites  (local 

constraints) 

True Distribution (at site)

Rif

p
Rif

)(sk Rif

)(skp
Rif
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Tracking. At site j keep sketch of stream so far, sk(fR,i)
– Track local deviation between stream and prediction:

|| sk(fR,i) – skp(fR,i)||2 ���� θ/����k || sk(fR,i) ||2
– Send current sketch (and other info) if violated

Querying. At coordinator, query error ≤ (ε + 2θ)||fR||2 ||fS||2
– ε = local-sketch summarization error (at remote sites) 
– θ = upper bound on local-stream deviation from prediction

(“Lag” between remote-site and coordinator view)

� Key Insight: With local deviations bounded, the 
predicted sketches at coordinator are guaranteed accurate



39

��	�"-#
���	���������

� Simple, concise models of local-stream behavior
– Sent to coordinator to keep site/coordinator “in-sync”
– Many possible alternatives

� Static model: No change in distribution since last update
– Naïve, “no change” assumption:
– No model info sent to coordinator, skp(f(t)) = sk(f(tprev))

)( prevtf )(tf p
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� Velocity model: Predict change through “velocity” vectors 
from recent local history (simple linear model)

– Velocity model: fp(t) = f(tprev) + ∆t • v

– By sketch linearity, skp(f(t)) = sk(f(tprev)) + ∆t • sk(v)

– Just need to communicate one extra sketch

– Can extend with acceleration component

)( prevtf vttftf prev
p ⋅∆+= )()(
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sk(v)Velocity

����Static

Predicted SketchInfoModel
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� 1 – 2 orders of magnitude savings over sending all data

)())(())(( vttftf prev sksksk p ⋅∆+=

))(())(( prevtftf sksk p =
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� Dynamic prediction models are a natural choice for 
continuous in-network processing
– Can capture complex temporal (and spatial) patterns to 

reduce communication

� Many model choices possible 
– Need to carefully balance power & conciseness
– Principled way for model selection?

� General-purpose solution (generality of AMS sketch)
– Better solutions for special queries

E.g., continuous quantiles [Cormode et al.’05]
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� Many new problems posed by developing technologies

� Common features of distributed streams allow for general 
techniques/principles instead of “point” solutions
– In-network query processing

Local filtering at sites, trading-off approximation with 
processing/network costs, …

– Models of “normal” operation
Static, dynamic (“predictive”), probabilistic, …

– Exploiting network locality and avoiding global resyncs

� Many new directions unstudied, more will emerge as new 
technologies arise

� Lots of exciting research to be done! �


