
������������������� ��	
���	
�� ��	
���	
� ��	����	��

�	

�� ���	

�� ���� ����

1,1
f

s,1
f

1,k
f

s,k
f

s
f

1
f

local update streams local update streams

Site 1 Site k
State−Update

Coordinator
Global Streams

Approximate Answer

User Query Q(fi, fj, ...)

for Q(fi, fj, ...)

Messages

Slides based on the Cormode/GarofalakisSlides based on the Cormode/Garofalakis
VLDBVLDB’’2006 tutorial2006 tutorial

2

� ��	
���	
���	

�� �����
�

� Large-scale querying/monitoring: Inherently distributed!
– Streams physically distributed across remote sites

E.g., stream of UDP packets through subset of edge routers

� Challenge is “holistic” querying/monitoring
– Queries over the union of distributed streams Q(S1 � S2 � …)

– Streaming data is spread throughout the network

Network
Operations

Center (NOC)

Query site Query

0 1
1

1 1

0
0

1

1 0

0

1
1

0

1
1

0

1
1

0

1
1

Q(S1 � S2 �…)

S6

S5S4

S3
S1

S2

3

� ��	
���	
���	

�� �����
�

� Need timely, accurate, and efficient query answers
� Additional complexity over centralized data streaming!
� Need space/time- and communication-efficient solutions

– Minimize network overhead
– Maximize network lifetime (e.g., sensor battery life)
– Cannot afford to “centralize” all streaming data

Network
Operations

Center (NOC)

Query site Query

0 1
1

1 1

0
0

1

1 0

0

1
1

0

1
1

0

1
1

0

1
1

Q(S1 � S2 �…)

S6

S5S4

S3
S1

S2

4

� �	���

� Introduction, Motivation, Problem Setup

� One-Shot Distributed-Stream Querying

– Tree Based Aggregation

– Robustness and Loss

– Decentralized Computation and Gossiping

� Continuous Distributed-Stream Tracking

� Probabilistic Distributed Data Acquisition

� Conclusions

�����	�
�����������

6

��

�������	�

� Tree aggregation techniques assumed a reliable network
– we assumed no node failure, nor loss of any message

� Failure can dramatically affect the computation
– E.g., sum – if a node near the root fails, then a whole

subtree may be lost

� Clearly a particular problem in sensor networks
– If messages are lost, maybe can detect and resend
– If a node fails, may need to rebuild

the whole tree and re-run protocol
– Need to detect the failure,

could cause high uncertainty

7

�
���
��
	� �
������
�

� Sensor nets typically based on radio communication
– So broadcast (within range) cost the same as unicast
– Use multi-path routing: improved reliability, reduced impact

of failures, less need to repeat messages

� E.g., computation of max
– structure network into rings of nodes

in equal hop count from root
– listen to all messages from ring below,

then send max of all values heard
– converges quickly, high path diversity
– each node sends only once, so same cost as tree

8

�
�

������������	
����
���	���	�

� It works because max is Order and Duplicate Insensitive
(ODI) [Nath et al.’04]

� Make use of the same e(), f(), g() framework as before
� Can prove correct if e(), f(), g() satisfy properties:

– g gives same output for duplicates: i=j � g(i) = g(j)

– f is associative and commutative:
f(x,y) = f(y,x); f(x,f(y,z)) = f(f(x,y),z)

– f is same-synopsis idempotent: f(x,x) = x

� Easy to check min, max satisfy these requirements,
sum does not

9

 ��������� �����
�

� Only max and min seem to be “naturally” ODI

� How to make ODI summaries for other aggregates?
� Will make use of duplicate insensitive primitives:

– Flajolet-Martin Sketch (FM)
– Min-wise hashing
– Random labeling
– Bloom Filter

10

0

!����
	�"

� Estimates number of distinct inputs (count distinct)

� Uses hash function mapping input items to i with prob 2-i

– i.e. Pr[h(x) = 1] = ½, Pr[h(x) = 2] = ¼, Pr[h(x)=3] = 1/8 …
– Easy to construct h() from a uniform hash function by

counting trailing zeros

� Maintain FM Sketch = bitmap array of L = log U bits
– Initialize bitmap to all 0s
– For each incoming value x, set FM[h(x)] = 1

x = 5 h(x) = 3 0 0 0 001

FM BITMAP

6 5 4 3 2 1

11

!�� �������

� If d distinct values, expect d/2 map to FM[1], d/4 to FM[2]…

– Let R = position of rightmost zero in FM, indicator of log(d)
– Basic estimate d = c2R for scaling constant c � 1.3

– Average many copies (different hash fns) improves accuracy

fringe of 0/1s
around log(d)

0 0 0 00 1

FM BITMAP

0 00 111 1 11111

position � log(d)position � log(d)

1L R

12

!����
	�"�� � ���#
��

	�
�

� Fits into the Generate, Fuse, Evaluate framework.
– Can fuse multiple FM summaries (with same hash h()):

take bitwise-OR of the summaries

� With O(1/ε2 log 1/δ) copies, get (1±ε) accuracy with
probability at least 1-δ
– 10 copies gets � 30% error, 100 copies < 10% error

– Can pack FM into eg. 32 bits. Assume h() is known to all.

00 0 1 11

6 5 4 3 2 1

00 1 1 10

6 5 4 3 2 1

00 1 1 11

6 5 4 3 2 1

+ =

13

!��� �	"���� ��

� What if we want to count, not count distinct?
– E.g., each site i has a count ci, we want �i ci

– Tag each item with site ID, write in unary: (i,1), (i,2)… (i,ci)
– Run FM on the modified input, and run ODI protocol

� What if counts are large?
– Writing in unary might be too slow, need to make efficient

– [Considine et al.’05]: simulate a random variable that tells which
entries in sketch are set

– [Aduri, Tirthapura ’05]: allow range updates, treat (i,ci) as range.

14

� 	"

��������	������$�!������ ��

� Can take sketches and other summaries and make them
ODI by replacing counters with FM sketchesreplacing counters with FM sketches

– CM sketch + FM sketch = CMFM, ODI point queries etc.
[Cormode, Muthukrishnan ’05]

– Q-digest + FM sketch = ODI quantiles
[Hadjieleftheriou, Byers, Kollios ’05]

– Counts and sums
[Nath et al.’04, Considine et al.’05]

00 1 1 11

6 5 4 3 2 1

15

%�� �������� �������&

� Tributaries and Deltas idea
[Manjhi, Nath, Gibbons ’05]

� Combine small synopsis of
tree-based aggregation
with reliability of ODI

– Run tree synopsis at
edge of network, where connectivity is limited (tributary)

– Convert to ODI summary in dense core of network (delta)

– Adjust crossover point adaptively

Delta
(Multi-path region)

Tributary
(Tree region)

Fi
gu

re
 d

ue
 to

 A
m

it
M

an
jh

i

16

'���� �!��	

�

� Bloom filters compactly encode set membership
– k hash functions map items to bit vector k times
– Set all k entries to 1 to indicate item is present
– Can lookup items, store set of size n in ~ 2n bits

� Bloom filters are ODI, and merge like FM sketches

item

1 1 1

17

� �
��(�
�	���������)*	
������

� Characterize all queries – can everything be made ODI
with small summaries?

� How practical for different sensor systems?
– Few FM sketches are very small (10s of bytes)
– Sketch with FMs for counters grow large (100s of KBs)
– What about the computational cost for sensors?

� Amount of randomness required, and implicit
coordination needed to agree hash functions etc.?

00 1 1 11

6 5 4 3 2 1

18

&�	�
����� �	���

� Introduction, Motivation, Problem Setup

� One-Shot Distributed-Stream Querying

� Continuous Distributed-Stream Tracking

– Adaptive Slack Allocation

– Predictive Local-Stream Models

– Distributed Triggers

� Probabilistic Distributed Data Acquisition

� Conclusions

19

%��	�������� ��	
���	
�����
�

� Other structures possible (e.g., hierarchical)
� Could allow site-site communication, but mostly unneeded

Goal:: Continuously track (global) query over streams at
the coordinator
– Large-scale network-event monitoring, real-time anomaly/

DDoS attack detection, power grid monitoring, …

Coordinator

m sites

local stream(s)
seen at each

site

S1 Sm

Track Q(S1,…,Sm)

20

%��	�������� ��	
���	
���	

�� �

� But… local site streams continuously change!
– E.g., new readings are made, new data arrives
– Assumption: Changes are somewhat smooth and gradual

� Need to guarantee an answer at the coordinator that is
always correct, within some guaranteed accuracy bound

� Naïve solutions must continuously centralize all data
– Enormous communication overhead!

S1 Sm

Track Q(S1,…,Sm)

21

%"���
��
�

� Monitoring is Continuous…
– Real-time tracking, rather than one-shot query/response

� …Distributed…
– Each remote site only observes part of the global stream(s)
– Communication constraints: must minimize monitoring burden

� …Streaming…
– Each site sees a high-speed local data stream and can be

resource (CPU/memory) constrained

� …Holistic…
– Challenge is to monitor the complete global data distribution
– Simple aggregates (e.g., aggregate traffic) are easier

22

+ �� �����	�#

������#������,

� Sometimes periodic polling suffices for simple tasks
– E.g., SNMP polls total traffic at coarse granularity

� Still need to deal with holistic nature of aggregates

� Must balance polling frequency against communication

– Very frequent polling causes high communication,
excess battery use in sensor networks

– Infrequent polling means delays in observing events

� Need techniques to reduce communication
while guaranteeing rapid response to events

23

%�� � �����	���-)$$���
�	�����	�
���

Filters
x

“ push”

Filters
x

adjust

� Exact answers are not needed
– Approximations with accuracy guarantees suffice
– Tradeoff accuracy and communication/ processing cost

� Key Insight: “Push-based” in-network processing
– Local filters installed at sites process local streaming updates

� Offer bounds on local-stream behavior (at coordinator)

– “Push” information to coordinator only when filter is violated

– Coordinator sets/adjusts local filters to guarantee accuracy

 ���	��
������� �����	���

25

������ �����	���

� A key idea is Slack Allocation

� Because we allow approximation, there is slack: the
tolerance for error between computed answer and truth

– May be absolute: |Y - | ≤ ε: slack is ε

– Or relative: /Y ≤ (1±ε): slack is εY

� For a given aggregate, show that the slack can be
divided between sites

� Will see different slack division heuristics

26

&��-������	�
���

� Influential work on monitoring [Babcock, Olston’03]
– Introduces some basic heuristics for dividing slack
– Use local offset parameters so that all local distributions

look like the global distribution
– Attempt to fix local slack violations by negotiation with

coordinator before a global readjustment
– Showed that message delay does not affect correctness

Top 100

Im
ag

es
 fr

om
 h

ttp
://

ww
w.

bi
llb

oa
rd

.c
om

27

&��-����
��
��

� Each site monitors n objects with local counts Vi,j

� Values change over time with updates seen at site j

� Global count Vi = �j Vi,j

� Want to find topk, an ε-approximation to true top-k set:
– OK provided i∈ topk, l ∉ topk, Vi + ε ≥ Vl

item i ∈ [n]
site j ∈ [m]

gives a little
“wiggle room”

28

 �.��	�
�	�!��	�
�

� Define a set of ‘adjustment factors’, δi,j

– Make top-k of Vi,j + δi,j same as top-k of Vi

� Maintain invariants:
/0 For item i, adjustment factors sum to zero

10 δl,0 of non-topk item l ≤ δi,0 + ε of topk item i
– Invariants and local conditions used to prove correctness

29

������%����	����������
����	���

If any local condition violated at site j, resolution is triggered

� Local resolution: site j and coordinator only try to fix
– Try to “borrow” from δi,0 and δl,0 to restore condition

� Global resolution: if local resolution fails, contact all sites
– Collect all affected Vi,js, ie. topk plus violated counts

– Compute slacks for each count, and reallocate (next)

– Send new adjustment factors δ’i,j, continue

δi,j

Vi,j

i ∈ topk

≥≥≥≥ Vl,j

δl,j

l ∉ topk

Local Conditions:
At each site j check adjusted
topk counts dominate non-topk

30

������� ���������	
�	
��
�

� Define “slack” based on current counts and adjustments
� What fraction of slack to keep back for coordinator?

– δ
i,0

= 0: No slack left to fix local violations
– δi,0 = 100% of slack: Next violation will be soon
– Empirical setting: δi,0 = 50% of slack when ε very small

δi,0 = 0 when ε is large (ε � Vi/1000)

� How to divide remainder of slack?
– Uniform: 1/m fraction to each site
– Proportional: Vi,j/Vi fraction to site j for i

uniform

proportional

31

#
�������%���

� Result has many advantages:
– Guaranteed correctness within approximation bounds

– Can show convergence to correct results even with delays

– Communication reduced by 1 order magnitude
(compared to sending Vi,j whenever it changes by ε/m)

� Disadvantages:

– Reallocation gets complex: must check O(km) conditions

– Need O(n) space at each site, O(mn) at coordinator

– Large (� O(k)) messages

– Global resyncs are expensive: m messages to k sites

32

2
�

����
�����

� Break a global (holistic) aggregate into “safe” local
conditions, so local conditions � global correctness

� Set local parameters to help the tracking
� Use the approximation to define slack, divide slack

between sites (and the coordinator)
� Avoid global reconciliation as much as possible, try to

patch things up locally

#

���	��
������-�	

�� �
���
��

34

��

����"��	���	
��������#

���	�
�

� Slack allocation methods use simple “static” prediction
– Site value implicitly assumed constant since last update
– No update from site � last update (“predicted” value) is within

required slack bounds � global error bound

� Dynamic, more sophisticated prediction models for local
site behavior?
– Model complex stream patterns, reduce number of updates

to coordinator
– But... more complex to maintain and communicate (to

coordinator)

35

&
�������%�� ��
*� ��

��	
�(�

�
�

� Continuous distributed tracking of complex aggregate
queries using AMS sketches and local prediction models
[Cormode, Garofalakis’05]

� Class of queries: Generalized inner products of streams

|R�S| = fR ⋅ fS = �v fR[v] fS[v] (± ε ||fR||2 ||fS||2)

– Join/multi-join aggregates, range queries, heavy hitters,
histograms, wavelets, …

R S

Track |R�S|

36

��������
	�"
��������
	�"�#

���	���

� Use (AMS) sketches to summarize local site distributions
– Synopsis=small collection of random linear projections sk(fR,i)
– Linear transform: Simply add to get global stream sketch

� Minimize updates to coordinator through Sketch Prediction
– Try to predict how local-stream distributions (and their

sketches) will evolve over time
– Concise sketch-prediction models, built locally at remote sites

and communicated to coordinator
– Shared knowledge on expected stream behavior over time:

Achieve “stability”

37

��
	�"�#

���	�����

Predicted Distribution Predicted Sketch

True Sketch (at site)

Prediction used at
coordinator for query

answering

Prediction error
tracked locally
by sites (local

constraints)

True Distribution (at site)

Rif

p
Rif

)(sk Rif

)(skp
Rif

38

(�

��&
���������"
�

Tracking. At site j keep sketch of stream so far, sk(fR,i)
– Track local deviation between stream and prediction:

|| sk(fR,i) – skp(fR,i)||2 ���� θ/����k || sk(fR,i) ||2
– Send current sketch (and other info) if violated

Querying. At coordinator, query error ≤ (ε + 2θ)||fR||2 ||fS||2
– ε = local-sketch summarization error (at remote sites)
– θ = upper bound on local-stream deviation from prediction

(“Lag” between remote-site and coordinator view)

� Key Insight: With local deviations bounded, the
predicted sketches at coordinator are guaranteed accurate

39

��
	�"-#

���	�������
��

� Simple, concise models of local-stream behavior
– Sent to coordinator to keep site/coordinator “in-sync”
– Many possible alternatives

� Static model: No change in distribution since last update
– Naïve, “no change” assumption:
– No model info sent to coordinator, skp(f(t)) = sk(f(tprev))

)(prevtf)(tf p

40

��
	�"-#

���	�������
���

� Velocity model: Predict change through “velocity” vectors
from recent local history (simple linear model)

– Velocity model: fp(t) = f(tprev) + ∆t • v

– By sketch linearity, skp(f(t)) = sk(f(tprev)) + ∆t • sk(v)

– Just need to communicate one extra sketch

– Can extend with acceleration component

)(prevtf vttftf prev
p ⋅∆+=)()(

41

sk(v)Velocity

����Static

Predicted SketchInfoModel

��
	�"-#

���	�������
��

� 1 – 2 orders of magnitude savings over sending all data

)())(())((vttftf prev sksksk p ⋅∆+=

))(())((prevtftf sksk p =

42

�
�����3�&"���"	�3�����)*	
������

� Dynamic prediction models are a natural choice for
continuous in-network processing
– Can capture complex temporal (and spatial) patterns to

reduce communication

� Many model choices possible
– Need to carefully balance power & conciseness
– Principled way for model selection?

� General-purpose solution (generality of AMS sketch)
– Better solutions for special queries

E.g., continuous quantiles [Cormode et al.’05]

43

%����������

� Many new problems posed by developing technologies

� Common features of distributed streams allow for general
techniques/principles instead of “point” solutions
– In-network query processing

Local filtering at sites, trading-off approximation with
processing/network costs, …

– Models of “normal” operation
Static, dynamic (“predictive”), probabilistic, …

– Exploiting network locality and avoiding global resyncs

� Many new directions unstudied, more will emerge as new
technologies arise

� Lots of exciting research to be done! �

