
1

SQL: The Query Language
Part 3

R &G - Chapter 5

It is not every question
that deserves an answer.

Publius Syrus. 42 B. C.

Sorting the Results of a Query

• ORDER BY column [ASC | DESC] [, ...]

• Can order by any column in SELECT list,
including expressions or aggs:

SELECT S.rating, S.sname, S.age
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid

AND R.bid=B.bid AND B.color=‘red’
ORDER BY S.rating, S.sname;

SELECT S.sid, COUNT (*) AS redrescnt
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid

AND R.bid=B.bid AND B.color=‘red’
GROUP BY S.sid
ORDER BY redrescnt DESC;

Views (repeat from last class)

CREATE VIEW view_name
AS select_statement

Makes development simpler
Often used for security
Not instantiated - makes updates tricky

CREATE VIEW Reds
AS SELECT B.bid, COUNT (*) AS scount
 FROM Boats B, Reserves R
 WHERE R.bid=B.bid AND B.color=‘red’
 GROUP BY B.bid

SELECT bname, scount
 FROM Reds R, Boats B
 WHERE R.bid=B.bid

AND scount < 10

b.bid scount
102 1

Reds

CREATE VIEW Reds
AS SELECT B.bid, COUNT (*) AS scount
 FROM Boats B, Reserves R
 WHERE R.bid=B.bid AND B.color=‘red’
 GROUP BY B.bid

Views Instead of Relations in Queries

Discretionary Access Control

GRANT privileges ON object TO users
[WITH GRANT OPTION]

• Object can be a Table or a View
• Privileges can be:

• Select
• Insert
• Delete
• References (cols) – allow to create a foreign

key that references the specified column(s)
• All

• Can later be REVOKEd
• Users can be single users or groups
• See Chapter 17 for more details.

Two more important topics

• Constraints

• SQL embedded in other languages

2

Integrity Constraints (Review)

• An IC describes conditions that every legal instance
of a relation must satisfy.
– Inserts/deletes/updates that violate IC’s are disallowed.
– Can be used to ensure application semantics (e.g., sid is

a key), or prevent inconsistencies (e.g., sname has to be
a string, age must be < 200)

• Types of IC’s: Domain constraints, primary key
constraints, foreign key constraints, general
constraints.
– Domain constraints: Field values must be of right type.

Always enforced.
– Primary key and foreign key constraints: you know them.

General Constraints

• Useful when
more general ICs
than keys are
involved.

• Can use queries
to express
constraint.

• Checked on insert
or update.

• Constraints can
be named.

CREATE TABLE Sailors
(sid INTEGER,
sname CHAR(10),
rating INTEGER,
age REAL,
PRIMARY KEY (sid),
CHECK (rating >= 1

AND rating <= 10))
 CREATE TABLE Reserves

(sname CHAR(10),
bid INTEGER,
day DATE,
PRIMARY KEY (bid,day),
CONSTRAINT noInterlakeRes
CHECK (`Interlake’ <>

(SELECT B.bname
FROM Boats B
WHERE B.bid=bid)))

Constraints Over Multiple Relations
CREATE TABLE Sailors

(sid INTEGER,
sname CHAR(10),
rating INTEGER,
age REAL,
PRIMARY KEY (sid),
CHECK
((SELECT COUNT (S.sid) FROM Sailors S)
+ (SELECT COUNT (B.bid) FROM

 Boats B) < 100)

• Awkward and
wrong!

• Only checks sailors!
• Only required to

hold if the
associated table is
non-empty.

• ASSERTION is the
right solution; not
associated with
either table.

• Unfortunately, not
supported in many
DBMS.

• Triggers are
another solution.

CREATE ASSERTION smallClub
CHECK
((SELECT COUNT (S.sid) FROM Sailors S)
+ (SELECT COUNT (B.bid)
 FROM Boats B) < 100)

Number of boats
plus number of
sailors is < 100

Writing Applications with SQL

• SQL is not a general purpose programming
language.
+ Tailored for data retrieval and manipulation
+ Relatively easy to optimize and parallelize
- Can’t write entire apps in SQL alone

Options:
Make the query language “turing complete”

Avoids the “impedance mismatch”
but, loses advantages of relational lang simplicity

Allow SQL to be embedded in regular programming
languages.

Q: What needs to be solved to make the latter
approach work?

Embedded SQL

• DBMS vendors usually provide “host language bindings”
– E.g. for C or COBOL
– Allow SQL statements to be called from within a program
– Typically you preprocess your programs
– Preprocessor generates calls to a proprietary DB connectivity

library
• General pattern

– One call to connect to the right database (login, etc.)
– SQL statements can refer to host variables from the language

• Typically vendor-specific
– We won’t look at any in detail, we’ll look at standard stuff

• Problem
– SQL relations are (multi-)sets, no a priori bound on the

number of records. No such data structure in C.
– SQL supports a mechanism called a cursor to handle this.

Just to give you a flavor

EXEC SQL SELECT S.sname, S.age
INTO :c_sname,:c_age
FROM Sailors S
WHERE S.sid = :c_sid

3

Cursors

• Can declare a cursor on a relation or query
• Can open a cursor
• Can repeatedly fetch a tuple (moving the cursor)
• Special return value when all tuples have been retrieved.
• ORDER BY allows control over the order in which tuples are

returned.
• Fields in ORDER BY clause must also appear in SELECT clause.

• Can also modify/delete tuple pointed to by a cursor
– A “non-relational” way to get a handle to a particular tuple

• There’s an Embedded SQL syntax for cursors
– DECLARE <cursorname> CURSOR FOR <select stmt>
– FETCH FROM <cursorname> INTO <variable names>
– But we’ll use JDBC instead

Database APIs: alternative to
embedding

• Rather than modify compiler, add a library
with database calls (API)
– special procedures/objects
– passes SQL strings from language, presents result

sets in a language-friendly way
– ODBC a C/C++ standard started on Windows
– JDBC a Java equivalent
– Most scripting languages have similar things

• E.g. For Perl there is DBI, “oraPerl”, other packages

• Mostly DBMS-neutral
– at least try to hide distinctions across different

DBMSs

Architecture

• A lookup service maps “data source names” (“DSNs”) to drivers
– Typically handled by OS

• Based on the DSN used, a “driver” is linked into the app at runtime
• The driver traps calls, translates them into DBMS-specific code
• Database can be across a network
• ODBC is standard, so the same program can be used (in theory) to

access multiple database systems
• Data source may not even be an SQL database!

Application

ODBC driver

Data Source

ODBC/JDBC

• Various vendors provide drivers
– MS bundles a bunch into Windows
– Vendors like DataDirect and OpenLink sell drivers for

multiple OSes
• Drivers for various data sources

– Relational DBMSs (Oracle, DB2, SQL Server, Informix, etc.)
– “Desktop” DBMSs (Access, Dbase, Paradox, FoxPro, etc.)
– Spreadsheets (MS Excel, Lotus 1-2-3, etc.)
– Delimited text files (.CSV, .TXT, etc.)

• You can use JDBC/ODBC clients over many data sources
– E.g. MS Query comes with many versions of MS Office

(msqry32.exe)
• Can write your own Java or C++ programs against xDBC

JDBC

• Part of Java, very easy to use
• Java comes with a JDBC-to-ODBC bridge

– So JDBC code can talk to any ODBC data source
– E.g. look in your Windows Control Panel for ODBC

drivers!
• JDBC tutorial online

– http://developer.java.sun.com/developer/Books/JDBC
Tutorial/

JDBC Basics: Connections

• A Connection is an object representing a login to a
database

// GET CONNECTION

Connection con;

try {
 con = DriverManager.getConnection(

 "jdbc:odbc:sailorsDB",
 userName,password);

} catch(Exception e){ System.out.println(e); }

• Eventually you close the connection
// CLOSE CONNECTION
try { con.close(); }

catch (Exception e) { System.out.println(e); }

4

JDBC Basics: Statements

• You need a Statement object for each SQL
statement

// CREATE STATEMENT
Statement stmt;
try {
 stmt = con.createStatement();
} catch (Exception e){
 System.out.println(e);
}

Soon we’ll say stmt.executeQuery(“select …”);

CreateStatement cursor behavior

• Two optional args to createStatement:
– createStatement(ResultSet.<TYPE>,

 ResultSet.<CONCUR>)

– Corresponds to SQL cursor features
• <TYPE> is one of

– TYPE_FORWARD_ONLY: can’t move cursor backward
– TYPE_SCROLL_INSENSITIVE: can move backward, but doesn’t

show results of any updates
– TYPE_SCROLL_SENSITIVE: can move backward, will show updates

from this statement
• <CONCUR> is one of

– CONCUR_READ_ONLY: this statement doesn’t allow updates
– CONCUR_UPDATABLE: this statement allows updates

• Defaults:
– TYPE_FORWARD_ONLY and CONCUR_READ_ONLY

JDBC Basics: ResultSet
• A ResultSet object serves as a cursor for the statement’s

results (stmt.executeQuery())
// EXECUTE QUERY
ResultSet results;
try {

 results = stmt.executeQuery(
 "select * from Sailors")
} catch (Exception e){
 System.out.println(e); }

• Obvious handy methods:
– results.next() advances cursor to next tuple

• Returns “false” when the cursor slides off the table (beginning or end)
– “scrollable” cursors:

• results.previous(), results.relative(int), results.absolute(int),
results.first(), results.last(), results.beforeFirst(), results.afterLast()

ResultSet Metadata

• Can find out stuff about the ResultSet schema via
ResultSetMetaData

ResultSetMetaData rsmd = results.getMetaData();
int numCols = rsmd.getColumnCount();

int i, rowcount = 0;

// get column header info
for (i=1; i <= numCols; i++){

 if (i > 1) buf.append(",");
 buf.append(rsmd.getColumnLabel(i));
}
buf.append("\n");

• Other ResultSetMetaData methods:
– getColumnType(i), isNullable(i), etc.

Getting Values in Current of Cursor

• getString
 // break it off at 100 rows max
 while (results.next() && rowcount < 100){

 // Loop through each column, getting the
 // column data and displaying

 for (i=1; i <= numCols; i++) {

 if (i > 1) buf.append(",");
 buf.append(results.getString(i));
 }
 buf.append("\n");
 rowcount++;

 }

• Similarly, getFloat, getInt, etc.

Updating Current of Cursor

• Update fields in current of cursor:
result.next();
result.updateInt("Rating", 10);

• Also updateString, updateFloat, etc.
• Or can always submit a full SQL UPDATE

statement
– Via executeQuery()

• The original statement must have been
CONCUR_UPDATABLE in either case!

5

Cleaning up Neatly
try {

 // CLOSE RESULT SET
 results.close();

 // CLOSE STATEMENT
 stmt.close();

 // CLOSE CONNECTION
 con.close();

} catch (Exception e) {
 System.out.println(e);

}

Putting it Together (w/o try/catch)
Connection con =

DriverManager.getConnection("jdbc:odbc:weblog",userName,pas
sword);

Statement stmt = con.createStatement();
ResultSet results =

 stmt.executeQuery("select * from Sailors")
ResultSetMetaData rsmd = results.getMetaData();
int numCols = rsmd.getColumnCount(), i;
StringBuffer buf = new StringBuffer();

while (results.next() && rowcount < 100){
 for (i=1; i <= numCols; i++) {
 if (i > 1) buf.append(",");
 buf.append(results.getString(i));

 }
 buf.append("\n");
}
results.close(); stmt.close(); con.close();

Similar deal for web scripting langs

• Common scenario today is to have a web client
– A web form issues a query to the DB
– Results formatted as HTML

• Many web scripting languages used
– jsp, asp, PHP, etc.
– we’ll use PHP in our class
– most of these are similar, look a lot like jdbc with

HTML mixed in

E.g. PHP/Postgres
<?php $conn = pg_pconnect("dbname=cowbook user=jmh\
 password=secret");
 if (!$conn) {
 echo "An error occured.\n";
 exit;
 }
 $result = pg_query ($conn, "SELECT * FROM Sailors");
 if (!$result) {
 echo "An error occured.\n"; exit;
 }
 $num = pg_num_rows($result);
 for ($i=0; $i < $num; $i++) {
 $r = pg_fetch_row($result, $i);
 for ($j=0; $j < count($r); $j++) {

 echo "$r[$j] ";
 }
 echo "
";
 }
?>

API Summary
APIs are needed to interface DBMSs to

programming languages

• Embedded SQL uses “native drivers” and is
usually faster but less standard

• ODBC (used to be Microsoft-specific) for C/C++.

• JDBC the standard for Java

• Scripting languages (PHP, Perl, JSP) are
becoming the preferred technique for web-based
systems.

