
1

Concurrency Control
More !

R &G - Chapter 19

Smile, it is the key that
fits the lock of
everybody's heart.

Anthony J. D'Angelo,
The College Blue Book

Review: Two-Phase Locking (2PL)

• Two-Phase Locking Protocol
– Each Xact must obtain a S (shared) lock on object

before reading, and an X (exclusive) lock on
object before writing.

– A transaction can not request additional locks
once it releases any locks.

– If a Xact holds an X lock on an object, no other
Xact can get a lock (S or X) on that object.

• Can result in Cascading Aborts!
– STRICT (!!) 2PL “Avoids Cascading Aborts” (ACA)

Lock Management

• Lock and unlock requests are handled by the lock
manager

• Lock table entry:
– Number of transactions currently holding a lock
– Type of lock held (shared or exclusive)
– Pointer to queue of lock requests

• Locking and unlocking have to be atomic operations
– requires latches (“semaphores”), which ensure that the

process is not interrupted while managing lock table entries
– see CS162 for implementations of semaphores

• Lock upgrade: transaction that holds a shared lock can
be upgraded to hold an exclusive lock
– Can cause deadlock problems

Deadlocks

• Deadlock: Cycle of transactions waiting for
locks to be released by each other.

• Two ways of dealing with deadlocks:
– Deadlock prevention
– Deadlock detection

Deadlock Prevention

• Assign priorities based on timestamps. Assume
Ti wants a lock that Tj holds. Two policies are
possible:
– Wait-Die: If Ti has higher priority, Ti waits for Tj;

otherwise Ti aborts
– Wound-wait: If Ti has higher priority, Tj aborts;

otherwise Ti waits
• If a transaction re-starts, make sure it gets its

original timestamp
– Why?

Deadlock Detection

• Create a waits-for graph:
– Nodes are transactions
– There is an edge from Ti to Tj if Ti is waiting for Tj

to release a lock
• Periodically check for cycles in the waits-for

graph

2

Deadlock Detection (Continued)
Example:

T1: S(A), S(D), S(B)
T2: X(B) X(C)
T3: S(D), S(C), X(A)
T4: X(B)

T1 T2

T4 T3

T1 T2

T4 T3

Deadlock Detection (cont.)

• In practice, most systems do detection
– Experiments show that most waits-for cycles are

length 2 or 3
– Hence few transactions need to be aborted
– Implementations can vary

• Can construct the graph and periodically look for cycles
– When is the graph created ?

• Either continuously or at cycle checking time
– Which process checks for cycles ?

• Separate deadlock detector
• Can do a “time-out” scheme: if you’ve been waiting on a

lock for a long time, assume you’re deadlock and abort

Summary
• Correctness criterion for isolation is “serializability”.

– In practice, we use “conflict serializability”, which is
somewhat more restrictive but easy to enforce.

• There are several lock-based concurrency control
schemes (Strict 2PL, 2PL). Locks directly implement
the notions of conflict.
– The lock manager keeps track of the locks issued.

Deadlocks can either be prevented or detected.

Things We’re Glossing Over

• What should we lock?
– We assume tuples here, but that can be

expensive!
– If we do table locks, that’s too conservative
– Multi-granularity locking

• Mechanisms
– Locks and Latches

• Repeatability
– In a Xact, what if a query is run again ?
– Are more records (phantoms) tolerable ?

Multiple-Granularity Locks

• Hard to decide what granularity to lock (tuples
vs. pages vs. tables).

• Shouldn’t have to make same decision for all
transactions!

• Data “containers” are nested:

Tuples

Tables

Pages

Database

contains

Solution: New Lock Modes, Protocol
• Allow Xacts to lock at each level, but with a special

protocol using new “intention” locks:
• Still need S and X locks, but before locking an item,

Xact must have proper intension locks on all its
ancestors in the granularity hierarchy.

v IS – Intent to get S lock(s) at
finer granularity.

v IX – Intent to get X lock(s)
at finer granularity.

v SIX mode: Like S & IX at
the same time. Why useful?

Tuples

Tables

Pages

Database

IS IX SIX

IS

IX
SIX

S X

S

X

÷

3

Multiple Granularity Lock Protocol

• Each Xact starts from the root of the hierarchy.
• To get S or IS lock on a node, must hold IS or IX

on parent node.
– What if Xact holds SIX on parent? S on parent?

• To get X or IX or SIX on a node, must hold IX or
SIX on parent node.

• Must release locks in bottom-up order.

Protocol is correct in that it is equivalent to directly setting
locks at the leaf levels of the hierarchy.

Examples – 2 level hierarchy

• T1 scans R, and updates a few tuples:
– T1 gets an SIX lock on R, then get X lock on tuples that are

updated.
• T2 uses an index to read only part of R:

– T2 gets an IS lock on R, and repeatedly gets an S lock on
tuples of R.

• T3 reads all of R:
– T3 gets an S lock on R.
– OR, T3 could behave like T2; can

use lock escalation to decide which.
• Lock escalation

– Dynamically asks for coarser-grained locks
when too many low level locks acquired

IS IX SIX

IS

IX
SIX

÷
÷
÷

÷ ÷
÷

S X

÷S

X

÷

÷

Tuples

Tables

Locks and Latches

• What’s common ?
– Both used to synchronize concurrent tasks

• What’s different ?
– Locks are used for logical consistency
– Latches are used for physical consistency

• Why treat ‘em differently ?
– Database people like to reason about our data

• Where are latches used ?
– In a lock manager !
– In a shared memory buffer manager
– In a B+ Tree index
– In a log/transaction/recovery manager

Locks vs Latches

HierarchicalFlat - no hierarchyGranularity

S, X, IS, IX, SIXS, XModes

Costly - 100s of instructions
(got to search for lock)

Cheap - 10s of instructions
(latch is directly addressable)

Overhead

Checked for deadlocksNo detection - code carefully !Deadlocks

Long (Xact duration)Very shortDuration

TransactionsProcessesOwnership

LocksLatches

Dynamic Databases – The “Phantom”
Problem

• If we relax the assumption that the DB is a fixed collection
of objects, even Strict 2PL (on individual items) will not
assure serializability:

• Consider T1 – “Find oldest sailor for each rating”
– T1 locks all pages containing sailor records with rating = 1, and

finds oldest sailor (say, age = 71).
– Next, T2 inserts a new sailor; rating = 1, age = 96.
– T2 also deletes oldest sailor with rating = 2 (and, say, age =

80), and commits.
– T1 now locks all pages containing sailor records with rating =

2, and finds oldest (say, age = 63).
• No serial execution where T1’s result could happen!

– Let’s try it and see!

The Problem

• T1 implicitly assumes that it has locked the
set of all sailor records with rating = 1.
– Assumption only holds if no sailor records are

added while T1 is executing!
– Need some mechanism to enforce this

assumption. (Index locking and predicate
locking.)

• Example shows that conflict serializability
guarantees serializability only if the set of
objects is fixed!
– e.g. table locks

4

Predicate Locking

• Grant lock on all records that satisfy some
logical predicate, e.g. age > 2*salary.

• Index locking is a special case of predicate
locking for which an index supports efficient
implementation of the predicate lock.
– What is the predicate in the sailor example?

• In general, predicate locking has a lot of
locking overhead.
– too expensive!

Instead of predicate locking

• Table scans lock entire tables
• Index lookups do “next-key” locking

– physical stand-in for a logical range!

