Concurrency Control
More!
R &G - Chapter 19

Smile, it is the key that
fits the lock of
everybody's heart.

Anthony J. D'Angelo,
The College Blue Book

Review: Two-Phase Locking (2PL)

¢ Two-Phase Locking Protocol
- Each Xact must obtain a S (shared) lock on object
before reading, and an X (exclusive) lock on
object before writing.
- A transaction can not request additional locks
once it releases any locks.
- If a Xact holds an X lock on an object, no other
Xact can get a lock (S or X) on that object.
« Can result in Cascading Aborts!
- STRICT (!!) 2PL “Avoids Cascading Aborts” (ACA)

Lock Management

* Lock and unlock requests are handled by the lock
manager
* Lock table entry:
- Number of transactions currently holding a lock
- Type of lock held (shared or exclusive)
- Pointer to queue of lock requests
* Locking and unlocking have to be atomic operations

— requires latches (“semaphores”), which ensure that the
process is not interrupted while managing lock table entries

— see CS162 for implementations of semaphores

* Lock upgrade: transaction that holds a shared lock can
be upgraded to hold an exclusive lock

— Can cause deadlock problems

Deadlocks

¢ Deadlock: Cycle of transactions waiting for
locks to be released by each other.

¢ Two ways of dealing with deadlocks:
- Deadlock prevention
- Deadlock detection

Deadlock Prevention

¢ Assign priorities based on timestamps. Assume
Ti wants a lock that Tj holds. Two policies are
possible:
- Wait-Die: If Ti has higher priority, Ti waits for Tj;
otherwise Ti aborts
- Wound-wait: If Ti has higher priority, Tj aborts;
otherwise Ti waits
« If a transaction re-starts, make sure it gets its
original timestamp
- Why?

Deadlock Detection

¢ Create a waits-for graph:
- Nodes are transactions
- There is an edge from Ti to Tj if Ti is waiting for Tj
to release a lock
¢ Periodically check for cycles in the waits-for
graph

Deadlock Detection (Continued)

Example:

T1: S(A), S(D), S(B)
T2 X(B X(C)
T3: S(D), S(C), X(A)
T4: X(B)

o

Deadlock Detection (cont.)

¢ In practice, most systems do detection
— Experiments show that most waits-for cycles are
length 2 or 3
— Hence few transactions need to be aborted

— Implementations can vary
* Can construct the graph and periodically look for cycles
— When is the graph created ?
 Either continuously or at cycle checking time
— Which process checks for cycles ?
« Separate deadlock detector
* Can do a “time-out” scheme: if you've been waiting on a
lock for a long time, assume you're deadlock and abort

-
- Summary

— In practice, we use “conflict serializability”, which is
somewhat more restrictive but easy to enforce.
¢ There are several lock-based concurrency control
schemes (Strict 2PL, 2PL). Locks directly implement
the notions of conflict.
— The lock manager keeps track of the locks issued.
Deadlocks can either be prevented or detected.

* Correctness criterion for isolation is “serializability”.

Things We're Glossing Over

* What should we lock?
— We assume tuples here, but that can be
expensive!
— If we do table locks, that’s too conservative
— Multi-granularity locking
¢ Mechanisms
— Locks and Latches
* Repeatability
— In a Xact, what if a query is run again ?
— Are more records (phantoms) tolerable ?

Multiple-Granularity Locks

¢ Hard to decide what granularity to lock (tuples
vs. pages vs. tables).

¢ Shouldn’t have to make same decision for all
transactions!

+ Data “containers” are nested:

Database

. Tables
contains

Pages

Tuples

Solution: New Lock Modes, Protocol

« Allow Xacts to lock at each level, but with a special Database
protocol using new “intention” locks:

« still need S and X locks, but before locking an item, Tables
Xact must have proper intension locks on all its

ancestors in the granularity hierarchy. Pages

Tuples
IS|IX|X]s | X

ES

IS - Intent to get S lock(s) at

finer granularity. S
% IX - Intent to get X lock(s) IX

at finer granularity. X
< SIX mode: Like S & IX at s

the same time. Why useful? ~

Multiple Granularity Lock Protocol

¢ Each Xact starts from the root of the hierarchy.

¢ To get S or IS lock on a node, must hold IS or IX
on parent node.

— What if Xact holds SIX on parent? S on parent?

¢ To get X or IX or SIX on a node, must hold IX or
SIX on parent node.

¢ Must release locks in bottom-up order.

Protocol is correct in that it is equivalent to directly setting

locks at the leaf levels of the hierarchy.

-
- Examples — 2 level hierarchy

+ T1 scans R, and updates a few tuples:

— T1 gets an SIX lock on R, then get X lock on tuples that are
updated. Tables

* T2 uses an index to read only part of R:
— T2 gets an IS lock on R, and repeatedly gets an S lock on Tuples

-
- Locks and Latches

What’'s common ?

— Both used to synchronize concurrent tasks
What's different ?

— Locks are used for logical consistency

— Latches are used for physical consistency
Why treat ‘em differently ?

— Database people like to reason about our data
Where are latches used ?

— In a lock manager !

— In a shared memory buffer manager

— In a B+ Tree index

— In a log/transaction/recovery manager

tuples of R.
* T3 reads all of R: sl ix[sys|x
— T3 gets an S lock on R. s
— OR, T3 could behave like T2; can X
use lock escalation to decide which.
- SIX|
¢ Lock escalation
— Dynamically asks for coarser-grained locks S
when too many low level locks acquired X
Locks vs Latches
Latches Locks
Ownership | Processes Transactions
Duration Very short Long (Xact duration)

Deadlocks | No detection - code carefully ! | Checked for deadlocks

Overhead Cheap - 10s of instructions Costly - 100s of instructions
(latch is directly addressable) |(got to search for lock)

Modes S, X S, X, IS, IX, SIX

Granularity |Flat - no hierarchy Hierarchical

Dynamic Databases — The “Phantom”

Problem

« If we relax the assumption that the DB is a fixed collection
of objects, even Strict 2PL (on individual items) will not
assure serializability:

+ Consider T1 — “Find oldest sailor for each rating”

— T1 locks all pages containing sailor records with rating = 1, and
finds oldest sailor (say, age = 71)

— Next, T2 inserts a new sailor; rating = 1, age = 96.

— T2 also deletes oldest sailor with rating = 2 (and, say, age =
80), and commits.

— T1 now locks all pages containing sailor records with rating =
2, and finds oldest (say, age = 63).

+ No serial execution where T1's result could happen!
— Let’s try it and see!

The Problem

¢ T1 implicitly assumes that it has locked the

set of all sailor records with rating = 1.

— Assumption only holds if no sailor records are
added while T1 is executing!

— Need some mechanism to enforce this
assumption. (Index locking and predicate
locking.)

¢ Example shows that conflict serializability
guarantees serializability only if the set of
objects is fixed!

— e.g. table locks

-
- Predicate Locking

¢ Grant lock on all records that satisfy some
logical predicate, e.g. age > 2*salary.

« Index locking is a special case of predicate
locking for which an index supports efficient
implementation of the predicate lock.

— What is the predicate in the sailor example?

¢ In general, predicate locking has a lot of
locking overhead.

— too expensive!

Instead of predicate locking
¢ Table scans lock entire tables

¢ Index lookups do “next-key” locking
— physical stand-in for a logical range!

