File Organizations and Indexing

Lecture 4
R&G Chapter 8

"If you don't find it in the index, look very
carefully through the entire catalogue."

-- Sears, Roebuck, and Co.,
Consumer's Guide, 1897

Review: Memory, Disks, & Files

¢ Everything won't fit in RAM (usually)
¢ Hierarchy of storage, RAM, disk, tape
¢ "Block” - unit of storage in RAM, on disk
¢ Allocate space on disk for fast access
« Buffer pool management

— Frames in RAM to hold blocks

— Policy to move blocks between RAM & disk
¢ Storing records within blocks

Today: File Storage

¢ How to keep blocks of records on disk
¢ but must support operations:

— scan all records

— search for a record id "RID"

— insert new records

— delete old records

Alternative File Organizations
Many alternatives exist, each good for some

situations, and not so good in others:

— Heap files: Suitable when typical access is a file
scan retrieving all records.

— Sorted Files: Best for retrieval in search key order,
or only a “range’ of records is needed.

— Clustered Files (with Indexes): Coming soon...

Cost Model for Analysis

We ignore CPU costs, for simplicity:

— B: The number of data blocks

— R: Number of records per block

— D: (Average) time to read or write disk block

— Measuring number of block I/O’s ignores gains of
pre-fetching and sequential access; thus, even I/O
cost is only loosely approximated.

— Average-case analysis; based on several simplistic
assumptions.

w Good enough to show the overall trends!

Some Assumptions in the Analysis

¢ Single record insert and delete.

¢ Equality selection - exactly one match (what if
more or less???).

¢ Heap Files:

— Insert always appends to end of file.
¢ Sorted Files:

— Files compacted after deletions.

— Selections on search key.




ﬁost of

Operat

ions

B: The number of data pages
R: Number of records per page
D: (Average) time to read or write disk page

Heap File

Sorted File Clustered File

Scan all
records

Equality
Search

Range
Search

Insert

Delete

ﬁost of

Operations

B: The number of data pages
R: Number of records per page
D: (Average) time to read or write disk page

Heap File

Sorted File Clustered File

Scan all |BD
records

BD

Equality
Search

Range
Search

Insert

Delete

ﬁost of

Operations

B: The number of data pages
R: Number of records per page
D: (Average) time to read or write disk page

Heap File

Sorted File Clustered File

records

Scan all |BD

BD

Equality
Search

0.5 BD

(log, B) *D

Range
Search

Insert

Delete

ﬁost of

B: The number of data pages
R: Number of records per page
D: (Average) time to read or write disk page

Operations
Heap File Sorted File Clustered File

Scan all |BD BD
records
Equality |0.5BD (log, B) *D
Search
Range BD [(log, B) +
Search #match pg]*D
Insert
Delete

ﬁost of

B: The number of data pages
R: Number of records per page
D: (Average) time to read or write disk page

Operations
Heap File Sorted File Clustered File
Scan all BD BD
records
Equality 0.5 BD (log, B) *D
Search
Range BD [(log, B) +
Search #match pg]*D
Insert 2D ((log,B)+B)D
(because R,W 0.5)
Delete

ﬁost of

B: The number of data pages
R: Number of records per page
D: (Average) time to read or write disk page

Heap File Sorted File Clustered File
Scan all |BD BD
records
Equality |0.5BD (log, B) *D
Search
Range BD [(log, B) +
Search #match pg]*D
Insert 2D ((log,B)+B)D
Delete 0.5BD + D ((log,B)+B)D

(because R,W 0.5)




Indexes

+ Sometimes, we want to retrieve records by specifying
the values in one or more fields, e.g.,

— Find all students in the “CS” department

— Find all students with a gpa > 3
* An index on a file is a disk-based data structure that
speeds up selections on the search key fields for the
index.
— Any subset of the fields of a relation can be the search key
for an index on the relation.
— Search key is not the same as key (e.g. doesn't have to be
unique ID).
« An index contains a collection of data entries, and
supports efficient retrieval of all records with a given
search key value k.

First Question to Ask About Indexes

+ What kinds of selections do they support?
— Selections of form field <op> constant
— Equality selections (op is =)
— Range selections (op is one of <, >, <=, >=, BETWEEN)
— More exotic selections:
« 2-dimensional ranges (“east of Berkeley and west of Truckee
and North of Fresno and South of Eureka”)
— Or n-dimensional
« 2-dimensional distances (“within 2 miles of Soda Hall")
— Or n-dimensional
« Ranking queries (“10 restaurants closest to Berkeley”)
* Regular expression matches, genome string matches, etc.
* One common n-dimensional index: R-tree
— Supported in Oracle and Informix
— See http://gist.cs.berkeley.edu for research on this topic

Index Classification

* What selections does it support

¢ Representation of data entries in index
— i.e., what kind of info is the index actually storing?
— 3 alternatives here

¢ Clustered vs. Unclustered Indexes

¢ Single Key vs. Composite Indexes

+ Tree-based, hash-based, other

Alternatives for Data Entry k* in Index

¢ Three alternatives:
¢ Actual data record (with key value k)
* <k, rid of matching data record>
* <k, list of rids of matching data records>
¢ Choice is orthogonal to the indexing technique.

— Examples of indexing techniques: B+ trees, hash-
based structures, R trees, ...

— Typically, index contains auxiliary information that
directs searches to the desired data entries

+ Can have multiple (different) indexes per file.

— E.g. file sorted by age, with a hash index on salary
and a B+tree index on name.

ﬁ\lternatives for Data Entries (Contd.)

¢ Alternative 1:

Actual data record (with key value k)

— If this is used, index structure is a file organization
for data records (like Heap files or sorted files).

— At most one index on a given collection of data
records can use Alternative 1.

— This alternative saves pointer lookups but can be
expensive to maintain with insertions and
deletions.

i\lternatives for Data Entries (Contd.)

Alternative 2
<k, rid of matching data record>
and Alternative 3
<k, list of rids of matching data records>

— Easier to maintain than Alt 1.

— If more than one index is required on a given file, at
most one index can use Alternative 1; rest must use
Alternatives 2 or 3.

— Alternative 3 more compact than Alternative 2, but
leads to variable sized data entries even if search
keys are of fixed length.

— Even worse, for large rid lists the data entry would
have to span multiple blocks!




Index Classification

o Clustered vs. unclustered: If order of data
records is the same as, or “close to’, order of
index data entries, then called clustered index.

— A file can be clustered on at most one search key.

— Cost of retrieving data records through index varies
greatly based on whether index is clustered or not!

— Alternative 1 implies clustered, but not vice-versa.

ilustered vs. Unclustered Index

¢ Suppose that Alternative (2) is used for data entries,
and that the data records are stored in a Heap file.
— To build clustered inde, first sort the Heap file (with
some free space on each block for future inserts).
— Overflow blocks may be needed for inserts. (Thus, order of
data recs is " close to’, but not identical to, the sort order.)

Index entries
direct search for
data entries

CLUSTERED UNCLUSTERED

Data entries Data entries

AEN S 55

(Data file)
Data Records D Data Records

Unclustered vs. Clustered Indexes

¢ What are the tradeoffs?2??

¢ Clustered Pros
— Efficient for range searches
— May be able to do some types of compression
— Possible locality benefits (related data?)
-

¢ Clustered Cons

— Expensive to maintain (on the fly or sloppy with
reorganization)

B: The number of data pages
R: Number of records per page
D: (Average) time to read or write disk page

ﬁost of

Heap File Sorted File Clustered File
Scan all |BD BD 1.5BD
records
Equality |0.5BD (log, B) * D (log; 1.5B) * D
Search
Range BD [(log, B) + [(log; 1.5B) +
Search #match pg]*D #match pg]*D
Insert 2D ((log,B)+B)D ((log; 1.5B)+1)
*D
Delete 0.5BD + D ((log,B)+B)D ((log 1.5B)+1)
(because R,W 0.5) |*D

Composite Search Keys

Search on a combination of fields.

— Equality query: Every field value is
equal to a constant value. E.g. wrt

Examples of composite key

indexes using lexicographic order.
d g s I d

<age,sal> index: 11.80 1

* age=20 and sal =75 12

— Range query: Some field value is 12,20 name age sal 12

not a constant. E.g.: 13.75 bob 1210 13

* age > 20; or age=20 and sal > 10 <age, sal> cal 11 80 <age>
Data entries in index sorted by joe 12 20

search key to support range 10412 sue 13 75 10

queries. Data records 20

— Lexicographic order 7543 sorted by name 75

— Like the dictionary, but on fields, not 8011 80

letters! <sal, age> <sal>

Data entries in index
sorted by <sal,age>

Data entries
sorted by <sal>

Summary

¢ Many alternative file organizations exist, each
appropriate in some situation.
« If selection queries are frequent, sorting the
file or building an index is important.
— Hash-based indexes only good for equality search.
— Sorted files and tree-based indexes best for range
search; also good for equality search. (Files rarely
kept sorted in practice; B+ tree index is better.)
* Index is a collection of data entries plus a way
to quickly find entries with given key values.




Summary (Contd.)

« Data entries in index can be actual data records,
<key, rid> pairs, or <key, rid-list> pairs.
— Choice orthogonal to indexing structure (i.e. tree,
hash, etc.).
¢ Usually have several indexes on a given file of
data records, each with a different search key.
Indexes can be classified as
— clustered vs. unclustered
— dense vs. sparse
Differences have important consequences for
utility/ performance.




