
1

File Organizations and Indexing

Lecture 4
R&G Chapter 8

"If you don't find it in the index, look very
carefully through the entire catalogue."

-- Sears, Roebuck, and Co.,
Consumer's Guide, 1897

Review: Memory, Disks, & Files

• Everything won’t fit in RAM (usually)
• Hierarchy of storage, RAM, disk, tape
• “Block” - unit of storage in RAM, on disk
• Allocate space on disk for fast access
• Buffer pool management

– Frames in RAM to hold blocks
– Policy to move blocks between RAM & disk

• Storing records within blocks

Today: File Storage

• How to keep blocks of records on disk
• but must support operations:

– scan all records
– search for a record id “RID”
– insert new records
– delete old records

Alternative File Organizations
Many alternatives exist, each good for some

situations, and not so good in others:
– Heap files: Suitable when typical access is a file

scan retrieving all records.
– Sorted Files: Best for retrieval in search key order,

or only a `range’ of records is needed.
– Clustered Files (with Indexes): Coming soon…

Cost Model for Analysis

We ignore CPU costs, for simplicity:
– B: The number of data blocks
– R: Number of records per block
– D: (Average) time to read or write disk block
– Measuring number of block I/O’s ignores gains of

pre-fetching and sequential access; thus, even I/O
cost is only loosely approximated.

– Average-case analysis; based on several simplistic
assumptions.

* Good enough to show the overall trends!

Some Assumptions in the Analysis

• Single record insert and delete.
• Equality selection - exactly one match (what if

more or less???).
• Heap Files:

– Insert always appends to end of file.
• Sorted Files:

– Files compacted after deletions.
– Selections on search key.

2

Cost of
Operations

B: The number of data pages
R: Number of records per page
D: (Average) time to read or write disk page

Delete

Insert

Range
Search

Equality
Search

Scan all
records

Clustered FileSorted FileHeap File

Cost of
Operations

B: The number of data pages
R: Number of records per page
D: (Average) time to read or write disk page

Delete

Insert

Range
Search

Equality
Search

BDBDScan all
records

Clustered FileSorted FileHeap File

Cost of
Operations

B: The number of data pages
R: Number of records per page
D: (Average) time to read or write disk page

Delete

Insert

Range
Search

(log2 B) * D0.5 BDEquality
Search

BDBDScan all
records

Clustered FileSorted FileHeap File

Cost of
Operations

B: The number of data pages
R: Number of records per page
D: (Average) time to read or write disk page

Delete

Insert

[(log2 B) +
 #match pg]*D

BDRange
Search

(log2 B) * D0.5 BDEquality
Search

BDBDScan all
records

Clustered FileSorted FileHeap File

Cost of
Operations

B: The number of data pages
R: Number of records per page
D: (Average) time to read or write disk page

Delete

((log2B)+B)D
(because R,W 0.5)

2DInsert

[(log2 B) +
 #match pg]*D

BDRange
Search

(log2 B) * D0.5 BDEquality
Search

BDBDScan all
records

Clustered FileSorted FileHeap File

Cost of
Operations

B: The number of data pages
R: Number of records per page
D: (Average) time to read or write disk page

((log2B)+B)D
(because R,W 0.5)

0.5BD + DDelete

((log2B)+B)D2DInsert

[(log2 B) +
 #match pg]*D

BDRange
Search

(log2 B) * D0.5 BDEquality
Search

BDBDScan all
records

Clustered FileSorted FileHeap File

3

Indexes

• Sometimes, we want to retrieve records by specifying
the values in one or more fields, e.g.,

– Find all students in the “CS” department
– Find all students with a gpa > 3

• An index on a file is a disk-based data structure that
speeds up selections on the search key fields for the
index.
– Any subset of the fields of a relation can be the search key

for an index on the relation.
– Search key is not the same as key (e.g. doesn’t have to be

unique ID).
• An index contains a collection of data entries, and

supports efficient retrieval of all records with a given
search key value k.

First Question to Ask About Indexes

• What kinds of selections do they support?
– Selections of form field <op> constant
– Equality selections (op is =)
– Range selections (op is one of <, >, <=, >=, BETWEEN)
– More exotic selections:

• 2-dimensional ranges (“east of Berkeley and west of Truckee
and North of Fresno and South of Eureka”)

– Or n-dimensional
• 2-dimensional distances (“within 2 miles of Soda Hall”)

– Or n-dimensional
• Ranking queries (“10 restaurants closest to Berkeley”)
• Regular expression matches, genome string matches, etc.
• One common n-dimensional index: R-tree

– Supported in Oracle and Informix
– See http://gist.cs.berkeley.edu for research on this topic

Index Classification
• What selections does it support
• Representation of data entries in index

– i.e., what kind of info is the index actually storing?
– 3 alternatives here

• Clustered vs. Unclustered Indexes
• Single Key vs. Composite Indexes
• Tree-based, hash-based, other

Alternatives for Data Entry k* in Index
• Three alternatives:

• Actual data record (with key value k)
• <k, rid of matching data record>
• <k, list of rids of matching data records>

• Choice is orthogonal to the indexing technique.
– Examples of indexing techniques: B+ trees, hash-

based structures, R trees, …
– Typically, index contains auxiliary information that

directs searches to the desired data entries
• Can have multiple (different) indexes per file.

– E.g. file sorted by age, with a hash index on salary
and a B+tree index on name.

Alternatives for Data Entries (Contd.)

• Alternative 1:
 Actual data record (with key value k)
– If this is used, index structure is a file organization

for data records (like Heap files or sorted files).
– At most one index on a given collection of data

records can use Alternative 1.
– This alternative saves pointer lookups but can be

expensive to maintain with insertions and
deletions.

Alternatives for Data Entries (Contd.)

Alternative 2

<k, rid of matching data record>
and Alternative 3

<k, list of rids of matching data records>

– Easier to maintain than Alt 1.
– If more than one index is required on a given file, at

most one index can use Alternative 1; rest must use
Alternatives 2 or 3.

– Alternative 3 more compact than Alternative 2, but
leads to variable sized data entries even if search
keys are of fixed length.

– Even worse, for large rid lists the data entry would
have to span multiple blocks!

4

Index Classification

• Clustered vs. unclustered: If order of data
records is the same as, or `close to’, order of
index data entries, then called clustered index.
– A file can be clustered on at most one search key.
– Cost of retrieving data records through index varies

greatly based on whether index is clustered or not!
– Alternative 1 implies clustered, but not vice-versa.

Clustered vs. Unclustered Index
• Suppose that Alternative (2) is used for data entries,

and that the data records are stored in a Heap file.
– To build clustered index, first sort the Heap file (with

some free space on each block for future inserts).
– Overflow blocks may be needed for inserts. (Thus, order of

data recs is `close to’, but not identical to, the sort order.)

Index entries

Data entries

direct search for

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

Unclustered vs. Clustered Indexes

• What are the tradeoffs????
• Clustered Pros

– Efficient for range searches
– May be able to do some types of compression
– Possible locality benefits (related data?)
– ???

• Clustered Cons
– Expensive to maintain (on the fly or sloppy with

reorganization)

Cost of
Operations

B: The number of data pages
R: Number of records per page
D: (Average) time to read or write disk page

((logF 1.5B)+1)
* D

((log2B)+B)D
(because R,W 0.5)

0.5BD + DDelete

((logF 1.5B)+1)
* D

((log2B)+B)D2DInsert

[(logF 1.5B) +
 #match pg]*D

[(log2 B) +
 #match pg]*D

BDRange
Search

(logF 1.5B) * D(log2 B) * D0.5 BDEquality
Search

1.5 BDBDBDScan all
records

Clustered FileSorted FileHeap File

Composite Search Keys
• Search on a combination of fields.

– Equality query: Every field value is
equal to a constant value. E.g. wrt
<age,sal> index:

• age=20 and sal =75

– Range query: Some field value is
not a constant. E.g.:

• age > 20; or age=20 and sal > 10

• Data entries in index sorted by
search key to support range
queries.
– Lexicographic order
– Like the dictionary, but on fields, not

letters!

sue 13 75

bob

cal

joe 12

10

20

8011

12

name age sal

<sal, age>

<age, sal> <age>

<sal>

12,20

12,10

11,80

13,75

20,12

10,12

75,13

80,11

11

12

12

13

10

20

75

80

Data records
sorted by name

Data entries in index
sorted by <sal,age>

Data entries
sorted by <sal>

Examples of composite key
indexes using lexicographic order.

Summary

• Many alternative file organizations exist, each
appropriate in some situation.

• If selection queries are frequent, sorting the
file or building an index is important.
– Hash-based indexes only good for equality search.
– Sorted files and tree-based indexes best for range

search; also good for equality search. (Files rarely
kept sorted in practice; B+ tree index is better.)

• Index is a collection of data entries plus a way
to quickly find entries with given key values.

5

Summary (Contd.)

• Data entries in index can be actual data records,
<key, rid> pairs, or <key, rid-list> pairs.
– Choice orthogonal to indexing structure (i.e. tree,

hash, etc.).
• Usually have several indexes on a given file of

data records, each with a different search key.
• Indexes can be classified as

– clustered vs. unclustered
– dense vs. sparse

• Differences have important consequences for
utility/performance.

