Fall 2002 - CS186 9/18/02

Functional Dependencies

- 1) Definitions
 - a. <u>Functional Dependency</u> (FD), $X \rightarrow A$ (X determines A), given any set of tuples with the same value(s) for X then the corresponding A values must be the same
 - b. Superkey, $X \rightarrow \{all \ other \ attributes\}$, no requirement to be minimal
 - c. Candidate Key, a minimal Superkey
 - d. **Primary Key**, one (arbitrarily) selected **Candidate Key**
- 2) Rules of Inference
 - a. Armstrong's Axioms
 - i. **Reflexivity:** $XA \rightarrow A$ [note: X can be the empty set]
 - ii. Augmentation: Given X→A then XB→AB
 - iii. Transitivity: Given $X \rightarrow A$ and $A \rightarrow B$ then $X \rightarrow B$
 - b. Corollaries
 - i. Union: $X \rightarrow A$ and $X \rightarrow B$ then $X \rightarrow AB$
 - ii. **Decomposition:** $X \rightarrow AB$ then $X \rightarrow A$ and $X \rightarrow B$
- 3) Closure of FD sets (F^+)
 - a. The set of FD, the closure is the set of ALL FDs that can be implied using rules of inference
 - b. Usually the closure only asks for non-trivial dependencies
 - c. A **Trivial Dependency** is $XA \rightarrow A$ [note: X can be the empty set]
 - d. Algorithm:
 - i. Start with set of existing FDs
 - ii. Apply rules of inference to determine new dependencies
 - iii. Iterate until set does not enlarge
- 4) Attribute Closure (X⁺)
 - a. The complete set of attributes that can be inferred by $X, X \rightarrow Y$
 - b. Algorithm:
 - i. Start with trivial $X \rightarrow X$, so $Y = \{X\}$
 - ii. Loop through all FDs A→B [note: does not need to be F+]
 - iii. If A is a subset of Y then add B to Y
 - iv. Once a FD is used, it does not need to be considered again
 - v. Iterate until set Y does not enlarge
- 5) Projection of F on $X(\mathbb{F}_{\times})$
 - a. Set of FDs, $A \rightarrow B$, from F^+ , such that all attributes in A and B are in X
- 6) Minimal Cover
 - a. Not necessarily unique
 - b. Algorithm:
 - i. For each FD in F, $X \rightarrow A$
 - ii. Split into separate FDs such that A is a single attribute (Using corollary ii) and add to G
 - iii. Minimize the left side of each FD in G
 - iv. Remove all FDs (one-by-one) in G if without it, G⁺ still equals F⁺

9/19/02-Version 4-RH Page 1

Fall 2002 - CS186 9/18/02

Normal Forms

- 7) Normal Forms
 - a. 1st NF: all attributes are atomic (no sets)
 - b. 2nd NF: historical interest, you do not need to know
 - c. 3rd NF: eliminates most redundancies
 - d. BCNF: eliminates all redundancies
 - e. 4NF, 5NF: stricter guarantees than BCNF
- 8) Decomposition
 - a. Given relation R replace with 2 or more relations such that every attribute appears in a least one of the new relations
 - b. <u>Lossless decomposition:</u> recombination using relational join produces EXACTLY same as predecomposition
 - c. Decomposition of R into X and Y is lossless iff F⁺ contains
 - i. $X \cap Y \rightarrow X OR$
 - ii. X∩Y→Y
 - d. **Dependency Preserving:** If R is decomposed into X and Y then $(F_x \cup F_y)^+ = F^+$

9) BCNF

- a. Algorithm to check:
 - i. For each FD in F^+ , $X \rightarrow A$
 - ii. A is a subset of X (trivial dependency) OR
 - iii. X is a superkey for R
 - iv. If any FD does not meet either (ii) or (iii) then relation is NOT IN BCNF
- b. As an optimization, (a)(i) could be changed to for each FD in the minimal cover
- c. Algorithm to decompose into BCNF
 - i. For each FD in the minimal cover that violates BCNF, $X \rightarrow A$
 - ii. Decompose R into R-A and XA
 - iii. Guaranteed to be lossless but may not be dependency preserving

10)3NF

- a. Algorithm to check:
 - i. For each FD in F^+ , $X \rightarrow A$
 - ii. A is a subset of X (trivial dependency) OR
 - iii. X is a superkey for R OR
 - iv. A is part of a candidate key
 - v. If any FD does not meet either (ii), (iii), or (iv) then relation is NOT IN 3NF
- b. Algorithm to decompose into 3NF
 - i. Decompose into BCNF
 - ii. For each FD, $X \rightarrow A$, in the minimal cover that is NOT preserved
 - iii. Add relation XA
- c. Algorithm Two to decompose into 3NF
 - i. For each FD in the minimal cover, $X \rightarrow A$
 - ii. Add relation XA
 - iii. Recombine relations with same key
 - iv. If no relation contains a superkey, create one

9/19/02-Version 4-RH Page 2