Using ddd with postgres on the instructional computers

Sailesh Krishnamurthy
University of California at Berkeley
sailesh+cs186@cs.berkeley.edu

January 31, 2003

1 Assumptions

For the purpose of this document I will assume that we are working with the postgres source tree that has been
setup for Project 1. Please follow the instructions in Section 4 of the Project 1 document carefully. Setup your
data directory by running init.sh (follow instructions in section 5 of the Project 1 document). In Project 1 you
will have learnt how to start the postmaster with pg_ctl and create a database with createdb. Create a database
called test. Now perform the actions listed below to create a table T, populate it with data (in this case we load
it with 100000 rows) and then stop the postmaster with pg_ctl stop. (This step takes time !).

pentagon [155] = > cd

pentagon [156] ~ > bin/pgsql-7.2.2-clock/bin/pg_ctl start

postmaster successfully started

pentagon [157] ~ > psql -f “cs186/gendata/sql/tddl.sql test
psql:/home/ff/cs186/gendata/sql/tddl.sql:1: ERROR: table "t" does not exist
CREATE

COPY

pentagon [158] ~ > bin/pgsql-7.2.2-clock/bin/pg_ctl stop

waiting for postmaster to shut down...DEBUG: smart shutdown request
....done

postmaster successfully shut down

pentagon [159] ~ >

2 Using ddd

There are two ways to debug postgres (a) in the interactive mode and (b) in the bare backend mode. The
interactive mode is where you start up the postmaster process (with pg_ctl), use psql to connect to it, which
spawns off a separate postgres process that is dedicated to serving requests from the psql client. This is the
mode that the scripts in the Hwl/exec directory use, and the mode you used in Hw0. In the second mode, you
don’t create a separate postmaster process and don’t use psql at all. Instead, you start up postgres from the
command line and directly interact with it. While the latter is a very user-unfriendly way of using postgres it has
the advantage that it is very easy to use a debugger (like ddd) with it.

This document will restrict itself to showing how to use ddd with postgres in the bare backend mode. If you
really really want to use ddd with postgres in the server mode please talk to your TA for more help. This is not
intended to be a replacement for ddd documentation. Think of it instead as a sample to guide you.

1. First check to make sure ddd is in your path.

pentagon [49] ~/Hwl/exec > which ddd
/usr/sww/bin/ddd
pentagon [50] ~/Hwl/exec >

If you can’t find ddd contact the course staff or your colleagues for help.

Startup ddd with the newly compiled and installed version of postgres.

pentagon [72] ~/bin/pgsql-7.2.2-clock > ddd bin/postgres &

[1] 16408

pentagon [73] ~/bin/pgsql-7.2.2-clock > Creating "/home/cc/cs186<snipped>
Creating "/home/cc/cs186/sp03/class/cs186-ib/.ddd/". . .done.

Creating "/home/cc/cs186/sp03/class/cs186-ib/.ddd/sessions/". ..

Creating "/home/cc/cs186/sp03/class/cs186-ib/.ddd/sessions/"...done.
Creating "/home/cc/cs186/sp03/class/cs186-ib/.ddd/themes/" ...

Creating "/home/cc/cs186/sp03/class/cs186-ib/.ddd/themes/". . .done.

pentagon [73] ~/bin/pgsql-7.2.2-clock >

The ddd “splash screen” would have come up (albeit a little slowly) and a few dialog boxes will open up.
Read them and click anything you find interesting if you want to explore. Otherwise click on “close” until the
main ddd window comes up. This should look something like Figure 1.

File Edit WView Program Commands Status Source Data ﬂE‘Pl

0:[nein F B B @ 0 2 el A A ST o

Lookup Findr: Ereak Watch Print Dpiaw ot o0 fofete Set s

Run | Interrupt| Step| Stepi| Next| Nexti| Until] Finish| Cont| Kill| Up| Down| Unein| Reds| Edit] Maks|

* might save a getenv() result pointer. S
.
save_ps_display_args(arac, argv);

nev_argy = (char **) malloc({argc + 13 * sizeof(char *)3;
Go=0; 1 <arge; i+
nev_argvlil = strdup(argv[il};
new_argy [argc] = NULL;

/% Initialize NLS settings so we can give localized error messages */
#ifdef ENABLE_NLS
#ifdef LC_MESSAGES
setlocale(LC_MESSAGES, "");
#endif
bindtextdomain("postgres", LOCALEDIR);
textdomain("postgres”);
fendi f

* Skip permission checks if we're just tryina to do —help or

* —yersion; otherwise root will get unhelpful failure messages from
* inmitdb.

if (2argc > 1
& (stromplargv[1], "—help”
strmp(argy[1]

stremplargv[1]

strampCargv1],

/%
* Make sure we are not running as root.
* Be0S currently runs everything as root :—(, so this check must be
* temporarily disabled there...
#ifndef _BEOS
if (geteuid) = 0)
i
fprintf(stderr, gettext(
"\"rooty" execution of the PostgreSQL server is not permitted.\nin"
"The server must be started under an unprivileged user id to preventin”

"a possible system security compromise. See the documentation forin®
‘more information on how to properly start the server.\n\n"
M

exit(1);
#endif /* _BEOS__ */
o

GNU DDD 3.3.1 (1386-pe—solaris2.8), by Dorothea Litkehaus and Andreas Zeller.
Copyright © 1995-1993 Technische Universitat Braunschweig, Germany.
Copyright © 1995-2001 Universitit Passau, Germany.

(gdb)

| m— 1y

Figure 1: Initial ddd screen
I prefer having the toolbar embedded in the source window. So I click on Edit->Preferences and modify

the dialog box as in Figure 2. There are other settings that you might want to change as well. Remember to
use Edit->Save Options to save your settings !

General Source Data Startup Fonts Helpers

Show Position and Breakpoints “ as Glyphs - as Text Characters

Tool Buttons Location « Command Tonl “* Source Window
Refer to Program Sources by Patt bame 4 by Base [lame
Find 7 words Only [T Case Sensitive
Cache J7 Source Files 7 Machine Code

-1 Display Source Ling Mumbers

& o 4
| == |
Tab Width Source Indentation Machine Code Indentation

QK Reset Help

Figure 2: ddd preferences dialog box

3. Now you are all set to start examining functions. We will start by looking at the function GetFreeBuffer.
Clear what’s in the topmost pane (it probably has main in it) and type GetFreeBuffer instead. Then click
on the Lookup button immediately to the right of this pane. This should look something like Figure 3.

File Edit View Progam Commands Stats Seurce Dala ﬂe\pl
0 qetFreepuffei ;0 @ D w2 N AT 5T

Lookp Fnds mresk uatcn prnr oy Pt cul ol Se 0l
Run| Interrupt| Step| Stepi| Next| Nexti| Until] Finish| Cont| Kill| Up| Down| Unda| Redo| Edit| Make|
Bufferbesc A
gEtFrEEEuFFeI’(vmd)

BufferDesc *buf;
if (Free_List_Descriptor — SharedFreelist—>freeNext)
£

/* queue is empty. All buffers in the buffer pmﬂ are pinned. =/
elog(ERROR, "out of free buffers: time to abort!');
return NULL;

H
buf = &(BufferDescriptorsisharedfreelist—>freenext]ll;

/* remove from freelist queue */
BufferDescriptors[buf->fresNext]. freePrev = buf—>freePrev;
Bufferbescriptors[huf->freePrev], freeNext = buf->FreeMext;
buf—>freeNext = buf->freePrev = INVALID_DESCRIPTOR;

buf->f1ags &= ~(BM_FREE):

3 return buf;

* Initfreelist — initialize the dumy buffer descriptor used
as a freelist head.

o A;sums #11 of the buffers are already linked in a circular
queue. Only called by postmaster and only during
o initialization.
3
void
InitFreelist(bool init)
SharedFreelist = &(Bufferbescriptors[Free_List_Descriptor]);
w‘gf Cinit)
£ we only do this once, normally in the postmaster */
SharedFreelist— >data = TNUALTD_OFFSET:
SharedFreelist—>f]ac

SharedFreelist— >f'\ags P L(EPL\/ALID | BM_DELETED | BM_FREED;
SharedFreelist—sbuf_id = Free_List_Descriptor;

/* insert it into a random spot in the circular queus */
SharedFreelist—>freeNext = BufferbescriptorsiD]. frestexts
SharedFreelist—>fresPrev = 0;
BufferdescriptorsiSharadrrastist- frostient] . frasbro
BufferDescriptors[SharedFreelist— >freePrev] FreeNext =

Copyright @ 1993-2001 unwersltat Passau, Germany.

Coch) Tist 'GetFreeBuffe

Line 195 0 “Freglist. c: starts at address 0xG14edcd <CetFreeBuffer> and ends at 0xB14edca <CetFrecBuffartss.
/hnnis/cc/cswsa/spua/uww/dng/pnstgrssqw =7.2.2/sre/backend/storage/buffer/Fraelist. c1195:4613: beg: 0xa14ed
(geb

o

A Source “freelistc” (from GDB) 313 lines, 8321 characters

Figure 3: ddd after looking up GetFreeBuffer

4. At last we are all set to actually run postgres ! You can do this either by hitting F2 or by using the menu
option Program->Run. This will first result in a dialog box where you should type test. This will look like
Figure 4. Click on Run and your ddd screen will now look something like Figure 5. Note the backend prompt
in the third pane. This is the postgres prompt in the bare backend mode. This is different from the prompt
you are familiar with when using psql.

5. Next we place a breakpoint in the function GetFreeBuffer by clicking (middle pane) on the first line of code

Arguments

v g
[ost

Figure 4: ddd dialog box for postgres arguments

File Edit View Program Commands Sfatus Source Data Help

0] cetFressufert PR TN IR =R R TN VAR AR

Wy R ok e oD G B s e o ik

Fun| Interrupt| Step| Stepi| Mext| Nest| Until] Finish| Cont] Kill| Up| Dawn| Unda| Fedo| Exit] Make|

Bufferbesc i
Getbreegutrertvoie)

BufferDesc *buf;
if (Free_List_Descriptor = SharedFreelist->freeNext)
{

£* queue is empty. All buffers in the buffer unnl are pinned. */
e10g(ERROR, "out of free buffers: time to abort!");
return NULL;

3
buf = &(Bufferbescriptors[Sharedfreelist—>freedext]l;

J* remove from freelist queue */
BufferDescriptors[buf—>freeNext].freePrev = buf—>freePrey;
Bufferdescriptors [buf—>freeprev]. freeNext = buf—>freenext;
buf—>freeMext = buf—>freePrev = INVALID_DESCRIPTOR;

buf->flags &= ~(BM_FREE);

5 return buf;

= InltFreeUst — initialize the dummy buffer descriptor used
as a freelist head.

2
* pssume: A1l of the buffers are already linked in a circular
2 aueue. only called by postmaster and only during
* fnitialization.
]
woid
TnitFreslist(bool init)
Sharedfreelist = &(BufferDescriptors[Free_List_Descriptor]ds
if Cinith
£
7+ we only do this once, normally in the postmaster */
SharEdFrEEstt—Wata = INVALID OFFSET;
Sharedfreelist—fla

SharEdFrEEstt—Wlaqs &: ~(BM_VALID | BM_DELETED | EM_FREE);
sharedFreelist—buf_id = Free_List_Descriptar:

/* insert 1t into a random spot in the circular queue */

Sharedrealistofrackent = Bufferbescripter=lo]. Frestiont;

SharedFreelist—>freepre:

Bt Ferbbect ntors(Shoradreatist-of rosext]. Frecprey =
Bufferbescriptors [SharedFreelist—rfreeprev]. freeNext =

7]
-
3

POSTGRES backend interactive interface

$Revision: 1.245.2.2 4 $Date: 2002/02/27 23:17:01 §

bhackends T J,

A Run test +

Figure 5: ddd running postgres in backend mode

in the function after the variable declarations. You can either right click and choose the set breakpoint or
click on the line and then click on the Break button (a little to the right of the Lookup button). Your ddd
should now look something like Figure 6. You might have to hit enter to see the backend prompt again.

6. Now click to the right of the backend prompt and enter select count(*) from T;. This will cause the
backend to run your query and stop at the breakpoint. In the middle pane you will see a green arrow pointing
at the “stop” sign (the breakpoint). Your ddd screen will look something like Figure 7.

7. At this point you are ready to rumble. You might want to try one or more of:

e Look at the current state of your stack (Use Status->Backtrace) - something like Figure 8)

e Display the local variables (Use Data->Display Local Variables or Alt-L) and display the arguments
(Use Data->Display Arguments or Alt-U). The result should be something like Figure 9 after you step
through a few instructions.

e Display any expression you see fit. Just use your mouse to highlight any expression on the code. You
will see the expression show up in the top pane. Either click on the Display button (to the right of the
Break button) or right click on the highlighted expression and choose the appropriate option.

File Edit View Program Commands Status Source Data

Help

03] Freolist.cit9g

F L AR AR A a a
N M

Siolsl Fotste et Ui

Run| Interrupt| Step| Stepi| Mext| Nexti] Until] Finish| Cont] Kil| Up| Dawn| Unda| 2o Edt| Make|

BuffarDe A
CetFreeBuFFer(vmd)
£
Bufferdesc *buf;
[onc) if (Free_List_Descriptor = SharedFreelist—>freetext)
£
/% queue is empty. A1l buffers in the buffer pool are pinned. *f
elog(ERROR, “out of free buffers: time to abart!"):
return NULL:
H
buf = &(Bufferbescriptors(SharedFreelist—>freeNext]d:
/% remove From freelist queue */
BufferDescriptors [buf->freeMext].freePrev = buf—>freefrev;
Bufferdescriptars [buf—>Freeprev] . freeNext = buf—>freefext?
buf->FreeNext = buf->freePrev = INWALID_DESCRIPTOR;
buf=>Flags & ~(BM_FREE);
return buf;
3
i
* Initfreelist — injtialize the dumy buffer descriptor used
as a freelist head.
- Assume All UF the buffers are already Tinked in a circular
. only called by postmaster and only during
*f o G,
woid
InitFreelist(bhool init)
SharedFreelist — &(BufferDescriptors [Free_List_Descriptar]);
if Cinit)
£
/% we only do this once, normally in the postmaster */
SharedFreelist— >data = INVALID OFFSET:
SharedFreelist—>f]a:
SharedFraelistsFlags &= ~(BHUALTD | BPLDELETED | BM_FREE);
SharedFreelist—>buf_id = Free_List_Descriptar,
/* insert it into a randem spot in the circular queue */
sharedfreeList—>froeNext = Bufferbescriptorsfo]. freetsxt;
SharedFreelist—>freePrev =
Eufferl]estrlptnrs[sharedFreellst >Freefiext] . freepre
BuFforDoscrintors [shar ad raet;stost reePrav] : Frastlaxt =
o
Program received signal SIGINT, Interrupt. A
Dxde(54d(in _read () from fusr/11b/11bc.s0.1
(gdb) <
backend> T -/l
5 *

Figure 6: ddd after placing a breakpoint in GetFreeBuffer

That’s it ! You're all set to go ahead. Play with ddd - a debugger is useful for more than just finding errors.
It’s also extremely useful in stepping through code that you might not be changing just to give you context. The
displays in ddd are extremely useful for understanding data structures. Any time you see a pointer you can typically

double click on it and see the structure it points too. If it’s

a void pointer and you know the actual type, you can

type cast it by right-clicking on the pointer in the data pane and choosing New Display->Other.

Good luck and let us know if you have problems.

File Edit View Program Commands Status Source Data

03] Freolist.cit9g

|
Loskup Fros Cear Usich

Help

= 1
e
Frin, O ok o rtste | e Ui

Run| Interrupt| Step| Stepi| Mext| Nexti] Until] Finish| Cont] Kil| Up| Dawn| Unda| f=do| Edt| Make|
BufferDe

CetFreeBuFFer(vnld)

£
Bufferdesc *buf;

* i1f (Free_List_bescriptor = sharedFreelist—>freenext)
£

/* queus is empty. A1l buffers in the buffer poo] are pinned. */
elog(ERROR, "out of free buffers: time to abort!");
return NULL:

H
buf = &(Bufferpescriptors(Sharedfreelist—>freenext]d:

/% remove from freelist queue */

BufferDescriptors [buf—>freetext] . freePrey = buf—>freePrev;
BufferDescriptors[buf—>freeprev]. freeNext = huf—:freedext:
buf->FreeNext = buf->freePrev = INVALID_DESCRIPTOR;

buf->Flags &= ~(BM_FREE);

return buf;

= IthreEUst — initialize the dunmy buffer descriptor used
as a freelist heac

- Assume All UF the buffers are already Tinked in a circ

wlar
.. Only called by postmaster and only during
”‘f lmt\ahzatlun

woid
InitFreelist(bhool init)

Sharedfreelist = a(BufferDescriptors[Free_List_Descriptor]l:
if (initl
£

/% we only do this once, normally in the postmaster */
SharedFreeLlst—>data = THVALTO_OFFSET;

SharedFraelist—>F]as

SharedFraelistoF1ags &= ~(BMUALTD | BHDELETED | BMFREE);
Sharedfreelist—rbuf_id = Free_List_Descriptor;

/* insert it into a random spot in the circular gueus */
Sharedfreelist—>freeNext = Bufferbescriptors(ol. freedext;
Sharedfreelist—>FresPrev = 0;

Bufferuescnptnrs[sharedFraeust >freenext]. freepre
BufferDescriptors [SharedFreelist->FreePrevl. freeNExt

backend> select count(*) from T

Breakpoint 1, GetFreeBuffer () at freelist.c:198
Cadb) T

A GefFresBuffer () at freslist c198

0%

Figure 7: ddd after breaking in

Backtrace

GetFreeBuffer

3

23

w5
I

0x0808d6ch in btgottugle () at nbtres. ci3t
d s

Figure 8: Examine the function call stack in ddd

“haw

File Edit View Program Commands Staus Source Data

Help |
= g
o freetist.c:1eg 7 i G
Lokup Fnds Cear Usich Prii Ossy s WS Rolste i Unasp
Run| Interrupt| Step| Stepi| Mext| Nesi| Until] Finish| Cont] Kill| Up| Down| Undo| Reds| Edit] Make|
s
(BufferDesc *) 0:827a63c
Bufferdesc * o
GetFreeBuffer(void)
BufferDesc *buf;
[ow) \EF (Free_List_Descriptor = SharedFreelist—>freeNext)
/% queue is empty. A1 buffers in the buffer DUUW are pinned. */
elog(ERROR, "out of free buffers: time to abort!"):
" return HULL;
buf = a(BufferDescriptors(SharedFreelist->Freetext]};
/* remove from freelist gueuwe */
> BufferDescriptors[buf—>freeNext] . freePrev = buf—>freePrey:
BufferDescriptors[buf=>freePrev].freeNext = buf->freelext;
buf—>freeext = buf—>freePrev = INVALID_DESCRIPTOR:
buf—>flags &= ~(BM_FREED:
return buf;
I3
* Initfreelist — initislize the dumy buffer descriptor used
as a freelist head.
- Assume ATl UF the buffers are already linked in a circular
" ue. Only called by postmaster and only during
*/ Thitialization.
void
InitFreelist(bool init)
sharedFreelist = &(Bufferbescriptors[Free_List_Descriptor]d;
if Cinit)
£
A
(adb) graph display “info locals® S
(gdb) graph display “info aras
(adh) ste
(adb) step
(gdh) }
. Display -2: "infa args’ (enabled)

=

Figure 9: ddd displaying local variables and arguments

