
The Design and Implementation of a Declarative Sensor Network
System

David Chu∗, Lucian Popa∗, Arsalan Tavakoli∗, Joseph M. Hellerstein∗, Philip Levis†, Scott Shenker∗,
Ion Stoica∗∗EECS Computer Science Division, University of California, Berkeley, CA 94720

Email: {davidchu,popa,arsalan,hellerstein,istoica}@cs.berkeley.edu,
shenker@icsi.berkeley.edu

†Department of Electrical Engineering and Department of Computer Science, Stanford University, Stanford, CA

Email: pal@cs.stanford.edu

Abstract
Sensor networks are notoriously difficult to program,

given that they encompass the complexities of both dis-
tributed and embedded systems. To address this problem,
we present the design and implementation of a declarative
sensor network platform, DSN: a declarative language, com-
piler and runtime suitable for programming a broad range of
sensornet applications. We demonstrate that our approach is
a natural fit for sensor networks by specifying several very
different classes of traditional sensor network protocols, ser-
vices and applications entirely declaratively – these include
tree and geographic routing, link estimation, data collection,
event tracking, version coherency, and localization. To our
knowledge, this is the first time these disparate sensornet
tasks have been addressed by a single high-level program-
ming environment. Moreover, the declarative approach ac-
commodates the desire for architectural flexibility and sim-
ple management of limited resources. Our results suggest
that the declarative approach is well-suited to sensor net-
works, and that it can produce concise and flexible code by
focusing on what the code is doing, and not on how it is do-
ing it.
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[Programming Techniques]: Logic Programming
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1 Introduction
Despite years of research, sensornet programming is still

very hard. Most sensornet protocols and applications con-
tinue to be written in low-level embedded languages, and
must explicitly contend with issues of wireless communi-
cation, limited resources, and asynchronous event process-
ing. This kind of low-level programming is challenging even
for experienced programmers, and hopelessly complex for
typical end users. The design of a general-purpose, easy-
to-use, efficient programming model remains a major open
challenge in the sensor network community.

In this paper we present the design and implementation
of a declarative sensor network (DSN) platform: a pro-
gramming language, compiler and runtime system to sup-
port declarative specification of wireless sensor network ap-
plications. Declarative languages are known to encourage
programmers to focus on program outcomes (what a pro-
gram should achieve) rather than implementation (how the
program works). Until recently, however, their practical im-
pact was limited to core data management applications like
relational databases and spreadsheets [22]. This picture has
changed significantly in recent years: declarative approaches
have proven useful in a number of new domains, including
program analysis [45], trust management [5], and distributed
system diagnosis and debugging [4, 40]. Of particular inter-
est in the sensornet context is recent work on declarative net-
working, which presents declarative approaches for protocol
specification [29] and overlay network implementation [28].
In these settings, declarative logic languages have been pro-
moted for their clean and compact specifications, which can
lead to code that is significantly easier to specify, adapt, de-
bug, and analyze than traditional procedural code.

Our work on declarative sensor networks originally be-
gan with a simple observation: by definition, sensor network
programmers must reason about both data management and
network design. Since declarative languages have been suc-
cessfully applied to both these challenges, we expected them
to be a good fit for the sensornet context. To evaluate this
hypothesis, we developed a declarative language that is ap-
propriate to the sensornet context, and then developed fully-
functional declarative specifications of a broad range of sen-



sornet applications. In this work, we present some examples
of these declarative specifications: a data collection appli-
cation akin to TinyDB [31], a software-based link estima-
tor, several multi-hop routing protocols including spanning-
tree and geographic routing, the version coherency proto-
col Trickle [26], the localization scheme NoGeo [39] and
an event tracking application faithful to a recently deployed
tracking application [34]. The results of this exercise provide
compelling evidence for our hypothesis: the declarative code
naturally and faithfully captures the logic of even sophisti-
cated sensornet protocols. In one case the implementation
is almost a line-by-line translation of the protocol inventors’
pseudocode, directly mapping the high-level reasoning into
an executable language.

Establishing the suitability of the declarative approach is
of course only half the challenge: to be useful, the high-level
specifications have to be compiled into code that runs effi-
ciently on resource-constrained embedded nodes in a wire-
less network. We chose to tackle this issue in the context of
Berkeley Motes and TinyOS, with their limited set of hard-
ware resources and lean system infrastructure. Our evalu-
ation demonstrates both the feasibility and faithfulness of
DSN for a variety of programs, showing that the resulting
code can run on resource-constrained nodes, and that the
code does indeed perform according to specification in both
testbed and simulation environments.

1.1 Declarative Sensornets: A Natural Fit?
While declarative languages are famous for hiding details

from the programmer, they are correspondingly infamous for
preventing control over those details. Our experience con-
firms this, and suggests DSN is not well-suited to all sensor-
net tasks. Like most database-style languages, the language
in DSN is not adept at natively manipulating opaque data ob-
jects such as timeseries, matrices and bitmasks; nor is it fit
for providing real-time guarantees. In addition, as a variant
of Datalog, the core of DSN’s language is limited to express-
ing the class of programs that are computable in polynomial
time. As a result of these shortcomings, we have taken the
pragmatic approach and provided flexible mechanisms to in-
terface to external code, as discussed in Section 2.

That said, we have been pleasantly surprised at the
breadth of tasks that we have been able to program concisely
within DSN. In Section 4.1 we describe a fully-functioning
data collection implementation expressed entirely declara-
tively, save for natively implemented device drivers. Also,
in Section 4.2 we discuss features of our language that al-
low for simple declarative management of resources, a vital
concern for sensornets. A goal of our implementation is to
allow programmers the flexibility to choose their own ratio of
declarative to imperative code, while attempting in our own
research to push the boundaries of the declarative language
approach as far as is natural.

DSN’s declarative approach does not fit exclusively into
any one of the existing sensornet programming paradigm
clusters. In its family of expressible network protocols, DSN
can model spatial processing inherent to region-based group
communication [43,15,33]. While DSN’s execution runtime
consists of a chain of database operations resembling the
operator-based data processing common to dataflow mod-

els [14,32], DSN users write in a higher-level language. DSN
also provides the runtime safeguards inherent to database
systems and virtual machines [31, 24, 20]. Section 9 dis-
cusses this work’s relationship to other high level sensornet
languages in the literature in detail.

The rest of the paper is organized as follows. Sections 2
and 3 outline the declarative language, and provide examples
of a variety of services and applications. Section 4 discusses
additional features of DSN that suit sensor networks. Sec-
tions 5 and 6 present an architectural overview of the sys-
tem, along with implementation concerns. Section 7 dis-
cusses evaluation methodology, measurements and results.
Sections 8 and 9 outlines limitations of our system and re-
lated work.

2 A Quick Introduction to Snlog
In this section we give an overview of our declarative lan-

guage Snlog. Snlog is a dialect of Datalog [38], a well known
deductive database query language. The typical DSN user,
whether an end-user, service implementor or system builder,
writes only a short declarative specification using Snlog.

The main language constructs are predicates, tuples, facts
and rules. Snlog programs consist of period-terminated
statements. As a quick start, the following is a representa-
tive, but simplified, example of these elements:

% r u l e
temperatureLog ( Time , TemperatureVal ) :−

thermometer ( TemperatureVal ) , TemperatureVal > 15 ,
timestamp ( Time ) .

% f a c t s
thermometer (24) .
timestamp ( day1 ) .

The predicates above are temperatureLog, thermometer and
timestamp; these are analogous to the tables of a database. Tu-
ples, similar to rows in a table, are predicates with all pa-
rameters assigned. A fact, such as thermometer(24), instantiates a
tuple at the beginning of execution.

A rule instantiates tuples based on the truth of a logical
expression. Each rule consists of a head and body that ap-
pear on the left and right respectively of the rule’s deduc-
tion symbol (“:−”). The body defines a set of preconditions,
which if true, instantiates tuple(s) in the head. For exam-
ple, temperatureLog(TemperatureVal,Time) is the head of the rule above,
while the thermometer and timestamp predicates form its body. This
rule creates a temperatureLog tuple when there exist thermometer and
timestamp tuples and the temperatureVal of the thermometer tuple is
greater than 15.

The two facts establish the time and thermometer read-
ing. The tuples given by these facts make the rule body
true, so the rule creates a new tuple temperatureLog(24, day1). Fol-
lowing Datalog convention, predicates and constants start
with lowercase while variables start with upper case letters:
TemperatureVal is a variable, while day1 is a constant.

Unification further limits valid head tuples by detecting
repeated variables among predicate parameters in the body.
For example the following program:

evidence ( TemperatureVal , PressureVal ) :−
temperatureLog ( Time , TemperatureVal ) ,
pressureLog ( Time , PressureVal ) .



pressureLog ( day1 ,1017) .
pressureLog ( day2 ,930) .

indicates that evidence is true if temperatureLog and pressureLog

each have tuples whose first parameters, both named Time,
match. Combined with the listed pressureLog facts and the
temperatureLog(day1,24) tuple yielded from the previous example,
the rule results in evidence(24,1017). In relational database termi-
nology, unification is an equality join.
Distributed Execution: In a fashion similar to [28], one ar-
gument of each tuple, the location specifier, is additionally
marked with an “at” symbol (@) representing the host of the
tuple. A single rule may involve tuples hosted at different
nodes. For example, the tuples (facts):

consume (@node1, base ) .
produce (@node1, data1 ) .

are hosted at the node whose identifier is node1. Rules can
also specify predicates with different location specifiers:

s to re (@Y, Object ) :− produce (@X, Object ) , consume (@X,Y) .

With the two tuples above, this instantiates store(@base,data1).
The different nodes that appear in a rule such as base and node1

have to be within local communication range for the tuples in
the head predicate to be instantiated. This is done by sending
messages addressed to the tuple host node.

For broadcast, a special “*” (asterisk) location specifier is
used:

s to re (@∗ , Object ) :− produce (@X, Object ) .
process (@X, Object ) :− s to re (@X, Object ) .

The first rule broadcasts the store tuple. In the second rule,
any neighboring node X that receives this broadcast rewrites
the location specifier of the tuple with its local id.
Interfacing to the Physical World: In order to link declar-
ative programs to hardware such as sensors and actuators,
users may specify built-in predicates. For example, the prior
example’s thermometer predicate may read values from the un-
derlying temperature sensor:

b u i l t i n ( temperature , ’ TemperatureImplementor . c ’ ) .

where ThermometerImplementor.c is a external module (written in a
language like nesC [12]) implementing the thermometer predi-
cate. This method of exposing sensors as tables is similar
to TinyDB and is a generalization of a mechanism found in
other deductive databases [28]. Actuation is exposed simi-
larly:

b u i l t i n ( sounder , ’ SounderImplementor . c ’ ) .
sounder (@Node, frequency ) :− process (@Node, Object ) .

Here, sounder tuples result in sound as implemented by the
SounderImplementor.c.
Querying for Data: Users pose queries to specify that cer-
tain predicates are of interest and should be output from the
DSN runtime. For example:

i n t e r e s t i n g P r e d i c a t e ( @AllHosts , I n t e re s t i n gV a lu e ) ?

When a new tuple of this type is generated, it is also transmit-
ted to the user. We currently use the Universal Asynchronous
Receiver-Transmitter (UART) interface for this purpose. If
no query is specified in a program, all the predicates are con-
sidered of interest and delivered.

1 % I n i t i a l f a c t s f o r a t ree rooted at ‘ ‘ r oo t ’ ’
2 dest (@AnyNode, roo t ) .
3 shor tes tCos t (@AnyNode, root , i n f i n i t y ) .
4

5 % 1−hop neighbors to roo t ( base case )
6 path (@Source , Dest , Dest , Cost ) :− dest (@Source , Dest ) ˜ ,

l i n k (@Source , Dest , Cost ) .
7

8 % N−hop neighbors to roo t ( recu rs i ve case )
9 path (@Source , Dest , Neighbor , Cost ) :− dest (@Source , Dest ) ˜ ,

l i n k (@Source , Neighbor , Cost1 ) ,
nextHop ( @Neighbor , Dest , NeighborsParent , Cost2 ) ,
Cost=Cost1+Cost2 , Source != NeighborsParent .

10

11 % Consider on ly path w i th minimum cost
12 shor tes tCos t (@Source , Dest,<MIN , Cost>) :−

path (@Source , Dest , Neighbor , Cost ) ,
shor tes tCos t (@Source , Dest , Cost2 ) ˜ , Cost < Cost2 .

13

14 % Selec t next hop parent i n t r ee
15 nextHop (@Source , Dest , Parent , Cost ) :−

shor tes tCos t (@Source , Dest , Cost ) ,
path (@Source , Dest , Parent , Cost ) ˜ .

16

17 % Use a n a t i v e l y implemented l i n k t a b l e manager
18 b u i l t i n ( l i n k , ’ L inkTableImplementor . c ’ ) .

Listing 1. Tree Routing

Additional Snlog constructs will be presented in the fol-
lowing sections as needed. A comprehensive DSN tutorial is
also available for interested programmers [1].

3 A Tour of Declarative Sensornet Programs
In this section, we investigate Snlog’s potential for ex-

pressing core sensor network protocols, services and appli-
cations. Through a series of sample programs, we tackle
different sensor network problems, at multiple, traditionally
distinct levels of the system stack. For the sake of exposi-
tion, we will tend to explain Snlog programs in rule-by-rule
detail, though auxiliary statements like type definitions are
elided from the listings. Complete program listings are avail-
abe at [1]

3.1 Tree Routing:
A Common Network Service

In-network spanning-tree routing is a well-studied sensor
network routing protocol. Tree construction is a special case
of the Internet’s Distance Vector Routing (DVR) protocol:
nodes simply construct a spanning tree rooted at the base by
choosing the node that advertises the shortest cost to the base
as their next hop neighbor. This tree construction in Snlog is
presented in Listing 1.

Each node starts with only information about link
qualities of neighboring nodes given by the predicate
link (@Host,Neighbor,Cost). For all nodes, the root of the tree is ex-
plicitly specified with a fact (line 2), and a bootstrap value
for the shortest cost to the root is also set (line 3).

To establish network paths to the root, first nodes that are
one hop neighbors from the root use local links to the desti-
nation as network paths to the root. This corresponds to the
rule in line 6, which reads: “if a node Source wishes to reach
a destination Dest and has a local link to this destination with
cost Cost, then establish a network path path from Source to Dest

with next hop of Dest and cost Cost.”
The tilde (“∼”), such as in this rule’s dest predicate, indi-

cates that the arrival of new tuples from the associated body
predicate do not trigger the reevaluation of the rule which is



1 impor t ( ’ t r ee . sn l ’ ) .
2 b u i l t i n ( t imer , ’ TimerImplementor . c ’ ) .
3 b u i l t i n ( thermometer , ’ ThermometerImplementor . c ’ ) .
4

5 % Schedule p e r i o d i c data c o l l e c t i o n
6 t imer (@AnyNode, co l l ec t i onT imer , c o l l e c t i o n P e r i o d ) .
7 t imer (@Src , co l l ec t i onT imer , Per iod ) :−

t imer (@Src , co l l ec t i onT imer , Per iod ) .
8

9 % Sample temperature and i n i t i a t e mul t ihop send
10 t r ansm i t (@Src , Temperature ) :− thermometer (@Src , Temperature ) ,

t imer (@Src , co l l ec t i onT imer , Per iod ) .
11

12 % Prepare message f o r mul t ihop t ransmiss ion
13 message (@Src , Src , Dst , Data ) :− t r ansm i t (@Src , Data ) ,

nextHop (@Src , Dst , Next , Cost ) ˜ .
14

15 % Forward message to next hop parent
16 message (@Next , Src , Dst , Data ) :− message ( @Crt , Src , Dst , Data ) ,

nextHop ( @Crt , Dst , Next , Cost ) ˜ , Cr t != Dst .
17

18 % Receive when at d e s t i n a t i o n
19 rece ive ( @Crt , Src , Data ) :− message ( @Crt , Src , Dst , Data ) ,

Cr t==Dst .

Listing 2. Multi-hop Collection

useful in the cases that reevaluation is unwanted or unneces-
sary.

Second, nodes that are more than one hop from the root
establish paths by deduction: a node Source that has a neigh-
bor Neighbor that already has a established a path to the root
can construct a path that goes through this neighbor with a
cost that is the sum of the link cost Cost1 to neighbor and the
neighbor’s cost to the root Cost2 (line 9).

Here, path tuples are possible paths to the root, whereas
nextHop tuples are only the shortest paths to the root. The re-
duction of possible paths to the shortest path occurs in the
two rules of line 12 and 15. We employ a MIN database ag-
gregation construct over the set of possible paths to find the
minimum cost.

After successful tree construction, each node has selected
a parent with the least cost to get to the destination. This in-
formation is captured in the nextHop(@Source,Dest,Parent,Cost) predi-
cate and represents the network-level forwarding table for all
nodes.

So far we have glossed over how the local link table link is
populated and maintained. For now, let us assume a link ta-
ble manager provided by an external component (line 18). In
Section 4, we discuss several reasonable alternatives to con-
structing this link table, including a link estimator constructed
declaratively.

This program does not downgrade tree paths. We can ad-
ditionally add this mechanism with three more rules, which
we have omitted here for brevity.

Besides serving as data collection sinks, trees often serve
as routing primitives [11, 10, 13]. Construction of multiple
trees based on this program is very easy; a second tree only
requires the addition of two facts for the new root such as
dest(@AnyNode,root2) and shortestCost(@AnyNode,root2,infinity).

3.2 Multi-hop Collection:
An Initial User Application

To perform periodic multi-hop collection, we forward
packets on top of tree routing at epoch intervals. This is very
similar to a popular use-case of TinyDB [31]. The program
is shown in Listing 2.

We first import our previous tree routing such that we can
use its nextHop forwarding table (line 1). The two built-ins used
are timer for interacting with the hardware timer, and thermometer

for reading the temperature (line 2 and 3).

A fact sets the initial timer (line 6). A timer predicate
on the right side (body) is true when the timer fires, and a
timer predicate on the left side (head) evaluating to true in-
dicates the timer is being set. Therefore, having the same
timer predicate in the body and head creates a reoccurring
timer (line 7). This timer’s main purpose is to periodically
sample temperature and initiate a multi-hop send (line 10).

Conceptually, multi-hop routing on a tree involves re-
cursively matching a transported message with the appro-
priate forwarding tables along the path to the destination.
This recursion is expressed succinctly in an initialization rule
(line 13), recursive case (line 16) and base case (line 19)
above. The initialization rule prepares the application level
send request into a generic message suitable for forwarding.
The recursive case forwards the message (at either an orig-
inating or intermediate node) according to each recipient’s
nextHop entry for the final destination. Finally, upon receipt
at the final destination, the message is passed upward to the
application layer which expresses interest in it (line 19).

The message predicate takes the place of the standard net-
work queue. As such, we are able to design any queue ad-
mission policy through our operations on predicates, such
as unification and database-style aggregation. On the other
hand, queue eviction policies are limited by the system pro-
vided table eviction mechanisms. We discuss provisions for
table eviction in Section 4.

3.3 Trickle Dissemination:
Translating From Pseudocode

Various sensor network protocols utilize a version co-
herency dissemination algorithm to achieve eventual consis-
tency. Listing 3 illustrates a declarative implementation of
a leading approach: version coherency with the Trickle dis-
semination algorithm. [26].

Despite the algorithm’s complexity, we were very pleas-
antly surprised by how easy it was to implement in Snlog. In
fact, the comments in Listing 3 are directly from the origi-
nal Trickle paper pseudocode [26]. Save for setting timers in
lines 3-7, each line of pseudocode translates directly into one
rule. This example in particular lends evidence to our claim
that Snlog is at an appropriate level of abstraction for sensor
network programming.

The Trickle algorithm provides conservative exponential-
wait gossip of metadata when there is nothing new (line 10),
aggressive gossip when there is new metadata or new data
present (lines 17 and 21), both counter-balanced with po-
lite gossip when there are competing announcers (line 13).
Underscores in a predicate’s arguments, such as in timer of
line 10, represent “don’t care” unnamed variables.

The algorithm is inherently timer intensive. The T timer,
corresponding to tTimer in the listing, performs exponential-
increase of each advertisement epoch. Timer τ, correspond-
ing to tauTimer, performs jittered sending in the latter half of
each epoch in order to avoid send synchronization. Lines 27
and 28 store and update to the new version once the new data



1 % Tau exp i res :
2 % Double Tau up to tauHi . Reset C, p ick a new T .
3 tauVal (@X, Tau∗2) :− t imer (@X, tauTimer , Tau ) , Tau∗2 < tauHi .
4 tauVal (@X, tauHi ) :− t imer (@X, tauTimer , Tau ) , Tau∗2 >= tauHi .
5 t imer (@X, tTimer , T ) :− tauVal (@X, TauVal ) , T =

rand ( TauVal / 2 , TauVal ) .
6 t imer (@X, tauTimer , TauVal ) :− tauVal (@X, TauVal ) .
7 msgCnt (@X, 0 ) :− tauVal (@X, TauVal ) .
8

9 % T exp i res : I f C < k , t r ansm i t .
10 msgVer (@∗ ,Y , Oid , Ver ) :− ver (@Y, Oid , Ver ) , t imer (@Y, tTimer , ) ,

msgCnt (@Y,C) , C < k .
11

12 % Receive same metadata : Increment C.
13 msgCnt (@X,C++) :− msgVer (@X,Y, Oid , CurVer ) , ver (@X, Oid , CurVer ) ,

msgCnt (@X,C) .
14

15 % Receive newer metadata :
16 % Set Tau to tauLow . Reset C, p ick a new T .
17 tauVal (@X, tauLow ) :− msgVer (@X,Y, Oid , NewVer ) ,

ver (@X, Oid , OldVer ) , NewVer > OldVer .
18

19 % Receive newer data :
20 % Set Tau to tauLow . Reset C, p ick a new T .
21 tauVal (@X, tauLow ) :− msgStore (@X,Y, Oid , NewVer , Obj ) ,

ver (@X, Oid , OldVer ) , NewVer > OldVer .
22

23 % Receive o lde r metadata : Send updates .
24 msgStore (@∗ ,X , Oid , NewVer , Obj ) :− msgVer (@X,Y, Oid , OldVer ) ,

ver (@X, Oid , NewVer ) , NewVer > OldVer ,
s to re (@X, Oid , NewVer , Obj ) .

25

26 % Update vers ion upon suc c e s s f u l l y r e c e i v i n g s to re
27 s to re (@X, Oid , NewVer , Obj ) :− msgStore (@X,Y, Oid , NewVer , Obj ) .

s to re (@X, Oid , OldVer , Obj ) , NewVer > OldVer .
28 ver (@X, Oid , NewVer , Obj ) :− s to re (@X, Oid , NewVer , Obj ) .

Listing 3. Trickle Version Coherency

is received.

3.4 Tracking: A Second
End-User Application

Listing 4 shows a multi-hop entity tracking application
implemented in Snlog. The specification is faithful to what
has been presented in recently deployed tracking applica-
tions [34].

The algorithm works as follows: a node that registers a
detection via the trackingSignal sends a message to the cluster
head indicating the position of the node (lines 5 and 6). The
cluster head node periodically averages the positions of the
nodes that sent messages to estimate the tracked object’s po-
sition (line 10). To correctly compute the destination for each

1 b u i l t i n ( t rack ingS igna l , ’ TargetDetectorModule . c ’ ) .
2 impor t ( ’ t r ee . sn l ’ ) .

4 % On detec t ion , send message towards c l u s t e r head
5 message (@Src , Src , Head , SrcX , SrcY , Val ) :−

t r a c k i n g S i g n a l (@Src , Val ) , detectorNode (@Src) ,
l o c a t i o n (@Src , SrcX , SrcY ) , c lusterHead (@Src , Head ) .

6 message (@Next , Src , Dst ,X,Y, Val ) :−
message ( @Crt , Src , Dst ,X,Y, Val ) ,
nextHop ( @Crt , Dst , Next , Cost ) .

7

8 % At c l u s t e r head , do epoch−based p o s i t i o n es t ima t ion
9 t rack ingLog (@Dst , Epoch ,X,Y, Val ) :−

message (@Dst , Src , Dst ,X,Y, Val ) , epoch (@Dst , Epoch ) .
10 es t ima t ion (@S, Epoch,<AVG,X>,<AVG,Y>) :−

t rack ingLog (@S, Epoch ,X,Y, Val ) , epoch (@S, Epoch ) .
11

12 % P e r i o d i c a l l y increment epoch
13 t imer (@S, epochTimer , Per iod ) :− t imer (@S, epochTimer , Per iod ) .
14 epoch (@S, Epoch++) :− t imer (@S, epochTimer , ) , epoch (@S, Epoch ) .

Listing 4. Tracking

epoch, the trackingLog predicate labels received messages with
the estimation epoch in which they were received (line 9).
Periodic timers update the current epoch (lines 14-13).

This application uses a fixed cluster head. Four additional
rules can be added to augment the program to specify a clus-
ter head that follows the tracked target.

3.5 Additional Examples
All of the preceding examples discussed in this section

compile and run in DSN. We implemented and validated
basic geographic routing [18], NoGeo localization [39] and
exponentially weighted moving average link estimation [47]
which appear in the companion technical report [7]. Addi-
tionally, we have sketched implementations of other sensor
network services such as: in-network data aggregation [30],
beacon vector coordinate and routing protocol BVR [11],
data-centric storage protocol pathDCS [10], and geographic
routing fallback schemes such as right hand-rules and convex
hulls [23, 18]. Our conclusion is that Snlog implementations
of these applications pose no fundamental challenges, being
expressible in code listings of no more than several dozen
rules while all running over the same minimal DSN runtime
discussed in Section 5.

4 Beyond Expressing Sensornet Services
In the previous section, we showed that the declarative

approach is natural for defining a wide range of sensornet
services. In this section, we discuss two additional advan-
tages. First, the declarative approach naturally accommo-
dates flexible system architectures, an important advantage
in sensornets where clear architectural boundaries are not
fixed. Second, DSN facilitates resource management poli-
cies using simple declarative statements.

4.1 Architectural Flexibility
Disparate application requirements and the multitude of

issues that cut across traditional abstraction boundaries, such
as in-network processing, complicate the specification of a
single unifying sensornet architecture: one size may not fit
all. DSN strives to accommodate this need for architectural
flexibility.

First, it is both possible and reasonable to declaratively
specify the entire sensornet application and all supporting
services, save for hardware device drivers. The previous
section showed specifications of both high-level applications
such as tracking and intermediate services such as Trickle.
In addition, we have specified cross-layer applications such
as in-network aggregation [30] and low-level protocols such
as link estimation. For link estimation, we implemented a
commonly-used beaconing exponentially weighted moving
average (EWMA) link estimator [47] in Snlog, detailed in
the companion technical report [7]. The combination of the
link estimator with tree routing and multi-hop collection pre-
sented in Section 3 constitutes an end-user application writ-
ten entirely in Snlog, except for the hardware-coupled built-
ins thermometer and timer.

At the same time, it is straightforward to adopt packaged
functionality with built-in predicates. For instance, we ini-
tially implemented link as a built-in, since it allows us to ex-
pose radio hardware-assisted link-estimations in lieu of our
declarative link estimator. As a third option, we also used



SP [36], a “narrow waist” link layer abstraction for sensor
networks as a built-in. In the next subsection, we outline
how a substantial system service, energy management, can
be incorporated into declarative programs. Similarly, higher-
level functionality implemented natively such as a network
transport service can also be incorporated. In this way, DSN
facilitates users who want to program declaratively while re-
taining access to native code.

Architectural flexibility in DSN is also attractive because
predicates can provide natural abstractions for layers above
and below, such as link (Node,Neighbor,Cost) for the neighbor ta-
ble and nextHop(Node,Destination,Parent,Cost) for the forwarding ta-
ble. These predicates’ tuples are accessed just like any oth-
ers, without special semantics assigned to their manipula-
tion. We can also see similar intuitive interfaces in other in-
stances: geographic routing also provides a nextHop forward-
ing table like tree routing; geographic routing and localiza-
tion, which are naturally interrelated, use and provide the
location (Node,X,Y) predicate respectively, which is simply a table
of each node’s location. Both geographic routing and local-
ization are presented in the companion technical report [7].
In these cases, the declarative approach facilitates program
composition with intuitive abstraction interfaces.

Yet, the right level of declarative specification remains an
open question. While a single sensornet architecture has not
emerged to date, one may yet crystallize. By enabling users
to freely mix and match declarative programming with exist-
ing external libraries, DSN enables the future exploration of
this subject.

4.2 Resource Management
As a consequence of the physical constraints of sensornet

platforms, DSN offers flexibility in the management of three
fundamental resources: memory, processor and energy.
Memory: Since current sensornet platforms are memory
constrained, DSN makes several provisions for managing
memory effectively. At the programming level, the user is
able to specify: the maximum number of tuples for a pred-
icate, tuple admission and eviction strategies, and insertion
conflict resolution policies. The materialize statement sets these
policies for a predicate:

m a t e r i a l i z e ( predA , entryTimeout , maxEntries , e v i c t P o l i c y ) .

The above statement sets a maximum number of entries for
predA and a timeout value for each tuple after which it will
be removed. The eviction policy specifies how tuples should
be removed when the maximum number of allocated tuples
has been exceeded. Policies include random, least recently
used and deny and are implemented by our runtime. This
construct, borrowed from one in [28], permits the user to
effectively specify static memory usage more simply than
traditional sensornet programming systems.

Also, because we use a high-level language, the compiler
has significant opportunity for optimization. For example,
we have implemented two different memory layout schemes
for generated DSN binaries, trading off between code and
data memory. Since sensor network platforms separate code
from data, i.e., ROM from RAM, the compiler can optimize
binary generation depending on the particular type of hard-
ware platform. Section 6 discusses this more in depth. The

combination of programming and compilation options en-
ables a deductive database in a reasonable memory footprint.

Processor: Determining execution preferences among com-
peting, possibly asynchronous, events is important, espe-
cially in embedded systems. For example, it may be de-
sirable to prioritize event detection over background routing
maintenance. DSN uses a priority mechanism to let the user
specify tuple processing preference. For example, high tem-
perature detection is prioritized over the rest of the process-
ing below:

p r i o r i t y ( highTemperature ,100) .

% Background r u l es
repor tHumid i t y ( . . . ) :− . . . .
d isseminateValue ( . . . ) :− . . . .

% Rule f i r e d by p r i o r i t i z e d pred ica te
reportHighTemperature ( . . . ) :− highTemperature ( . . . ) , . . . .

In the above example, if multiple new tuples in the system
are ready to be processed, the highTemperature tuples will be con-
sidered for deductions first, before the other regular priority
tuples.

Prioritized deduction offers a simple way for users to ex-
press processing preferences, while not worrying about the
underlying mechanism. It also differs from traditional de-
duction where execution preferences are not directly exposed
to users.

Additionally, priorities can address race conditions that
may arise when using intermediate temporary predicates,
since DSN does not provide multi-rule atomicity. These
races can be avoided by assigning high priority to temporary
predicates.

Energy: Effective energy management remains a challeng-
ing task. Several systems have attempted to tackle this prob-
lem, such as Currentcy [48] for notebook computers, and a
somewhat similar sensornet approach [17]. These energy
management frameworks provide: 1) a user policy that al-
locates and prioritizes energy across tasks and 2) a runtime
energy monitor and task authorizer.

Since declarative languages have been previously used for
policy, we wished to assess the suitability of adopting en-
ergy management into DSN. Below, we outline how Snlog
programs can naturally incorporate energy management.

For user policy, it is straightforward to specify predi-
cates concerning desired system lifetime, energy budgets
for individual sensors, and resource arbitration of energy
across system services. As one example, facts of the form
em PolicyMaxFreq(@host,actionId,frequency) set up maximum frequen-
cies allowed by the energy manager for different actions.

For task authorization, checks to the energy account-
ing module occur as part of a rule’s body evaluation. To
do this, we make authorization requests by including a
em Authorize(@host,actionId) predicate in the body of rules that re-
late to actionId. This means that these rules must additionally
satisfy the authorization check to successfully execute.

The two new predicates mentioned map fairly naturally
to the native energy management interface envisioned by the
authors in [17] and [48]. Listing 5 provides an example of
an Snlog program with these energy management features.



1 % Energy Manager−s p e c i f i c p red ica tes
2 b u i l t i n ( em Authorize , EMModule ) .
3 b u i l t i n ( em PolicyMaxFreq , EMModule ) .

5 % Permit l i g h t ac t i ons a t most 10 t imes per minute
6 em PolicyMaxFreq (@Src , l i g h t A c t i o n ,10 ) .
7

8 % Permit temperature ac t ions a t most 20 t imes per minute
9 em PolicyMaxFreq (@Src , temperatureAct ion ,20 ) .

10

11 % Log l i g h t readings
12 l i g h t L o g (@Src , Reading ) :− photometer (@Src , Reading ) ,

em Authorize (@Src , l i g h t A c t i o n ) .
13

14 % Sample temperature readings and send them to the base
15 temperatureReport (@Next , Reading ) :− thermometer (@Src , Reading ) ,

nextHop (@Src , Dst , Next , Cost ) ,
em Authorize (@Src , temperatureAct ion ) .

Listing 5. Specifying Energy Policy

The energy-aware program specified in Listing 5 stores
light readings locally, and forwards temperature samples to
a base station. Different policies are associated with each
of the two main actions, lightAction and temperatureAction. (lines 6
and 9). Authorization for lightAction is requested when log-
ging light readings, while the request for temperatureAction is pro-
cessed when sampling and sending the temperature readings
(line 12 and 15 respectively). If the energy budget is de-
pleted, the underlying EMModule will evaluate these requests in
accordance to the specified user policy.

In addition to addressing energy, a vital resource con-
straint in sensornets, this exercise also demonstrates flexi-
bility in incorporating a new system service into DSN’s ex-
isting architecture. The DSN programming tutorial provides
further assistance and examples for interfacing DSN with na-
tive system services [1].

5 System Architecture
In this section we present a high level view of our system

design and implementation. The high level architecture for
transforming Snlog code into binary code that runs on motes
is shown in Figure 1. At the core of the framework lies the
Snlog compiler that transforms the Snlog specification into
the nesC language [12] native to TinyOS [3]. The generated
components, along with preexisting compiler libraries, are
further compiled by the nesC compiler into a runtime imple-
menting a minimal query processor. This resulting binary
image is then programmed into the nodes in the network.

As an overview, each rule from the Snlog program gets
transformed in the compiled code into a sequence of com-
ponents that represent database operators like join, select,
and project, which, to facilitate chaining, implement uni-
form push/pull interfaces. The runtime daemon manages the
dataflow processing of tuples from and to tables and built-ins
while the network daemon manages tuples arriving from and
destined to the network. Figure 2 presents an overall view of
this runtime activity.

5.1 The Compiler
A fundamental choice of DSN is heavy use of PC-side

program compilation as opposed to mote-side program in-
terpretation. This relates directly to our goals of reducing
runtime memory footprint and providing predictable opera-
tion.

The compiler parses the Snlog program and does a set
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Figure 1. DSN Architecture. Snlog is compiled into bi-
nary code and distributed to the network, at which point
each node executes the query processor runtime.
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Figure 2. DSN Runtime. Each rule is compiled into a
dataflow chain of database operators.

of initial rule-level level transformations on distributed rules
(those whose location specifiers are not all the same). Next,
it translates the program into an intermediary dataflow repre-
sentation that uses chains of database operators (such as joins
and selects) to describe the program. Then, for each chain,
the compiler issues nesC code by instantiating components
from a set of compiler library generic templates. Finally, the
generated components, the system runtime and any neces-
sary library runtime components are compiled together into
a binary image using the nesC compiler.

5.2 The Runtime
We chose to implement the runtime system as a compiled

dataflow of the user provided rules in the Snlog program. As
is well known in the database community, declarative logic
maps neatly to dataflow implementations. An example com-
piled runtime is shown in Figure 2.

The constrained resources and predictability concerns of



sensor nodes make full fledged query processors for our
purposes (e.g., runtime rule interpreters) difficult to justify.
While interpreters are used in several high-level sensor net-
work languages for data acquisition [24, 31], we were wary
of the performance implications of interpreting low-level ser-
vices such as link estimators. In addition, we felt static
compiler-assisted checks prior to deployment were worth
any loss of flexibility. As a result of aggressive compila-
tion, the resulting runtime system is equivalent to a dedicated
query processor compiled for the initial set of rules, allow-
ing new tuples (but not new rules) to be dynamically inserted
into the network.

5.3 Code Installation
We rely on traditional embedded systems reprogrammers

to distribute initial binary images onto each node prior to de-
ployment. Users are free to install different rules and facts on
different nodes, while retaining a common predicate set def-
inition (database schema) across nodes. This permits basic
support for different nodes requiring different functionality,
as in heterogeneous sensor networks.

6 Implementation
In this section we discuss implementation design deci-

sions and detail compiler and runtime interactions.

6.1 Implementation Choices
In the following, we explain the most important imple-

mentation choices we made and how they affect the perfor-
mance and semantics of the system. The resulting system
exhibits sizeable dissimilarities from existing networked de-
ductive databases [28].

Dynamic vs Static allocation
TinyOS does not have a default dynamic memory alloca-

tion library. On the other hand, database systems often make
substantial use of dynamic memory allocation, and previous
systems like TinyDB [31] have implemented dynamic mem-
ory allocation for their own use. In our implementation, we
decided to use static allocation exclusively. While dynamic
allocation may better support the abstractions of limitless re-
cursion and flexible table sizes, static allocation remained
preferable for the following reasons. First, we believe that
static allocation with a per-predicate granularity gives pro-
grammers good visibility and control over the case when
memory is fully consumed. By contrast, out-of-memory ex-
ceptions during dynamic allocation are less natural to expose
at the logic level, and would require significant exception-
handling logic for even the simplest programs. Second,
our previous experiences indicated that we save a nontrivial
amount of code space in our binaries that would be required
for the actual dynamic allocator code and its bookkeeping
data structures. Finally, because tuple creation, deletion and
modification of different sizes is common in DSN, the po-
tential gains of dynamic allocation could be hard to achieve
due to fragmentation. Instead, in our system all data is allo-
cated at compile time. This is a fairly common way to make
embedded systems more robust and predictable.

Memory Footprint Optimization
In general, in our implementation we chose to optimize

for memory usage over computation since memory is a

very limited resource in typical sensor network platforms,
whereas processors are often idle.

Code vs. Data Tradeoff: Our dataflow construction is
convenient because, at a minimum, it only requires a handful
of generic database operators. This leads to an interesting
choice on how to create instances of these operators. Code-
heavy generation generates (efficient) code for every opera-
tor instance, whereas data-heavy generation generates differ-
ent data parameters for use by a single generic operator. This
choice affects the sizes and ratios of code and data memory
of the generated binary. Many microprocessors common in
current sensor nodes present strict boundaries between code
and data memory (i.e., ROM vs. RAM). The choice is fur-
ther influenced by the volatile/nonvolatile characteristics of
the different memory modules (e.g., typically only ROM is
persistent, holding both code and data constants). We have
implemented both modes of parameter generation. For our
primary platform TelosB [37], it typically makes sense to
employ data-heavy generation because of the hardware’s rel-
ative abundance of RAM. However, for other popular plat-
forms that DSN supports, the reverse is true. The choice ulti-
mately becomes an optimization problem to minimize the to-
tal bytes generated subject to the particular hardware’s mem-
ory constraints. Currently this decision is static and controls
dataflow operators in a program, but in principle this opti-
mization could be automated based on hardware parameters.

Reduce Temporary Storage: To further improve memory
footprint, we routinely favored recomputation over tempo-
rary storage. First, unlike many databases, we do not use
temporary tables in between database operators but rather
feed individual tuples one at a time to each chain of opera-
tors. Second, all database operator components are imple-
mented such that they use the minimal temporary storage
necessary. For instance, even though hash joins are computa-
tionally much more efficient for evaluating unifications, our
use of nested loop joins avoids any extra storage beyond what
is already allocated per predicate. Our aggregation withholds
use of traditional group tables by performing two table scans
on inputs rather than one. Finally, when passing parame-
ters between different components, we do not pass tuples
but rather generalized tuples, Gtuples, containing pointers
to the already materialized tuples. Gtuples themselves are
caller-allocated and the number necessary is known at com-
pile time. The use of Gtuples saves significant memory space
and data copying, and is similar to approaches in traditional
databases [16].
Rule Level Atomicity

In our environment, local rules (those whose location
specifiers are all the same) are guaranteed to execute atom-
ically with respect to other rules. We find that this permits
efficient implementation as well as convenient semantics for
the programmer. In conjunction with rule level atomicity,
priorities assist with execution control and are discretionary
rather than mandatory. In addition, by finishing completely
the execution of a rule before starting a new rule we avoid
many potential race conditions in the system due to the asyn-
chronous nature of predicates (e.g., tuples received on the
network) and to the fact that we share code among compo-
nents.



6.2 Implementation Description
Below we present more details on the DSN system imple-

mentation such as component interactions and the network
interface. We call a “table” the implementation component
that holds the tuples for a predicate.
Compiler

Frontend and Intermediary The frontend is formed by the
following components: the lexical analyzer; the parser; the
high level transformer and optimizer (HLTO); and the exe-
cution planner (EP). The parser translates the rules and facts
into a list which is then processed by the HLTO, whose most
important goal is rule rewriting for distributed rules. The EP
translates each rule into a sequence of database operators.
There are four classes of operators our system uses: Join,
Select, Aggregate and Project. For each rule, the execution
planner generates several dataflow join plans, one for each of
the different body predicates that can trigger the rule.

Backend nesC Generator The nesC Generator translates
the list of intermediary operators into a nesC program ready
for compilation. For each major component of our system we
use template nesC source files. For example, we have tem-
plates for the main runtime task and each of the operators.
The generator inserts compile-time parameters in the tem-
plate files, and also generates linking and initialization code.
Examples of generated data are: the number of columns and
their types for each predicate, the specific initialization se-
quences for each component, and the exact attributes that
are joined and projected. Similarly, the generator constructs
the appropriate mapping calls between the generated compo-
nents to create the desired rule.
Runtime Interactions

Our dataflow engine requires all operators to have ei-
ther a push-based open/send/close or pull-based open/get/-
close interface. The runtime daemon pushes tuples along the
main operator path until they end up in materialized tables
before operating on new tuples, as in Figure 2. This pro-
vides rule-level atomicity. To handle asynchrony, the run-
time daemon and network daemon act as pull to push con-
verters (pumps) and materialized tables act as push to pull
converters (buffers). This is similar to Click [19].

A challenging task in making the runtime framework op-
erate correctly is to achieve the right execution behavior from
the generic components depending on their place in the ex-
ecution chain. For instance, a specific join operator inside
a rule receiving a Gtuple has to pull data from the appro-
priate secondary table and join on the expected set of at-
tributes. A project operator has to know on which columns to
project depending on the rule it is in. Furthermore, function
arguments and returns must be appropriately arranged. To
manage the above problem under data-heavy generation, we
keep all necessary data parameters in a compact parse tree
such that it is accessible by all components at runtime. The
component in charge of holding these parameters is called
ParamStore. The task of ensuring the different operational
components get the appropriate parameters is done by our
compiler’s static linking. Under code-heavy generation, we
duplicate calling code multiple times, inlining parameters as
constants.
Built-in Predicates

Well-understood, narrow operator interfaces not only
make it very easy to chain together operators, but also fa-
cilitate development of built-in predicates. In general, users
can write arbitrary rules containing built-in predicates and
can also include initial facts for them. Some built-ins only
make sense to appear in the body (sensors) or only in the
head (actuators) of rules, while others may be overloaded to
provide meaningful functionality on both the head and body
(e.g., timer). We permit this by allowing built-ins to only pro-
vide their meaningful subset of interfaces.

7 Evaluation
In this section we evaluate a subset of the Snlog programs

described in Section 3. We analyze DSN’s behavior and
performance in comparison with native TinyOS nesC appli-
cations using a 28 node testbed [2] shown in Figure 3 and
TOSSIM [25], the standard TinyOS simulator.

Figure 3. 28 mote Omega Testbed at UC Berkeley

7.1 Applications and Metrics
We present evaluations of tree formation, collection, and

Trickle relative to preexisting native implementations. Fur-
thermore we describe our experience in deploying a DSN
tracking application at a conference demo.

Three fundamental goals guide our evaluation. First, we
want to establish the correctness of the Snlog programs by
demonstrating that they faithfully emulate the behavior of
native implementations. Second, given the current resource-
constrained nature of sensor network platforms, we must
demonstrate the feasibility of running DSN on the motes. Fi-
nally, we perform a quantitative analysis of the level of effort
required to program in Snlog, relative to other options.

To demonstrate the correctness of our system, we employ
application-specific metrics. To evaluate tree-formation, we
look at the distribution of node-to-root hop-counts. We
then run collection over the tree-formed by this initial al-
gorithm, measuring end-to-end reliability and total network
traffic. For Trickle, we measure the data dissemination rate
as well as the number of application-specific messages re-
quired. To demonstrate feasibility, we compare code and
data sizes for Snlog applications with native implementa-
tions. Finally, we use lines of code as a metric for evaluating
ease-of-programming.

7.2 Summary of Results
The results indicate that DSN successfully meets algorith-

mic correctness requirements. DSN Tree forms routing trees
very similar to those formed by the TinyOS reference im-
plementation in terms of hop-count distribution and our col-
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Figure 4. Results from experiments involving tree-formation and collection on the 28 node testbed

lection implementation achieves nearly identical reliability
as the native implementation. Finally, DSN Trickle provides
near-perfect emulation of the behavior of the native Trickle
implementation.

In terms of feasibility, DSN implementations are larger in
code and data size than native implementations. However,
for our profiled applications, our overall memory footprint
(code + data) is always within a factor of three of native im-
plementation and all our programs fit within the current re-
source constraints. Additionally, several compiler optimiza-
tions which we expect will significantly reduce code and data
size are still unimplemented.

Concerning programming effort, the quantitative analysis
is clear: the number of lines of nesC required for the native
implementations are typically orders of magnitude greater
than the number of rules necessary to specify the application
in Snlog. For example tree construction requires only 7 rules
in Snlog, as opposed to over 500 lines of nesC for the native
implementation.

7.3 Tree/Collection Correctness Tests
For tree formation, we compared our DSN Tree presented

in Section 3 to MultihopLQI, the de facto Native Tree imple-
mentation in TinyOS for the Telos platform. To compare
fairly to Native Tree, we augmented DSN Tree to perform
periodic tree refresh using the same beaconing frequency and
link estimator. This added two additional rules to the pro-
gram.

To vary node neighborhood density, we used two radio
power levels: power level 3 (-28dBm), which is the low-
est specified power level for our platform’s radio, and power
level 4 (-25dBm). Results higher than power level 4 were
uninteresting as, given our testbed, the network was entirely
single-hop. By the same token, at power level 2, nodes be-
come partitioned and we experienced heavy variance in the
trials, due to the unpredictability introduced by the weak sig-
nal strength at such a power level.

Figure 4(a) shows a distribution of the frequency of nodes
in each hop-count for each implementation. As a measure of
routing behavior, we record the distance from the root, in

terms of hops, for each node. Node 11, the farthest node in
the bottom left corner in Figure 3 was assigned the root of
the tree. We see that both DSN Tree and Native Tree present
identical distributions at both power levels.

The collection algorithm for DSN, presented in Section 3,
runs on top of the tree formation algorithm discussed above.
For testing the Native Collection, we used TinyOS’s Sur-
geTelos application, which periodically sends a data mes-
sage to the root using the tree formed by the underlying rout-
ing layer, MultihopLQI. Link layer retransmissions were en-
abled and the back-channel was again used to maintain real-
time information.

Figure 4(b) shows the results of the experiments for two
metrics: overall end-to-end reliability, and total message
transmissions in the network. The network-wide end-to-end
reliability of the network was calculated by averaging the
packet reception rate from each node at the root. We see that
DSN Collection and Native Collection perform nearly iden-
tically, with an absolute difference of less than 1%.

7.4 Trickle Correctness Tests
In order to demonstrate that the Snlog version of Trickle

presented in Section 3 is an accurate implementation of the
the Trickle dissemination protocol, we compare the runtime
behavior of our implementation against a widely used na-
tive Trickle implementation, Drip [42]. To emulate networks
with longer hopcounts and make a more precise comparison,
we performed the tests in simulation rather than on the previ-
ous two hop testbed. Data is gathered from simulations over
two grid topologies of 60 nodes: one is essentially linear, ar-
ranging the nodes in a 30x2 layout and the other is a more
balanced rectangular 10x6 grid. The nodes are situated uni-
formly 20 feet apart and the dissemination starts from one
corner of the network. We used lossy links with empirical
loss distributions.

Figure 5 presents simulation results for the data dissem-
ination rate using the two implementations. These results
affirm that the behavior of the DSN and the native imple-
mentation of Trickle are practically identical.

In addition, we counted the total number of messages sent
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by the two algorithms and the number of message suppres-
sions. Table 1 presents the total number of Trickle messages
sent by both implementations and the total number of sup-
pressed messages for the 30x2 topology. Again, these re-
sults demonstrate the close emulation of native Trickle by
our DSN implementation.

Table 1. Trickle Messages
DSN Trickle Native Trickle

Total Messages Sent 299 332
Suppressed Messages 344 368

7.5 Tracking Demo
We demoed the tracking application specified in Snlog

(and presented in Section 3) at a conference [6]. Our set-
up consisted of nine TelosB nodes deployed in a 3x3 grid
with the communication range set such that each node only
heard from spatially adjacent neighbors. A corner-node base
station was connected to a laptop, which was used for dis-
playing real-time tracking results and up-to-date network
statistics collect from the network. A tenth “intruder” node
broadcasted beacon messages periodically and the station-
ary nodes then tracked the movement of this intruder and
reported their observations to the base station. The demo
successfully highlighted the specification, compilation, de-
ployment, and real-time response of a tracking application
similar to actually deployed tracking applications [34].

7.6 Lines of Code
Measuring the programmer level of effort is a difficult

task, both because quantifying such effort is not well-defined
and a host of factors influence this effort level. However, as
a coarse measure of this programming difficulty, we present
a side-by-side comparison of the number of lines of nesC na-
tive code against the number of lines of Snlog logic specifica-
tions necessary to achieve comparable functionality. This ap-
proach provides a quantifiable metric for comparing the level
of effort necessary across different programming paradigms.

Table 2 provides a comparison in lines of code for mul-
tiple (functionally equivalent) implementations of tree rout-
ing, data collection, Trickle and tracking. The native version
refers to the original implementation, which is currently part

of the TinyOS tree [3]. NLA, or network layer architecture,
is the implementation presented in [9], which decomposes
network protocols into basic blocks as part of the overall sen-
sornet architecture [8].

Table 2. Lines of Code Comparison
Program Lines of Code

Native NLA TinyDB DSN

Tree Routing 580 106a - 7 Rules (14 lines)
Collection 863 - 1 12 Rules (23 lines)

Trickle 560 - - 13 Rules (25 lines)

Tracking 950b - - 13 Rules (34 c lines)

aNLA decomposes protocols into four basic blocks in such a way
that the protocol-specific non-reusable code is generally limited to a
single component. This value represents the lines of code for that spe-
cific component for tree routing.

bNote that this implementation may contain extra functionality be-
yond the DSN version, although we attempted to minimize this esti-
mation error as best we could

cIncludes 9 location facts.

The reduction in lines of code when using Snlog is dra-
matic at roughly two orders of magnitude. TinyDB is also
extremely compact, consisting of a single line query. How-
ever, as Section 9 discusses, TinyDB is limited to only data
acquisition, rather than entire protocol and application speci-
fication. We conjecture that such a large quantitative distinc-
tion translates into a qualitatively measurable difference in
programming effort level. To this we also add our subjective
(and very biased) views that during the development process,
we strongly preferred programming in Snlog, as opposed to
nesC.

7.7 Feasibility
In this section we evaluate the feasibility of our system

to meet the hard memory constraints of the current sensor
network platforms. We show that there is a significant fixed
cost for our runtime system, but this is manageable even for
the current platforms and comparable to existing proposals.

Code/Data size: The TelosB mote, the main platform on
which DSN was tested, provides 48KB of ROM for code,
and 10KB of RAM for data.1 Given these tight memory con-
straints, one of our initial concerns was whether we could
build a declarative system that fits these capabilities.

Table 3 presents a comparison in code and data size for the
three applications profiled in Table 2. For a fair comparison,
the presented memory footprints for the native applications
do not include modules offering extra functionality which
our implementation does not support. Note however that the
extracted modules still have a small impact on the code size
due to external calls and links to/from them.

The main reason for the larger DSN code size is the size
of the database operators. As an important observation, note
that this represents a fixed cost that has to be paid for all
applications using our framework. This architectural fixed
cost is around 21kB of code and 1.4kB of data. As we can

1The Mica family of platforms are also supported but compiler
optimizations favorable to the Micas are not yet completed.



Table 3. Code and Data Size Comparison
Program Code Size (KB) Data Size (KB)

Native NLA DSN Native NLA DSN

Tree Routing 20.5 24.8 24.8 0.7 2.8 3.2
Collection 20.7 - 25.2 0.8 - 3.9

Trickle 12.3 - 24.4 0.4 - 4.1
Tracking 27.9 - 32.2 0.9 - 8.5

see in Table 3, constructing bigger applications has only a
small impact on code size.

On the other hand, the main reason for which the DSN
data size is significantly larger than the other implementa-
tions is the amount of parameters needed for the database
operators and the allocated tables. This is a variable cost
that increases with the number of rules, though, for all appli-
cations we tested, it fit the hardware platform capabilities.
Moreover, although not yet implemented, there is signifi-
cant room for optimization and improvement in our compiler
backend. Finally, if data size were to become a problem, the
data memory can be transfered into code memory by gener-
ating more operator code and less operator parameters (see
Section 6).

The overall memory footprint (measured as both code and
data) of DSN implementations approaches that of the native
implementations as the complexity of the program increases.
Such behavior is expected given DSN’s relatively large fixed
cost, contrasted with a smaller variable cost.

We also mention that our system is typically more flexible
than the original implementations. For instance, we are able
to create multiple trees with the addition of two Snlog initial
fact, and no additional code (unlike the native implementa-
tion).

As a final note, technology trends are likely to produce
two possible directions for hardware: sensor nodes with sig-
nificantly more memory (for which memory overhead will
be less relevant), and sensor nodes with comparably limited
memory but ever-decreasing physical footprints and power
consumption. For the latter case, we believe we have proved
by our choice of Telos platform and TinyOS today that the
overheads of declarative programming are likely to remain
feasible as technology trends move forward.
Overhead: Two additional potential concerns in any system
are network packet size overhead and runtime delay over-
head. Our system adds only a single byte to packets sent over
the network, serving as an internal predicate identifier for the
tuple payload. Finally, from a runtime delay perspective, we
have not experienced any delays or timer related issues when
running declarative programs.

8 Limitations
We divide the current limitations of our approach into two

categories. First, there are certain drawbacks that are inher-
ent to a fully declarative programming approach, which we
have only been able to ameliorate to a degree. Second, DSN
has certain limitations. The restrictions that fall into the sec-
ond category can typically be lifted by introducing additional
mechanisms/features; we leave these for future work. Con-
versely, while the shortcomings of the declarative approach
can potentially be mitigated, they still remain as fundamental

costs of declaratively specifying systems.

As noted in Section 1.1, a declarative language hides exe-
cution details that can be of interest to the programmer. This
has two implications. First, it is less natural to express some
programming constructs where imperative execution order is
required such as matrix multiplication. Second, the declara-
tive approach is not appropriate for code with high efficiency
requirements such as low level device driver programming.
For instance, in our declarative program, the granularity of
user control is the rule. Also, real time guarantees may be
hard to build in the complex declarative system. Therefore,
we expect the low level programming for device drivers to
be done natively and incorporated through built-ins.

Going one step further, we observe that while the high
level language offers more room for compiler optimizations,
the overall efficiency of a system implemented declaratively
will most likely not surpass a hand-tuned native one. Funda-
mentally, we are trading expressivity and programming ease
for efficiency, and, as we have shown throughout this paper
this may be the right tradeoff in a variety of scenarios.

Finally, a declarative sensor network system has to inter-
face with the outside world, and the callouts to native code
break the clean mathematical semantics of deductive logic
languages; however in this case there is some potentially use-
ful prior work on providing semantic guarantees in the face
of such callouts [21].

A few of the limitations of DSN were briefly discussed
in Section 1.1, namely the ability to do only polynomial-
time computation and the lack of support for complex data
objects. These are somewhat ameliorated by the ability of
DSN to call out to native code via built-in predicates. While
the computational complexity restraint will not likely affect
DSN’s practicality, the lack of complex data objects may.
We are considering the implementation of an Abstract Data
Type approach akin to that of Object-Relational databases,
to enable more natural declarations over complex types and
methods [35]. In addition, we recognize that many embed-
ded programmers may be unfamiliar with Snlog and its pre-
decessor Datalog. We actively chose to retain Snlog’s close
syntactical relationship to its family of deductive database
query languages, though we are also looking at more famil-
iar language notation to facilitate adoption.

Currently, users can only select among a fixed set of evic-
tion policies. We are considering a language extension which
would allow users to evict based on attribute value, a con-
struction that we expect to fit most practical eviction poli-
cies.

Finally, in Section 4.2 we have presented several mech-
anisms to increase the user control over the execution, no-
tably we use priorities to express preference for the tuple
execution order. We note that these constructs take the ex-
pressive power of our language outside the boundaries of
traditional deductive database semantics, and a formal mod-
eling of these constructs remains an important piece of future
work.

9 Related Work
Numerous deployment experiences have demonstrated

that developing low-level software for sensor nodes is very



difficult [44, 41]. This challenge has led to a large body of
work exploring high-level programming models that capture
application semantics in a simple fashion. By borrowing lan-
guages from other domains, these models have demonstrated
that powerful subsets of requisite functionality can be eas-
ily expressed. TinyDB showed that the task of requesting
data from a network can be written via declarative, SQL-
like queries [31] and that a powerful query runtime has sig-
nificant flexibility and opportunity for automatic optimiza-
tion. Abstract regions [43] and Kairos [15] showed that
data-parallel reductions can capture aggregation over collec-
tions of nodes, and that such programs have a natural trade
off between energy efficiency and precision. SNACK [14],
Tenet [13], Regiment [33] and Flask [32] demonstrated that a
dataflow model allows multiple data queries to be optimized
into a single efficient program. Following the same multi-tier
system architecture of Tenet, semantic streams [46] showed
that a coordinating base station can use its knowledge of the
network to optimize a declarative request into sensing tasks
for individual sensors.

From these efforts it appears that declarative, data-centric
languages are a natural fit for many sensor network appli-
cations. But these works typically focuses on data gather-
ing and processing, leaving many core networking issues to
built-in library functions. Tenet even takes the stance that
applications should not be introducing new protocols, dele-
gating complex communication to resource-rich higher-level
devices. Our goal in DSN is to more aggressively apply the
power of high-level declarative languages in sensornets to
data acquisition, the networking logic involved in commu-
nicating that data, and the management of key system re-
sources, while retaining architectural flexibility.

In the Internet domain, the P2 project [29,28,27] demon-
strated that declarative logic languages can concisely de-
scribe many Internet routing protocols and overlay networks.
Furthermore, the flexibility the language gives to the runtime
for optimization means that these high-level programs can
execute efficiently.

DSN takes these efforts and brings them together, defin-
ing a declarative, data-centric language for describing data
management and communication in a wireless sensor net-
work. From P2, DSN borrows the idea of designing a proto-
col specification language based on the recursive query lan-
guage Datalog. Sensornets have very different communica-
tion abstractions and requirements than the Internet, how-
ever, so from systems such as ASVMs [24], TinyDB [31],
and VM* [20], DSN borrows techniques and abstractions
for higher-level programming in the sensornet domain. Un-
like these prior efforts, DSN pushes declarative specification
through an entire system stack, touching applications above
and single-hop communication below, and achieves this in
the kilobytes of RAM and program memory typical to sen-
sor nodes today.

10 Conclusion
Data and communication are fundamental to sensor net-

works. Motivated by these two guiding principles, we have
presented a declarative solution to specify entire sensor net-
work system stacks. By example, we showed several real

Snlog programs that address disparate functional needs of
sensor networks. These programs’ text were often orders
of magnitude fewer lines of code, yet still matched the
designer’s intuition. In addition, DSN enables simple re-
source management and architectural flexibility by allow-
ing the user to mix and match declarative and native code.
This lends considerable support to our hypothesis that the
declarative approach may be a good match to sensor network
programming. The DSN system implementation shows that
these declarative implementations are faithful to native code
implementations and are feasible to support on current sen-
sor network hardware platforms.
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