
1

Storing Data:  Disks and Files
CS 186 Fall 2002, Lecture 15

(R&G Chapter 7)

“Yea, from the table of my memory
I’ll wipe away all trivial fond records.”

-- Shakespeare, Hamlet

Stuff
• Rest of this week

– My office hours cancelled this Thursday (10/17)
• Send mail if this is a problem

– Sirish Chandrasekaran will cover class on Tuesday
• Project Phase 2

– Due Wednesday at 5pm
– Example testing script posted --- make sure it 

works!
• Project Phase 3 – Extended Data Types

– Out next wee
• Midterm

– See next slide

Review and Context

• First half of course – how to use a database
– Aren’t Databases Great?
– Data Modeling with ER
– Relational Model and Query Languages

• Rest of the course – A peek under the hood.
– Where are the bits?
– How to find them and keep track of them?
– How to process those pesky SQL queries
– How to ensure Transactional Semantics

The BIG Picture

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries

Disks and Files 

• DBMS stores information 
on disks.
– In an electronic world, disks are a mechanical 

anachronism!
• This has major implications for DBMS design!

– READ: transfer data from disk to                              
main memory (RAM).

– WRITE: transfer data from RAM to disk.
– Both are high-cost operations, 

relative to in-memory operations,                                  
so must be planned carefully!

Why Not Store It All in Main Memory?

• Costs too much.  $100 will buy you either     
0.5 GB of RAM or 100 GB of disk (EIDI/ATA)  or 
20GB (SCSI) or today.
– High-end Databases today in the 10-100 TB range.
– Approx 60% of the cost of a production system is in 

the disks.
• Main memory is volatile.  We want data to be 

saved between runs.  (Obviously!)

• Note, some specialized systems do store entire 
database in main memory.  
– Vendors claim 10x speed up vs. traditional DBMS 

running in main memory.



2

The Storage Hierarchy

Source: Operating Systems Concepts 5th Edition 

–Main memory (RAM) for 
currently used data.

–Disk for the main database 
(secondary storage).

–Tapes for archiving older 
versions of the data (tertiary 
storage).

Smaller, Faster

Bigger, Slower

QUESTION: Why does 
it have to be a 
hierarchy?

Jim Gray’s Storage Latency Analogy:  
How Far Away is the Data?

Registers
On Chip Cache
On Board  Cache

Memory 

Disk

1
2

10

100

Tape /Optical 
Robot

109

106

Sacramento

This Hotel
This Room

My Head

10 min

1.5 hr

2 Years

1 min

Pluto

2,000 Years
Andromeda

Disks

• Secondary storage device of choice. 
• Main advantage over tapes:  random access vs.

sequential.
– Also, they work. (Tapes deteriorate over time)

• Data is stored and retrieved in units called disk 
blocks or pages.

• Unlike RAM, time to retrieve a disk page varies 
depending upon location on disk.  
– Therefore, relative placement of pages on disk has 

major impact on DBMS performance!

Anatomy of a Disk 

Platters

The platters spin (say, 150 rps).

Spindle

The arm assembly is moved 
in or out to position  a head 
on a desired track. Tracks 
under heads make a cylinder
(imaginary!).

Disk head

Arm movement

Arm assembly

Only one head 
reads/writes at any 
one time.

Tracks

Sector

� Block size is a multiple          
of sector size (which is fixed).
�Newer disks have several “zones”, 
with more data on outer tracks.

Accessing a Disk Page
• Time to access (read/write) a disk block:

– seek time (moving arms to position disk head on track)
– rotational delay (waiting for block to rotate under head)
– transfer time (actually moving data to/from disk surface)

• Seek time and rotational delay dominate.
– Seek time varies from about 1 to 20msec
– Rotational delay varies from 0 to 10msec
– Transfer rate is < 1msec per 4KB page

• Key to lower I/O cost:                                          
reduce seek/rotation delays!                                    
Hardware vs. software solutions?

• Also note: For shared disks most time spent                     
waiting in queue for access to arm/controller Seek

Rotate

Transfer

Seek

Rotate

Transfer

Wait

Arranging Pages on Disk

• `Next’ block concept:  
– blocks on same track, followed by
– blocks on same cylinder, followed by
– blocks on adjacent cylinder

• Blocks in a file should be arranged sequentially 
on disk (by `next’), to minimize seek and 
rotational delay.

• For a sequential scan, pre-fetching several 
pages at a time is a big win!

• Also, modern controllers do their own caching.



3

Disk Space Management

• Lowest layer of DBMS software manages space 
on disk (using OS file system or not?).

• Higher levels call upon this layer to:
– allocate/de-allocate a page
– read/write a page

• Best if a request for a sequence of pages is 
satisfied by pages stored sequentially on disk!  
Higher levels don’t need to know if/how this is 
done, or how free space is managed.

Buffer Management in a DBMS

• Data must be in RAM for DBMS to operate on it!
• Buffer Mgr hides the fact that not all data is in RAM

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy

When a Page is Requested ...
• Buffer pool information table contains:                       

<frame#, pageid, pin_count, dirty>

• If requested page is not in pool:
– Choose a frame for replacement                    

(only un-pinned pages are candidates)
– If  frame is “dirty”, write it to disk
– Read requested page into chosen frame

• Pin the page and return its address.  

� If requests can be predicted (e.g., sequential scans)
pages can be pre-fetched several pages at a time!

More on Buffer Management

• Requestor of page must unpin it, and indicate 
whether page has been modified: 
– dirty bit is used for this.

• Page in pool may be requested many times, 
– a pin count is used.  A page is a candidate for 

replacement iff pin count = 0 (“unpinned”)
• CC & recovery may entail additional I/O when 

a frame is chosen for replacement. (Write-
Ahead Log protocol; more later.)

Buffer Replacement Policy

• Frame is chosen for replacement by a 
replacement policy:
– Least-recently-used (LRU), MRU, Clock, etc.

• Policy can have big impact on # of I/O’s; 
depends on the access pattern.

LRU Replacement Policy
• Least Recently Used (LRU)

– for each page in buffer pool, keep track of time last 
unpinned

– replace the frame which has the oldest (earliest) time
– very common policy: intuitive and simple

• Problems?
• Problem: Sequential flooding

– LRU + repeated sequential scans.
– # buffer frames < # pages in file means each page 

request causes an I/O.  MRU much better in this 
situation (but not in all situations, of course).



4

• An approximation of LRU.
• Arrange frames into a cycle, store

one “reference bit” per frame
• When pin count goes to 0, reference bit set on.
• When replacement necessary:

do {
if (pincount == 0 && ref bit is off)

choose current page for replacement;
else if (pincount == 0 && ref bit is on)

turn off ref bit;
advance current frame;

} until a page is chosen for replacement;

“Clock” Replacement Policy
A(1)

B(p)

C(1)

D(1)

Questions:
How like LRU?
Problems?

DBMS vs. OS File System
OS does disk space & buffer mgmt: why not let 
OS manage these tasks?

• Some limitations, e.g., files can’t span disks.
– Note, this is changing --- OS File systems are getting 

smarter (i.e., more like databases!)

• Buffer management in DBMS requires ability to:
– pin a page in buffer pool, force a page to disk & 

order writes (important for implementing CC & 
recovery)

– adjust replacement policy, and pre-fetch pages based 
on access patterns in typical DB operations.

Summary

• Disks provide cheap, non-volatile storage.
– Random access, but cost depends on location of page on 

disk; important to arrange data sequentially to minimize 
seek and rotation delays.

• Buffer manager brings pages into RAM.
– Page stays in RAM until released by requestor.
– Written to disk when frame chosen for replacement 

(which is sometime after requestor releases the page).
– Choice of frame to replace based on replacement policy.
– Tries to pre-fetch several pages at a time.

Summary (Contd.)

• DBMS vs. OS File Support
– DBMS needs features not found in many OS’s, e.g., 

forcing a page to disk, controlling the order of 
page writes to disk, files spanning disks, ability to 
control pre-fetching and page replacement policy 
based on predictable access patterns, etc.


