File Organizations and Indexing

CS 186, Fall 2002, Lecture 16
R&G Chapters 7 & 8
Guest Lecturer: Sirish Chandrasekaran

"If you don't find it in the index,
look very carefully through the
entire catalogue."

-- Sears, Roebuck, and Co.,
Consumer's Guide, 1897

Review: Memory, Disks

e Storage Hierarchy: cache, RAM, disk, tape, ...
— Can't fit everything in RAM (usually).

e “Page” or “Frame” - unit of buffer
management in RAM.

e “Page” or “Block” unit of interaction with disk.

e Importance of “locality” and sequential access
for good disk performance.

e Buffer pool management
— Slots in RAM to hold Pages
— Policy to move Pages between RAM & disk

-Today: File Storage

e Page or block is OK when doing I/0,
but higher levels of DBMS operate on
records, and files of records.

o Next topics:

— How to organize records within pages.
— How to keep pages of records on disk.

— How to efficiently support operations on
files of records.

Record Formats: Fixed Length

Fl F2 F3 F4
L1 L2 L3 L4
Base address (B) Address = B+L1+L2

¢ Information about field types same for all
records in a file; stored in system catalogs.

¢ Finding /%A field done via arithmetic.

_—

Page Formats: Fixed Length Records

Slot 1 Slot 1
Slot 2 Slot 2
Free

Space

o O,
q St
N‘W 1|...|0|1|1M

number M.. 321 number
PACKED of records UNPACKED, BITMAP of slots

e Record id = <page id, slot #>. In first
alternative, moving records for free space
management changes rid; may not be acceptable.

- Variable Length is more complicated

e Two alternative formats (# fields is fixed):

F1 F2 F3 F4

$ $ $ $
Fields Delimited by Special Symbols

F1 F2 F3 F4

M/

Array of Field Offsets

>4 Offset approach: pros - direct access to i’th field and
efficient storage of nulls; cons - small directory overhead
and indirection on lookup.

_—
- “Slotted Page” for Variable Length Records

Datal™ Rid = GN e
h age i

Rid = iiizi
(Rid = iiili
1

[\ 20 | T 16 |\ 24 | N]\ Pointer

N - 2 1_ # glots to start

Slot ~._ =~ of free
Array SLOT DIRECTORY space

e Record id = <page id, slot #>

¢ Can move records on page without changing rid; so,
attractive for fixed-length records too.

e Page is full when data space and slot array meet.

System Catalogs

e For each relation:
—name, file name, file structure (e.g., Heap file)
— attribute name and type, for each attribute
— index name, for each index
— integrity constraints
e For each index:
— structure (e.g., B+ tree) and search key fields
e For each view:
— view name and definition
¢ Plus stats, authorization, buffer pool size, etc.
< Catalogs are themselves stored as relations!

Attr_Cat(attr_name, rel_name, type, position)

attr name rel name type position
attr_name Attribute_Cat |string 1
rel_name Attribute_Cat string 2
type Attribute_Cat |string 3
position Attribute_Cat |integer 4
sid Students string 1
name Students string 2
login Students string 3
age Students integer 4
gpa Students real 5
fid Faculty string 1
fname Faculty string 2
sal Faculty real 3
v
Files

e FILE: A collection of pages, each containing a

Must support:
— insert/delete/modify record
— read a particular record (specified using record id)

collection of records.

— scan all records (possibly with some conditions on
the records to be retrieved)

Unordered (Heap) Files

Simplest file structure
— contains records in no particular order.

As file grows and shrinks, disk pages are allocated
and de-allocated.

To support record level operations, we must:
— keep track of the pages in a file

— keep track of free space on pages

— keep track of the records on a page

There are many design alternatives for these.

- Heap File Implemented as a List

N N
Full Pages
N

N NN X
Data Data Data N
+ Page Page Page

N N N

Header
Page

Pages with
Free Space

e The header page id and Heap file name must
be stored someplace.

e Each page contains 2 " pointers’ plus data.

ﬁ Heap File Using a Page Directory

Header
Page

DIRECTORY

e The entry for a page can include the number
of free bytes on the page.

e The directory is a collection of pages; linked
list implementation is just one alternative.

— Much smaller than linked list of all HF pages!

AIternative File Organizations

Many alternatives exist, each good for some
Situations, and not so good in others:

— Heap files: Suitable when typical access is a file
scan retrieving all records.

— Sorted Files: Best for retrieval in search key
order, or for a "range’ of records.

— Hashed Files: Good for equality selections.

e File = a collection of buckets. Bucket =
primary page plus 0 or more overflow pages.

» Hashing function h: h(r) = bucket in which
record rbelongs. h looks at only the fields
comprising the search key.

- Quick and Dirty Cost Model

We ignore CPU costs, for simplicity:
— B: The number of data pages
— R: Number of records per page

— D: (Average) time to read or write disk
page

— Measuring number of page I/O’s ignores
gains of pre-fetching and sequential access;

thus, even I/O cost is only loosely
approximated.

— Average-case analysis; based on several
simplistic assumptions.

< Good enough to show the overall trends!

=
- Some Assumptions in The Analysis

¢ Single record insert and delete.

e Equality selection - exactly one match
(Question: what if more or less???).

e Heap Files:
— Insert always appends to end of file.
e Sorted Files:
— Files compacted after deletions.
— Selections on search key.
e Hashed Files:
— No overflow buckets, 80% page occupancy.

= Cost of B: The number of data pages
R: Number of records per page

Operations D: (Average) time to read or write disk page
Heap File Sorted File Hashed File
Scanall |BD BD 1.25 BD
records
Equality |0.5 BD (log, B) * D D
Search
Range BD ((log, B) + 1.25 BD
Search match pg)*D
Insert 2D ((log,B)+B)D 2D
Delete 0.5BD + D ((log,B)+B)D 2D
(because R, W
0.5)

-
- Indexes

e Sometimes, we want to retrieve records by
specifying the values in one or more fields, e.qg.,

— Find all students in the “"CS"” department
— Find all students with a gpa > 3

e An /ndex on a file speeds up selections on the
search key fields for the index.

— Any subset of the fields of a relation can be the search
key for an index on the relation.

— Search key is not the same as key (e.g., doesn't have
to be unique).

e An index contains a collection of data entries,
and supports efficient retrieval of all records with
a given search key value k.

==
- Index Classification

Representation of data entries in index
— i.e., what is at the bottom of the index?
— 3 alternatives here

Clustered vs. Unclustered
Dense vs. Sparse

Single Key vs. Composite
Tree-based, hash-based, other

-_—

3 Alternatives for Data Entry k* in Index

1. Actual data record (with key value k)
2. <Kk, rid of matching data record>
3. <Kk, list of rids of matching data records>
e Choice is orthogonal to the indexing technique.

— Examples of indexing techniques: B+ trees,
hash-based structures, R trees, ...

— Typically, index contains auxiliary info that
directs searches to the desired data entries

e Can have multiple (different) indexes per file.

— E.g. file hashed on age, with a hash index on
salary and a B+tree index on name.

10

ilternatives for Data Entries (Contd.)

e Alternative 1:

— If this is used, index structure is a file
organization for data records (like Heap
files or sorted files).

— At most one index on a given collection of
data records can use Alternative 1.

— This alternative saves pointer lookups but
can be expensive to maintain with
insertions and deletions.

ilternatives for Data Entries (Contd.)

e Alternatives 2 and 3:
— Easier to maintain than Alt 1.

— If more than one index is required on a given
file, at most one index can use Alternative 1;
rest must use Alternatives 2 or 3.

— Alternative 3 more compact than Alternative 2,
but leads to variable sized data entries even if
search keys are of fixed length.

— Even worse, for large rid lists the data entry
would have to span multiple pages!

11

Index Classification - clustering

o (lustered vs. unclustered: If order of data
records is the same as, or " close to’, order of
index data entries, then called clustered index.

— A file can be clustered on at most one search
key.

— Cost of retrieving data records through index

varies greatly based on whether index is
clustered or not!

— Note: Alternative 1 implies clustered, but not
vice-versa.

ilustered vS. Unclustered Index

e Suppose that Alternative (2) is used for data entries,
and that the data records are stored in a Heap file.

— To build clustered index, first sort the Heap file (with
some free space on each page for future inserts).

— Overflow pages may be needed for inserts. (Thus, order of
data recs is " close to’, but not identical to, the sort order.)

Index entries
CLUSTERED direct search for UNCLUSTERED
data entries

‘ Data entries | | Dataentries

At
e o O) o T

Data Records Data Records

12

Unclustered vs. Clustered Indexes

e What are the tradeoffs????

¢ Clustered Pros
— Efficient for range searches
— May be able to do some types of compression
— Possible locality benefits (related data?)
- 77
e Clustered Cons

— Expensive to maintain (on the fly or sloppy with
reorganization)

-_—

Dense vs. Sparse

e Dense: If there is at
least one data entry
per search key value —
in the file, else sparse. / YT 2

Bristow, 30, 2007

30
Ashby

———— g 33

— Every sparse index is —— |
CI u Ste red ! Smith Daniels, 22, 6003

Jones, 40, 6003

— Sparse indexes are _ | =
smaller; however, i o
some useful Sparse Index Dense Index
optimizations are based \in. Data File o

Age
on dense indexes.

40

— Alternative 1 always
leads to dense index.

= .
-Comp05|te Search Keys
e Search on a combination of
fields.
Examples of composite key

- Equallty query: Every field is indexes using lexicographic order.
equal to a constant value.

E.g. wrt <sal,age> index: 11.80 11

12,10 12

L4 age=20 and Sal =75 12.20 name age sal 12

— Range query: Some field 13.75 bob 12 10 j 13

value is not a constant. <age, sal> jcal 11 80 | <age>
E.g.: ljoe 12 20|

10.12 sue 13 75 10

e age =20; or age=20 and | ,,,, Data records 20

Sal > 10 75.13 sorted by name 75

80,11 80

e Data entries in index sorted by
search key for range queries.
— Lexicographic or Spatial
order.

<sal, age> <sal>

Summary

e Variable length record format with field offset
directory offers support for direct access to i'th
field and null values.

¢ Slotted page format supports variable length
records and allows records to move on page.

e File layer keeps track of pages in a file, and
supports abstraction of a collection of records.

— Also tracks availability of free space

e (Catalog relations store information about
relations, indexes and views. (Information that
is common to all records in a given collection.)

- Summary (Cont.)

e Many alternative file organizations exist, each
appropriate in some situation.

o If selection queries are frequent, sorting the file or
building an index is important.

e Index is a collection of data entries plus a way to
quickly find entries with given key values.

— Hash-based indexes only good for equality
search.

— Sorted files and tree-based indexes best for
range search; also good for equality search.
(Files rarely kept sorted in practice; B+ tree
index is better.)

=

Summary (Contd.)

e Data entries in index can be actual data records,
<key, rid> pairs, or <key, rid-list> pairs.

— Choice orthogonal to indexing structure (i.e.
tree, hash, etc.).

e Usually have several indexes on a given file of
data records, each with a different search key.

e Indexes can be classified as
— clustered vs. unclustered
— dense vs. sparse

¢ Differences have important consequences for
utility/performance.

15

