
1

Hash-based
Indexes

CS 186, Fall 2002
Lecture 18

R &G Chapter 10

HASH, x. There is no definition for this
word -- nobody knows what hash is.

Ambrose Bierce,
"The Devil's Dictionary", 1911

Introduction

• As for any index, 3 alternatives for data entries k*:
� Data record with key value k
� <k, rid of data record with search key value k>
� <k, list of rids of data records with search key k>
– Choice orthogonal to the indexing technique

• Hash-based indexes are best for equality selections.
Cannot support range searches.

• Static and dynamic hashing techniques exist; trade-
offs similar to ISAM vs. B+ trees.

2

Static Hashing
• # primary pages fixed, allocated sequentially,

never de-allocated; overflow pages if needed.
• h(k) MOD M= bucket to which data entry with

key k belongs. (M = # of buckets)

h(key) mod N

h
key

Primary bucket pages Overflow pages

2
0

N-1

Static Hashing (Contd.)
• Buckets contain data entries.
• Hash fn works on search key field of record r. Use

its value MOD M to distribute values over
range 0 ... M-1.
– h(key) = (a * key + b) usually works well.
– a and b are constants; lots known about how to tune

h.
• Long overflow chains can develop and degrade

performance.
– Extendible and Linear Hashing: Dynamic techniques to

fix this problem.

3

Extendible Hashing

• Situation: Bucket (primary page) becomes full.
Why not re-organize file by doubling # of buckets?
– Reading and writing all pages is expensive!

• Idea: Use directory of pointers to buckets, double
of buckets by doubling the directory, splitting
just the bucket that overflowed!
– Directory much smaller than file, so doubling it is much

cheaper. Only one page of data entries is split. No
overflow page!

– Trick lies in how hash function is adjusted!

Example

13*00
01
10
11

2

2

1

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C10*

1* 7*

4* 12* 32* 16*

5*

we denote r by h(r).

• Directory is array of size 4.
• Bucket for record r has entry with index =

`global depth’ least significant bits of h(r);
– If h(r) = 5 = binary 101, it is in bucket pointed to by 01.
– If h(r) = 7 = binary 111, it is in bucket pointed to by 01.

4

Handling Inserts

• Find bucket where record belongs.
• If there’s room, put it there.
• Else, if bucket is full, split it:

– increment local depth of original page
– allocate new page with new local depth
– re-distribute records from original page.
– add entry for the new page to the directory

Example: Insert 21, then 19, 15

13*00
01
10
11

2

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C

2
Bucket D

DATA PAGES

10*

1* 7*

2
4* 12* 32* 16*

15*7* 19*

5*

we denote r by h(r).

• 21 = 10101
• 19 = 10011
• 15 = 01111

12
21*

5

2
4* 12* 32*16*

Insert h(r)=20 (Causes Doubling)

00

01
10
11

2 2

2

2

LOCAL DEPTH

GLOBAL DEPTH
Bucket A

Bucket B

Bucket C

Bucket D

1* 5* 21*13*

10*

15* 7* 19*

(`split image'
of Bucket A)

20*

3
Bucket A24* 12*

of Bucket A)

3

Bucket A2
(`split image'

4* 20*12*

2

Bucket B1* 5* 21* 13*

10*

2

19*

2

Bucket D15* 7*

3

32* 16*
LOCAL DEPTH

000

001

010

011
100

101

110
111

3

GLOBAL DEPTH

3

32*16*

Points to Note
• 20 = binary 10100. Last 2 bits (00) tell us r belongs

in either A or A2. Last 3 bits needed to tell which.
– Global depth of directory: Max # of bits needed to tell

which bucket an entry belongs to.
– Local depth of a bucket: # of bits used to determine if an

entry belongs to this bucket.
• When does bucket split cause directory doubling?

– Before insert, local depth of bucket = global depth. Insert
causes local depth to become > global depth; directory is
doubled by copying it over and `fixing’ pointer to split
image page.

6

Directory Doubling

00

01

10

11

2

Why use least significant bits in directory?
a Allows for doubling via copying!

3

000

001

010

011

100

101

110

111

vs.

0

1

1

6*
6*

6*

6 = 110

00

10

01

11

2

3

0

1

1

6*
6* 6*

6 = 110
000

100

010

110

001

101

011

111

Least Significant Most Significant

Comments on Extendible Hashing

• If directory fits in memory, equality search
answered with one disk access; else two.
– 100MB file, 100 bytes/rec, 4K pages contains 1,000,000

records (as data entries) and 25,000 directory elements;
chances are high that directory will fit in memory.

– Directory grows in spurts, and, if the distribution of hash
values is skewed, directory can grow large.

– Multiple entries with same hash value cause problems!
• Delete: If removal of data entry makes bucket

empty, can be merged with `split image’. If each
directory element points to same bucket as its split
image, can halve directory.

7

Linear Hashing

• A dynamic hashing scheme that handles the
problem of long overflow chains without using a
directory.

• Directory avoided in LH by using temporary
overflow pages, and choosing the bucket to split in
a round-robin fashion.

• When any bucket overflows split the bucket that is
currently pointed to by the “Next” pointer and then
increment that pointer to the next bucket.

Linear Hashing – The Main Idea
• Use a family of hash functions h0, h1, h2, ...

• hi(key) = h(key) mod(2iN)
– N = initial # buckets

– h is some hash function

• hi+1 doubles the range of hi (similar to directory
doubling)

8

Linear Hashing (Contd.)
• Algorithm proceeds in `rounds’. Current round

number is “Level”.
• There are NLevel (= N * 2Level) buckets at the

beginning of a round
• Buckets 0 to Next-1 have been split; Next to

NLevel have not been split yet this round.
• Round ends when all initial buckets have been

split (i.e. Next = NLevel).
• To start next round:

Level++;
Next = 0;

LH Search Algorithm

• To find bucket for data entry r, find hLevel(r):
– If hLevel(r) >= Next (i.e., hLevel(r) is a

bucket that hasn’t been involved in a split
this round) then r belongs in that bucket
for sure.

– Else, r could belong to bucket hLevel(r) or
bucket hLevel(r) + NLevel; must apply
hLevel+1(r) to find out.

9

Linear Hashing - Insert

• Find appropriate bucket
• If bucket to insert into is full:

– Add overflow page and insert data entry.
– Split Next bucket and increment Next.

• Note: This is likely NOT the bucket being
inserted to!!!

• to split a bucket, create a new bucket anduse
hLevel+1 to re-distribute entries.

• Since buckets are split round-robin, long overflow
chains don’t develop!

Example: Insert 43 (101011)

0
hh

1

(This info
is for
illustration
only!)

Level=0, N=4

00

01

10

11

000

001

010

011

Next=0

PRIMARY
PAGES

44*36*32*

25*9* 5*

14*18*10*30*

31*35* 11*7*

0
hh

1

Level=0

00

01

10

11

000

001

010

011

Next=1

PRIMARY
PAGES

44*36*

32*

25*9* 5*

14*18*10*30*

31*35* 11*7*

OVERFLOW
PAGES

43*

00100

(This info
is for
illustration
only!)

10

Example: End of a Round

0hh1

22*

00

01

10

11

000

001

010

011

00100

Next=3

01

10

101

110

Level=0, Next = 3
PRIMARY
PAGES

OVERFLOW
PAGES

32*

9*

5*

14*

25*

66* 10*18* 34*

35*31* 7* 11* 43*

44*36*

37*29*

30*

0hh1

37*

00

01

10

11

000

001

010

011

00100

10

101

110

Next=0

Level=1, Next = 0

111

11

PRIMARY
PAGES

OVERFLOW
PAGES

11

32*

9* 25*

66* 18* 10* 34*

35* 11*

44* 36*

5* 29*

43*

14* 30* 22*

31*7*

50*

Insert 50 (110010)

Summary
• Hash-based indexes: best for equality searches,

cannot support range searches.
• Static Hashing can lead to long overflow chains.
• Extendible Hashing avoids overflow pages by splitting

a full bucket when a new data entry is to be added to
it. (Duplicates may require overflow pages.)
– Directory to keep track of buckets, doubles periodically.
– Can get large with skewed data; additional I/O if this does

not fit in main memory.

11

Summary (Contd.)
• Linear Hashing avoids directory by splitting buckets

round-robin, and using overflow pages.

– Overflow pages not likely to be long.
– Space utilization could be lower than Extendible

Hashing, since splits not concentrated on `dense’
data areas.

– Can tune criterion for triggering splits to trade-off
slightly longer chains for better space utilization.

• For hash-based indexes, a skewed data distribution is
one in which the hash values of data entries are not
uniformly distributed!

