Hash-based 4 -
Indexes Y \

/

CS 186, Fall 2002
Lecture 18
R &G Chapter 10

HASH, x. There is no definition for this
word -- nobody knows what hash is.

Ambrose Bierce,
"The Devil's Dictionary", 1911

Introduction

o As for any index, 3 alternatives for data entries k*:

Data record with key value k

<k, rid of data record with search key value k>

<k, list of rids of data records with search key k>

— Choice orthogonal to the /indexing technigue
e Hash-based indexes are best for equality selections.

Cannot support range searches.
o Static and dynamic hashing techniques exist; trade-

offs similar to ISAM vs. B+ trees.

Static Hashing
e # primary pages fixed, allocated sequentially,

never de-allocated; overflow pages if needed.

e h(k) MOD M= bucket to which data entry with
key k belongs. (M = # of buckets)

h(key) mod N

N-1l1L - 5 ...

Primary bucket pages Overflow pages

Static Hashing (Contd.)

¢ Buckets contain data entries.

¢ Hash fn works on search key field of record r. Use
its value MOD M to distribute values over
range 0 ... M-1.
— h(key) = (a * key + b) usually works well.
— a and b are constants; lots known about how to tune

h.

e Long overflow chains can develop and degrade

performance.

— Extendible and Linear Hashing: Dynamic techniques to
fix this problem.

N

Extendible Hashing

¢ Situation: Bucket (primary page) becomes full.

Why not re-organize file by doubling # of buckets?
— Reading and writing all pages is expensive!

o Idea: Use directory of pointers to buckets, double
of buckets by doubling the directory, splitting
just the bucket that overflowed!

— Directory much smaller than file, so doubling it is much
cheaper. Only one page of data entries is split. No
overflow page!

— Trick lies in how hash function is adjusted!

=

Example
¢ Directory is array of size 4.
e Bucket for record rhas entry with index =
“global depth’ least significant bits of h(r);
— If h(r) = 5 = binary 101, itis in bucket pointed to by 01.
- If h(r) = 7 = binary 111, itiii_lbucket pointed to by 01.

LOCAL DEPTH

F 12% 32% 16* Bucket A

GLOBAL DEPTH \/\

1% 5% 7% 13* Bucket B

00

//
01
=g

11
DIRECTORY we denote r by h(r).

/

Bucket C

(O8]

=
- Handling Inserts

¢ Find bucket where record belongs.
o If there’s room, put it there.
e Else, if bucket is full, sp/itit:
— increment local depth of original page
— allocate new page with new local depth
— re-distribute records from original page.
—add entry for the new page to the directory

-_—

Example: Insert 21, then 19, 15

e 21 =10101
e 19=10011
e 15=01111

LOCAL DEPTH Bucket A

GLOBAL DEPTH \/\

Bucket B

00

01]
10
11

*
DlRECTOk ;

we denote rby h(/).

Bucket C

Bucket D

DATA PAGES

Insert h(r)=20 (Causes Doubling)

LOCAL DEPTH&’?:. i LOCAL DEPTH-Z- 7|3
T Bucket A
GLOBAL DEPTH/Y GLOBAL DEPTH/V
Bucket B Fo s
00 1% 5% 21+13 000
01 001 | —
10
1 Bucket C 010 =~
011 \
100)(
B
Bucket D 101 /&
110 / 15% 7% 19* Bucket D
:-:3-:-: m —
Buclet A2 T
* %)+ ucket A2 0\
v 12720 ('split image' 4* 12%20* Bucket A2
of Bucket A) (‘split image'
of Bucket A)
-

Points to Note

e 20 = binary 10100. Last 2 bits (00) tell us rbelongs
in either A or A2. Last 3 bits needed to tell which.

— Global depth of directory: Max # of bits needed to tell
which bucket an entry belongs to.

— Local depth of a bucket. # of bits used to determine if an
entry belongs to this bucket.

e When does bucket split cause directory doubling?

— Before insert, local depth of bucket = global depth. Insert
causes /ocal depth to become > global depth; directory is
doubled by copying it over and " fixing’ pointer to split
image page.

Directory Doubling

Why use least significant bits in directory?
[l Allows for doubling via copying!

6 =110

6 =110

000

001
010

011
100

101
1mo| 6%

111 111

Least Significant Vs. Most Significant

. Comments on Extendible Hashing

o If directory fits in memory, equality search
answered with one disk access; else two.

— 100MB file, 100 bytes/rec, 4K pages contains 1,000,000
records (as data entries) and 25,000 directory elements;
chances are high that directory will fit in memory.

— Directory grows in spurts, and, if the distribution of hash
values is skewed, directory can grow large.

— Multiple entries with same hash value cause problems!

e Delete: If removal of data entry makes bucket
empty, can be merged with "split image’. If each

directory element points to same bucket as its split
image, can halve directory.

6

Linear Hashing

e A dynamic hashing scheme that handles the
problem of long overflow chains without using a
directory.

e Directory avoided in LH by using temporary
overflow pages, and choosing the bucket to split in
a round-robin fashion.

e When any bucket overflows split the bucket that is
currently pointed to by the “Next” pointer and then
increment that pointer to the next bucket.

Linear Hashing — The Main Idea
e Use a family of hash functions h,, h,, h,, ...

o h.(key) = h(key) mod(2'N)
— N = initial # buckets

— h is some hash function

e h,, , doubles the range of h, (similar to directory
doubling)

-Linear Hashing (Contd.)

e Algorithm proceeds in "rounds’. Current round
number is “Leve/”.

e Thereare N, (=N * 2Level) buckets at the
beginning of a round

e Buckets 0 to Next-1 have been split; Nextto
N, ., have not been split yet this round.

e Round ends when all initial buckets have been
split (i.e. Next = N,_,.)-

e To start next round:
Level++;
Next = 0;

LH Search Algorithm

¢ To find bucket for data entry 7, find h,_ ()
-Ifh,,(r) >= Next (i.e., h,,.[(r)isa
bucket that hasn't been involved in a split

this round) then r belongs in that bucket
for sure.

— Else, r could belong to bucket h,_ (/) or
bucket h,_ () + N, must apply
h,...1(n to find out.

8

- Linear Hashing - Insert

¢ Find appropriate bucket
o If bucket to insert into is full:

—Add overflow page and insert data entry.

—Split Next bucket and increment Next.

e Note: This is likely NOT the bucket being
inserted to!!!

e to split a bucket, create a new bucket anduse
h .1 to re-distribute entries.

¢ Since buckets are split round-robin, long overflow
chains don't develop!

-

Example: Insert 43 (101011)

Level=0, N=4
h h
1 0 Next=0 .
oo | 00
001 01 ng. Level=0 Next=1
b Q1 (i h
010! 10 [14f18h1 080} N PRIMARY OVERFLOW

PAGES PAGES
o1l 11 B1sst7in 000| oo| 32

32k []
A o773k
(Thisinfo PRIMARY oo1| o1| L(ot2stsi |
[14f18f10[30

is for PAGES
illustration 010 | 10

only!) (Thisinfo o || [31sstrdi} sk TT]
]

is for

illustration 100| (0 !!!@'

only!)

=
- Example: End of a Round

Insert 50 (110010)

Level=1, Next =0

PRIMARY OVERFLOW]|
hy | hg PAGES PAGES
Next=0
Level=0, Next =3 000 | 00 \
PRIMARY OVERFLOW
PAGES
"t e o | or
000 | 00
010 10 |66* 18* 10* 34*| |50*
001 | 01
o1 | 11 43% 35% 11*
010 | 10 66*18%10* 34*
Next=3
100 00 44% 36*%
o] 11| Narsst 7 1[5+
o
100 00 44736" 11 5% 37k 20%
101 o1 5% 37%29% 110 | 10 14*% 30* 22*
=

 Hash-based indexes: best for equality searches,
cannot support range searches.

e Static Hashing can lead to long overflow chains.

¢ Extendible Hashing avoids overflow pages by splitting
a full bucket when a new data entry is to be added to
it. (Duplicates may require overflow pages.)

— Directory to keep track of buckets, doubles periodically.
— Can get large with skewed data; additional I/O if this does

not fit in main memory.

10

Summary (Contd.)

¢ Linear Hashing avoids directory by splitting buckets
round-robin, and using overflow pages.

— Overflow pages not likely to be long.

— Space utilization could be lower than Extendible
Hashing, since splits not concentrated on “dense’
data areas.

— Can tune criterion for triggering splits to trade-off
slightly longer chains for better space utilization.

¢ For hash-based indexes, a skewed data distribution is
one in which the hash values of data entries are not
uniformly distributed!

