We will occasionally use this arrow notation unless there is danger of no confusion.

Ronald Graham
Elements of Ramsey Theory

Relational Calculus
CS 186, Fall 2002, Lecture 8
R&G, Chapter 4

We will occasionally use this arrow notation unless there is danger of no confusion.

Ronald Graham
Elements of Ramsey Theory

Relational Calculus
• Comes in two flavors: Tuple relational calculus (TRC) and Domain relational calculus (DRC).
• Calculus has variables, constants, comparison ops, logical connectives and quantifiers.
 – TRC: Variables range over (i.e., get bound to) tuples.
 > Like SQL.
 – DRC: Variables range over domain elements (= field values).
 > Like Query-By-Example (QBE)
 – Both TRC and DRC are simple subsets of first-order logic.
• Expressions in the calculus are called formulas.
• Answer tuple is an assignment of constants to variables that make the formula evaluate to true.

Tuple Relational Calculus
• Query has the form: \{T | p(T)\}
 – p(T) denotes a formula in which tuple variable T appears.
• Answer is the set of all tuples T for which the formula p(T) evaluates to true.
• Formula is recursively defined:
 > start with simple atomic formulas (get tuples from relations or make comparisons of values)
 > build bigger and better formulas using the logical connectives.

TRC Formulas
• An Atomic formula is one of the following:
 R ∈ Rel
 R.a op S.b
 R.a op constant
 op is one of \{<,>,=,\leq,\geq}\n• A formula can be:
 > an atomic formula
 > \neg p, p \land q, p \lor q \quad \text{where p and q are formulas}
 > \exists R.\ p(R) \quad \text{where variable R is a tuple variable}
 > \forall R.\ p(R) \quad \text{where variable R is a tuple variable}

Free and Bound Variables
• The use of quantifiers \(\exists X \) and \(\forall X\) in a formula is said to bind X in the formula.
 > A variable that is not bound is free.
• Let us revisit the definition of a query:
 > \{T | p(T)\}
• There is an important restriction
 > the variable T that appears to the left of \(\mid\) must be the only free variable in the formula p(T).
 > in other words, all other tuple variables must be bound using a quantifier.

Selection and Projection
• Find all sailors with rating above 7
 \{S | S ∈ Sailors \land S.rating > 7\}
 > Modify this query to answer: Find sailors who are older than 18 or have a rating under 9, and are called 'Bob'.
• Find names and ages of sailors with rating above 7.
 \{S | \exists S1 ∈ Sailors(S1.rating > 7 \land S.sname = S1.sname \land S.age = S1.age)\}
 > Note, here S is a tuple variable of 2 fields (i.e. (S) is a projection of sailors), since only 2 fields are ever mentioned and S is never used to range over any relations in the query.
Joins

Find sailors rated > 7 who’ve reserved boat #103

\{S | S \in \text{Sailors} \land S.\text{rating} > 7 \land \\
\exists R(R \in \text{Reserves} \land R.\text{sid} = S.\text{sid} \\
\land R.\text{bid} = 103)\}\}

Note the use of \exists to find a tuple in Reserves that `joins with` the Sailors tuple under consideration.

Joins (continued)

Find sailors rated > 7 who’ve reserved boat #103

\{S | S \in \text{Sailors} \land S.\text{rating} > 7 \land \\
\exists R(R \in \text{Reserves} \land R.\text{sid} = S.\text{sid} \\
\land R.\text{bid} = 103)\}

Find sailors rated > 7 who’ve reserved a red boat

- Observe how the parentheses control the scope of each quantifier’s binding.
- This may look cumbersome, but it’s not so different from SQL!

Division (makes more sense here???)

Find sailors who’ve reserved all boats

\{S | S \in \text{Sailors} \land \\
\forall B (B.\text{color} = \text{red}\Rightarrow \\
\exists R(R \in \text{Reserves} \land S.\text{sid} = R.\text{sid} \\
\land R.\text{bid} = B.\text{bid}))\}

Division – a trickier example...

Find sailors who’ve reserved all Red boats

\{S | S \in \text{Sailors} \land \\
\forall B (B.\text{color} \neq \text{red}\lor \\
\exists R(R \in \text{Reserves} \land S.\text{sid} = R.\text{sid} \\
\land R.\text{bid} = B.\text{bid}))\}

Alternatively...

\{S | S \in \text{Sailors} \land \\
\forall B (B.\text{color} \neq \text{red} \lor \\
\exists R(R \in \text{Reserves} \land S.\text{sid} = R.\text{sid} \\
\land R.\text{bid} = B.\text{bid}))\}

a \Rightarrow b$ is the same as $\neg a \lor b$

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

- If a is true, b must be true for the implication to be true. If a is true and b is false, the implication evaluates to false.
- If a is not true, we don’t care about b, the expression is always true.

Unsafe Queries, Expressive Power

- \exists syntactically correct calculus queries that have an infinite number of answers! Unsafe queries.
 - e.g., $\{S | \neg S \in \text{Sailors}\}$
 - Solution???? Don’t do that!
- Expressive Power (Theorem due to Codd):
 - every query that can be expressed in relational algebra can be expressed as a safe query in DRC / TRC; the converse is also true.
- Relational Completeness: Query language (e.g., SQL) can express every query that is expressible in relational algebra/calculus. (actually, SQL is more powerful, as we will see...)
Summary

- The relational model has rigorously defined query languages — simple and powerful.
- Relational algebra is more operational
 - useful as internal representation for query evaluation plans.
- Relational calculus is non-operational
 - users define queries in terms of what they want, not in terms of how to compute it. (Declarative)
- Several ways of expressing a given query
 - a query optimizer should choose the most efficient version.
- Algebra and safe calculus have same expressive power
 - leads to the notion of relational completeness.

Addendum: Use of ∀

- ∀x (P(x)) - is only true if P(x) is true for every x in the universe
- Usually:
 ∀x ((x ∈ Boats) ⇒ (x.color = “Red”))
- ⇒ logical implication,
 a ⇒ b means that if a is true, b must be true
 a ⇒ b is the same as ¬a ∨ b

Find sailors who’ve reserved all boats

{S | S ∈ Sailors ∧ ∀B(B ∈ Boats ⇒ ∃R(Re ∈ Reserves ∧ S.sid = R.sid ∧ B.bid = R.bid))}

... reserved all red boats

{S | S ∈ Sailors ∧ ∀B(B ∈ Boats ∧ B.color = “red” ⇒ ∃R(Re ∈ Reserves ∧ S.sid = R.sid ∧ B.bid = R.bid))}

Find all sailors S such that for each tuple B
either it is not a tuple in Boats or there is a tuple in
Reserves showing that sailor S has reserved it.

{S | S ∈ Sailors ∧ ∀B(¬(B ∈ Boats) ∨ ∃R(Re ∈ Reserves ∧ S.sid = R.sid ∧ B.bid = R.bid))}