
Autoscaling Tiered Cloud Storage in Anna

Chenggang Wu, Vikram Sreekanti, Joseph M. Hellerstein
UC Berkeley

{cgwu, vikrams, hellerstein}@berkeley.edu

ABSTRACT
In this paper, we describe how we extended a distributed
key-value store called Anna into an autoscaling, multi-tier
service for the cloud. In its extended form, Anna is designed
to overcome the narrow cost-performance limitations typi-
cal of current cloud storage systems. We describe three key
aspects of Anna’s new design: multi-master selective repli-
cation of hot keys, a vertical tiering of storage layers with
different cost-performance tradeoffs, and horizontal elastic-
ity of each tier to add and remove nodes in response to
load dynamics. Anna’s policy engine uses these mechanisms
to balance service-level objectives around cost, latency and
fault tolerance. Experimental results explore the behavior
of Anna’s mechanisms and policy, exhibiting orders of mag-
nitude efficiency improvements over both commodity cloud
KVS services and research systems.

1. INTRODUCTION
As public infrastructure cloud providers have matured in

the last decade, the number of storage services they offer has
soared. Popular cloud providers like Amazon Web Services
(AWS) [9], Microsoft Azure [10], and Google Cloud Platform
(GCP) [24] each have at least seven storage options. These
services span the spectrum of cost-performance tradeoffs:
AWS ElastiCache, for example, is an expensive, memory-
speed service, while AWS Glacier is extremely high-latency
and low-cost. In between, there are a variety of services such
as the Elastic Block Store (EBS), the Elastic File System
(EFS), and the Simple Storage Service (S3). Azure and
GCP both offer a similar range of storage solutions.

Each one of these services is tuned to a unique point
in that design space, making it well-suited to certain per-
formance goals. Application developers, however, typically
deal with a non-uniform distribution of performance require-
ments. For example, many applications generate a skewed
access distribution, in which some data is “hot” while other
data is “cold”. This is why traditional storage is assembled
hierarchically: hot data is kept in fast, expensive cache while

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 6
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3311880.3311881

cold data is kept in slow, cheap storage. These access dis-
tributions have become more complex in modern settings,
because they can change dramatically over time. Realistic
workloads spike by orders of magnitude, and hot sets shift
and resize. These large-scale variations in workload moti-
vate an autoscaling service design, but most cloud storage
services today are unable to respond to these dynamics.

The narrow performance goals of cloud storage services
result in poor cost-performance tradeoffs for applications.
To improve performance, developers often take matters into
their own hands by addressing storage limitations in custom
application logic. This introduces significant complexity and
increases the likelihood of application-level errors. Develop-
ers are inhibited by two key types of barriers when building
applications with non-uniform workload distributions:

Cost-Performance Barriers. Each of the systems dis-
cussed above—ElastiCache, EBS, S3, etc.—offers a differ-
ent, fixed tradeoff of cost, capacity, latency, and bandwidth.
These tradeoffs echo traditional memory hierarchies built
from RAM, flash, and magnetic disk arrays. To balance
performance and cost, data should ideally move adaptively
across storage tiers, matching workload skew and shifting
hotspots. However, current cloud services are largely un-
aware of each other, so software developers and DevOps en-
gineers must cobble together ad hoc memory hierarchies.
Applications must explicitly move and track data and re-
quests across storage systems in their business logic. This
task is further complicated by the heterogeneity of storage
services in terms of deployment, APIs, and consistency guar-
antees. For example, single-replica systems like ElastiCache
are linearizable, while replicated systems like DynamoDB
are eventually consistent.

Static Deployment Barriers. Cloud providers offer very
few truly autoscaling storage services; most such systems
have hard constraints on the number and type of nodes de-
ployed. In AWS for example, high performance tiers like
ElastiCache are surprisingly inelastic, requiring system ad-
ministrators to allocate and deallocate instances manually.
Two of the lower storage tiers—S3 and DynamoDB—are
autoscaling, but are insufficient for many needs. S3 au-
toscales to match data volume but ignores workload; it is
designed for “cold” storage, offering good bandwidth but
high latency. DynamoDB offers workload-based autoscaling
but is prohibitively expensive to scale to a memory-speed
service. This motivates the use of ElastiCache over Dy-
namoDB, which again requires an administrator to monitor
load and usage statistics, and manually adjust resource al-
location.

In an earlier paper, we presented the initial architecture
of a key-value storage system called Anna [59]. That paper
described a design with excellent performance across orders
of magnitude in scale. Here, we extend Anna to remove its
cost-performance and static deployment barriers, enabling
it to dynamically adjust configuration and match resources
to workloads. While our previous work’s evaluation focused
on raw performance, this paper also emphasizes efficiency :
the ratio of performance to cost. For various cost points,
Anna outperforms in-memory systems (e.g., AWS Elasti-
Cache, Masstree [40]) by up to an order of magnitude. Anna
also outperforms DynamoDB, an elastic database, by more
than two orders of magnitude in efficiency.

In Section 2, we briefly describe the contributions of our
prior work on Anna [59] and preview our approach to making
the system adapt across barriers. In Section 3, we describe
the mechanisms that Anna uses to respond to mixed and
changing workloads. Section 4 introduces the architecture
of Anna including the implementation of these mechanisms,
and Section 5 describes Anna’s policy engine. In Section 6,
we present an evaluation of Anna’s mechanisms and policies,
and we describe how they fare in comparison to the state of
the art. Section 7 discusses related work, and we conclude
with future work in Section 8.

In the remainder of this paper, we use AWS as the public
cloud provider underlying Anna. The design principles and
lessons learned here are naturally transferable to other cloud
providers with similar offerings.

2. BACKGROUND
The first paper on Anna [59] presented a distributed key-

value store based on a fully shared-nothing, thread-per-core
architecture with background gossip across cores and nodes.
Anna threads have no shared data structures beyond mes-
sage queues, enabling each core to spend most of its time
doing useful work. Experiments on high-contention work-
loads showed Anna spending over 90% of its compute cycles
serving user requests, while competing, state-of-the-art sys-
tems were achieving less than 10%. The vast majority of the
other systems’ time was spent trying to execute atomic pro-
cessor instructions on shared data structures. As a result,
Anna outperformed the competition by orders of magnitude
at many scale points. Relative to other distributed KVSes,
Anna’s design also enabled an unprecedented richness of
coordination-free consistency levels. The basic insight was
that the full variety of coordination-free consistency and
transactional isolation levels taxonomized by Bailis et al. [11]
can be achieved by the monotone composition of simple lat-
tice structures, as suggested by Conway, et al. [16]. The orig-
inal paper maps out a wide range of key-value and NoSQL
systems against Bailis’ taxonomy of consistency levels.

The first version of Anna focused on performing well at
both single-node and distributed scales. This showed that
eventual consistency combined with a coordination-free shared
nothing architecture makes data management easy in the
face of deployment changes and also hinted at the poten-
tial to remove deployment barriers. However, the initial
architecture lacked the mechanisms to monitor and respond
to usage and workloads. Another notable weakness of the
initial work was its need to aggressively replicate the en-
tire database across the main memory of many machines to
achieve high performance. This gave the system an unattrac-
tive cost-performance tradeoff and made its resource alloca-

tion very rigid. As a result, although a benchmark-beater,
Anna’s first version suffered from the problems highlighted
above: it was expensive and inflexible for large datasets with
non-uniform access distributions.

2.1 Removing Barriers with Anna
In this paper, we extend the initial version of Anna to

span the cost-performance design space more flexibly, en-
abling it to adapt dynamically to workload variation in a
cloud-native setting. The architecture presented here re-
moves the cost-performance and static deployment barri-
ers discussed in Section 1. To that end, we add three key
mechanisms: (1) horizontal elasticity to adaptively scale de-
ployments; (2) vertical data movement in a storage hierar-
chy to reduce cost by demoting cold data to cheap storage;
and (3) multi-master selective replication of hot keys across
nodes and cores to efficiently scale request handling for non-
uniform access patterns. The architecture we present here
is simplified by deploying the same storage kernel across
many tiers, by entirely avoiding coordination, and by keep-
ing most components stateless through reuse of the storage
engine. The additions to Anna described in this work enable
system operators to specify high-level goals such as fault tol-
erance and cost-performance objectives, without needing to
manually configure the number of nodes and the replication
factors of keys. A new policy engine automatically responds
to workload shifts using the mechanisms mentioned above
to meet these service-level objectives (SLOs).

3. DISTRIBUTIONS AND MECHANISMS
In this section, we first classify and describe common

workload distributions across data and time. We then dis-
cuss the mechanisms that Anna uses to respond to the work-
load properties and changes. We believe that an ideal cloud
storage service should gracefully adapt to three aspects of
workload distributions and their dynamics in time:

A. Volume. As overall workload grows, the aggregate
throughput of the system must grow. During growth peri-
ods, the system should automatically increase resource allo-
cation and thereby cost. When workload decreases, resource
usage and cost should decrease correspondingly as well.

B. Skewness. Even at a fixed volume, skewness of access
distributions can affect performance dramatically. A highly
skewed workload will make many requests to a small subset
of keys. A uniform workload of similar volume will make a
few requests to each key. Different skews warrant different
responses, to ensure that the resources devoted to serving
each key are proportional to its popularity.

C. Shifting Hotspots. Workloads that are static in both
skew and volume can still exhibit changes in distribution
over time: hot data may become cold and vice versa. The
system must be able to not only handle skew, but also
changes in the specific keys associated with the skew (hotspots)
and respond accordingly by prioritizing data in the new hot
set and demoting data in the old one.

We address these three workload variations with three
mechanisms in Anna, which we describe next.

1. Horizontal Elasticity. In order to adapt to varia-
tion in workload volume, each storage tier in Anna must
scale elastically and independently, both in terms of stor-
age and request handling. Anna needs the storage capac-

Workload Dynamics Relevant Mechanisms
Volume Elasticity
Skew Replication, Tiering

Hotspot Replication, Tiering

Table 1: The mechanisms used by Anna to deal with
various aspects of workload distributions.

ity of many nodes to store large amounts of data, and it
needs the compute and networking capacity of many nodes
to serve large numbers of requests. This is accomplished by
partitioning (sharding) data across all the nodes in a given
tier. When workload volume increases, Anna can respond by
automatically adding nodes and repartitioning a subset of
data. When the volume decreases, Anna can remove nodes
and repartition data among the remainders.

2. Multi-Master Selective Replication. When work-
loads are highly skewed, simply adding shards to the system
will not alleviate pressure. The small hot set will be concen-
trated on a few nodes that will be receiving a large major-
ity of the requests, while the remaining nodes lie idle. The
only solution is to replicate the hot set onto many machines.
However, we do not want to repeat the mistakes of our first
iteration of Anna’s design, replicating cold keys as well—
this simply wastes space and increases overhead. Instead,
replication must be selective, with hot keys replicated more
than cold keys. Thus, Anna must accurately track which
data is hot and which is cold, and the replication factors
and current replica locations for each key. Note that this
aids both in handling skew in general and also changes in
hotspots with fixed skew.

3. Vertical Tiering. As in a traditional memory hierar-
chy, hot data should reside in a fast, memory-speed tier for
efficient access; significant cost savings are available by de-
moting data that is not frequently accessed to cold storage.
Again, Anna must correctly classify hot and cold data in or-
der to promote or demote appropriately to handle skew and
hotspots. While the previous two mechanisms are aimed
at improving performance, this one primarily attempts to
minimize cost without compromising performance.

3.1 Summary
Table 1 shows which mechanisms respond to which prop-

erties of workload distributions. There is a direct mapping
between an increase (or decrease) in volume—with other
factors held constant—and a requirement to automatically
add (or remove) nodes. Changes in workload skew require
a response to the new hot set size via promotion or demo-
tion, as well as appropriate selective replication. Similarly,
a change in hotspot location requires correct promotion and
demotion across tiers, in addition to shifts in per-key repli-
cation factors. We describe how Anna implements each one
of these mechanisms in Sections 4 and 5. In Section 6, we
evaluate how well Anna responds to these dynamics.

4. ANNA ARCHITECTURE
In this section, we introduce Anna’s architecture and il-

lustrate how the mechanisms discussed in Section 3 are im-
plemented. We present an overview of the core subsystems
and then discuss each component in turn. As mentioned in
Section 1, Anna is built on AWS components. In our initial
implementation and evaluation, we validate this architecture

Figure 1: The Anna architecture.

over two storage tiers: one providing RAM cost-performance
and another providing flash disk cost-performance. Anna’s
memory tier stores data in RAM attached to AWS EC2
nodes. The flash tier leverages the Elastic Block Store (EBS),
a fault-tolerant block storage service that masquerades as a
mounted disk volume on an EC2 node. There is nothing
intrinsic in our choice of layers. We could easily add a third
layer (e.g., S3) and a fourth (e.g., Glacier), but demoting
data to cold storage in these tiers operates on much longer
timescales that are beyond the scope of this work.

4.1 Overview
Figure 1 presents an overview of Anna, with each rectan-

gle representing a node. In the original Anna paper [59], we
described an extremely performant, coordination-free key-
value store with a rich variety of consistency levels. In that
work, we demonstrated how a KVS could scale from mul-
ticore to distributed settings while gracefully tolerating the
natural messaging delays that arise in distributed systems.
To enable the mechanisms described in Section 3, we first ex-
tended the storage kernel (labeled as Anna v0 in Figure 1) to
support multiple storage media and then designed three new
subsystems: a monitoring system/policy engine, a routing
service, and a cluster management system. Each subsystem
is bootstrapped on top of the key-value storage component
in Anna, storing and modifying its metadata in the system.

The monitoring system and policy engine are the internal
services responsible for responding to workload dynamics
and meeting SLOs. Importantly, these services are stateless
and thus are not concerned with fault tolerance and scaling;
they rely on the storage service for these features.

The routing service is a stateless client-facing API that
provides a stable abstraction above the internal dynamics of
the system. The resource allocation of each tier may be in
flux—and whole tiers may be added or removed at workload
extremes—but clients are isolated from these changes. The
routing service consistently returns a correct endpoint that
will answer client requests. Finally, the cluster management
system is another stateless service that modifies resource
allocation based on decisions reached by the policy engine.

As in [59], Anna supports three types of requests: GET,
PUT, and DELETE. Anna also supports multi-key queries,
in which the client issues requests to multiple server nodes
responsible for the keys in parallel and gathers the responses.

4.2 Storage System
Figure 2 shows the architecture of Anna’s storage kernel.

The kernel contains many worker threads, and each thread

Figure 2: The architecture of storage kernel.

interacts with a thread-local storage medium (a memory
buffer or disk volume), processes client requests, and sends
& receives multicasts to & from other Anna workers.

The Anna storage kernel is deployed across many storage
tiers. The only difference between tiers is the procedure for
translating data for persistence (serialization/deserialization,
a.k.a. “serde”). Memory-tier nodes read from and write to
local memory buffers, while disk-tier nodes serialize data
into files that are stored on EBS volumes. Anna’s uniformity
across storage tiers makes adding additional tiers very sim-
ple: we set the serde mode and adjust the number of worker
threads based on the underlying hardware. For instance, the
total number of threads for memory nodes matches the num-
ber of CPU cores to fully utilize computing resources and
to avoid costly preemption of threads. However, in other
storage tiers where the performance bottleneck lies in seri-
alizing the key-value pairs to and from persistent storage,
the optimal strategy for resource allocation is different. Our
EBS tier allocates 4× as many threads per node (4) as we
have physical CPUs (1).

Anna uses consistent hashing [28] to partition and repli-
cate keys. For performance and fault tolerance (discussed
further in Sections 5 and 6), each key may be replicated onto
many nodes in each tier and multiple threads in each node.
Following the model of early distributed hash tables, we use
virtual nodes [43] in our consistent hashing algorithm. Each
physical node (or thread) handles traffic for many virtual
nodes (or threads) on the hash ring to ensure an even distri-
bution. Virtual nodes also enable us to add heterogeneous
nodes in the future by allocating more virtual nodes to more
powerful physical machines.

In the following section, we present a brief overview of
the storage kernel’s design, which enables it to achieve high-
performance coordination-free execution and replica consis-
tency. This overview is a brief summary of the initial design
of Anna presented in [59].

4.2.1 Storage Kernel
Recent work has demonstrated that shared-memory co-

ordination mechanisms like locking and atomic “lock-free”
instructions slow down low-level memory access performance
on a single node by orders of magnitude [22]. Across nodes,
consensus algorithms such as Paxos [34] are well-known to
cause dramatic latency and availability problems [13, 1, 12].
Anna’s coordination-free execution model avoids these issues
entirely in pursuit of excellent performance and scalability.

Each worker thread on every node has a private memory
buffer to store the data it manages. Data is multi-mastered:
each thread processes both reads and writes locally regard-
less of replication. Each thread periodically runs a back-
ground task to multicast recent updates to other workers
that maintain replicas of these keys (“gossip”, a.k.a. “anti-
entropy” [20]). This shared-nothing, asynchronous messag-
ing scheme eliminates thread synchronization and asynchronously
resolves conflicting updates to replicas. The resulting code
exploits multi-core parallelism within a single machine and
smoothly scales out across distributed nodes. Our earlier
work shows dramatic benefits from this design, including
record performance based on extremely high (90%) CPU uti-
lization in useful work with low processor cache miss rates.

While Anna eliminates contention, consistency becomes
tricky: the same set of updates may arrive at different repli-
cas in different orders. Näıvely applying these updates can
cause replicas to diverge and lead to inconsistent state. An-
other contribution of [59] is achieving a wide range of con-
sistency models by encapsulating state into monotone com-
positions of simple CRDT-style [47] lattices, inspired by the
Bloom language [16]. Lattices tolerate message reordering
and duplication while guaranteeing eventual convergence of
replicas. By default, Anna stores data in last-writer-wins
lattices, which resolve divergent updates by picking the up-
date with the most recent timestamp. However, Anna’s lat-
tices can be composed to offer the full range of coordination-
free consistency guarantees including causal consistency, item
cut isolation, and read-committed transactions [11].

4.3 Metadata Management
Anna requires maintaining certain metadata to efficiently

support mechanisms discussed in Section 3 and help the pol-
icy engine adapt to changing workloads. In this section, we
introduce the types of metadata managed by Anna and how
they are stored and used by various system components.

4.3.1 Types of Metadata
Anna manages three distinct kinds of metadata. First,

every storage tier has two hash rings. A global hash ring, G,
determines which nodes in a tier are responsible for storing
each key. A local hash ring, L, determines the set of worker
threads within a single node that are responsible for a key.
Second, each individual key K has a replication vector of
the form [< R1, ...Rn >,< T1, ...Tn >]. Ri represents the
number of nodes in tier i storing key K, and Ti represents
the number of threads per node in tier i storing key K. In
our current implementation, i is either M (memory tier)
or E (EBS tier). During request handling and multicast,
both hash rings and key K’s replication vector are used to
determine the threads responsible for the key. For every tier,
i, that maintains a replica of K, we first hash K against
Gi, tier i’s global hash ring to determine which nodes are
responsible for K. We then look at Li, tier i’s local hash
ring to determine which threads are responsible for the key.

Lastly, Anna also tracks monitoring statistics, such as the
access frequency of each key and the storage consumption
of each node. This information is analyzed by the policy en-
gine to trigger actions in response to variations in workload.
Currently, we store 16 bytes of metadata per key and about
10 KB of metadata per worker thread.

4.3.2 Metadata Storage

Clearly, the availability and consistency of metadata is as
important as that of regular data—otherwise, Anna would
be unable to determine a key’s location (under changing
node membership and keys’ replication vectors) or get an
accurate estimate of workload characteristics and resource
usage. In many systems [48, 51, 32, 56], metadata is en-
meshed in the implementation of “master nodes” or stateful
services like ZooKeeper [26]. Anna simply stores metadata
in the storage system. Our metadata automatically derives
all the benefits of our storage system, including performance
guarantees, fault tolerance, and consistency. Anna employs
last-writer-wins consistency to resolve conflicts among meta-
data replicas. Due to the eventual consistency model, worker
threads may have stale views of hash rings and replication
vectors. This can cause threads to disagree on the loca-
tion of a key and can potentially cause multiple rounds of
request redirection. However, since the metadata will even-
tually converge, threads will agree on the key’s location,
and requests will reach the correct destination. Note that
multicast is performed every few seconds, while cluster state
changes on the order of minutes, so cluster state metadata is
guaranteed to converge before it undergoes further changes.

4.3.3 Enabling Mechanisms
Interestingly, manipulating two of these types of metadata

(hash rings and replication vectors) is the key to enabling
the mechanisms described earlier in Section 3. In this sec-
tion, we discuss only the implementation of each mechanism.
When and why each action is executed is a matter of policy
and will differ based on system configuration and workload
characteristics—we save this discussion for Section 5.

Elasticity. Anna manages cluster churn similarly to previ-
ous storage systems [19, 14] that use consistent hashing and
distributed hash tables. When a new node joins a storage
tier, it queries the storage system to retrieve the hash ring,
updates the ring to include itself, and broadcasts its presence
to all nodes in the system—storage, monitoring, and rout-
ing. Each existing node updates its copy of the hash ring,
determines if it stores any keys that the new node is now
responsible for, and gossips those keys to the new node. Sim-
ilarly, when a node departs, it removes itself from the hash
ring and broadcasts its departure to all nodes. It determines
which nodes are now responsible for its data and gossips its
keys to those nodes. Once all data has been broadcast, the
node goes offline and its resources are deallocated.

Key migration overheads can be significant (see Section 6.3).
To address this challenge, Anna interleaves key migration
with client request handling to prevent system downtime.
This is possible due to Anna’s support for coordination-free
consistency: The client may retrieve stale data during the
key migration phase, but it can maintain a client-side cache
and merge future retrieved results with the cached value.
Anna’s lattice-based conflict resolution guarantees that the
state of the cached data is monotonically growing.

Selective Replication & Cross-Tier Data Movement.
Both these mechanisms are implemented via updates to repli-
cation vectors. Each key in our two-tier implementation has
a default replication vector of the form [< 1, k >,< 1, 1 >],
meaning that it has one memory tier replica and k EBS-tier
replicas. Here, k is the number of replica faults per key the
administrator is willing to tolerate (discussed further in Sec-
tion 4.7 and 5). By default, keys are not replicated across
threads within a single node. Anna induces cross-tier data

Figure 3: Monitoring node architecture.

movement by simply manipulating metadata. It increments
the replication factor of one tier and decrements that of
the other tier; as a result, gossip migrates data across tiers.
Similarly, selective replication is achieved by adjusting the
replication factor in each tier, under the fault tolerance con-
straint. After updating the replication vector, Anna updates
metadata across replicas via asynchronous multicast.

4.4 Monitoring System & Policy Engine
In this section, we discuss the design of the monitoring

system and the policy engine. As shown in Figure 3, each
monitoring node has a monitoring thread, a statistics buffer,
and a policy engine. The monitoring thread is stateless and
periodically retrieves the stored statistics from the storage
engine and triggers the policy engine. The policy engine an-
alyzes these statistics and issues actions to meet its SLOs.
Anna currently supports three types of actions: elasticity
change, hot-key replication, and cross-tier data movement.
The implementation of these actions is covered above in Sec-
tion 4.3.3. We discuss when each of these actions is triggered
and describe the end-to-end policy algorithm in Section 5.

4.5 Routing Service
The routing service isolates clients from the underlying

storage system: A client asks where to find a key and is
returned the set of all valid addresses for that key. Anna’s
routing service only maintains soft state. Each routing node
caches the storage tiers’ hash rings and key replication vector
metadata to respond to the clients’ key address requests. If a
key has any memory-tier replicas, the routing service only re-
turns memory-tier addresses to maximize performance. The
client caches these addresses locally to reduce request la-
tency and load on the routing service.

When a client’s cached address set becomes invalid be-
cause of a change in cluster configuration, a storage server
receiving an invalid request will give the client the correct set
of addresses. These will again be cached until they are in-
validated, and the routing service will also refresh its cached
cluster state.

4.6 Cluster Management
Anna uses Kubernetes [30] as a cluster management tool.

Kubernetes is responsible for allocating and deallocating
nodes, ensuring that nodes are alive, and rebooting failed

nodes. An Anna deployment has four kinds of nodes: stor-
age nodes, routing nodes, monitoring nodes, and a single,
stateless “cluster management” node described below.

A “pod” is the atomic unit of a Kubernetes application
and is a collection of one or more Docker [21] containers.
Each node in Anna is instantiated in a separate Kubernetes
pod, and each pod contains only one instance of a Anna
node. Storage system and routing service pods are pinned on
separate EC2 instances for resource isolation purposes. The
monitoring system is less resource intensive and can tolerate
preemption, so it is not isolated. Finally, Anna maintains
a singleton cluster management pod, whose role is to issue
requests to add or remove nodes to the Kubernetes cluster.
A simple, stateless Python server in this pod receives REST
requests from the policy engine and uses bash scripts to add
or remove nodes.

4.7 Fault Tolerance
Anna guarantes k-fault tolerance by ensuring k+1 replicas

are live at all times. The choice of k determines a trade-off
between resilience and cost. The k + 1 replicas of each key
can be spread across tiers arbitrarily, according to hotness.

When a storage node fails, other nodes detect the fail-
ure via a timeout and remove the node from the hash ring.
When such a timeout happens, Anna automatically repar-
titions data using the updated hash ring. The cluster man-
agement pod then issues a request to spawn a new node,
which enters the join protocol discussed in Section 4.3.3.

Anna does not rely on the persistence of EBS volumes for
fault tolerance in the disk tier. Similar to nodes in the mem-
ory tier, these nodes lose their state when they crash—this
is desirable because it allows all tiers to be symmetric, re-
gardless of the durability of the underlying storage medium.

Both routing nodes and monitoring nodes only store soft
state and do not require any recovery mechanisms. If a
routing node fails, it queries other routing nodes for up-to-
date cluster information, and if a monitoring node fails, it
retrieves system statistics from the storage service.

When the cluster management pod fails, Kubernetes au-
tomatically revives it. No recovery is necessary as it does not
manage any state. The state of the cluster will not change
while the pod is down since it is the actor responsible for
modifying resource allocation. As a result, the policy engine
will re-detect any issue requiring an elasticity change before
the crash and re-issue the request upon revival.

In summary, Anna consists of a stateful storage kernel
that is partitioned and selectively replicated for performance
and fault tolerance with multi-master updates. Every other
component is either stateless and optionally caches soft state
that is easily recreated. As a result, the only single point
of failure in Anna is the Kubernetes master. Kubernetes of-
fers high-availability features to mitigate this problem [31].
We also note that Kubernetes is not integral to the design
of Anna; we rely on it primarily to reduce the engineering
burden of mundane tasks such as receiving heartbeats, allo-
cating VMs, and deploying containers.

5. POLICY ENGINE
Anna supports three kinds of SLOs: an average request

latency (Lobj) in milliseconds, a cost budget (B) in dol-
lars/hour, and a fault tolerance (k) in number of replicas.
The fault tolerance indicates the allowed number of replica

failures, k. The latency objective, Lobj , is the average ex-
pected request latency. The budget, B, is the maximum
cost per hour that will be spent on Anna.

As discussed in Section 4.7, Anna ensures there will never
be fewer than k + 1 replicas of each key to achieve the
fault tolerance goal. The latency objective and cost budget
goals, however, are conflicting. The cheapest configuration
of Anna is to have k + 1 EBS nodes and 1 memory node
(for metadata). Clearly, this configuration will not be very
performant. If we increase performance by adding memory
nodes to the system, we might exceed our budget. Con-
versely, if we strictly enforce the budget, we might not be
able to achieve the latency objective.

Anna administrators only specify one of the two goals. If a
latency SLO is specified, Anna minimizes cost while meeting
the latency goal. If the budget is specified, Anna uses no
more than $B per hour while maximizing performance.

In Sections 5.1, 5.2, and 5.3, we describe heuristics to trig-
ger each policy action—data movement, hot key replication,
and elasticity. In Section 5.4, we present Anna’s complete
policy algorithm, which combines these heuristics to achieve
the SLO. Throughout this section, we represent each key’s
replication vector as [< RM , RE >,< TM , TE >] (a general
form is defined in Section 4.3.1) since our initial prototype
only uses two tiers—M for memory and E for EBS.

5.1 Cross-Tier Data Movement
Anna’s policy engine uses its monitoring statistics to cal-

culate how frequently each key was accessed in the past T
seconds, where T is an internal parameter. If a key’s access
frequency exceeds a configurable threshold, P , and all repli-
cas currently reside in the EBS tier, Anna promotes a single
replica to the memory tier. If the key’s access frequency
falls below a separate internal threshold, D, and the key has
one or more memory replicas, all replicas are demoted to the
EBS tier. The EBS replication factor is set to k+1, and the
local replication factors are restored to 1. Note that in Anna,
all metadata is stored in the memory tier, is never demoted,
and has a constant replication factor. If the aggregate stor-
age capacity of a tier is full, Anna adds nodes (Section 5.3)
to increase capacity before performing data movement. If
the budget does not allow for more nodes, Anna employs a
least-recently used caching policy to demote keys.

5.2 Hot-Key Replication
When the access frequency of a key stored in the memory

tier increases, hot-key replication increases the number of
memory-tier replicas of that key. In our initial implemen-
tation, we configure only the memory tier to replicate hot
keys. Because the EBS tier is not intended to be as perfor-
mant, a hot key in that tier will first be promoted to the
memory tier before being replicated. This policy will likely
vary for a different storage hierarchy.

The policy engine classifies a key as “hot” if its access
frequency exceeds an internal threshold, H, which is s stan-
dard deviations above the mean access frequency. Because
Anna is a shared-nothing system, we can replicate hot keys
both across cores in a single node and across nodes. Repli-
cating across nodes seems preferable, because network ports
are a typical bottleneck in distributed system, so replicating
across nodes multiplies the aggregate network bandwidth to
the key. However, replicating across cores within a node can
also be beneficial, as we will see in Section 6.1. Therefore,

hot keys are first replicated across more nodes before being
replicated across threads within a node.

The policy engine computes the target replication factor,
RM ideal, using the ratio between the observed latency for
the key and the latency objective. Cross-node replication is
only possible if the current number of memory replicas, RM ,
is less than the number of memory-tier nodes in the cluster,
NM . If so, we increment the key’s memory replication factor
to min(RM ideal, NM). Otherwise, we increment the key’s
local replication factor on memory-tier machines up to the
maximum number of worker threads (NT memory) using the
same ratio. Finally, if the access frequency of a previously-
hot key drops below a threshold, L, its replication vector is
restored to the default: RM , TM , and TE are all set to 1 and
RE is set to k.

5.3 Elasticity
Node Addition. Anna adds nodes when there is insuf-
ficient storage or compute capacity. When a tier has in-
sufficient storage capacity, the policy engine computes the
number of nodes required based on data size, subject to cost
constraints, and instructs the cluster management service to
allocate new nodes to that tier.

Node addition due to insufficient compute capacity only
happens in the memory tier because the EBS tier is not
designed for performance. Compute pressure on the EBS
tier is alleviated by promoting data to the memory tier since
a memory node can support 15× the requests at 4× the
cost. The policy engine uses the ratio between the observed
latency and the latency objective to compute the number of
memory nodes to add. This ratio is bounded by a system
parameter, c, to avoid overly aggressive allocation.

Node Removal. Anna requires a minimum of one mem-
ory node (for system metadata) and k + 1 EBS nodes (to
meet the k-fault SLO when all data is demoted). The pol-
icy engine respects these lower bounds. We first check if
any key’s replication factor will exceed the total number of
storage nodes in any tier after node removal. Those keys’
replication factors are decremented to match the number of
nodes at each tier before the nodes are removed. Anna cur-
rently only scales down the memory tier based on compute
consumption and not based on storage consumption. This is
because selective replication can significantly increase com-
pute consumption without increasing storage consumption.
Nonetheless, this may lead to wasteful spending under ad-
versarial workloads; we elaborate in the next section.

Grace Periods. When resource allocation is modified, data
is redistributed across each tier, briefly increasing request
latency (see Section 6.3). Due to this increase, as well as
data location changes, key access frequency decreases. To
prevent over-correction during key redistribution, we apply a
grace period to allow the system to stabilize. Key demotion,
hot-key replication, and elasticity actions are all delayed till
after the grace period.

5.4 End-to-End Policy
In this section, we discuss how Anna’s policy engine com-

bines the above heuristics to meet its SLOs. If the average
storage consumption of all nodes in a particular tier has vi-
olated configurable upper or lower thresholds (Supper and
Slower), nodes are added or removed respectively. We then
invoke the data movement heuristic from Section 5.1 to pro-

mote and demote data across tiers. Next, the policy engine
checks the average latency reported by clients. If the la-
tency exceeds a fraction, fupper (defaulting to 0.75), of the
latency SLO and the memory tier’s compute consumption
exceeds a threshold, Cupper, nodes are added to the mem-
ory tier. However, if not all nodes are occupied, hot keys
are replicated in the memory tier, as per Section 5.2. Fi-
nally, if the observed latency is a fraction, flower (defaulting
to 0.5), below the objective and the compute occupancy is
below Clower, we invoke the node removal heuristic to check
if nodes can be removed to save cost.

The compute threshold, Cupper, is set to 0.20. Consistent
with our previous work [59], each storage node saturates its
network bandwidth well before its compute capacity. Com-
pute occupancy is a proxy for the saturation of the underly-
ing network connection. This threshold varies significantly
based on the hardware configuration; we found that 20%
was optimal for our experimental setup (see Section 6).

5.4.1 Discussion
Storage Node Saturation. There are two possible causes
for saturation. If all nodes are busy processing client re-
quests, Anna must add more nodes to alleviate the load.
Performing hot-key replication is not productive: Since all
nodes are busy, replicating hot keys to a busy node will,
in fact, decrease performance due to additional gossip over-
head. The other cause is a skewed access distribution in
which most client requests are sent to a small set of nodes
serving the hot keys while most nodes are free. The optimal
solution is to replicate the hot keys onto unsaturated nodes.
If we add nodes to the cluster, the hot keys’ replication fac-
tors will not change, and clients will continue to query the
few nodes storing those keys. Meanwhile, the newly added
nodes will idle. As discussed in Section 5.4, Anna’s pol-
icy engine is able to differentiate the two causes for node
saturation and take the appropriate action.

Policy Limitations. There are cases in which our pol-
icy engine fails to meet the latency objective and/or wastes
money. Due to current cloud infrastructure limitations, for
example, it takes about five minutes to allocate a new node.
An adversary could easily abuse this limitation. A short
workload spike to trigger elasticity, followed by an immedi-
ate decrease would lead Anna to allocate unnecessary nodes.
These nodes will be under-utilized, but will only be removed
if the observed latency drops below flower ∗ Lobj . Unfortu-
nately, removing this constraint would make Anna suscepti-
ble to reducing resource allocation during network outages,
which is also undesirable. We discuss potential solutions to
these issues in future work.

Knobs. There are a small number of configuration vari-
ables mentioned in this section, which are summarized in
Table 2. We distinguish variables that are part of the exter-
nal SLO Spec from the internal parameters of our current
policy. In our evaluation, our parameters were tuned by
hand to match the characteristics of the AWS services we
use. There has been interesting work recently on autotun-
ing database system configuration knobs [54]; our setting
has many fewer knobs than those systems. As an alterna-
tive to auto-tuning our current knobs, we are exploring the
idea of replacing the current threshold-based policy entirely
with a dynamic Reinforcement Learning policy that maps
directly and dynamically from performance metrics to deci-

Variable
Name

Meaning Default Value Type

Lobj
Latency

Objective
2.5ms SLO Spec

B Cost Budget
N/A

(user-specified)
SLO Spec

k
Fault

Tolerance
2 SLO Spec

T
Monitoring

report period
15 seconds

Policy
Knob

H
Key hotness

threshold

3 standard
deviations above

the mean key
access frequency

Policy
Knob

L
Key coldness

threshold
The mean key

access frequency
Policy
Knob

P
Key

promotion
threshold

2 accesses in 60
seconds

Policy
Knob

[Slower,
Supper]

Storage
consumption
thresholds

Memory: [0.3, 0.6]
EBS: [0.5, 0.75]

Policy
Knob

[flower,
fupper]

Latency
thresholds

[0.5, 0.75]
Policy
Knob

[Clower,
Cupper]

Compute
occupancy
thresholds

[0.05, 0.20]
Policy
Knob

c
Upper bound

for latency
ratio

1.5
Policy
Knob

Table 2: A summary of all variables mentioned in
Section 5.

sions about system configuration changes. These changes to
the policy engine are easy to implement, but tuning the pol-
icy is beyond the scope of this paper: It involves extensive
empirical work on multiple deployment configurations.

6. EVALUATION
In this section, we present an evaluation of Anna. We first

explore the advantage of different replica placement strate-
gies in Section 6.1. We then show the benefit of selective
replication in Section 6.2. We demonstrate Anna’s ability
to detect and adapt to variation in workload volume, skew,
and hotspots in Sections 6.3 and 6.4. Section 6.5 covers
Anna’s ability to respond to unexpected failures. Finally,
Section 6.6 evaluates Anna’s ability to trade off performance
and cost according to its SLO.

When selecting the appropriate instance type, we mea-
sured the best combination of memory, CPU, and network
bandwidth for an average workload; due to space constraints,
we do not include an evaluation here. Anna uses r4.2xlarge
instances for memory-tier nodes and r4.large instances for
EBS-tier nodes. Each node has 4 worker threads; at peak
capacity they can handle a workload that saturates the net-
work link of the node. r4.2xlarge memory nodes have
61GB of memory, which is equally divided among all worker
threads. Each thread in a EBS node has access to its own
64GB EBS volume. In our experiments, Anna uses two
m4.large instances for the routing nodes and one m4.large

instance for the monitoring node. We include these nodes
in all cost calculation below. Unless otherwise specified, all
experiments are run on a database with 1 million key-value
pairs. Keys and values are 8 bytes and 256KB long, respec-
tively. We set the k-fault tolerance goal to k = 2; there are

0 K
10 K
20 K
30 K
40 K
50 K
60 K
70 K
80 K
90 K

 0 1 2 3 4 5 6 7 8

(a) Low contention (zipf coefficient = 0.5)

T
h
ro

u
g
h
p
u
t
(o

p
s
/s

e
c
)

Cost (dollar/hour)

Anna
Anna v0

ElastiCache
Masstree

0 K
10 K
20 K
30 K
40 K
50 K
60 K
70 K
80 K

 0 1 2 3 4 5 6 7 8

(b) High contention (zipf coefficient = 2)

T
h
ro

u
g
h
p
u
t
(o

p
s
/s

e
c
)

Cost (dollar/hour)

Anna
Anna v0

ElastiCache
Masstree

Figure 4: Cost-effectiveness comparison between
Anna, Anna v0, ElastiCache, and Masstree.

3 total replicas of each key. This leads to a total dataset size
of about 750GB: 1M keys× 3 replicas× 256KB values.

Our workload is a YCSB-style read-modify-write of a sin-
gle key chosen from a Zipfian distribution. We adjust the
Zipfian coefficient to create different contention levels—a
higher coefficient means a more skewed workload. The clients
were run on r4.16xlarge machines, with 8 threads each.
Unless stated otherwise, experiments used 40 client ma-
chines for a total of 320 concurrent, single-threaded clients.

6.1 Replica Placement
We first compare the benefits of intra-node vs. cross-node

replication; for brevity, no charts are shown for this topic.
On 12 memory-tier nodes, we run a highly skewed workload
with the Zipfian coefficient set to 2. With a single replica
per key, we observe a maximum throughput of just above
2,000 operations per second (ops). In the case of cross-node
replication, four nodes each have one thread responsible for
each replicated key; in the intra-node case, we have only one
node with four threads responsible for each key. Cross-node
replication improves performance by a factor of four to 8,000
ops, while intra-node replication only improves performance
by a factor of two to 4,000 ops. This is because the four
threads on a single node all compete for the same network
bandwidth, while the single threads on four separate nodes
have access to four times the aggregate bandwidth. Hence,
as discussed in Section 5.2, we prioritize cross-node replica-
tion over intra-node replication whenever possible but also
take advantage of intra-node replication.

6.2 Selective Replication
A key weakness of our initial work [59] (referred to as

Anna v0) is that all keys are assigned a uniform replica-
tion factor. A poor choice of replication factor can lead to
significant performance degradation. Increasing the repli-
cation factor boosts performance for skewed workloads, as
requests to hot keys can be processed in parallel on differ-
ent replicas. However, a uniform replication factor means

that cold keys are also replicated, which increases gossip
overhead (slowing down the system) and storage utilization
(making the system more expensive). By contrast, Anna
selectively replicates hot keys to achieve high performance,
without paying a storage cost for replicating cold keys.

This experiment explores the benefits of selective repli-
cation by comparing Anna’s memory-tier against Anna v0,
AWS ElastiCache (using managed Memcached), and a lead-
ing research system, Masstree [40], at various cost points.
We hand-tune Anna v0’s single replication factor to the op-
timal value for each Zipfian setting and each cost point. This
experiment uses a database of 100,000 keys across all cost
points; we use a smaller database since the data must fit
on one node, corresponding to the minimum cost point. We
configure keys in Anna to have a default replication factor
of 1 since neither ElastiCache nor Masstree supports repli-
cation of any kind. To measure the performance for a fixed
price, we also disabled Anna’s elasticity mechanism.

Figure 4(a) shows that Anna consistently outperforms
both Masstree and ElastiCache under low contention. As
discussed in our previous work, this is because Anna’s thread-
per-core coordination-free execution model efficiently exploits
multi-core parallelism, while other systems suffer from thread
synchronization overhead through the use of locks or atomic
instructions. Neither Anna nor Anna v0 replicates data in
this experiment, so they deliver identical performance.

Under high contention (Figure 4(b)), Anna’s throughput
increases linearly with cost, while both ElastiCache and
Masstree plateau. Anna selectively replicates hot keys across
nodes and threads to spread the load, enabling this linear
scaling; the other two systems do not have this capabil-
ity. Anna v0 replicates the entire database across all nodes.
While Anna v0’s performance scales, the absolute through-
put is worse than Anna’s because naively replicating the
entire database increases multicast overhead for cold keys.
Furthermore, Anna v0’s storage consumption is significantly
higher: At $7.80/hour (14 memory nodes), Anna v0’s con-
stant replication generates 13× the original data size, while
Anna incurs <1% extra storage overhead.

6.3 Dynamic Workload Skew & Volume
We now combine selective replication and elasticity to re-

act to changes in workload skew and volume. In this experi-
ment, we start with 12 memory-tier nodes and a latency ob-
jective of 3.3ms—about 33% above our unsaturated latency.
All servers serve a light load at time 0. At minute 3, we
start a high contention workload with a Zipfian coefficient
of 2. We see in Figure 5(a) that after a brief spike in latency,
Anna replicates the highly contended keys and meets the la-
tency SLO (the dashed red line). At minute 13, we reduce
the Zipfian coefficient to 0.5, switching to a low contention
workload. Simultaneously, we increase the load volume by
a factor of 4. Detecting these changes, the policy engine
reduces the replication factors of the previously-hot keys. It
finds that all nodes are occupied with client requests and
triggers addition of four new nodes to the cluster. We see a
corresponding increase in the system cost in Figure 5(b).

It takes 5 minutes for the new nodes to join the cluster.
Throughput increases to the saturation point of all nodes
(the first plateau in Figure 5(b)), and the latency spikes to
the SLO maximum from minutes 13 to 18. At minute 18, the
new nodes come online and trigger a round of data reparti-
tioning, seen by the brief latency spike and throughput dip.

0
2
4
6
8

10
12
14
16
18

 0 5 10 15 20 25 30 35

(a) Latency over time

L
a
te

n
c
y
 (

m
ill

is
e
c
o
n
d
)

Time (min)

Latency
Latency SLO

0 K

20 K

40 K

60 K

80 K

100 K

 0 5 10 15 20 25 30 35
 6.5

 7

 7.5

 8

 8.5

 9
(b) Throughput and system cost over time

High Contention
 Workload Reduce Contention

 Increase Load

Node
 Join

Reduce
 Load

T
h
ro

u
g
h
p
u
t
(o

p
s
/s

e
c
)

C
o
s
t
(d

o
lla

r/
h
o
u
r)

Time (min)

Throughput
Cost

Figure 5: Anna’s response to changing workload.

Anna then further increases throughput and meets the la-
tency SLO. At the 28-minute point, we reduce the load, and
Anna removes nodes to save cost.

Throughout the 32-minute experiment, the latency SLO
is satisfied 97% of the time. We first violate the SLO during
hot-key replication by 4× for 15 seconds. Moreover, the
latency spikes to 7× the SLO during redistribution for about
30 seconds. Data redistribution causes multicast overhead
on the storage servers and address cache invalidation on the
clients. The latency effects are actually not terrible. As a
point of comparison, TCP link latencies in data centers are
documented tolerating link delays of up to 40× [5].

From minutes 13 to 18, we meet our SLO of 3.3ms ex-
actly. With a larger load spike or lower initial resource al-
location, Anna could have easily violated its SLO during
that period, putting SLO satisfaction at 83%—a much less
impressive figure. Under any reactive policy, large work-
load variations can cause significant SLO violations. As a
result, cloud providers commonly develop client-specific ser-
vice level agreements (SLAs) that reflect access patterns and
latency expectations. In practice, these SLAs allow for sig-
nificantly more leeway than a service’s internal SLO [45].

6.4 Varying Hotspot
Next, we introduce multiple tiers and run a controlled ex-

periment to demonstrate the effectiveness of cross-tier pro-
motion and demotion. The goal is to evaluate Anna’s ability
to detect and react to changes in workload hotspots. We do
not consider a latency objective and disable autoscaling; we
narrow our focus to how quickly Anna identifies hot data.

We fix total data size while varying the number of keys and
the length of the values. This stress-tests selective replica-
tion, for which the amount of metadata (i.e., a per-key repli-
cation vector) increases linearly with the number of keys.
Increasing the number of keys helps us evaluate how robust
Anna’s performance is under higher metadata overheads.

We allocate 3 memory nodes (insufficient to store all data)
and 15 EBS-tier nodes. At time 0, most data is in the EBS

0.0

0.2

0.4

0.6

0.8

1.0

 0 2 4 6 8 10 12 14

(a) 1 Million keys, 256KB values
M

e
m

o
ry

 T
ie

r
A

c
c
e

s
s
 P

e
rc

e
n

ta
g

e

Time (min)

zipf=1.0
zipf=2.0

0.0

0.2

0.4

0.6

0.8

1.0

 0 2 4 6 8 10 12 14

(b) 10 Million keys, 25.6KB values

M
e

m
o

ry
 T

ie
r

A
c
c
e

s
s
 P

e
rc

e
n

ta
g

e

Time (min)

zipf=1.0
zipf=2.0

0.0

0.2

0.4

0.6

0.8

1.0

 0 2 4 6 8 10 12 14

(c) 100 Million keys, 2.56KB values

M
e

m
o

ry
 T

ie
r

A
c
c
e

s
s
 P

e
rc

e
n

ta
g

e

Time (min)

zipf=1.0
zipf=2.0

Figure 6: Adapting to changing hotspots in workload.

tier. The blue curve in Figure 6 shows a moderately skewed
workload, and the green curve shows a highly skewed work-
load. At minute 0, we begin a workload centered around
one hotspot. At minute 5, we switch to a different, largely
non-overlapping hotspot, and at minute 10, we switch to a
third, unique hotspot. The y-axis measures what percent of
queries are served by the memory tier—the “cache hit” rate.

With 1 million keys and 256KB values (Figure 6(a)), we
see that Anna is able to react almost immediately and achieve
a perfect hit rate under a highly skewed workload (the green
curve). The hot set is very small—on the order of a few
thousand keys—and all hot keys are promoted in about ten
seconds. The moderately skewed workload shows more vari-
ation. We see the same dip in performance after the hotspot
changes; however, we do not see the same stabilization. Be-
cause the working set is much larger, it takes longer for hot
keys to be promoted, and there is a probabilistic “fringe” of
keys that are in cold storage at time of access, leading to hit-
rate variance. Nonetheless, Anna is still able to achieve an
average of 81% hit rate less than a minute after the change.

Increasing the number of keys (Figures 6(b, c)) increases
the time to stabilization. Achieving a hit-rate of 99.5% un-
der the highly skewed workload (the green curves) takes
around 15 and 25 seconds for 10 million and 100 million
keys, respectively. Under the moderately skewed workload
(the blue curves), the hit-rate in both settings takes around
90 seconds to stabilize. We observe a slightly reduced av-
erage hit-rate (79% and 77%, respectively) due to a larger
probabilistic fringe of cold keys. Overall, despite orders of
magnitude more keys, Anna still adapts and achieves a high
memory tier hit-rate. In Section 8, we discuss opportunities
to improve time to stabilization further via policy tuning.

6.5 Recovery
We evaluate Anna’s ability to recover from node failure

and compare against Redis on AWS ElastiCache. We choose
Redis because it is the only KVS in our experiments with
recovery features. Both systems were run on 42 memory-tier
nodes and maintain three replicas per key. The results are
shown in Figure 7. Note that we report normalized through-
put here to compare against each system’s baseline.

Both systems are run at steady state before a random
node is terminated non-gracefully at minute 4, marked with
a red line in Figure 7. Anna (the blue curve) experiences
a 1.5-minute dip in performance while requests to the now-
terminated node timeout. The performance change is not
immediately apparent as the node continues serving requests
for a few seconds before all processes are terminated. Nonethe-

0.0

0.2

0.4

0.6

0.8

1.0

 0 2 4 6 8 10

Node failure

Hash ring

corrected

Node joins

Anna Cluster

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

Time (min)

Anna
Redis

Figure 7: Impact of node failure and recovery for
Anna and Redis (on AWS ElastiCache).

less, Anna maintains above 80% of peak throughput because
replication is multi-mastered; the remaining replicas still
serve requests. After a minute, the system detects a node
has departed and updates its hash ring. There is slightly
diminished performance (about 90% of peak) from minutes
5.5 to 8.5 while the system operates normally but with 1
fewer node. At minute 8.5, we see another dip in through-
put as a new node joins and the system repartitions data1.
By minute 9, the system returns to peak performance.

User requests are set to time out after 500ms. We observe
a steady state latency of about 18ms. After node failure,
roughly 1

42
of requests query the failed node and wait until

timeout to retry elsewhere. This increases latency for those
requests, but reduces load on live nodes; as a result, other
requests observe latencies drop to about 10ms. Hence with
one failed node, we expect to see an average latency of 510×
1
42

+10× 41
42

= 21.90ms. This implies throughput at roughly
82% of peak and matches the performance in Figure 7. A
larger cluster would further mitigate the performance dip.

Redis maintains 14 shards, each with one primary and
two read replicas. We terminate one of the primary repli-
cas. The yellow curve in Figure 7 shows that throughput
immediately drops to 0 as Redis stops serving requests and
elects a new leader for the replica group with the failed node.
A new node is allocated and data is repartitioned by minute
6, after which Redis returns to peak performance. As a
single-master system that provides linearizability, it is not
designed to run in an environment where faults are likely.

In summary, Anna is able to efficiently respond to node
failure while maintaining over 80% peak throughput, whereas

1Note that repartitioning overhead is not as high as in Sec-
tion 6.3 because here we are using more machines and only
add one new node, as opposed to four in that experiment.

 0

 50

 100

 150

 200

 250

 2 3 4 5 6 7 8

(a) Minimize latency given cost budget

L
a
te

n
c
y
 (

m
ill

is
e
c
o
n
d
)

Cost (dollar/hour)

zipf=0.5
zipf=0.8
zipf=1.0

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300 350

(b) Minimize cost given latency objective

C
o
s
t
(d

o
lla

r/
h
o
u
r)

Latency (millisecond)

zipf=0.5
zipf=0.8
zipf=1.0

Figure 8: Varying contention, we measure (a) Anna
latency per cost budget; (b) Anna cost per latency
objective.

Cost Anna DynamoDB
$2.50/hour 1271 ops/s 35 ops/s
$3.60/hour 3352 ops/s 55 ops/s
$4.40/hour 23017 ops/s 71 ops/s
$5.50/hour 33548 ops/s 90 ops/s
$6.50/hour 38790 ops/s 108 ops/s
$7.60/hour 43354 ops/s 122 ops/s

Table 3: Throughput comparison between Anna and
DynamoDB at different cost budgets.

Redis pauses the system during leader election. Anna’s high
availability makes it a much better fit for cloud deployments.
On the other hand, Redis’s performance normalizes after a
minute as its node spin-up time is much lower than ours
(about 4 minutes)—we return to this point in Section 8.

6.6 Cost-Performance Tradeoffs
Finally, we assess how well Anna is able to meet its SLOs.

We study the Pareto efficiency of our policy: How well does
it find a frontier of cost-performance tradeoffs? We sweep
the SLO parameter on one of the two axes of cost and la-
tency and observe the outcome on the other. Anna uses
both storage tiers and enable all policy actions. We evalu-
ate three contention levels—Zipfian coefficients of 0.5 (about
uniform), 0.8, and 1.0 (moderately skewed). For a database
of 1M keys with a three replicas per key, Anna needs four
EBS nodes to store all data and one memory node for meta-
data; this is a minimum deployment cost of $2.06 per hour.

At each point, we wait for Anna to achieve steady state,
meaning that nodes are not being added or removed and la-
tency is stable. In Figure 8(a), we plot Anna’s steady state
latency for a fixed cost SLO. We measure average request
latency over 30 seconds. At $2.10/hour (4 EBS nodes and
1 memory node), only a small fraction of hot data is stored
in the memory tier due to limited storage capacity. The ob-
served latency ranges from 50ms to 250ms across contention
levels. Requests under the high contention workload are
more likely to hit the small set of hot data in the memory

tier. As we increase the budget, latency improves for all con-
tention levels: more memory nodes are added and a larger
fraction of the data is memory-resident. At $4.40/hour,
Anna can promote at least one replica of all keys to the
memory tier. From here on, latency is under 10ms across all
contention levels. Performance differences between the con-
tention levels are negligible thanks to hot-key replication.

We also compare the throughput between Anna and Dy-
namoDB at each cost budget. Note that in this experiment,
DynamoDB is configured to provide the same eventual con-
sistency guarantees and fault tolerance metric (k = 2) as
Anna. As shown in Table 3, Anna outperforms DynamoDB
by 36× under a low-cost regime and by as much as 355×
at higher costs. Our observed DynamoDB performance is
actually somewhat better than AWS’s advertised perfor-
mance [6], which gives us confidence that this result is a
reasonable assessment of DynamoDB’s efficiency.

Lastly, we set Anna to minimize cost for a stated la-
tency objective (Figure 8(b)). Once more, when the sys-
tem reaches steady state, we measure its resource cost. To
achieve sub-5ms latency—the left side of Figure 8(b)—Anna
requires $9-11 per hour depending on the contention level.
This latency requires at least one replica of all keys to be in
the memory tier. Between 5 and 200ms, higher contention
workloads are cheaper, as hot data can be concentrated on a
few memory nodes. For the same latency range, lower con-
tention workloads require more memory and are thus more
expensive. Above 200ms, most data resides on the EBS tier,
and Anna meets the latency objective at about $2 an hour.

7. RELATED WORK
As a KVS, Anna builds on prior work, both from the

databases and distributed systems literature. Nonetheless,
it is differentiated in how it leverages and combines these
ideas to achieve new levels of efficiency and automation.

Autoscaling Cloud Storage. A small number of cloud-
based file systems have considered workload responsiveness
and autoscaling. Sierra [53] and Rabbit [7] are single-master
systems that handle the problem of read and write offload-
ing: when a node is inactive or overloaded, requests to blocks
at that node need to be offloaded to alternative nodes. This
is particularly important for writes to blocks mastered at the
inactive node. SpringFS [60] optimizes this work by finding
a minimum number of machines needed for offloading. By
contrast, Anna supports multi-master updates and selective
key replication. When nodes go down or get slow in Anna,
writes are simply retried at any existing replica, and new
replicas are spawned as needed by the policy.

ElastMan [4] is a “bolt-on” elasticity manager for cloud
KVSes that responds to changing workload volume. Anna,
on the other hand, manages the dynamics of skew and hotspots
in addition to volume. ElastMan’s proactive policy is an in-
teresting feature that anticipates workload changes like di-
urnal patterns; we return to this in Section 8.

Consistent hashing and distributed hash tables [28, 49, 44]
are widely used in many storage systems [19, 14] to facilitate
dynamic node arrival and departure. Anna allows request
handling and key migration to be interleaved, eliminating
downtime during node membership change while ensuring
consistency, thanks to its lattice-based conflict resolution.

Key-Value Stores. There has been a wide range of work
on key-value stores for both multicore and distributed systems—

more than we have room to survey. Our earlier work [59]
offers a recent snapshot overview of that domain. In this
paper, our focus is not on the KVS kernel, but on mecha-
nisms to adapt to workload distributions and trade-offs in
performance and cost.

Selective Key Replication. Selective replication of data
for performance has a long history, dating back to the Bubba
database system [17]. More recently, the ecStore [55], Scar-
lett [8] and E2FS [15] systems perform single-master se-
lective replication, which creates read-only replicas of hot
data to speed up read performance. Content delivery net-
work (CDN) providers such as Google Cloud CDN [24],
Swarmify [52], and Akamai [3] use similar techniques to
replicate content close to the edge to speed up delivery. In
comparison, Anna’s multi-master selective replication im-
proves both read and write performance, achieving general
workload scaling. Conflicting writes to different replicas are
resolved asynchronously using our lattices’ merge logic [59].

Selective replication requires maintaining metadata to track
hot keys. ecStore uses histograms to reduce hot-key meta-
data, while Anna currently maintains access frequencies for
the full key set. We are exploring two traditional optimiza-
tions to reduce overhead: heavy hitter sketches rather than
histograms [35] and the use of distributed aggregation for
computing sketches in parallel with minimal bandwidth [39].

Another effort to address workload skew is Blowfish [29],
which combines the idea of replication and compression to
trade-off storage and performance under time-varying work-
loads. Adding compression to Anna to achieve fine-grained
performance cost trade-off is an interesting future direction.

Tiered Storage. Beyond textbook caching, there are many
interesting multi-tier storage systems in the literature. A
classic example in the file systems domain is the HP Au-
toRaid system [57]. Databases also considered tertiary stor-
age during the era of WORM devices and storage robots [50,
37]. Broadcast Disks envisioned using multiple broadcast
frequencies to construct arbitrary hierarchies of virtual stor-
age [2]. More recently, there has been interest in filesystem
caching for analytics workloads. OctopusFS [27] is a tiered
file system in this vein. Tachyon [36] is another recent sys-
tem that serves as a memory cache for analytics working
sets, backing a file system interface. Our considerations are
rather different than prior work: The size of each tier in
Anna can change due to elasticity, and the volume of data
to be stored overall can change due to dynamic replication.

8. CONCLUSION AND FUTURE WORK
Anna provides a simple, unified API to efficient key-value

storage in the cloud. Unlike popular storage systems today,
it supports a non-trivial distribution of access patterns by
eliminating common static deployment and cost-performance
barriers. Developers declare their desired tradeoffs, instead
of managing a custom mix of heterogenous services.

Behind this API, Anna uses three core mechanisms to
meet SLOs efficiently: horizontal elasticity to right-size the
service by adding and removing nodes, vertical data move-
ment across tiers to reduce cost by demoting cold data, and
multi-master selective replication to scale request handling
at a fine granularity. The primary contribution of Anna is
its integration of these features into an efficient, autoscal-
ing system representing a new design point for cloud stor-
age. These features are enabled by a policy engine which

monitors workloads and responds by taking the appropriate
actions.

Our evaluation shows that Anna is extremely efficient. In
many cases, Anna is orders of magnitude more cost-effective
than popular cloud storage services and prior research sys-
tems. Anna is also unique in its ability to automatically
adapt to variable workloads.

Although Anna’s design addresses the main weaknesses of
modern cloud storage that we set out to study, it also raises
a number of interesting avenues for research.

Proactive Policy Design. Our current policy design is
entirely reactive, taking action based on current state. To
improve this, we are interested in proactive policies that an-
ticipate upcoming workload changes and act in advance [4,
46, 42, 38]. By combining advanced predictive techniques
with Anna’s swift adaptivity, we believe Anna will further
excel in meeting SLOs & SLAs.

Defining SLOs & SLAs. Currently, the system adminis-
trator defines a single latency objective corresponding to an
overall average. For any system configuration, there are ad-
versarial workloads that can defeat this SLO. For example,
in Section 6.3, a larger load spike could have forced Anna
above its stated SLO for a long period. SLOs, SLAs and
policies can be designed for both expected- and worst-case
scenarios, using pricing and incentives.

A fundamental issue is that users with large working sets
require more resources at the memory tier to hit a given
SLO. This is clear in Figure 8: If each workload corresponds
to a user, the user with lower Zipfian parameter costs more
to service at a given SLO. SLAs should be designed to ac-
count for costs varying across users.

Reducing Autoscaling Overhead. The 5-minute delay
for node addition noted in Section 6.3 is a significant prob-
lem. It limits the effectiveness of any autoscaling policy,
since feedback from allocating a new node is delayed for an
eternity in compute time. A standard solution for cloud
providers today is to maintain a standby pool of “warm”
nodes that are partially prepared for use. To make this
cost-effective, these nodes have to run alternative contain-
ers that monetize the idle resources. An alternative solution
is to make “cold” container startup much faster than it is
today. This is a well-studied problem for desktop operating
systems [41] and VM research [58, 18, 33]. The open-source
Firecracker project [23] is a new microVM framework for the
cloud that helps solve this problem by reducing VM startup
time to 100s of milliseconds.

Evaluating Other Tiers. Currently, Anna is implemented
over two tiers, but cloud providers like AWS offer a much
wider array of price-performance regimes. There is an op-
portunity to add services at both ends of the price-performance
spectrum that can leverage Anna’s autoscaling scaling and
coordination-free execution. As mentioned earlier, our stor-
age kernel requires very little modification to support new
storage layers. Our policy engine also naturally supports
more than two tiers. However, our current thresholds in
Section 5 are the result of significant empirical measurement
and tuning. These parameters will need to be adjusted to
the underlying storage hardware. This effort could be re-
placed by auto-tuning approaches that learn models of con-
figurations, workloads and parameter settings. There has
been recent work on similar auto-tuning problems [54, 25].

9. REFERENCES
[1] D. Abadi. Consistency tradeoffs in modern distributed

database system design: Cap is only part of the story.
Computer, 45(2):37–42, Feb 2012.

[2] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik.
Broadcast disks: data management for asymmetric
communication environments. In Mobile Computing,
pages 331–361. Springer, 1995.

[3] Akamai. https://www.akamai.com.

[4] A. Al-Shishtawy and V. Vlassov. Elastman: Elasticity
manager for elastic key-value stores in the cloud. In
Proceedings of the 2013 ACM Cloud and Autonomic
Computing Conference, CAC ’13, pages 7:1–7:10, New
York, NY, USA, 2013. ACM.

[5] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and
M. Sridharan. Data center tcp (dctcp). In Proceedings
of the ACM SIGCOMM 2010 Conference, SIGCOMM
’10, pages 63–74, New York, NY, USA, 2010. ACM.

[6] Amazon Web Services. Amazon dynamodb developer
guide (api version 2012-08-10), Aug. 2012.
https://docs.aws.amazon.com/amazondynamodb/

latest/developerguide/HowItWorks.

ProvisionedThroughput.html. Accessed May 3, 2018.

[7] H. Amur, J. Cipar, V. Gupta, G. R. Ganger, M. A.
Kozuch, and K. Schwan. Robust and flexible
power-proportional storage. In Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC ’10,
pages 217–228, New York, NY, USA, 2010. ACM.

[8] G. Ananthanarayanan, S. Agarwal, S. Kandula,
A. Greenberg, I. Stoica, D. Harlan, and E. Harris.
Scarlett: Coping with skewed content popularity in
mapreduce clusters. In Proceedings of the Sixth
Conference on Computer Systems, EuroSys ’11, pages
287–300, New York, NY, USA, 2011. ACM.

[9] Amazon web services. https://aws.amazon.com.

[10] Microsoft azure cloud computing platform.
http://azure.microsoft.com.

[11] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M.
Hellerstein, and I. Stoica. Highly available
transactions: Virtues and limitations. Proc. VLDB
Endow., 7(3):181–192, Nov. 2013.

[12] K. Birman, G. Chockler, and R. van Renesse. Toward
a cloud computing research agenda. ACM SIGACt
News, 40(2):68–80, 2009.

[13] E. Brewer. A certain freedom: Thoughts on the cap
theorem. In Proceedings of the 29th ACM
SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, PODC ’10, pages 335–335,
New York, NY, USA, 2010. ACM.

[14] Apache cassandra. http://cassandra.apache.org.

[15] L. Chen, M. Qiu, J. Song, Z. Xiong, and H. Hassan.
E2fs: an elastic storage system for cloud computing.
The Journal of Supercomputing, 74(3):1045–1060, Mar
2018.

[16] N. Conway, W. R. Marczak, P. Alvaro, J. M.
Hellerstein, and D. Maier. Logic and lattices for
distributed programming. In Proceedings of the Third
ACM Symposium on Cloud Computing, SoCC ’12,
pages 1:1–1:14, New York, NY, USA, 2012. ACM.

[17] G. Copeland, W. Alexander, E. Boughter, and
T. Keller. Data placement in Bubba. In ACM

SIGMOD Record, volume 17, pages 99–108. ACM,
1988.

[18] B. Cully, G. Lefebvre, D. Meyer, M. Feeley,
N. Hutchinson, and A. Warfield. Remus: High
availability via asynchronous virtual machine
replication. In Proceedings of the 5th USENIX
Symposium on Networked Systems Design and
Implementation, pages 161–174. San Francisco, 2008.

[19] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s highly available key-value store.
In Proceedings of Twenty-first ACM SIGOPS
Symposium on Operating Systems Principles, SOSP
’07, pages 205–220, New York, NY, USA, 2007. ACM.

[20] A. Demers, D. Greene, C. Houser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry.
Epidemic algorithms for replicated database
maintenance. ACM SIGOPS Operating Systems
Review, 22(1):8–32, 1988.

[21] Kubernetes - build, ship, and run any app, anywhere.
https://www.docker.com.

[22] J. M. Faleiro and D. J. Abadi. Latch-free
synchronization in database systems: Silver bullet or
fool’s gold? In Proceedings of the 8th Biennial
Conference on Innovative Data Systems Research,
CIDR ’17, 2017.

[23] Firecracker.
https://firecracker-microvm.github.io.

[24] Google cloud platform. https://cloud.google.com.

[25] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong,
F. B. Cetin, and S. Babu. Starfish: a self-tuning
system for big data analytics. In Cidr, volume 11,
pages 261–272, 2011.

[26] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
Zookeeper: Wait-free coordination for internet-scale
systems. In USENIX annual technical conference,
volume 8. Boston, MA, USA, 2010.

[27] E. Kakoulli and H. Herodotou. Octopusfs: A
distributed file system with tiered storage
management. In Proceedings of the 2017 ACM
International Conference on Management of Data,
SIGMOD ’17, pages 65–78, New York, NY, USA,
2017. ACM.

[28] D. Karger, E. Lehman, T. Leighton, R. Panigrahy,
M. Levine, and D. Lewin. Consistent hashing and
random trees: Distributed caching protocols for
relieving hot spots on the world wide web. In
Proceedings of the Twenty-ninth Annual ACM
Symposium on Theory of Computing, STOC ’97, pages
654–663, New York, NY, USA, 1997. ACM.

[29] A. Khandelwal, R. Agarwal, and I. Stoica. Blowfish:
Dynamic storage-performance tradeoff in data stores.
In 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 16), pages
485–500, Santa Clara, CA, 2016. USENIX Association.

[30] Kubernetes: Production-grade container
orchestration. http://kubernetes.io.

[31] Kubernetes. Set up high-availability kubernetes
masters. https://kubernetes.io/docs/tasks/
administer-cluster/highly-available-master/.
Accessed May 3, 2018.

[32] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli,
C. Kellogg, S. Mittal, J. M. Patel, K. Ramasamy, and
S. Taneja. Twitter heron: Stream processing at scale.
In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’15, pages 239–250, New York, NY, USA,
2015. ACM.

[33] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell,
P. Patchin, S. M. Rumble, E. De Lara, M. Brudno,
and M. Satyanarayanan. Snowflock: rapid virtual
machine cloning for cloud computing. In Proceedings
of the 4th ACM European conference on Computer
systems, pages 1–12. ACM, 2009.

[34] L. Lamport. The part-time parliament. ACM
Transactions on Computer Systems (TOCS), 16(2),
1998.

[35] K. G. Larsen, J. Nelson, H. L. Nguyen, and
M. Thorup. Heavy hitters via cluster-preserving
clustering. CoRR, abs/1604.01357, 2016.

[36] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and
I. Stoica. Tachyon: Reliable, memory speed storage for
cluster computing frameworks. In Proceedings of the
ACM Symposium on Cloud Computing, SOCC ’14,
pages 6:1–6:15, New York, NY, USA, 2014. ACM.

[37] D. Lomet and B. Salzberg. Access methods for
multiversion data. SIGMOD Rec., 18(2):315–324, June
1989.

[38] L. Ma, D. Van Aken, A. Hefny, G. Mezerhane,
A. Pavlo, and G. J. Gordon. Query-based workload
forecasting for self-driving database management
systems. In Proceedings of the 2018 International
Conference on Management of Data, SIGMOD ’18,
pages 631–645, 2018.

[39] A. Manjhi, S. Nath, and P. B. Gibbons. Tributaries
and deltas: Efficient and robust aggregation in sensor
network streams. In Proceedings of the 2005 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’05, pages 287–298, New York, NY,
USA, 2005. ACM.

[40] Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness
for fast multicore key-value storage. In Proceedings of
the 7th ACM european conference on Computer
Systems, pages 183–196. ACM, 2012.

[41] Microsoft Corp. Delivering a great startup and
shutdown experience, May 2017. https://docs.
microsoft.com/en-us/windows-hardware/test/weg/

delivering-a-great-startup-and-shutdown-experience.
Accessed May 3, 2018.

[42] A. Pavlo, G. Angulo, J. Arulraj, H. Lin, J. Lin, L. Ma,
P. Menon, T. Mowry, M. Perron, I. Quah,
S. Santurkar, A. Tomasic, S. Toor, D. V. Aken,
Z. Wang, Y. Wu, R. Xian, and T. Zhang. Self-driving
database management systems. In CIDR 2017,
Conference on Innovative Data Systems Research,
2017.

[43] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp,
and I. Stoica. Load balancing in structured p2p
systems. In International Workshop on Peer-to-Peer
Systems, pages 68–79. Springer, 2003.

[44] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network,
volume 31. ACM, 2001.

[45] A. Ross, A. Hilton, and D. Rensin. Slos, slis, slas, oh
my - cre life lessons, january 2017.
https://cloudplatform.googleblog.com/2017/01/

availability-part-deux--CRE-life-lessons.html.
Accessed May 3, 2018.

[46] N. Roy, A. Dubey, and A. Gokhale. Efficient
autoscaling in the cloud using predictive models for
workload forecasting. In Proceedings of the 2011 IEEE
4th International Conference on Cloud Computing,
CLOUD ’11, pages 500–507, Washington, DC, USA,
2011. IEEE Computer Society.

[47] M. Shapiro, N. Preguiça, C. Baquero, and
M. Zawirski. Conflict-free replicated data types. In
X. Défago, F. Petit, and V. Villain, editors,
Stabilization, Safety, and Security of Distributed
Systems, pages 386–400, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

[48] K. Shvachko, H. Kuang, S. Radia, and R. Chansler.
The hadoop distributed file system. In Proceedings of
the 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), MSST ’10, pages
1–10, Washington, DC, USA, 2010. IEEE Computer
Society.

[49] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In Proceedings
of the 2001 Conference on Applications, Technologies,
Architectures, and Protocols for Computer
Communications, SIGCOMM ’01, pages 149–160, New
York, NY, USA, 2001. ACM.

[50] M. Stonebraker. The design of the postgres storage
system. In Proceedings of the 13th International
Conference on Very Large Data Bases, VLDB ’87,
pages 289–300, San Francisco, CA, USA, 1987.
Morgan Kaufmann Publishers Inc.

[51] Storm. https://github.com/apache/storm.

[52] Swarmify. https://swarmify.com.

[53] E. Thereska, A. Donnelly, and D. Narayanan. Sierra:
Practical power-proportionality for data center
storage. In Proceedings of the Sixth Conference on
Computer Systems, EuroSys ’11, pages 169–182, New
York, NY, USA, 2011. ACM.

[54] D. Van Aken, A. Pavlo, G. J. Gordon, and B. Zhang.
Automatic database management system tuning
through large-scale machine learning. In Proceedings
of the 2017 ACM International Conference on
Management of Data, pages 1009–1024. ACM, 2017.

[55] H. T. Vo, C. Chen, and B. C. Ooi. Towards elastic
transactional cloud storage with range query support.
Proceedings of the VLDB Endowment, 3(1-2):506–514,
2010.

[56] F. M. Waas. Beyond conventional data warehousing -
massively parallel data processing with greenplum
database - (invited talk). In U. Dayal, M. Castellanos,
and T. Sellis, editors, Business Intelligence for the
Real-Time Enterprise - Second International
Workshop, BIRTE 2008, Auckland, New Zealand,
August 24, 2008, Revised Selected Papers, pages
89–96, Aug. 2008.

[57] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan.
The hp autoraid hierarchical storage system. ACM
Trans. Comput. Syst., 14(1):108–136, Feb. 1996.

[58] T. Wood, P. J. Shenoy, A. Venkataramani, M. S.
Yousif, et al. Black-box and gray-box strategies for
virtual machine migration. In NSDI, volume 7, pages
17–17, 2007.

[59] C. Wu, J. M. Faleiro, Y. Lin, and J. M. Hellerstein.
Anna: A kvs for any scale. 2018 IEEE 34th
International Conference on Data Engineering
(ICDE), 2018.

[60] L. Xu, J. Cipar, E. Krevat, A. Tumanov, N. Gupta,
M. A. Kozuch, and G. R. Ganger. Springfs: Bridging
agility and performance in elastic distributed storage.
In Proc. of the 12th USENIX FAST, pages 243–255.
USENIX, 2014.

