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Abstract
Real-time predictive applications can demand continuous
and agile development, with new models constantly being
trained, tested, and then deployed. Training and testing are
done by replaying stored event logs, running new models
in the context of historical data in a form of backtesting
or “what if?” analysis. To replay weeks or months of logs
while developers wait, we need systems that can stream
event logs through prediction logic many times faster than
the real-time rate. A challenge with high-speed replay is
preserving sequential semantics while harnessing parallel
processing power. The crux of the problem lies with causal
dependencies inherent in the sequential semantics of log
replay.

We introduce an execution engine that produces serial-
equivalent output while accelerating throughput with pipelin-
ing and distributed parallelism. This is made possible by
optimizing for high throughput rather than the traditional
stream processing goal of low latency, and by aggressive
sharing of versioned state, a technique we term Multi-
Versioned Parallel Streaming (MVPS). In experiments we
see that this engine, which we call ReStream, performs as
well as batch processing and more than an order of magni-
tude better than a single-threaded implementation.

Categories and Subject Descriptors H.2.4 [Database
Management]: Systems Concurrency; H.3.4 [Information
Storage and Retrieval]: Systems and Software—Distributed
systems

Keywords Stream replay, backtesting, distributed stream
processing
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1. Introduction
Stream processing is a common computing paradigm for nu-
merous applications. Security systems, recommender sys-
tems, financial trading systems, advertising, business intel-
ligence and monitoring applications all benefit from its abil-
ity to produce real-time or near-real-time insights and ac-
tions from unbounded data sources. Recently, the database
community has seen a rekindled interest in streaming, with
advancements in scale [2, 49], consistency guarantees [36],
and the two in combination [3].

In replay we feed a streaming system using stored event
logs, rather than real-time data. A prominent need for replay
is “what if?” scenario analysis, in which developers revisit a
recorded event log to simulate the behavior of a new stream-
ing program ahead of its deployment. For example, we might
evaluate a new combination of triggers in a financial fraud
prevention application before a production release. Replay
also has a special place in tuning machine learning models,
especially as applied to real-time recommendations, where
it allows training and back-testing with new features (i.e.,
model inputs derived in new ways from base facts). Our ex-
perience in industry relates directly to this challenge [43].
Section 2 provides further context on the need for replay.

A simple calculation shows that the throughput demands
for streaming replay are much greater than those for real-
time streaming. Because replay scenarios can call for pro-
cessing weeks- or months-worth of stored events while a
developer waits, we desire a speedup of multiple orders of
magnitude to bring job durations down to minutes. Provid-
ing interactive replay during development requires an effi-
cient processing framework, a capacity for creating paral-
lelism from a sequential log, and a program that operates on
its inputs in order. Replay also shifts performance priorities
from the latency of event handling required for live streams
to the throughput of bulk log processing. In short, we want
to combine streaming semantics with batch-processing per-
formance characteristics. This represents a new point in the
design space for data processing systems.

The requirements for accelerated replay can be summa-
rized as follows:



• Timestamped events from an ordered log: Data arrives
pre-ordered according to externally-provided timestamps.
The log source may be partitioned, but events are sorted
within each partition and timestamps align events across
partitions to a total order.

• Familiar stream programming: Users provide blocks of
familiar imperative code, triggered by the sequence of
events in the stream. A simple model is to use Event-
Condition-Action (ECA) rules, with the events, conditions
and actions written in a modern programming language or
a domain-specific language [20, 27].

• Serial-equivalent deterministic results: The results of pro-
cessing a log must be repeatable and deterministic, equiv-
alent to a single fixed ordering of event handling and inde-
pendent of partitioning or parallelism during replay. The
value of deterministic replay is well established in the de-
bugging literature [32], and these motives translate to the
development of data-driven applications.

• Throughput via scale-out: To provide the throughput re-
quired for quick replay of extensive logs, replay has to
scale out much more aggressively than the live streaming
systems it simulates. Modern batch processing systems are
the benchmark here, scaling up to thousands of parallel
machines processing petabytes of input data [19, 37].
In this paper we describe ReStream, a system we have

built to explore these requirements. ReStream introduces
a new dataflow execution model, Multi-Versioned Parallel
Streaming (MVPS), that differs substantially from tradi-
tional systems for bulk or stream processing. A key theme
in our design is aggressive sharing of data—referring to
both the input stream itself and the state that is accumu-
lated during processing of that stream. Key design points
in ReStream include: (1) serial-equivalent parallel execu-
tion, (2) a shared scan of the input stream from which all
operators can view each input datum, (3) globally accessi-
ble versioned state that provides logically sequential access
semantics, and (4) dataflow in access to these state objects.
We explain and expand on these ideas further in Section 3.

Our evaluation compares ReStream to multiple imple-
mentations using Spark [52], showing the value of serial-
equivalence provided by MVPS. While throughput is com-
parable, ReStream provides consistent results for increas-
ing cluster size and processing throughput, whereas Spark
Streaming approximates the computation with deteriorating
fidelity and Spark batch processing runs into memory lim-
itations. We also compare ReStream to an efficient single-
threaded implementation, demonstrating an order of magni-
tude greater throughput.

Our key contributions are as follows: We identify acceler-
ated replay as a critical advantage for rapid development of
applications that require backtesting; we develop the Multi-
Versioned Parallel Streaming execution model, which allows
for serial equivalent processing of stored logs using dis-
tributed compute resources; and we provide an implemen-

tation and evaluate it experimentally, demonstrating its prac-
ticality as well as its limits.

The remainder of this paper is organized as follows. We
introduce replay workloads in Section 2, including a canon-
ical example. Building upon this example, we describe the
Multi-Versioned Parallel Streaming execution model in de-
tail in Section 3, and its implementation in ReStream in Sec-
tion 4. We describe an experimental evaluation of ReStream
that probes the limits to scalability of accelerated replay in
Section 5. In Section 6, we place this work in the context of
the extensive literature on stream processing before looking
ahead and summarizing in Section 7 and Section 8.

2. Motivation
We further highlight the need for accelerated replay with ap-
plications. We start with a canonical example which we will
use in the discussion of ReStream’s runtime in Section 4 and
in the experimental evaluation in Section 5. We also describe
further motivating examples that highlight the breadth of ap-
plications for streaming replay before continuing to a dis-
cussion of alternatives to ReStream’s accelerated replay.

2.1 A Canonical Example: Labeling Spam
We focus this paper on a simplified example designed to be
easy to understand while remaining representative of real-
world workloads. At scale, any consumer service that ac-
cepts user input (e.g., messages or comments) has to deal
with spam. An anti-spam system must be able to keep up
with a rapidly changing world in which spammers constantly
evolve their strategies. As attackers seek to evade blocking
they frequently alter potentially identifying characteristics,
rotating source IP addresses, sender accounts, or message
payload, and modifying the automated scripts designed to
imitate natural user activity. Spam filtering’s production de-
mands make stream processing a natural solution. It requires
low latency because the spam filter may be deployed in-
line, holding up message delivery until a decision becomes
available. It also requires real-time updates to recognize fast-
moving patterns.

While an industrial anti-spam system needs many rules,
we proceed with an expository example from a social net-
work using one multi-part rule:

Message is spam if
1. Sending user has (messages sent to non-friends)

> 2 × (messages sent to friends)
and
2. Message is sent from IP address for which > 20%

of messages sent contain an e-mail address

Implementing this heuristic requires processing two types
of events: new friendships and messages. The relevant trig-
ger rules are as follows:



A. New friendship → Mark friend connection between
user pair.

B. Message → Check whether sender and recipient
have a friend connection; increment the appropriate
count of messages sent to non-friends/friends.

C. Message → Increment message count for sending
IP address. Scan through message content for e-mail
address; if found also increment count of messages
containing e-mail addresses.

D. Message → Check conditions (a) and (b) from
above; if both hold, mark as spam.

It can be hard to say how a heuristic like this will per-
form once deployed in production. What fraction of spam
messages will it catch? How often will it mistakenly label
a legitimate message as spam? One also wonders how suit-
able the numeric constants embedded in the algorithm are.
Replay can provide answers to these and other questions.

2.2 Other Motivating Examples
Applications that benefit from backtesting and stand to expe-
rience faster development with accelerated replay are numer-
ous. Security-related applications beyond anti-spam include
payment fraud detection and money laundering countermea-
sures [10], and computer network intrusion detection [38].
Financial applications include automated trading algorithms
and market monitoring algorithms [50]. In commerce, online
retailers often want to adjust prices dynamically as invento-
ries and consumer interest fluctuate [17]; ride-hailing apps
may seek to direct additional drivers to locations experienc-
ing high demand [25].

Real-time trained systems, ones such as ad serving sys-
tems [34] that employ machine learning rather than sim-
ple ECA thresholds, can also reap big benefits from accel-
erated replay. The anti-spam rule described in Section 2.1
has a number of hard-coded parameters that could instead be
learned, but doing so requires computing training data from
history with temporal resolution just as fine as that avail-
able during real-time streaming. Replay makes this possible,
providing a flexible capability for training and back-testing
complex machine learning models [43].

2.3 Replay Alternatives
In the absence of serial-equivalent high-throughput paral-
lelized replay introduced by ReStream, developers have had
to use alternative, less powerful evaluation strategies.

Serial streaming replay: When data volumes are small,
computations are simple, or when development cycles are
slow, serial replay may be adequate. In previous industrial
work we described the use of replay in developing recom-
mendations for a social network with hundreds of millions of
members [43]. In this environment, optimized serial replay
allowed processing 1 billion events in a few hours, making it
possible to train new machine learning models with dozens

of features in the course of an afternoon. Though it proved
valuable, the limited scalability of serial replay provided mo-
tivation for the development of ReStream.

Production “dark launch”: Developers can release ex-
perimental code to production after modifying it to replace
actions with logging. In our anti-spam example, this means
recording the filtering decision rather than blocking spam.
Though it provides high-fidelity evaluation, dark launch test-
ing has slow turnaround, especially when rules require some
time to reach a steady state, e.g., a spam rule that integrates
behavior for one week will take at least one week to test.

Streaming replay without serial equivalence: Parallel
partitioned dataflow operators are a common feature of mod-
ern streaming implementations. Systems such as Storm [49]
and MillWheel [2] allow access to external state such as
a shared database. This approach to sharing state presents
a problem for serial-equivalent replay because progress be-
tween partitions is not perfectly synchronized. In our spam
example, a message coming shortly after a friend connec-
tion may be misclassified if the two events are processed out
of order. Since we contemplate a multiple order of magni-
tude acceleration relative to the real-time rate, events pro-
cessed at about the same time during replay can be surpris-
ingly far apart in the original log: events separated by hours
may be processed during the same second. Systems such as
Samza [5], and MUPD8 [31] maintain internal operator state
and are able to guarantee in-order processing. However, the
lack of shared state restricts the flexibility of the program-
ming model, e.g., in referencing common subexpressions.

Batch evaluation: Batch processing systems [19, 52] are
set-oriented rather than sequence- or stream-oriented. While
they materialize state between batches, they do not support
the sort of time-resolved state used in our anti-spam exam-
ple. Summingbird allows one source program to execute in
both streaming and batch environments, the former for real-
time processing and the latter for off-line analysis, but it re-
mains limited to calculations framed with batch processing
semantics. It has full support for aggregation, and other set-
oriented operations, but not for the trigger updates to muta-
ble state used in streaming systems.

Spark’s discretized streams approach [53] marks an inter-
mediate point in the design space. Its batches are a tempo-
ral coarsening, one that grows as higher throughput calls for
larger batches, a semantic coupling unsuitable for replay.

3. Execution Model
Most data analysis systems for both stream and batch pro-
cessing follow a dataflow model, where records are passed
among operators in a tree or Directed Acyclic Graph (DAG).
In our work, we separate the definition of operators from
the passing of information between operators. In particular,
our operators are stateless: each operator maintains state by
reading and writing to a shared global state store. Our oper-
ators also do not communicate directly; the communication



graph in our system is entirely implicit, and results from the
data dependencies through the global state. This approach is
similar of the tuple spaces abstraction [23] in that commu-
nicating entities are decoupled, but different in that we use
versioned state to provide deterministic execution.

There is also a connection between our work and trans-
action processing. We enforce a serial execution schedule
derived from the log ordering, a constraint appropriate to
the needs of backtesting and replay. Transactional serializ-
ability also constrains valid execution schedules. It has been
implemented for stream processing [36], but can produce
non-deterministic results because it allows reorderings. This
presents a scalability challenge since these reorderings may
be influenced by runtime conditions, e.g., parallelism.

In this section we elaborate on the specifics of our execu-
tion model and highlight how it helps us achieve accelerated
replay.

3.1 Goals
We set out to build a system that would provide the capa-
bility to execute a streaming query over a stored, immutable
event stream as if those events were happening in real time
(i.e., to replay them), and to do so in a way that is not only
fast, but also highly scalable. Our specific desiderata were:

1. Parallel scale-out for performance. Just as parallel data-
bases, big data processing frameworks, and many stream-
ing systems rely on the use of numerous machines to pro-
cess distinct portions of the input data, we require an exe-
cution model which allows us to easily scale up to tens or
hundreds of machines.

2. Shared global state for generality. Though it is common
to provide partition-local state semantics in streaming
systems (e.g. Apache Flink [4]), it is also common to
provide some way to share global state, e.g. through the
use of some external database as in MillWheel [2] and
Apache Storm [49]. So as not to restrict the programming
model we require that the programmer is able to condition
the processing of each event on the full system state.

3. Serial-equivalent processing semantics for faithful re-
play. We wish to return results identical to those produced
by processing each event sequentially; in achieving paral-
lelism we refuse to sacrifice accuracy.

These three goals are somewhat at odds. A single ma-
chine processing each event in sequence allows programmer
flexibility and achieves serial-equivalence trivially, but scal-
ing this approach to multiple machines involves “lockstep
parallelism,” performance-degrading coordination following
each event. Disallowing communication between partitions
allows scale-out with trivially serial semantics, but does not
meet our requirement for globally shared state. Dataflow-
oriented streaming systems which allow for global state typ-
ically do not provide guarantees about serial consistency
of that state [2, 49], again meeting only two of our goals.
Transaction processing, when applied to streaming [36], per-

mits event reordering and may produce results different from
those of in-order computation. To achieve all three goals si-
multaneously, we develop a novel execution model which
we refer to as Multi-Versioned Parallel Streaming.

3.2 Multi-Versioned Parallel Streaming
The traditional dataflow model involves operators, chunks
of computation which perform transformations on their in-
puts, passing data between one another in such a way that a
DAG of transformations is formed; this complete graph is re-
ferred to as a “dataflow.” Multi-Versioned Parallel Streaming
(MVPS) builds off of and makes a few key departures from
this model. It operates in a partition parallel context where
the data is divided into distinct partitions, each processed in
parallel by the same operators (as initially described by the
exchange operator in [24]). MVPS augments a dataflow that
may not be easily parallelizable, providing a greater level of
concurrency and independence of scheduling.

All state in MVPS corresponds to an explicitly tracked
timestamp, in our case one derived from the ordered log be-
ing replayed. To parallelize a dataflow, we execute all of its
operators on each machine, using timestamps and versioned
state to preserve serial equivalence, aiming to allow each ma-
chine to operate as independently as possible. The key in-
sight in MVPS is to take a dataflow that is semantically very
closely coupled—i.e. has tight consistency requirements be-
tween subsequent data inputs—and to allow for this coupling
to be relaxed without sacrificing any logical consistency.

3.2.1 Comparison to Traditional Dataflow
In a traditional dataflow, operators accept an input record,
perform some computation, and may output data to be pro-
cessed downstream. These operators are linked together by
their data dependencies to represent a dataflow graph which,
taken as a whole, executes some processing logic. We de-
scribe here some of the key points of MVPS that differenti-
ate it from this traditional model:

• Dataflow via shared state objects: In a traditional dataflow,
data passes directly from operator to operator, e.g. through
the use of call stacks or queues. In MVPS, data flows be-
tween operators implicitly through accesses on managed
state objects.

• Multi-versioned state: State is stored in a versioned man-
ner; each time an object’s value is written, a new version
is created, but the old version remains accessible to times-
tamped reads. The value of multiple versions is explained
further in Section 3.2.2.

• Shared-state semantics: In traditional dataflow, operators
may maintain some internal state, but typically this state
is not accessible by other operators, and in a partition-
parallel context, this state is not shared across replicas of
the operator, e.g., [5]. In MVPS, operators do not store
state; instead, they read from and write to managed state
objects, which are globally accessible by all operators



Figure 1: We show here how data dependencies translate between
standard dataflow and dataflow via ReplayStates. Circles are op-
erators. Clouds R and S are ReplayStates; we diagram them be-
tween the two machines because their full contents can be accessed
by either. Gray dashed arrows denote the dependencies in a tradi-
tional dataflow sense. The black arrows show how these translate
into MVPS, as a write-read dependency on some ReplayState.

across all partitions. These state objects represent a shared
database that retains a history of changes to all values.

• Full pipeline access to input data: Traditionally, input data
is supplied to the first operator in a pipeline only; subse-
quent operators are given only the output of their parent
operator(s). We allow all operators to access the original
input record they are currently processing, in addition to
the shared state objects (analogous to data passed in the
traditional dataflow sense). Together these last two items
embody our theme of aggressively sharing state.

• Time-ordered pipelined computation: MVPS requires that
each input datum has an associated timestamp to define a
total order for the data set.

• Serial-equivalent semantics: Despite processing input in
parallel on multiple machines, we provide the semantic
model that all inputs are processed sequentially in order
of their timestamps; this is done by differentiating logi-
cal processing time from physical processing time. Tradi-
tionally inputs are processed serially on the portion of a
dataflow living on a single machine, but no guarantees are
provided about the order of processing on different parti-
tions of the input data.

3.2.2 Operators, Input Data & State
MVPS dataflows are comprised of operators and the state
objects that they interact with. Operators themselves are
stateless; they may store state only through the use of man-
aged state objects that we refer to as ReplayStates, which
are essentially time-aware versioned objects in a key-value
store. Each operator is supplied with the input event cur-
rently being processed, and may additionally request data
from or write data to any ReplayState. The access pattern
of operators on ReplayStates implicitly defines the dataflow

A1: W(a,15) W(b,8) W(c,19)
A2: R(12) R(17)

B1: W(a,15) W(b,8) W(c,19)
B2: R(22) R(17)

Listing 1: Two sample access patterns performed by operators A1
and A2 on some single-value ReplayState and operators B1 and B2
on another single-value ReplayState. W(value,time) denotes
a write and R(time) denotes a read, where time is the logical
time at which the operation occurs. Physical time moves from left
to right. We show value-oriented writes for brevity but allow update
functions expressed as closures (e.g. “add n to this value”).

graph; if in a traditional dataflow operator B would consume
the output of operator A, instead operator A will write to
some ReplayState S and B will read from S to receive its
input data (see Figure 1).

Input data must have a total ordering and must be avail-
able in this order within each partition. In our work we as-
sume that the input data are timestamped events which are
provided by an in-order scan. We refer to an event’s times-
tamp as its logical time tL, for simplicity assuming that these
timestamps are unique, that any repeated timestamp values
have been annotated with order prior to replay. The times-
tamp ordering defines where causal dependencies may arise;
in particular, processing of an event with timestamp tL may
depend on any event with timestamp t ≤ tL but may not de-
pend on other events with timestamp t > tL. This has impli-
cations on pipelining; an operator B which consumes data
produced by operator A may only process events with times-
tamp t < tA, where tA is the lowest timestamp which any
partition of A is still processing. This is discussed further in
the context of batching in Section 3.2.3.

Since input events contain tL the operators are always
aware of the logical time at which their processing is oc-
curring. All operations on ReplayStates are accompanied by
a timestamp which specifies the logical time at which the ac-
cess occurs; for writes, this specifies at what logical time the
write goes into effect and for reads this specifies a logical
point in time for choosing a version from the ReplayState.
By specifying a logical time for accesses to state, we provide
the ability to submit reads and writes to shared state that are
not necessarily ordered in physical time as they are in log-
ical time, while still achieving serial-equivalent results. For
example, consider operators that are accessing ReplayStates
using the access patterns shown in Listing 1. The access pat-
tern on state A is valid. R(12) returns b since W(a,15)
has not yet logically occurred at time 12. R(17) returns
a, since at this point the first write has logically occurred.
The access pattern on state B is not valid; R(22) returns
a, reflecting the latest information available at its physical
time, W(a,15), but W(c,19) renders the read inconsis-
tent. We discuss in Section 3.2.3 how we avoid such scenar-
ios. Our use of timestamps in MVPS draws inspiration from
timestamp-order concurrency control in databases [12].



Figure 2: We show here different batches of events (rectangles)
passing through the dataflow. The arrows in the center denote the
flow of data in or out of the ReplayStates (clouds). Arrows between
operators (circles) denote the implicit dataflow dependencies.

Each ReplayState is physically sharded across all ma-
chines, e.g. by hash-partitioning data items based on their
associated key. We allow global access, so operators on all
machines may access any portion of the key space within a
ReplayState. We only disallow cyclic chains of write-read
dependencies, as discussed further in Section 4.2. Transfer
of data between machines is internal to ReplayStates and oc-
curs transparently; each operator treats the ReplayState as a
flat mapping without regard for locality.

3.2.3 Batching for Serial-Equivalence & Throughput
A carefully designed batch processing approach allows for
high throughput while maintaining serial-equivalent results.
Each partition of the input event stream is broken into
batches which are defined by start and end points in the
ordering, e.g. batch 0 may consist of events between logical
time 0 (inclusive) and 10,000 (exclusive). Note that batches
are defined by a range over the ordering, not by a specific
number of events. We number these batches from 0 (the
batch containing the events with the lowest timestamps) to
N (the batch containing the events with the highest times-
tamps). Operators process events in these batches, accepting
an event as input, reading data from ReplayStates, and per-
forming writes to other ReplayStates to pass data to down-
stream operators.

Operators can pull data freely from ReplayStates, with
two restrictions: (1) An operator A may not read any data
from a ReplayState until all operators (on all machines) that
write to that ReplayState have finished all batches up to and
including the one at which A is attempting to read. That is,
for a given ReplayState S and batch B j, no reads may occur
on any machine until all operators that may write to S have
finished all batches Bi≤ j; (2) The timestamps for read and
write operations are restricted to be within the boundaries of
the current batch.

get(timestamp: Long, key: K): V

merge(timestamp: Long, key: K,
mergeFunction: V => V): Unit

Listing 2: The ReplayState object API. K and V are the key and
value types of a ReplayState and V => V denotes a function ac-
cepting an input of type V and returning an output of the same type.

Figure 2 shows an example of how operators may need to
wait to process a batch. Operator A1 has finished submitting
all writes for batch 2 to R, but A0 has not; thus B1, which
may read R, cannot yet begin processing batch 2. However
we see that A1 can begin processing batch 3. Operators B0
and B1 have finished submitting all writes for batch 0 to S,
so C0 and C1 are both able to read from S and process the
batch. This can happen concurrently with B0 continuing to
write to S and read from R during the processing of batch 1.

These restrictions combine to ensure that all possible data
that may affect the value of a read are present when that
read occurs; even with out-of-order processing, operators
always have a view of the state that is consistent with a fully
serial execution. To see this, consider the case of a single
ReplayState which is being read during the processing of
batch Bm. Let T S

i be the logical start time of batch Bi, and
T E

i be the logical end time. Once all writes are complete
for batches Bi≤m on all machines (restriction (1) above), all
subsequent writes must have a timestamp tW ≥ T S

m+1 = T E
m

due to restriction (2). Applying restriction (2) to reads as
well, we have T S

m ≤ tR < T E
m for all read timestamps tR within

Bm. Since a write occurring logically after a read does not
affect the value of the read, a read at tR can depend only
on writes with logical times of tW ≤ tR. We have shown
above that tW ≥ T E

m and tR < T E
m , thus there is no case where

another write may modify the value of any of the reads being
satisfied.

To limit memory consumption during long-running re-
play computations, we perform garbage collection at batch
boundaries. When the last operator in the pipeline has fin-
ished processing a batch we scan the ReplayStates, retaining
for each key only the most recent among versions with write
timestamps before the batch end time.

4. ReStream Implementation
ReStream is our implementation of MVPS with batching,
the execution model described in Section 3. It comprises ap-
proximately 4,000 lines of Scala code. In what follows we
describe the design of the ReStream programming model
and, with the aid of our spam labeling example, the impor-
tant aspects of the implementation.

4.1 Programming Model
ReStream programs are specified as a set of “bindings,”
which are analogous to stateless dataflow operators. Bind-
ings are similar to rule definitions from rule-based sys-



tems [26] in that they map an event type, optionally re-
stricted by some conditional statements, to certain actions.
Bindings in ReStream may execute arbitrary Scala code, but
are limited to accessing shared state through framework-
managed ReplayState objects. An I/O thread reads events
from disk, filling a shared buffer that all operators access
as they progress. Events that do not match the criteria for a
given binding still conceptually flow through the dataflow
operator, though no actual action is taken.

Listing 2 shows the ReplayState API. ReplayStates ex-
pose get (read) and merge (write) methods that accept the
logical access time of the operation, the key of interest, and
for merge a function that is applied to the previous value to
obtain the new value. ReplayStates maintain the history of a
value as it changes, making timestamped reads possible. Re-
questing a get at timestamp tg will return the value obtained
by applying all merge operations that have a timestamp tm
such that tm ≤ tg, starting from a specified default value.

Listing 3 shows the implementation of our canonical ex-
ample, the spam detector presented in Section 2.1.

4.2 Dataflow Analysis
Since a ReStream program leaves dataflow implicit, respect-
ing the write-read ordering needs of MVPS discussed in
Section 3.2.2 requires analyzing the code in its collection
of bindings. Bindings interface with one another through
ReplayStates so we can use Scala metaprogramming tech-
niques to establish data dependencies, drawing a graph with
directed edges running from each binding to the states it
writes, and to each binding from the states it reads. Fig-
ure 3 illustrates this transformation for our spam detection
example of Listing 3. We do not consider write-write depen-
dencies, as these are automatically resolved by the multi-
versioned state.

We require that the resulting dataflow graph be acyclic.
A topological sort of the bindings within it then yields an
execution order that guarantees write-read dataflow depen-
dencies will be respected.

4.3 Implementation Details
The general architecture of the system is a driver-worker ar-
chitecture, shown in Figure 4. There is one driver program
and there are n worker nodes, each processing some sub-
section of the event history logs. The driver coordinates the
progress of execution on each worker by sending updates in
the form of low-water marks, timestamps that correspond to
the least-advanced partition for each operator. The driver is
not involved in communication of ReplayState data, which
is partitioned across workers and updated by communication
between them.

To avoid small network transfers and fine-grained coor-
dination between nodes, communication only occurs once
per batch per ReplayState. As an operator processes data
within a batch it submits writes to a ReplayState, which
stores them in a local buffer. Each buffered write eventually

bind { nfe: NewFriendshipEvent => // Binding A
val userPair = (nfe.userIdA, nfe.userIdB)
friendships.merge(nfe.ts,userPair,_ || true)

}
bind { me: MessageEvent => // Binding B
val userPair = (me.senderId, me.rcvdId)
if (friendships.get(me.ts, userPair)) {

friendMsgs.merge(me.ts,me.senderId,_+1)
} else {

nonfriendMsgs.merge(me.ts,me.senderId,_+1)
}

}
bind { me: MessageEvent => // Binding C
ipMsgs.merge(me.ts, me.sendIP, _+1)
if (SpamUtil.hasEmail(me.content)) {

ipEmailMsgs.merge(me.ts, me.sendIP, _+1)
}

}
bind { me: MessageEvent => // Binding D
val ipTotal = ipMsgs.get(me.ts, me.sendIP)
val ipEmails =

ipEmailMsgs.get(me.ts, me.sendIP)
val friendMessages =

friendMsgs.get(me.ts, me.senderId)
val nonfriendMessages =

nonfriendMsgs.get(me.ts, me.senderId)

if (nonfriendMessages > 2*friendMessages
&& ipEmails > 0.2*ipTotal) {

// Message is spam; take action
}

}

Listing 3: A sample program for the spam rules in Section 2.1;
binding labels here match to the rules shown there. We use
Scala’s pattern matching syntax (i.e., varName: MatchingClass

=> computation) to specify which bindings are triggered by
which events. friendMsgs, nonfriendMsgs, ipMsgs, and
ipEmailMsgs are ReplayStates mapping Long keys to Long
values, and friendships maps (Long, Long) tuple keys to
Long values. We use the Scala lambda syntax in merge operations
as a function which accepts an input _ and returns some function
of that input (e.g. _+1).

Figure 3: On the left we capture the dependencies in Listing 3;
on the right we show the MVPS dataflow which is generated as
a result. The colored/labeled circles correspond to colored/labeled
bindings; the clouds correspond to the different ReplayStates (FR =
friendships, FM = friendMsgs, NM = nonfriendMsgs,
EM = ipEmailMsgs, IM = ipMsgs); and the arrows show
which way data flows.



Figure 4: Overview of the ReStream architecture.

makes its way to the worker hosting the partition to which it
corresponds. MVPS requires batch sizes expressed in units
of time, but for convenience we configure ReStream with a
batch size expressed in number of events, then use an esti-
mate of the event rate to derive a corresponding time interval.

Implementing reads efficiently requires a further opti-
mization. Rather than making remote requests while pro-
cessing an operator, we first issue a batch of “pre-reads,”
requests to stage locally values that may need to be read.
For each read encountered during program analysis (see Sec-
tion 4.2), we generate a corresponding pre-read. Pre-reads
are not fulfilled until all preceding writes are available. Once
pre-reads are fulfilled and results are cached at the origi-
nating worker the operator can begin execution, now with
all reads returning local results. Our present implementa-
tion generates pre-reads for all control flow branches, even
though some of them may not be used. This presents an op-
portunity for further optimization.

Conceptually each operator in MVPS proceeds indepen-
dently, making forward progress whenever allowed. As a
practical optimization we group operators that do not have
dependencies on each other, either directly or transitively.
This results in fewer network transfers (since writes and pre-
reads are communicated on a per-group basis instead of on
an individual operator basis) and improves temporal locality
by allowing multiple operators with a group to process the
same event one after the other. For the computation graphs
of Figure 3, our greedy algorithm groups together operators
A and C (an alternate grouping of B and C would be valid
as well). Grouping operators reduces some opportunities for
parallelism so one may want to relax this optimization when
executing multiple CPU-heavy operations.

We also place an additional restriction on the first opera-
tor (e.g., in the case of Figure 2, operator A) limiting how far
it can advance ahead of other operators. This limit contains
memory demands, both in the buffers that store writes and
pre-reads, and in the version history of ReplayStates.

In summary, the key points of the ReStream implemen-
tation of MVPS are a compilation step to translate a set
of bindings into an MVPS dataflow, limiting communica-
tion to batch boundaries to have local-only operations while
processing each batch, and submitting pre-reads alongside
writes to avoid paying a round-trip latency penalty when at-
tempting to perform reads.

4.4 Fault Tolerance
We introduce here one modification to the scheme described
so far: we ensure that messages (e.g. write operations) sent
between machines are idempotent; this can be achieved
through the use of unique tags on writes (or batches of
writes) that allow a destination machine to ignore messages
it has already seen. Since in MVPS computation (operators)
is completely separate from state (ReplayStates), and since
ReplayStates already maintain timestamped versions, this
addition causes fault tolerance to fall naturally out of our
architecture; as long as a recovering node has a way to ac-
cess a version of its state which was consistent at some point
in the past, it can continue processing forward as normal.
Duplicated messages will be ignored at their destination,
and eventually the recovering node will catch up to the oth-
ers. Other nodes resend messages which may have been lost
since the last consistent state; this can be achieved by locally
storing sent messages until the destination machine confirms
that their effect has been durably saved. Thus the key to effi-
cient fault tolerance is efficient checkpointing of state.

It would be trivial, though costly, to implement fault tol-
erance by storing ReplayStates directly on a fault-tolerant
storage system (e.g. Cassandra [30]) rather than in worker
memory; a recovering node taking the place of node k would
simply resume processing from the stream position at which
the last write from node k occurred. However, we can lever-
age the batched nature of computation in ReStream to cre-
ate a much more efficient scheme in which ReplayStates are
persisted durably once every n batches, with each machine
doing so independently without coordination.

This simple approach allows for a variety of trade-offs,
notably between the frequency of checkpointing and the time
to recover. It also allows for a variety of implementations,
including different choices of durable storage.

5. Experimental Evaluation
Our experimental evaluation explores the effectiveness of
ReStream’s MVPS approach to achieving accelerated re-
play and probes its limitations. In addition to comparing
with an efficient single-threaded implementation, we com-
pare ReStream to multiple implementations built on Apache
Spark. We outperform all, surpassing the single-threaded im-
plementation by over an order of magnitude and exceeding
the performance of Spark, even though its results sometimes
represent an approximation. We also measure how interplay
of the input data and the replay program impacts ReStream’s
ability to achieve distributed parallelism, and find a simple
relationship explaining observations.

5.1 Benchmark Configuration
We evaluate the performance of ReStream using our canon-
ical example, the spam detector of Listing 3, preferring this
contemporary workload to classic benchmarks such as Lin-
ear Road [7]. We generate events which average approx-



imately 125 bytes in size and store the resulting stream,
which simulates activity of 100,000 social network users.
Most users prefer to send messages to their friends, while
a small number of spam users send messages targeting ran-
dom recipients. Observations of real-world social networks
have found power law distributions with a range of coeffi-
cients from α = 1.50 to α = 2.67 [39]. We model individual
user popularity and activity levels using α = 2.0 in the com-
parisons of Sections 5.2 and 5.3. In Section 5.4 we evaluate
ReStream across the range α = 1.25 to α = 3.0.

We use clusters of up to 32 Amazon EC2 c3.xlarge com-
pute instances (4 vCPUs running on Intel R© Xeon R© E5-2680
v2 Ivy Bridge processors with 7.5 GB of memory [8]). We
launch servers with enhanced networking into a cluster con-
figuration (rate limited to 700 Mbit/s). We generate input
data and save it to local SSD storage, spreading it across
hosts evenly without partioning it in a problem-specific way.

5.2 Single-Threaded Comparison
Distributed data processing systems can be notoriously in-
efficient, paying a high cost for moving data between ma-
chines, especially when, like ReStream, they are built upon
JVM technologies. As a reference for comparisons we de-
veloped a single-threaded implementation of ReStream, one
that guarantees serial equivalence through sequential pro-
cessing and that removes the overhead of coordination and
distribution. We provision a separate dedicated thread for
I/O, which further boosts the throughput of the processing
thread and keeps with the pattern of our distributed imple-
mentation.

Using just two hosts, ReStream surpasses the perfor-
mance of a single-threaded implementation by over 40%,
achieving a Configuration that Outperforms a Single Thread
(COST) [35] using 8 vCPUs. Beyond this, each doubling of
the number of hosts increases throughput by roughly 70%,
with 32 hosts performing replay ∼16x faster than the single-
threaded implementation.

In another experiment, we modified our example, reduc-
ing its CPU consumption by eliminating a string search. In
this test, where the workload skews heavily towards state
maintenance and inter-host communication, ReStream needs
four hosts to surpass the single-threaded implementation
and achieves just over 2x speedup with 32 hosts. Scaling
this modified workload is not practical but serves to show
that ReStream manages to accelerate throughput even under
challenging circumstances.

5.3 Apache Spark Comparison
Apache Spark provides us with a baseline for distributed sys-
tem comparisons. It is a popular platform and it is imple-
mented in Scala, as is ReStream. We developed three imple-
mentations of our benchmark using Spark.

5.3.1 Approaches
Spark Single Batch: As a first implementation, we built
our example spam detector as a traditional batch processing
job. It takes full passes over the input data set, one for
each operator. State values are paired with timestamps so
that logical times can be maintained, thus producing serial-
equivalent results. This approach, equivalent to materializing
all intermediate states, scales up to a degree and then runs out
of memory.

Spark Streaming: In addition to an in-memory batch
processing model, Spark offers a streaming API based on
discretization and mini-batch processing [53]. Spark Stream-
ing breaks computation into mini-batches to enable stream
processing to be carried out in a traditional batch process-
ing manner, buffering incoming events for a specific time
interval before firing off a batch to process. To implement
our replay workloads, each operator is implemented as a
pass over the mini-batch of events, and we maintain global
state between each batch. Since the temporal resolution of
writes to and reads from global state is limited to the scale
of the mini-batch, deviations from serial-equivalence arise.
As we show in Figure 5, this approach forces a trade-off
between accuracy and throughput; larger batches lead to
higher throughput, whereas smaller batches yield greater ac-
curacy. While Spark Streaming may work well in online de-
ployments, pushing it to high throughput requires a tempo-
ral coarsening that erodes its ability to capture fine-grained
event ordering.

MVPS on Spark: To bring serial-equivalent stream pro-
cessing to Spark, we emulated the MVPS computation per-
formed by ReStream using Spark APIs and data structures.
This involves linking multiple invocations of the Spark
Single Batch implementation and carefully managing state
moved between them. Programming in this manner on Spark
is unnatural, as any simple operation requires integrating
past state via complicated join operations that must take
timestamp alignment into consideration. We do not consider
this style of programming practical. We view our MVPS on
Spark implementation as principally useful for comparing
performance, though one can also imagine an implementa-
tion of ReStream that generates code that executes on Spark.

5.3.2 Discussion
Figure 6 shows throughput of ReStream in comparison to
Spark Streaming and MVPS on Spark implementations.
We see that Spark Streaming, ReStream, and MVPS on
Spark perform similarly for up to 16 hosts. Note, however,
that while ReStream and MVPS on Spark produce serial-
equivalent results faithfully, Spark Streaming produces in-
correct results, approximations with throughput-dependent
accuracy shown in Figure 5. In comparing to other ap-
proaches, we selected the Spark Streaming batch size to
maximize throughput (with accuracy at the worst end of
the range). When using MVPS on Spark with more than 16



0

5

10

15

20

25

0e+00 1e+05 2e+05 3e+05
Throughput (events/s)

Pe
rc

en
t E

rr
or

Hosts 2 4 8 16

Figure 5: Spark Streaming trades accuracy for throughput. Per-
cent error shows the deviation in the number of spam messages de-
tected by the Spark Streaming implementation relative to a single-
threaded implementation. Here we present results for batch sizes
ranging from 12,500 to 200,000 events per host. Each trial pro-
cesses a total of 1 million events per host and each point represents
a single trial. The lines on the graph represent a best fit for each
number of hosts. Higher error rates at lower host counts are likely
a consequence of keeping the number of events per host constant—
with more events, representing longer spam detection simulations,
the network of users becomes more saturated with friend connec-
tions, new connections matter less and the coarsened temporal res-
olution has less of an effect on accuracy.

hosts we see that performance degrades significantly; this
appears to be due to increased memory pressure from the
higher overall event count. We note that ReStream does not
have this problem, effectively scaling up to 32 hosts without
any significant performance degradation.

The Spark Single Batch implementation performs identi-
cally to MVPS on Spark so long as the event stream remains
short enough (when they reduce to the same program). Hold-
ing constant the number of hosts at 16, we found that the
Spark Single Batch implementation begins to exhibit a slow-
down at 80 million events as it experiences higher memory
pressure from attempting to maintain a large amount of state.
At and above 100 million events it slows down considerably,
demonstrating the limitations of traditional batch processing
in this scenario.

In both of these experiments, ReStream outperforms
MVPS on Spark, exhibiting ∼50% greater throughput. We
additionally note that Spark is substantially more mature
than ReStream, and presumably has benefited from much
more performance optimization.

5.4 Causality and Limits to Parallelism
ReStream delivers on the promise of parallel speedups with
serial-equivalent results. So far, the results we have pre-
sented throughout this evaluation appear to belie the un-
derlying tension between these two aims. In order to chal-
lenge ReStream’s ability to scale we adjusted the parame-
ter α governing the power law distribution of simulated so-
cial network activity. Higher α values create more balanced
user activity whereas lower α values create greater imbal-
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Figure 6: Scalability testing of ReStream and Spark. Note that
Spark Streaming produces approximate results. The horizontal line,
labeled as 1-Thread, represents the single-threaded implementation
described in Section 5.4. Each point represents an average of five
tests, and we process 5 million events per host in all experiments.
Our per-host batch size is 10,000 events in ReStream. MVPS on
Spark uses very large batches which reduces the amount of state
moved between batches; we range from 1 batch at low host counts
to 4 batches at high host counts.
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Figure 7: Shown with points is the throughput of ReStream as a
function of network scale parameter α , here for per-host batch size
10,000. The lines represent the model of Equation 1.

ances, imbalances representative of the real-world impact of
celebrities or “super users.”

From a computation perspective, lower α concentrates
more activity on individual users and IP addresses, reducing
the opportunities for reordering even though the program
remains the same. Figure 7 shows that when the number
of hosts is small throughput does not suffer much from
concentrations of activity. With a large number of hosts
ReStream is able to gain more parallelism when α is larger.

We can better understand these behaviors by analyzing
the structure of the state access dependencies that ReStream
encounters during replay. We instrument ReStream to log a
dependency graph, drawing an edge from every timestamp
that reads a ReplayState to the timestamp of the most recent
preceding write to that same ReplayState. For each batch
of inputs processed by ReStream, we compute the longest
path in the resulting dependency graph, which we refer to as
the critical path. State along this critical path must be pro-



cessed in serial. When scaling out ReStream we maintain a
fixed per-host batch size, an approach that ensures consis-
tent amortization of coordination at batch boundaries. This
means that the time interval covered by a batch (and, corre-
spondingly, the critical path length) increases as the number
of hosts increases.

Defining h as the number of hosts, b as the per-host batch
size, and c as the average critical path length in a batch we
fit the model

throughput ∝ h
/(

h− 1
h

× max
( c

b
,a
))

(1)

where a is a free parameter estimated as 1.85 by non-linear
least squares regression (R2 = 0.94) for b ranging from 2,500
to 40,000.

The factor (h− 1)/h represents likelihood that an access
to ReplayState goes to a remote worker. As the critical path
length of causal relationships within a batch approaches the
average number of inputs per host, imbalances necessarily
arise, and some hosts end up doing more work than others.
Our measured value of a suggests that this effect dominates
when the critical path length starts to reach twice the per-
host batch size. We conclude that a key scalability limit
for ReStream lies in the causal linking of state required to
maintain serial-equivalence.

6. Related Work
We start this survey of related work focusing on modern
large-scale systems optimized for streaming. We then con-
sider related ideas in the database, distributed systems, and
complex event processing literature.

Modern internet-scale stream processing: Today’s in-
ternet giants all have developed one or more in-house
streaming platforms [2, 5, 31, 41, 49]. Among common ap-
plications are ad serving, security, recommendations, and
monitoring. Availability and fault tolerance play a large role
in this work, and while systems have high capacity and some
tolerate out-of-order data arrival, they are not explicitly de-
signed to support replay. A few systems integrate state with
the streaming engine to gain fault tolerance [5, 14], while
others externalize state in a separate service. Though these
approaches can provide shared state, none integrates state
management tightly with the computation model as Re-
Stream does. IBM Streams [28] is a modern commercial
product, likely among the most robust implementations of
traditional dataflow stream processing. Naiad [40] provides
a rich model for “timely dataflow” that is particularly clever
in incorporating iterative computation with event process-
ing. While Naiad represents a powerful substrate for dis-
tributed computation, it does not directly solve the state
management challenges of accelerated replay. Trill [15] pro-
vides high throughput stream processing by using batching.
Like ReStream it maintains the logical semantics of individ-
ual events, but does not scale across multiple hosts. Other

recent stream processing system include Google’s Cloud
Dataflow [3]. It introduces powerful abstractions but does
not provide a computing model with the aggressive sharing
of state developed here, though it could perhaps serve as a
substrate for MVPS similar to that which we developed with
Spark (see Section 5.3).

Database systems: A number of stream processing sys-
tems emerged from the database research community in the
early 2000s [1, 6, 16]. Some of this work identified the need
for establishing a clear computation model and the need to
deal appropriately with timestamps in streams [9]. Interest-
ingly, replay is among the desiderata articulated during this
era of research [45] and now our work moves toward making
this practical. We also note an important contrast in mind-
set: whereas much of this research emphasized “load shed-
ding,” defined as discarding or postponing events when their
arrival rate exceeds system capacity [47], a more appropri-
ate response today would be scaling the computation across
more cloud resources, an approach anticipated by Flux [44]
and something that ReStream’s computation model is partic-
ularly well suited to.

More recently, S-Store provides stream processing ex-
tensions to a high-performance transactional storage engine
[36]. Comparing performance is challenging without stan-
dard benchmarks, but in published examples S-Store man-
ages only a few thousands of events per second, two orders
of magnitude less than ReStream. This is somewhat surpris-
ing as S-Store’s serializable semantics allow significant lati-
tude for event reordering (equivalence to any serial schedule
of transactions), whereas ReStream is restricted to maintain
serial-equivalence to history. The S-Stream authors recom-
mend running it on a single core, so we assume it was not
written with replay or throughput in mind.

Our approach is more aligned with recent work on deter-
ministic scheduling for transactional systems [21, 48], which
shows how establishing a total order ahead of time can im-
prove throughput. Such systems sacrifice latency and require
that queries pre-declare their read and write sets. ReStream
takes advantage of the same basic trade-offs but introduces
the MVPS state abstraction, and again has a much more con-
strained set of reordering opportunities than a serializable
transaction system.

It seems useful to explore connections between ReStream
and the transactional literature more deeply. Deterministic
transaction systems are much like stream replay systems:
they attempt to maximize throughput for processing a pre-
declared stream of requests. MVPS may offer opportunities
for traditional transaction processing to decouple work more
dynamically; conversely, the pre-planning and partitioning
ideas in [21] may be useful in the ReStream context. More
generally, serializability and serial equivalence are only two
points in a wide space of consistency and isolation models.
It would be useful to better understand the connections be-



tween stream processing and the full breadth of “update pro-
cessing,” transactional or otherwise.

Complex Event Processing (CEP) and other enter-
prise techniques: There is a well-established body of com-
mercial work on CEP, technology which underlies a variety
of business processes and financial applications. Commer-
cial and open source implementations include Esper [20],
TIBCO StreamBase [46], JBoss Drools [29], Oracle Stream
Explorer [42], and others. Some of these systems scale
through shared memory parallelism, but none support dis-
tributed operation as does ReStream. Their implementations
derive from the literature in production rule systems [22],
with limited temporal extensions [13], and they differ most
markedly from other streaming systems in their ability to
detect complex patterns in input event sequences [18]. Per-
haps the MVPS approach can benefit CEP, which continues
to make progress towards high performance [51] and consis-
tency guarantees [11].

7. Future Work
Our present implementation of ReStream demonstrates the
scalability of MVPS and the advantages of serial equiva-
lence. A natural next step is to deploy ReStream with a team
seeking rapid development cycles for real-time predictive
applications. Exploring this has exposed the need for added
state primitives, e.g., top-k lists, and for windowing, which
can be sometimes optimized to reduce memory consump-
tion by replaying events with lagged timestamps. We have
already implemented some of these extensions.

Scalability beyond the range of tens of machines re-
quires addressing additional implementation matters. As
we increase the cluster size uncoordinated Garbage Collec-
tion (GC) across JVMs can cause performance degradation.
Since our implementation introduces a synchronization bar-
rier at batch boundaries the GC penalty scales in proportion
to the system size, with each JVM’s pause translating to a
cluster-wide delay. We might alleviate this problem with co-
ordinated GC [33] or by implementing MVPS in a language
with explicit memory management.

The fault tolerance mechanisms of Section 4.4 represent a
sizable design space, and our implementation in this area re-
mains incomplete. Further work could support our claim that
much of the bookkeeping needed for fault tolerance is al-
ready provided by ReStream’s versioned state maintenance.

Another avenue which merits further investigation is pre-
processing and partitioning input log files to reduce inter-
machine communication. For example, if most ReplayStates
were keyed by the same identifier, say a user ID, then par-
titioning log files by that identifier could significantly re-
duce communication between machines. In a related vein,
an astute reviewer suggests optimization using runtime in-
formation from previous replays, perhaps statistics or even
event-level dependency information. The success of such op-

timizations likely depends on the nature of the code being
run and on how it evolves during ongoing development.

For some workloads approximate results may be ade-
quate. Among principled approaches we suggest two: sam-
pling and bounded staleness. Sampling techniques estimate
a value based on processing only a subset of the data and
are well suited to various simple but practical computations.
However, devising useful sampling approaches on social
networks or other interconnected datasets appears unlikely.
Bounded staleness in ReStream might replace the command
“read at T” with “read at any time between T1 and T2,”
or “estimate at T to within ±0.01.” These alternative read
formulations could provide opportunities for reordering, re-
duced communication, and partial aggregation.

ReStream demonstrates that serial-equivalence and par-
allel execution, two notions that might appear to be at odds,
are not as incompatible as they seem. Our approach might
also benefit live streaming, providing increased throughput
in situations where processing latency can be relaxed. Look-
ing beyond streaming, we imagine that the MVPS execution
model might apply more broadly to scaling up data-intensive
computation.

8. Conclusion
We have developed ReStream, a stream processing system
designed for accelerated replay, for parallel processing of
stored event logs with throughput much higher than the
real-time rate. Such replay can meet the routine needs of
developers evaluating new functionality, sparing them pro-
duction releases and slashing turnaround times. We identi-
fied a new system design point in this need: a sequential
stream processing programming model delivered with batch-
processing throughput.

Our solution is a partitioned and pipelined dataflow with
operators that communicate through shared global state. In
a model that we call Multi-Versioned Parallel Streaming
(MVPS), we use timestamp ordering at individual state el-
ements to guarantee serial equivalence, even as we reorder
execution in pursuit of parallelism.

Our implementation outperforms sequential processing
by more than an order of magnitude and continues to scale
even as well-known alternatives run out of memory or return
degraded approximations. Our experiments support the view
that aggressive sharing of versioned global state permits
throughput bounded in the limit by causal dependencies.
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