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ABSTRACT

Data quality is a critical problem in modern databases. Data
entry forms present the first and arguably best opportunity
for detecting and mitigating errors, but there has been little
research into automatic methods for improving data qual-
ity at entry time. In this paper, we propose USHER, an
end-to-end system for form design, filling, and data quality
assurance. Using previous form submissions, USHER learns
a probabilistic model over the questions of the form. USHER
then applies this model at every step of the data entry pro-
cess to ensure high quality. Before entry, it induces a form
layout that captures the most important data values of a
form instance as quickly as possible. During entry, it dy-
namically adapts the form to the values being entered, and
provides real-time feedback to guide the data enterer toward
more likely values. After entry, it re-asks questions that it
deems likely to have been entered incorrectly. We evaluate
all three components of USHER using two real-world data
sets. Our results demonstrate that each component has the
potential to improve data quality considerably, at a reduced
cost when compared to current practice.

1. INTRODUCTION

Governments, companies, and individuals routinely make
important decisions based on inaccurate data stored in sup-
posedly authoritative databases. In medicine, for instance,
a single input error may have fatal consequences. Data qual-
ity can and should be addressed at every stage of the data
lifecycle. While there has been extensive work on improving
data quality within databases via data cleaning [8, 2], the
database community has paid relatively little attention to
how data entry mechanisms can improve quality.

In data entry form design and execution, traditional prac-
tices based on paper forms have prevailed for decades. The
Survey Design literature contains many longstanding prin-
ciples about data encodings, manually specified constraints,
and static post-entry validation [11]. For electronic forms,
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ensuring data quality during data entry has centered around
the ubiquitous and costly practice of double-entry [9]: enter
everything twice, compare, and flag discrepancies for human
arbitration.

For many organizations, particularly those operating with
limited resources, double-entry is neither practical nor at-
tainable. Recent work on data collection in resource-poor
settings reports that lack of expertise and difficulty of re-
mote data collection are the chief obstacles to high data
quality [6]. Too often in such settings, form design is an ad
hoc practice, consisting of mapping desired information to a
set of entry widgets (text fields, combo boxes, etc.), guided
only by the designer’s intuition [21]. In our field work with
a HIV/AIDS treatment program in Tanzania, we observed
that little thought was given to form design, and a haphaz-
ard double-entry program bottlenecked the data entry pro-
cess. Only after a significant entry lag were researchers able
to enjoy the benefits of data in electronic form. The cost
and overhead involved in double-entry meant that patients
and clinicians at the point of care were limited to using pa-
per forms, and the benefits of automated data analysis were
not available to the core population the organization was
chartered to serve.

To address such limitations, we have developed USHER, an
end-to-end system that uses previously-entered data to im-
prove the quality of data at the point of entry. USHER learns
a probabilistic model from existing data, which stochastically
relates the questions of a data entry form. This model is
used to guide the data entry process in three ways:

1. The model is used to automatically lay out a form by
selecting an optimal ordering for the questions, accord-
ing to a probabilistic objective function that aims to
maximize the information content of a form submis-
sion as early as possible.

2. During entry, the model’s probability estimates are
used to dynamically reorder questions, again to maxi-
mize information gain, and to provide context-dependent
feedback that guides the user towards more likely an-
swers.

3. After the submission of a complete form instance, the
model is consulted to predict which responses may
be erroneous, so as to re-ask those questions in or-
der to verify their correctness. This focused re-asking
achieves the benefits of double entry at a fraction of
the cost.



USHER is an effort to push modern probabilistic techniques
for data cleaning to the very beginning of the data lifecycle,
when it is easiest to identify dirty data and replace it with
ground truth.

The contributions of this paper are fourfold.

1. We describe how we build two probabilistic models for
an arbitrary data entry form: first, we learn a Bayesian
network over questions using structure learning and
parameter estimation; and second, we expand this net-
work into another model that directly captures form
entry errors.

2. We describe how USHER uses these models to provide
three forms of guidance: static form design, dynamic
question ordering, and re-asking.

3. We present experiments showing that USHER has the
potential to improve data quality at reduced cost on
two representative data sets: responses to a survey
about politics and race, and patient information records
from an HIV/AIDS clinic in Tanzania.

4. Extending our ideas on form dynamics, we propose
new user interface annotations that provide contextu-
alized, intuitive feedback about the likelihood of data
as it is entered. These ideas incorporate data cleaning
visualizations directly into the entry process.

2. RELATED WORK

Our work builds upon several areas of related work. We
provide an overview in this section.

2.1 Data Cleaning

In the database literature, data quality has typically been
addressed under the rubric of data cleaning [2, 8]. Our work
connects most directly to data cleaning via multivariate out-
lier detection; it is based in part on ideas first proposed
in [14]. By the time such retrospective data cleaning is done,
the physical source of the data is typically unavailable —
thus, errors often become too difficult or time-consuming to
be rectified. USHER addresses this issue by applying statis-
tical data quality insights to data entry. Thus, it can catch
errors when they are made, and when ground truth values
are still available for verification.

2.2 User Interfaces

In the area of adaptive user interfaces, Gajos et al. [10]
also cast user interface design as an optimization problem.
Their goal is to improve usability, by using decision-theoretic
optimization to automatically adapt user interfaces to spe-
cific devices, usage patterns, user preferences and capabili-
ties. In contrast, USHER’s focus is on improving data quality,
and its probabilistic formalism is based on learning relation-
ships within the underlying data that guide the user towards
more correct entries.

A recent technical report by Ali and Meek also addresses
the task of form-filling [1]. Like us, they propose to learn
probabilistic models to predict values for questions, which
they use to automatically populate “drop-down” lists. Their
focus is on the speed of data entry, as opposed to our em-
phasis on data quality. Moreover, in addition to predicting
question values, we develop and exploit probabilistic models
of user error, and target a broader set of interaction design

issues relevant to data quality, including question reorder-
ing and reasking, and interface customizations for data en-
try feedback. Some of the enhancements we make for data
quality could also be applied to improve the speed of entry.

In a related approach, EcoPod [22] attempts to make data
collection easier for amateurs contributing to nature con-
servation. They take an information-theoretic approach to
generating type-ahead suggestions on a PDA to minimize
work for the user. The suggestions are based on historical
observations of a geographic area. Such context-aware use of
previous data can be seen as a domain-specific instantiation
of USHER’s approach, but with a different aim: reduction
of effort. They leave data quality as future work, which is
where USHER begins.

2.3 Clinical Trials

Data quality assurance is a prominent topic in the science
of clinical trials, where the practice of double-entry has been
questioned and dissected, but nonetheless remains the gold
standard [9, 16]. In particular, [17] takes a probabilistic ap-
proach towards choosing which forms to re-enter based on
the individual performance of data entry staff. This cross-
form validation has the same goal as our approach of re-
ducing the need for complete double entry, but does so at a
much coarser level of granularity. It requires historical per-
formance records for each data enterer, and does not offer
dynamic reconfirmation of individual questions. In contrast,
USHER’s cross-question validation adapts to the actual data
being entered in light of previous form submissions, and al-
lows for a principled assessment of the tradeoff between cost
(of reconfirming more questions) versus quality (as predicted
by the probabilistic model).

2.4 Survey Design

The survey design literature includes extensive work on
proper form design for high data quality [11, 20]. This lit-
erature advocates the use of manually specified constraints
on response values. These constraints may be univariate
(e.g., a maximum value for an age question) or multivari-
ate (e.g., disallowing gender to be male and pregnant to be
yes). Some constraints may also be “soft”, and only serve
as warnings regarding unlikely combinations (e.g., age being
60 and pregnant being yes).

The manual specification of such constraints requires a
domain expert, which can be prohibitive in many scenarios.
By relying on prior data, USHER learns to automatically
infer many of these same constraints without requiring their
explicit specification. When these constraints are violated
during entry of a new submission, USHER can then flag the
relevant questions, or target them for re-asking.

Additionally, previous research into the psychological phe-
nomena of survey filling has yielded common constraints not
inherently learnable from prior data [11]. This work pro-
vides heuristics such as “groups of topically related ques-
tions should often be placed together”, and “questions about
race should appear at the end of a survey.” While prior data
cannot be used to infer these constraints, USHER can accom-
modate them directly in its question ordering framework.

3. SYSTEM OVERVIEW

In this section, we give a brief overview of the system and
illustrate its functionality with an example. Further details,
particularly regarding the probabilistic model, follow in the
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3.1 Design

Our running example is a patient-registration data collec-
tion form actively used by a network of HIV/AIDS clinics in
Tanzania.! Data collection is done on paper; a team of data
entry workers digitize the entered forms daily. Our data set
contains 1,650 form submissions.

USHER builds a probabilistic model for an arbitrary data
entry form in two steps: first, by learning the relationships
between form questions via structure learning; and second,
by estimating the parameters of a Bayesian network, which
then allows us to generate predictions and error probabilities
for the form.

In our example, a user begins by creating a simple speci-
fication of form questions and their prompts, response data
types, constraints, etc. The training data set is made up of
prior form responses. By running the learning algorithms we
present in Section 4, USHER builds a network of dependence
relationships from the data, which is shown in Figure 1:
an edge in the graph captures a probabilistic dependency
between two random variables (i.e., form questions). As an-
other example, Figure 2 illustrates a denser graph learned
from a set of political survey responses. Note that a stan-
dard joint distribution would show correlations among all
pairs of questions; the sparsity of these examples reflects
statistical independences learned from the data, which both
clarify the structure of the form and make probabilistic in-
ference more efficient.

Our learning algorithm works off of training data. In prac-
tice, a data entry backlog can serve as this training set. In
the absence of sufficient training data, USHER can bootstrap
itself on a “uniform prior,” generating a form based on the
assumption that all inputs are equally likely. Subsequently,
a training set can gradually be constructed by iteratively
capturing data from designers and potential users in “learn-
ing runs.” This process of semi-automated form design can
help institutionalize new forms before they are deployed in
production.

Next, USHER uses the learned model to automatically or-
der a form’s questions to maximize information gain, as de-
scribed in Section 5. This mimics survey design principles,
while respecting the form designer’s topical and question-

'We have pruned out questions with identifying information
about patients, and free-text comment fields.

Figure 2: Example network for the survey domain.
The probabilistic relationships are dense for this
data set.
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Figure 3: Example question layout generated by our
ordering algorithm. The arrows reflect the proba-
bilistic dependencies from Figure 1.
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Figure 4: USHER system diagram and data flow.

ordering constraints. In our example, USHER generated the
ordering found in Figure 3.

During data entry, USHER uses the probabilistic machin-
ery to drive dynamic updates to the form. These updates
can reorder unentered question widgets to better capture
this particular form instance’s uncertainty, or may consist
of data quality hints to the user, e.g., warnings about an
answer’s likelihood. A discussion of feedback mechanisms is
provided in Section 8.

At the end of a data entry run, USHER calculates error
probabilities for the whole form and for each question. If
there are responses with error probabilities exceeding some
threshold, USHER re-asks those questions one by one, or-
dered by the highest error probability, as described in Sec-
tion 6

3.2 Implementation

We implemented USHER as a J2EE web application with
an Adobe Flex user interface (Figure 4). The UT loads simple
form specification files which contain form question details,
and the location of the training data set. Form details in-
clude question name, prompt, data type, widget type, and
constraints. Constraints can be univariate, such as enumer-
ations or valid ranges, or multivariate, specifying required
orderings or groupings of subsets of questions. The server in-
stantiates a model per form. The server passes information
about question responses to the model as they are filled in;
in exchange, the model returns predictions and error prob-
abilities.

Models are created from the form specification, the train-

ing data set, and a graph of learned structural relationships.
We perform structure learning offline with BANJO [12], an
open source Java package for structure learning of Bayesian
networks. Our graphical model is implemented in two varia-
tions: one is based on a modified version of JavaBayes [7], an
open source Java software for Bayesian inference. Because
JavaBayes only supports discrete probability variables, we
implemented the error prediction version of our model us-
ing Infer. NET [18], a Microsoft .NET Framework toolkit for
Bayesian inference.

4. LEARNING APROBABILISTIC MODEL

The core of the USHER system is its probabilistic model
of the data, represented as a Bayesian network over form
questions. This network captures relationships between dif-
ferent question elements in a stochastic manner. In par-
ticular, given input values for some subset of the questions
of a particular form instance, the model can predict proba-
bility distributions over values of that instance’s remaining
unanswered questions. In this section, we show how stan-
dard machine learning techniques can be used to induce this
model from previous form entries.

We will use F = {Fi,..., F,} to denote a set of random
variables representing the values of n unknown questions
comprising a data entry form. We assume that each ques-
tion response takes on a finite set of discrete values; continu-
ous values can be discretized by dividing the data range into
intervals and assigning each interval one value.? To boot-
strap learning of the probabilistic model, we assume access
to prior entries for the same form.

USHER first builds a Bayesian network over the form ques-
tions, which will allow it to compute probability distribu-
tions over arbitrary subsets G of form question random vari-
ables, given already entered question responses G’ = g’ for
that instance, i.e., P(G | G’ = g’). Constructing this net-
work requires two steps: first, the induction of the graph
structure of the network, which encodes the conditional in-
dependences between the question random variables F'; and
second, the estimation of the resulting network’s parameters.

The naive approach to structure selection would be to as-
sume complete dependence of each question on every other
question. However, this would blow up the number of free
parameters in our model, leading to both poor generaliza-
tion performance of our predictions, and prohibitively slow
model queries. Instead, we learn the structure using the
prior form submissions in the database. In our implementa-
tion, we use the BANJO software [12] for structure learning,
which searches through the space of possible structures us-
ing simulated annealing, and chooses the best structure ac-
cording to the Bayesian Dirichlet Equivalence criterion [13].
Figures 1 and 2 show example automatically learned struc-
tures for two data domains.?

Note that in certain domains, form designers may already
have strong common sense notions of questions that should
be related (e.g., education level and income). Our auto-
matic predictive approach allows for manually tuning the
resulting model to incorporate such intuitions. In fact, the

20ur present formulation ignores the rich dependencies be-
tween ordinal values; modeling such relationships is an im-
portant direction of future work.

3Tt is important to note that the arrows in the network do
not represent causality, only that there is a probabilistic
relationship between the questions.



entire structure could be manually constructed in domains
where an expert has comprehensive prior knowledge of the
questions’ interdependencies.

Given a graphical structure of the questions, we can then
estimate the conditional probability tables at each node in
a straightforward manner, by counting the proportion of
previous form submissions with those response assignments.
The probability mass function for a single question F; with
m possible discrete values, conditioned on its set of parent
nodes G from the Bayesian network, is:

P(F;=fi |[{F;=[;: F; € G})
:N(Fi:fi,{Fj:fj:FjeG}) (1)
N{F;=f;:F;€G})

In this notation, P(F; = f; | {F; = f; : F; € G}) refers
to the conditional probability of question F; taking value f;,
given that some of the other questions have already been en-
tered — specifically, that each question Fj in set G takes on
value f;. N(X) is the number of prior form submissions that
match the conditions X — in the denominator, we count the
number of times a previous submission had the subset G of
its questions set according to the listed f; values; and in
the numerator, we count the number of times when those
previous submissions additionally had F; set to f;.

Because the number of prior form instances may be lim-
ited, and thus may not account for all possible combinations
of prior question responses, equation 2 may assign zero prob-
ability to some combinations of responses. Typically, this is
undesirable; just because a particular combination of values
has not occurred in the past does not mean that combination
cannot occur at all. We overcome this obstacle by smoothing
these parameter estimates, interpolating each with a back-
ground uniform distribution. In particular, we revise our
estimates to:

P(F; = fi |[{F; = f; : F; € G})

N(F; = fi,{F; = f; : F; € G}) o
N{F; = f,: F; € G}) m’

where m is the number of possible values question F; can
take on, and « is the fixed smoothing parameter, which was
set to 0.1 in our implementation. This approach is essen-
tially a form of Jelinek-Mercer smoothing with a uniform
backoff distribution [15].

Once the Bayesian network is constructed, we can query
it for distributions of the form P(G | G’ = g’) for arbitrary
G, G’ ¢ F — that is, the marginal distributions over sets of
random variables, optionally conditioned on observed values
for other variables. Performing these queries is known as
the inference task in graphical models, for which there exist
a variety of different techniques. In our experiments, the
Bayesian networks are small enough that exact techniques
such as the junction tree algorithm [5] can be used. For
larger models, faster approximate inference techniques may
be preferable.

=(1-a)

(2)

5. QUESTION ORDERING

Once we have constructed the Bayesian network, we can
turn to its applications in the USHER system. We first con-
sider ways of ordering the questions of a data entry form.

Our ordering selection is driven by simple information-theoretic

insights. We first note that regardless of how questions are
ordered, the total amount of uncertainty about all of the

Input: Model G with questions F = {F1,..., F,}
Output: Ordering of questions O = (01,...,0s,)
O — 0;
while O does not include all questions do
[ argmax;go H(F; | {F; : j € O});
O « (O, f);
end
Algorithm 1: Static ordering algorithm for form
layout.

responses taken together — and hence the total amount of
information that can be acquired during form-filling of a
single form submission — is fixed. Thus, by reducing this
uncertainty as early as possible, we can be more certain
about the values of later questions. The benefits of stronger
certainty about later questions are two-fold. First, it allows
us to more accurately provide data entry feedback for those
questions, because we are more certain about the probabil-
ity distribution of their values. Second, if the data enterer
is interrupted and leaves the rest of the form incomplete,
we will have more reliable predictions over the remaining
questions.

We can quantify uncertainty using information entropy.
A question whose random variable has high entropy reflects
greater underlying uncertainty about the responses that ques-
tion can take on. Formally, the entropy of random variable
F; is given by:

H(F)) ==Y P(f:)log P(f:), (3)

fi

where the sum is over all possible values f; that question F;
can take on.

As question values are entered for a single form instance,
the uncertainty about remaining questions of that instance
changes. For example, in the race and politics survey, know-
ing the respondent’s political party provides strong evidence
about his or her political ideology. We can quantify the
amount of uncertainty remaining in a question Fj, assuming
that other questions G = {F1,..., F},} have been previously
encountered, with its conditional entropy:

H(F; | G)
=— > > P(G=gF="f)logPF,=f|G=g),
g:(fli‘“afn) fi

(4)

where the sum is over all possible question responses in the
Cartesian product of Fi,..., F,, F;. Conditional entropy
measures the weighted average of the entropy of question
Fj’s conditional distribution, given every possible assign-
ment of the previously observed variables. This value is ob-
tained by performing inference on the Bayesian network to
compute the necessary distributions. By taking advantage
of the conditional independences encoded in the network, we
can often drop terms from the conditioning in equation 4 for
faster computation.

Conditional entropy can also be expressed as the incre-
mental difference in joint entropy due to F;:

H(F; | G) = H(F;,G) — H(G). (5)

This equation confirms our previous intuition that no matter
what ordering we select, the total amount of uncertainty is



still the same.*

Our full static ordering algorithm is presented in Algo-
rithm 1. We select the entire question ordering in a greedy
manner, starting with the first question. At the ith step, we
choose the question with the highest conditional entropy,
given the questions that have already been selected. We
call this ordering static because the algorithm is run offline,
based only on the learned Bayesian network, and does not
change during actual data entry.

In many scenarios the form designer may also want to
specify natural groupings of questions that should be pre-
sented to the user as one section. Our model can be easily
adapted to handle this constraint, by maximizing entropy
between specified groups of questions. We can select these
groups according to joint entropy:

argmng(G|F17...,F¢,1), (6)
where G is over the form designers’ specified groups of ques-
tions. We can then further apply the static ordering algo-
rithm to order questions within each individual section. In
this way, we capture the highest possible amount of uncer-
tainty while still conforming to ordering constraints imposed
by the form designer.

5.1 Reordering Questions during Data Entry

Thanks to the interactive nature of USHER forms, we can
take our ordering notion a step further, and dynamically re-
order questions in a form as they are entered. This approach
can be appropriate for scenarios when data enterers input
one value at a time, such as on small mobile devices. We can
apply the same greedy selection criterion as in Algorithm 1,
but update the calculations with the actual responses to pre-
vious questions. Assuming questions G = {F1,..., F;} have
already been filled in with values g = {f1,..., fn}, the next
question is selected by maximizing:

H(F, |G =g)
=-> P(F,=f|G=g)logP(F,=f;|G=g). (7)
fi

Notice that this objective is the same as equation 4, except
using the actual responses entered into previous questions,
rather than taking a weighted average over all possible val-
ues. Constraints specified by the form designer, such as top-
ical grouping, can also be respected in the dynamic frame-
work by restricting the selection of next questions at every
step.

In general, dynamic reordering can be particularly use-
ful in scenarios where the input of one value determines the
value of another. For example, in a form with questions for
gender and pregnant, a response of male for the former dic-
tates the value of the latter. However, dynamic reordering
presents a drawback in that it may confuse data enterers
who routinely enter information into the same form, and
have come to expect a specific question order. Determining
the tradeoff between these opposing concerns is an impor-
tant direction of future work.

6. QUESTION RE-ASKING

4Writing out the sum of entropies using equation 5 yields a
telescoping sum that reduces to the fixed value H(F).
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Figure 5: A graphical model with explicit error
modeling. Here, D, represents the actual input pro-
vided by the data enterer for the ith question, and
F; is the correct unobserved value of that question.
F' variables can be connected by edges z € Z, repre-
senting the relationships discovered in the structure
learning process. 0; represents the “error” distribu-
tion, which in our current model is uniform over all
possible values. R; is a hidden binary random vari-
able specifying whether the entered data was erro-
neous; its probability \; is drawn from a Beta prior
with fixed hyperparameters a and (3.

After a form instance is entered, the probabilistic model is
again applied for the purpose of identifying errors made dur-
ing entry. Because this determination is made immediately
after form submission, USHER can choose to re-ask questions
for which there may be an error. By focusing the re-asking
effort only on questions that were likely to be mis-entered,
USHER is likely to catch mistakes at a small incremental cost
to the data enterer.

USHER estimates the probability that an error was made
for each question response. The intuition behind this de-
termination is straightforward: questions whose responses
are “unexpected,” with respect to the rest of the input re-
sponses, are more likely to be incorrect. To formally incor-
porate this notion in our stochastic approach, we augment
the Bayesian network from Section 4 with additional nodes
capturing a probabilistic view of entry error. Under this
new representation, the ith question is represented with the
following set of random variables:

e [: the correct value for the question, which is un-
known to the system, and thus a hidden variable.

e D;: the question response provided by the data en-
terer, an observed variable.

e (;: the probability distribution of values that are en-
tered as mistakes, which is a single fixed distribution
per question. We call 0; the error distribution.



e RR;: a binary variable specifying whether an error was
made in this question.

Additionally, we introduce a random variable \ shared across
all questions, specifying how likely errors are to occur for
a typical question of that form submission. We call the
Bayesian network augmented with these additional random
variables the error model.

As before, the F; random variables are connected accord-
ing to the learned structure explained in Section 4. Within
an individual question, the relationships between the newly
introduced variables is shown in Figure 5. Node R; € {0,1}
is a hidden indicator variable specifying whether an error
will happen at this question. Our model posits that a data
enterer implicitly flips a coin for R; when entering a response
for question i, with probability of one equal to A. If R; = 0,
no error occurs and the data enterer inputs the correct value
for D;, and thus F; = D;. However, if R; = 1, then the data
enterer makes a mistake, and instead chooses a response for
the question from a fixed distribution #;. In our present im-
plementation 6; is a uniform distribution over all possible
values for question .’

Formally, the conditional probability distribution of each
random variable is defined as follows. P(F; | ...) is still
defined as in Section 4.

PointMass(F;) if R; =0,

8
Discrete(6;) )

D; | Fi,0;,R;i ~

i | B 65, R { otherwise,
All of D;’s probability is concentrated around F; (i.e., a
point mass at F;) if R; is zero; otherwise its probability
distribution is the error distribution.

R; | A ~ Bernoulli(\) 9)

Conditioned only on its parent, the probability of making a
mistake in an arbitrary question is the value A.

A ~ Beta(a, 3) (10)

The probability of mistake A is itself an unknown random
variable, so we model its flexibility by defining it as a Beta
distribution, which is a continuous distribution over the real
numbers from zero to one. The Beta distribution itself takes
two parameters a and (3, which we set to fixed constants.
The use of a Beta prior distribution for a Bernoulli random
variable is standard practice in Bayesian modeling, partially
because this combination is mathematically convenient [4].

The ultimate variable of interest in the error model is R;:
we wish to induce the probability of making an error for
each question, given the actual question responses:

P(R; | Ds,...,Dy). (11)

Again, because of our Bayesian network formulation, we can
use standard Bayesian inference procedures to compute this
probability. In our implementation, we use the Infer. NET
toolkit [18] with the Expectation Propagation algorithm [19]
for this estimation.

Once we have inferred a probability of error for each ques-
tion, actually performing the re-asking is a simple matter.
Questions whose error probability estimates exceed a thresh-
old value, up to a customizable limit, are presented to the

5The error distribution 6; could itself be estimated from
prior logs about frequently made errors for each question.
If we have such data, this would automatically train our
system to be especially wary of commonly made mistakes.

data enterer for re-entry; if the new value does not match
the previous value, the question is flagged for further manual
reconciliation, as in double entry.

7. EVALUATION

We evaluated the benefits of USHER by simulating several
data entry scenarios to show how our system can improve
data quality. In this section, we first present our experimen-
tal data sets, and then our simulation experiments and their
results.

7.1 Data Sets and Model Setup

We examine the benefits of USHER’s design using two
data sets. The survey data set comprises responses from a
1986 about race and politics in the San Francisco-Oakland
metropolitan area [3]. The UC Berkeley Survey Research
Center interviewed 1,113 persons by random-digit telephone
dialing. The patient data set was collected from anonymized
vaccination and visit records at a rural HIV/AIDS clinic in
Tanzania, previously described in Section 3. Our goal was
to focus on form questions that can benefit from data clean-
ing. As a result, in the patient data set, we dropped from
the original forms any questions resulting in free-text val-
ues (e.g., comment boxes). In total we had fifteen questions
for the survey and nine for the patient data. We also dis-
cretized continuous values using fixed-length intervals, and
treated the absence of a response to a question as a separate
value to be predicted.

For both data sets, we randomly divided the available
prior submissions into training and test sets. We performed
structure learning and parameter estimation using the train-
ing set. The test set was then used for the data entry sce-
narios presented below. For the survey, we had 891 training
instances and 222 test; for patients, 1,320 training and 330
test.

We performed structure learning for both data sets as de-
scribed in Section 4, resulting in the graphical models shown
in Figures 2 and 1. Our parameter estimates were smoothed
by mixing each probability table with 0.1 times the uni-
form distribution. USHER computes the static orderings for
each data set ahead of time, based directly on this graphical
model.

7.2 Simulation Experiments

In our simulation experiments, we aim to verify hypothe-
ses regarding two components of our system: first, that
our data-driven question orderings ask the most uncertain
questions first, improving our ability to predict missing re-
sponses; and second, that our re-asking model is able to
identify erroneous responses accurately, so that we can tar-
get those questions for verification.

7.2.1 Ordering

For the ordering experiment, we posit a scenario where
the data enterer is interrupted while entering a form submis-
sion, and thus is not able to complete the entire instance.
Our goal is to measure how well we can predict those re-
maining questions, under four different question orderings:
USHER’s precomputed static ordering, USHER’s dynamic or-
dering (where the order can adjust in response to individ-
ual question responses), the original form designer’s order-
ing, and a random ordering. In each case, predictions are
made by computing the maximum position of the probabil-
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ity distribution over unentered questions, given the known
responses.’ Results are averaged over each instance in the
test set.

The left-hand graphs of Figure 6 measures the average
number of correctly predicted unfilled questions, as a func-
tion of how many responses the data enterer did enter be-
fore being interrupted. In each case, the USHER orderings
are able to predict question responses with greater accuracy
than both the original form ordering and a random ordering
for most truncation points. Similar relative performance is
exhibited when we measure the percentage of test set in-
stances where all unfilled questions are predicted correctly,
as shown in the right side of Figure 6.

The original form orderings tend to underperform their
USHER counterparts; human form designers typically do not
optimize for asking the most difficult questions first, instead
often focusing on boilerplate material at the beginning of a
form. Such design methodology is detrimental for automatic
filling in of missing values for incomplete form submissions.

As expected, between the two USHER approaches the dy-
namic ordering yields slightly greater predictive power than
the static ordering. Because the dynamic approach is able
to adapt the form to the data being entered, it can focus its
question selection on high-uncertainty questions specific to
the current form instance. In contrast, the static approach

In machine learning parlance, this is the mode of the poste-
rior marginal distribution over the unknown questions con-
ditioned on the known questions.

effectively averages over all possible uncertainty paths.

7.2.2 Re-asking

For the re-asking experiment, our hypothetical scenario is
one where the data enterer enters a complete form instance,
but possibly with erroneous values for some question re-
sponses. Specifically, we assume that for each data value,
the enterer has some fixed chance p of making a mistake.
When a mistake occurs, we assume that an erroneous value
is chosen uniformly at random. Once the entire instance is
entered, we feed the entered values to our error model, and
compute the probability of error for each question. We then
re-ask the questions with the highest error probabilities, and
measure whether we chose to re-ask the questions that were
actually wrong. Results are averaged over 10 random trials
for each test set instance.

Figure 7 plots the percentage of instances where we choose
to re-ask all of the erroneous questions, as a function of the
number of questions that are re-asked, for error probabilities
of 0.05, 0.1, and 0.2. In each case, our error model is able
to make significantly better choices about which questions
to re-ask than a random baseline. In fact, for p = 0.05,
which is a representative error rate that we observe in the
field, USHER successfully re-asks all errors over 80% of the
time within the first three questions in both data sets. We
observe that the traditional approach of double entry cor-
responds to re-asking every question; under reasonable as-
sumptions about the occurrence of errors, our model is often
able to achieve the same result as double entry (of identify-
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ing all erroneous responses) at a substantially reduced cost,
in terms of number of questions asked.

8. DYNAMIC DATA ENTRY FEEDBACK

In the previous sections, we showed how USHER’s proba-
bilistic model enables automatic form layout ordering and
optimized answer confirmation. In this section, we describe
additional opportunities to provide real-time data entry feed-
back to a user. During form entry, USHER’s probabilistic
machinery provides conditional probabilities, conditional en-
tropies, and error probabilities. With these tools, we can
provide feedback in several new ways.

First, we can use conditional probabilities to assess a
newly entered value. A dropdown list widget can change
color based on the likelihood of the selected value. This
type of dynamic feedback is not intrusive, and importantly,
the mechanism is non-biasing. Feedback is only shown to
the user after an answer is chosen.

Second, we can use conditional expectations to gently
nudge users towards expected values. We introduce the idea
of interface “friction” — the difficulty of entering a value — as
the inverse of expectation, and posit that low-expectation
values should have higher friction to access. Take for ex-
ample a dropdown list in which the answers are ordered
from most to least likely; the extra time to scroll to unlikely
answers captures their friction. Similarly, a text box with
“type-ahead” has less friction for expected values (which get
auto-completed) than for values with low expectation (which

need to be typed in full).

Third, we can directly communicate answer probabilities
to the user, by graphically displaying probabilities in a quan-
titative way. No longer a subconscious exercise, this ap-
proach guides the user toward expected results. Consider a
set of radio buttons, decorated with percentile values next
to each choice. In this scenario, the user is assisted (and
arguably biased) by the interface to enter high likelihood
answers.

The notion of expectation in all these cases should be
conditioned on earlier answers provided by the user. Con-
ditional probabilities can be surprising if they differ signifi-
cantly from unconditioned versions. For example, the likeli-
hood of entering “milk” as a favorite beverage may be small
in the general population, but a high-probability answer if
an earlier question about age was answered “< 57. To ac-
count for this, it is important that the data enterer know
where they are and where they came from in the probability
space of their answers. This can be addressed in a simple
fashion by providing a “path” visualization (similar to that
of a website traversal) showing answers to previous questions
that led up to the current question. The visualization serves
as a quantitative breadcrumb trail that communicates the
historical and contextual impact of answering the current
question. It can help users understand conditional proba-
bilities and the context of widget feedback.

We have prototyped many of these widget modifications in
a popular Flash-based widget toolkit, as shown in Figure 8.
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A robust evaluation of these human interface approaches
is a research undertaking in its own right, requiring user
studies to be performed in a number of contexts: controlled
online surveys, as well as field studies in diverse settings from
well-funded call center applications to resource-constrained
organizations in the developing world. We have a number
of these efforts in progress.

9. SUMMARY AND FUTURE WORK

In this paper, we have shown that completely automated
probabilistic approaches can be used to design intelligent
data entry forms that promote high data quality. Our USHER
system encompasses every step of the data entry process.
Before entry, we find an ordering of form entry widgets that
promotes rapid data capture. During entry, we adapt the
form ordering based on entered values. After entry, we au-
tomatically identify possibly erroneous inputs, and re-ask
those questions to verify their correctness. Our empirical
evaluations demonstrate the data quality benefits of each
of these USHER components: question ordering allows for
effective recovery of truncated form submissions, and the
re-asking model identifies erroneous responses with high pre-
cision.

There are a variety of ways in which this work can be ex-
tended. A major piece of future work alluded to in Section 8
is to study how our probabilistic model can inform intelligent
adaptations of the user interface during data entry. We in-
tend to answer this problem in greater depth with user stud-
ies and field deployments of our system. On the modeling
side, our present probabilistic approach assumes that every
question is discrete and takes on a series of unrelated values.
Relaxing these assumptions would make for a richer and po-
tentially more accurate predictive model for many domains.

Additionally, we may want to consider models that reflect
temporal changes in the underlying data. Our present error
model makes strong assumptions both about how errors are
distributed, and what errors look like. Recording common
data entry errors, and adapting our system to catch those
errors, is an interesting line of future work.

Finally, we plan to measure the practical impact of our
system, by deploying USHER with our field partners, includ-
ing HIV/AIDS treatment clinics in Tanzania and Malawi,
and migrant farmworker service providers in Northern Cali-
fornia. These organizations’ data quality concerns were the
original motivation for this work, and thus serve as the ul-
timate litmus test for our system. Our hope is to make a
positive societal impact through this technology.
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