Dancing Calm}y
h the Devil
d 3

@

BOOM Team

ras bodik alan fekete

|
|
|
s
-

peter alvaro peter bailis neil conway bill marczak haryadi gunawi sriram srinivasan

s

oshua rosen emily andrews andy hutchinsor

[Can Give You Power

All the Compute you desire
All the Storage you desire

All the Data you desire

THE DEVIL .

At What Cost?

/ i (O The loss ot illusions

— Sequential computing

— Single-copy state

— Reliable components

Dancing with the Devil

* Coordination-Free Distributed Computing
— Write sequential code for each processor
— Communicate without waiting

— Full'bandwidth computation

* Beware the risks:

— Non-determinism

Dancing with the Devil

* Coordination-Free Distributed Computing
— Write sequential code for each processor
— Communicate without waiting |

— Full-bandwidth comp#tati

e Beware the risks:
— Non-determinism

— Split brain

Paying the Devil His Due

* Coordination: the last expensive thing

— But maybe it’s wisest to pay?

Get Away, Satan!

* Coordination: the last expensive thing

"The first principle of successful
scalability is to batter the consistency
mechanisms down to a minimum, move
them off the critical path, hide them in a
rarely visited corner of the system, and
then make it as hard as possible for
application developers to get permission to
use them”

—James Hamilton (IBM, MS, Amazon)

[Birman, Chockler: “Toward a Cloud Computing
Research Agenda”, LADISog]

Are you blithely asserting

that transactions aren’t webscale?

Some people just want to see the world burn.
Those same people want to see the world use inconsistent databases.
- Emin Gun Sirer

Paying the Devil at Google

* Spanner latency costs ! 10 TPS!

latencyfms)
mean,’] stddev | coupt”

all reads §/.7 376.4 [.21.5B

single-site commit || /72.3 112,87 | 31.2M
multi-site commit ||| 103.0 | .52.2 | 32.1M

T

“The Iarge standard deviation in write latencies is caused by a pretty fat tail due to

operation

lock conflicts.

[Corbett, et al. “Spanner-...”, OSDI12]

Distributed Throughput Costs

]]]]]
OR +CA +IR +SP +TO +Sl +SY
Participating Datacenters (+VA)

Max. Throughput (txn/s)

+O N » OO 00 O

Curse you, speed of light!
Only 7 global round-trips per sec

[Bailis et al,, “Coordination Avoidance..”, VLDB 20135]

The Big Question: Dance or Pay?

¢ That is:

— Run without coordination, and risk inconsistency?

— Or pay for coordination?

* More subtly: when to coordinate?

— A case'by-case decision?

—@Can uncoordinated stuf? taint your coordinated stuff?

&

Takeaway.. and Foreshadowing

* Coordination is the last expensive thing in computing

e When can we avoid coordination without inconsistency?

— CALM Theorem answers this question

* How can we avoid coordination?
— Not via Read/Write consistency games

— At application'level—pref erably with language support

Outline

Cloud: A Deal with the Devil
Bottom-Up and Top-Down systems

Creativity from the bottom

Good news from the top: CALM
Grounding CALM: Bloom and Blazes

Lessons and Challenges

CS262 @ Berkeley

* Joint OS/DB intro grad course, 1999 and on
— Brewer + Hellerstein

— An early sense of convergence: data-driven services

 |nitial lectures
— UNIX.: Bottomup system elegance

— System R.: Top-down semantic guarantees

* Good system designers fluidly transit worldviews

A Bottom-Up Hazard

* Starting from the wrong bottom..

The Von Neumann Model

Von Neumann .

Focus on Mutable State

Primacy of Ordering
— LIST of Instructions
— ARRAY of Memory
— MUTATION in time (R/W)

The Von Neumann Model

Focus on Mutable State

Primacy of Ordering
— LIST of Instructions
— ARRAY of Memory
— MUTATION in time (R/W)

— Remember our lost illusions?

THE DEVIL .

The Von Neumann Model

Focus on Mutable State

Primacy of Ordering
— LIST of Instructions
— ARRAY of Memory
— MUTATION in time (R/W)

— Remember our lost illusions?

* Sequential computing

| * Singlecopy state
THE DEVIL . * Reliable components

5
-
5 - ,

e N
JOHN VON NEUMANN

memegener.

Common Modern Responses

Bottom-Up

— Detine specific consistency guarantees for R/W interface

e Causal, weak isolated xactions, session guarantees...

Top-Down

— Build consistent apps despite inconsistent storage

* Dynamo shopping cart

Knovv'Nothing
— Consistency? Why worry?”*

Much dispute, esp. in NoSQL. Each is (often) right.

“[Bailis, et al., “Probabilistically Bounded Staleness..”, VLDB12]

[Last Week on Twitter

damien mutant Qatz @damienkatz - 12~ —=arch Twitter
:

I, Distributed systems, don't read the literature. Most of it is outdated and
unimaginiive. Invent and reinvent. The field is fertile. Really.

4 3 15 % 21 eee

. Puppy Agenda @aphyr - 12h
. @damienkatz what could possibly go wrong

‘\ t‘ 7 * 28 I

[Last Week on Twitter

Puppy Agenda @aphyr - 8h
@damienkatz I'm starting to suspect that not only do you not *have* a
consensus algorithm: you don't even know what the problem *means”.

* t3 1 * ooe

==

~damien mutant Qatz @damienkatz - 8h
. @aphyr Sigh. WHAT PROBLEM ARE YOU TRYING TO SOLVE? Two systems
need to agree upon something. What is that thing?

L o t‘ * see

Dancing on the Wrong Bottom

* Actually, topdown can be made to work
— Consistent apps on inconsistent storage
— Much to be learned here from developer patterns!

* But the tools are a poor fit tor the patterns
— Sequential languages

— Debuggers for ordered R/W of state

— Test harnesses that can’t cover the space

* End results that are hard to test, hard to trust

Takeaway .. and Foreshadowing

* Von Neumann model underlies all our bottom-up thinking

— And it’s a terrible match to the cloud

* What lessons can we learn from today’s successful developers?

Outline

Cloud: A Deal with the Devil
Bottom-Up and Top'Down systems

Creativity from the bottom

Good news from the top: CALM
Grounding CALM: Bloom and Blazes

Lessons and Challenges

Dynamo: Building on Quicksand

[DeCandia, et al. 2007]
[Campbell and Helland, 2009]

* The roots of NoSQL

* Write a shopping cart on a mutable key/value store?
— You'll need to coordinate R/W!

* Instead, accumulate a Iog of shopping events.
— At checkout, tally the full contents

The Dynamo Shopping Cart

Cart
Replica

Add/Remove
ltems

Cart
Replica

—
—_—
—_—

= e—
P—
_— -
—_—

Cart Lazy
Replica Replication

The KVS Cart

* Built on a replicated key-value store (KVY)
— put(item, countsotar)

— get(item, countsotar)

The Coordinated KVS Cart

* Build on a replicated KVS
* With a round ot Paxos or 2PC per write

z
=
)
w
w
3
X
o
m

z
=
)
w
w
3
X
o
m

The Disorderly Log Cart

o Using an hooverwrite event log per session

— append(cart, action)

Proceed to
Checkout

V V A “seal” or “manifest”

Takeaways .. and Foreshadowing

Learning from Developers
Anti-Pattern: R/W mutable shared state
Pattern: “ACID 2.0”

— Associative, Commutative, Idempotent, Distributed
— See also CRDTs
— See also Event Log Exchange

Questions:
1. Can I alwa ys write code that follows the pattern?

2. Will I sometimes need to coordinate? When and How?

Patterns —> Theorems —> Software

Again | Ask: Dance or Pay?

A Theory Question! (Patterns —> Theorems)
— Why coordinate? When can [avoid it?
— The CALM theorem

Note well:

— These are not questions about reads, writes, and races!
* Maybe a better programmer can avoid the contention!

* Must think topdown here!

— These are expressivity/complexity questions

* What can be computed without a coordination construct?

Again | Ask: Dance or Pay?

A Practical Question! (Theorems —> Software)

* Languages/libraries that encourage coordination-freeness

— E.g. Bloom

. Program analysis that detects the need for coordination

— E.g. Blazes

Outline

Cloud: A Deal with the Devil
Bottom-Up and Top'Down systems

Creativity from the bottom
Good news from the top: CALM
Grounding CALM: Bloom and Blazes

Lessons and Challenges

Keep CALM

As it turns out, a data centric view helps a lot

— But not from the transactions literature
* The limitations of R/W thinking

— Better: dataflow, queries, data lineage!

There are positive results to be had!

The CALM Theorem

Monotonic => Consistent
— Dance monotonically with the Devil

— Consistent w/o coordination!

—-Monotonic => —Consistent

— To achieve consistency, you must use coordination

— “Seal” input to non'monotonic operations.

Also:
* CRON Conjecture

* Coordination Complexity

[Hellerstein: PODS ’og keynote,

“The Declarative Imperative”]

Much Depends on Definitions

* Consistency
o Monotonicity

e Coordination

Consistency: Contluence

e Non-Determinism

(of Message Ordering)

* Yet deterministic outcomes

— Upon eventual receipt of
same set ol messages

— Deterministic outcomes ‘
(“state” and “computation”)

CALM Intuition: Logic & Sets

* Monotonic logic
— Sets with accumulation
— Select/Project/Join

— Streaming execution

* Non'Monotonic logic
— Negation (Not Exists)
— Deletion/Mutation
— Set Difference

— No streaming execution. Requires ‘fsea]ing” a set.

Intuition from the Integers

vON NEUMANN

ACID 2.0

int ctr;

operator:= (x) {

// assign
ctr

int ctr;

operator<= (x) {

ctr = MAX(ctr, x);

DISORDERLY INPUT STREAMS:

2, 5,6, 7,11, 22, 44, 91
5,7,2,11, 44,6, 22,91, §

Intuition from the Integers

vON NEUMANN ACID 2.0

100
90
80
70
60
50
40
30
20
10

0
1 2 3 4 5 6 7

DISORDERLY INPUT STREAMS:
2, 5,6, 7,11, 22, 44, 91
5,7,2,11, 44,6, 22,91, §

Intuition: Storing an Integer

vON NEUMANN ACID 2.0

100
90
80
70
60
50
40
30
20
10

DISORDERLY INPUT STREAMS.
2, 5,6, 7,11, 22, 44, 91

5: 7; 2) 1 1J 44) 6, 22, 91, 5 + monotonic “progress”

+ order-insensitive outcome

So Much for Monotonicity

* What'’s the problem with non'monotonicity?

Sealing, Time, Space, Coordination

* Non'monotonicity requires sealing things
—ditem € Cart (fragile(item))
& Vitem € Cart (—fragile (item))

* Time: a mechanism to seal fate.

— Before and after

“Time is what keeps everything from happening at once.”

— Ray Cummings

Sealing, Time, Space, Coordination

* Non'monotonicity requires sealing things
—ditem € Cart (fragile(item))
& Vitem € Cart (fragile(item))

* Time: a mechanism to seal fate.

— Before and after

* Space: multiple perceptions of time

Sealing, Time, Space, Coordination

* Non'monotonicity requires sealing things
—ditem € Cart (fragile(item))
& Vitem € Cart (fragile(item))

* Time: a mechanism to seal fate.

— Before and after

* Space: multiple perceptions of time

* Coordination: sealing across space/time.
— Global Consensus on the “tinal” contents of a piece of state

— 2'Phase Commit & Paxos are the classic protocols

Is Monotonieity Restrictive?

* Actually, it’s all of PTIME!

. Maybe time doesn’t matter so much

— Remember: Time is the thing that prevents everything
from happening all at once.

* Anti-parallelism!

— Avoid it

Theoretical Results

CALM Proof's
— Abiteboul, et al. M=>C
— Ameloot, et al. CALM
— Marczak, et al: Model Theory treatment

— Ameloot, et al: More permissive M

CRON (Proofs & Refutations)

— Ameloot, et al.:

Coordination Complexity: MP Model
— Koutris & Suciu (min-coordination & LB):

— Beame et al. (minimizing replication):

More! See survey by Ameloot

[PODS ’11]

[PODS ’11, JACM ‘13]
[Datalog 2.0 12]
[PODS ’14 best paper]

PCSS ’15]

[PODS ’11]

[PODS ’13]

[SIGMOD Record 6/14]

Thinking CALMly

* Using CALM as a guide to analyze designs..

CALM Analysis: KVS Cart

Non-monotonic!

Add/Remove Car:t
ltems Replica
client) _____ _ Checkout Car_t
~ ~~ _Request Replica
~ -) - .
T Cart Lazy
Replica Replication
Conclusion:

Every operation might
require coordination!

CALM Analysis: Disorderly Log Cart

Monotonic

Cart
Replica

Add/Remove

Checkout Cart
Replica
~ —~ — D' N
Cart Lazy
Replica Replication

Conclusion:
Replication is safe;

coordinate on checkout Proceed to

Checkout /

CALM Analysis: Disorderly Logs with

Seals

Cart
Replica

Add/Remove
ltems

Checkout Cart
~. S~ Request Replica
Ss ~ 0 RS S
Suma T Cart Lazy
Replica Replication

Conclusion:

Replication is safe;
.P Monotonic

Client generates

seal on checkout

Takeaways .. and Foreshadowing

Dance monotonically
Pay for non'monotonicity

Try to tind ways to be monotonic

— Or not to care! E.g. confluence only of invariants®

How do we get back to bottom'up?
— Can software worry about coordination for us?
— How can we test our code for monotonicity?

— How can we write monotonic code?

* |Bailis, et al. “Invariant Confluence..”, VLDB 2013]

Outline

Cloud: A Deal with the Devil
Bottom-Up and Top'Down systems

Creativity from the bottom

Good news from the top: CALM
Grounding CALM: Bloom and Blazes

Lessons and Challenges

Getting Practical

* How can new PLs/libraries help?
1. Encourage monotonicity
2. Guard non'monotonicity cheaply
* Can they address hard debugging problems?

1. Consistency and Coordination
2. Fault tolerance

3. Garbage collection

e Can we define a nice PL that people can use?

One Direction: ACID 2.0 as a Datatype

* CRDTs: ACID 2.0 object classes (lattices)
* Natural library of lattices
— Sets with Union — Integers with Max

— Booleans with OR — Multisets with Union ?? ??

* Fancier custom CRDTs
— E.g. concurrent editors
* Problem: Scope Dilemma
— QGuarantees are per'object
— What happens across objects?
— How do you test complex CRDTSs?

* Bottom upbut little help building up

[Shapiro, et al. “A Comprehensive Study of Convergent and Commutative
Replicated Data Types, 2011]

Another direction: Datalog-based DSLs

* Practical success in declarative networks* and SDNs
* Rich theory, monotonicity is easy to analyze
* Can we write everything this way?
— You can go far: BOOM Analytics™
— But gotchas with mutable state
* Dedalus: Datalog in space and time
— Minimally captures state evolution and messaging
— Lovely basis for the theory work

* Problem: Not always natural

— E.g. vector clocks in Dedalus

* Still too top-downish?

“[Loo, et al. “Declarative Networking”, CACMog]
“[Alvaro, et al. “BOOM Analytics..”, Eurosysio]

bloom

* A disorderly language of data, space and time
* Based on Alvaro’s Dedalus logic

e Extended with lattices and lattice composition

[Alvaro, et al. “Dedalus: Datalog in Time and Space”, 2009]
[Hellerstein, et al. “Consistency Analysis in Bloom....”, CIDR ‘11]
[Conway, et al. “Logic and Lattices for Distributed Progamming”, SOCC ‘12]

http://bloom-lang.org

Syntax: Temporal Merge Rules

state <= expression(events/state)

<= now

<+ next

} time: for mutation
<- del next

<~ async } for communication

_—

Doma.ln Spe(nﬁc Languag@'

Paul Hudak
Department of Computer Science
Yale University

December 15, 1997

1 Introduction

When most people think of a programming language they think of a general pur-
pose language: one capable of programming any application with relatively the
same degree of expressiveness and efficiency. For many applications, however,
there are more natural ways to express the solution to a problem than those
afforded by general purpose programming languages. As a result, researchers
and practitioners in recent years have developed many different domain specific
languages, or DSL's, which are tailored to particular application domains. With
an appropriate DSL, one can develop complete application programs for a do-
main more quickly and more effectively than with a general purpose language.
Ideally, a well-designed DSL captures precisely the semantics of an application
domain, no more and no less.

Table 1 is a partial list of domains for which DSL's have been created. As
youunne,lhelinmvmqulunlmo{mmd. For & list of some popular
DSL's that you may have heard of, look at Table 2.' The first example is &
mofwohknmubexuld\!-a‘whidlmuudwbuildllxmlndpu-!n,
respectively. Thus, ironically, they are good tools for bul“mg_lﬁl.'l (more

Also on the list are examples of “scripting languages,” such as I{EHL._Tcl. nnd
Tk, whose general domain is that of scripting text and file manipulation, GL‘l
widgets, and other software components. When used for scripting, Visual Basic
ann]mbevbwdull)SL,mthou;hkhuuﬂylquofug!mn.l-
purpase. [have included one other general-purpose language, Prolog, because it
: Lattle Lan-
. g Handbook of Programming Languages, Vol ll: Lt
Am&‘m ’s[-'lln "l MacMillan, Indianapolis, pp. 39-60, 1998.

‘Mhn!lhﬂuﬂsmxmp\ﬂnHﬁumdﬂyﬂlh&wuaﬂpﬁ!wm

1

DSLs

A user immersed in a domain already
knows the domain semantics. All the DSL

designer needs to do is provide a notation
to express that semantics.

—Paul Hudak

Vector Clocks: Bloom v. Wikipedia

bootstrap do Initially all clocks are zero.
my_vc <=
{ip_port => Bud: :MaxLattice.new(@)}

Each time a process experiences an
internal event, it increments its own

end
logical clock in the vector by one.
bloom do * Each time a process prepares to send a
next_vc <= out_msg message, it increments its own logical
{ {ip_port => my_vc.at(ip_port) + 1} } clock in the vector by one
out_msg_vc out_msg and then sends its entire vector along
{Iml" [m.addr, m.payload, next_vc]} with the message being sent.

next_vc <= in_msg
{ {ip_port => my_vc.at(ip_port) + 1} }
next_vc <= my_vcC

Each time a process receives a message,
it increments its own logical clock in

next_vc <= in_msg {Iml m.clock} the vector by one
my_vc <+ hext_vc and updates each element in its vector
end by taking the maximum of the value in

its own vector clock and the value in
the vector in the received message (f or

every element).

Further Evidence of Fit

BOOM Analytics & tfollow-ons
— BES
— KVS variants

e MV, Causal, Session Guarantees, Transactional, ..

Wide variety of classical protocols
Concurrent editing

Programming the Cloud Course
http://programthecloud.github.io

[Alvaro, et al. “BOOM Analytics: ..”, Eurosysio]

Takeaways .. and Foreshadowing

Building from a better bottom
— Lattices are nice disorderly building blocks
Restarting from the top

— Dedalus is a formal declarative framework for specif ying and
computing data lineage across space and time

Bloom: an approachable compromise of the two

How can a good DSL help with distributed SW engineering?
— Coordination minimization (Blazes)
— Fault tolerance (Molly)
— Event log garbage collection (Edelweiss)

Outline

Cloud: A Deal with the Devil
Bottom-Up and Top'Down systems

Creativity from the bottom

Good news from the top: CALM
Grounding CALM: Bloom and Blazes

Lessons and Challenges

Below Declarative: Dataflow

* A popular semiimperative model

o Components, dataflow and composition
— Async:
e Service Oriented Architectures

* Functional Reactive Programming

— Bulk/Streaming:
* Relational Algebra
* MapReduce

* If' you squint, it’s all surprisingly the same

Ensuring Confluent Datatlow

* Key flow concern

— Orderssensitive operator downstream of communication

* Cheap coordination
— Sometimes we can handle this without global consensus
— Basic idea: “Sealing” (as in the cart example)

— Question: how to choose/propagate seals across SW
components?

Components

Input interfaces

O O

O

Output interface

Streams

Nondeterministic order

Example: a join operator

O_O

Example: a key/value store

put

response

q®
@, >
>0

get

Logical datatlow

client

“Software architecture”

Datatlow is compositional

———p0 O

Data source

——0 O

client

Oor—

Service X

filter

" O

aggregato

Components are recursively defined

Physical datatlow

Physical datatlow

— o o

Data source

O—0 O »0 Or——

b Service X filter aggregator
—30 (@)

client

Physica

l
4

Data source

| dataflow

F--==30 Q

-—r‘——\v—)o O--—H——'H-

I R

Service X filter

client

“System architecture”

aggregator

What Could Go Wrong

e Transitive Non-Determinism: Order-sensitive component
downstream from (disorderly) communication
— Unordered streams, or

— Multiple interleaved streams

Crossiinstance nondeterminism

O O
—_—lQ O
I ?
Data source @ %@
O Q O
il
-_—3d O
"0 O

Service X

Transient re plica disagreement

Divergence

L N ™o
Data source @ fk‘
O 4z
I/‘"

Service X

Permanent re p]ica disagreem ent

Confluence

output set = f(input set)

Contfluence is Compositional

output set = { - g(input set)

Blazes

e (Given an annotated dataflow
— Some operators marked as order-insensitive

— Some keys marked as determining value of other keys
. E.g. “session]D” determines value of “cart_contents”

* Aka. functional dependencies

* Add minimalist logic to ensure confluence
— Win: seal a (sub)set of data without global coordination

— Very much like we did with shopping cart seals

* But synthesized automatically!

[Alvaro, et al. “Blazes: Coordination Analysis..”, ICDE14]

Annotated dataflow?

* Who adds the annotations

— Order-insensitivity? Dependencies?

* We can ask a dataflow programmer: “gray boxes”
— E.g. a Storm programmer, CRDTs

— Blazes guarantees correct composition of these gray boxes

* We can ask a compiler
— About composition and components
— Starting from a higher'level language

— Blazes guarantees entire Bloom programs, unassisted

Back to Shopping

* Remember the typical KVS cart implementation
— Bottom-up reusable component
— But expensive coordination on every write

* The sealed, replicated log as a design pattern
— A bit more top-down, custom

* What Would Blazes Do
— It we give it the KVS cart?

KVS

module KVS

state do
interface input, :put, [:key, :val]
interface input, :get, [:ident, :key]

interface output, :response,
[tresponse id, :key, :val]

table :log, [:key, :val]

end

bloom do
log <+ put
log <- (put * log).rights(:key => :key)
response <= (log * get).pairs(:key=>:key) do |s,1|

[l.ident, s.key, s.val]

end

end

end

KVS

module KVS

state do
interface input, :put, [:key, :val]
interface input, :get, [:ident, :key]

interface output, :response,
[tresponse id, :key, :val]
table :log, [:key, :val]
end
bloom do
log <+ put
log (put * log).rights(:key => :key)
response <= (log * get).pairs(:key=>:key) do |s,1|
[l.ident, s.key, s.val]
end
end

end Negation (= order sensitive)

KVS

module KVS
state do
interface input, :put, [TVE
interface input, :get, [TIdent,
interface output, :response,
[:response_ id, , :val]
table :log, [:key, :val]
end
bloom do
log <+ put
log(put * log).rights(|:key => :key
response <= (log * get).pairs(:key=>:key) do |s,1|
[l.ident, s.key, s.val]
end
end

end Negation (= order sensitive)

Partitioned by :key

KVS

put 2 response: OW

key

module KVS get = response: OR,.,

state do
interface input, :put, [TVE
interface input, :get, [TIdent,
interface output, :response,
[:response_ id, , :val]
table :log, [:key, :val]
end
bloom do
log <+ put
log(put * log).rights(
response <= (log * get).pairs
[l.ident, s.key, s.val]
end
end

end Negation (= order sensitive)

Partitioned by :key

Blazes

Non-monotonic,

Sealable on key

Add/Remove Car:t
ltems Replica
client) __ _ Checkout Car_t
~ ~~ _Request Replica
~ - o - .
T Cart Lazy
Replica Replication
Conclusion:

Every operation might
require coordination!

Seals on session

Add/Remove
ltems

session = key

Blazes

Non-monotonic,
Sealable on key

Cart
Replica

Client)} _____ _ Checkout Car_t
~ ~~ Request Replica
~ -) - .
T Cart Lazy
Replica Replication

Blazes

Seals on session Non-monotonic,

session = key Sealable 01:1 key

Cart

Add/Remove
i Replica

ltems

Checkout Cart
~. S~ Request Replica
~ ~ - 3" S S N
N, s A
e = Cart Lazy
Replica Replication

Conclusion:
Replication is safe.

Monotonic response
Generated code: P

on seal satisfaction

Client seals on checkout

Blazes Takeaways

* CALM intuition exported to datatlow

— E.g. Apache Storm, via “gray'box” annotations

* Bloom is easy to check in “white-box™ mode

— Dataflow + annotations easily pulled from syntax

. Sealing as a Cheap source of coordination

— Data that’s partitioned so a single site generate seals

Two more analysis results

e Failures and Fault Tolerance

* Application-aware Garbage Collection

LDFH .. tldr

e How to test end-torend Fault Tolerance?

* LineageDriven Fault Injection (LDFI)
— Start with a known good outcome

— Ask: what could have gone wrong?
e A lineage question
— Synthesize failures to ensure things go wrong

— Execute and look for a new good outcome to explore

Kafka durability bug

[Alvaro, et al. 2015]

Edelweiss ... tl;dr

Bloom .. and grow?
— If we keep exchanging monotonic logs

— Can we ever throw anything away?

Edelweiss
— A restricted subset of Bloom

— Removes constructs for deletion and mutation

Automatically generate safe,

application-specitic GC protocols Comparison of Program Size
I Edelwei
2 ®0 Only 4 Bloom
2 50 19 rules!
£ 40
§ 30
-g 20
z
12 ————— - _I = -]
. ~\o'z’é «\4?‘& oé\o) o’g} ok\r’e « \\36 «\é@k S P
[Conway, et al. “Edelweiss...”, VLDB 2014] S E L P
§& F P & N & &
> X .

Outline

Cloud: A Deal with the Devil
Bottom-Up and Top'Down systems

Creativity from the bottom

Good news from the top: CALM
Grounding CALM: Bloom and Blazes

Lessons and Challenges

Summary

Coordination is the key remaining cost in cloud computing
— Paxos, 2PC, etc.

Q: When can coordination be avoided w/o inconsistency?
A: CALM: exactly for monotonic programs

Q: How can coordination be avoided practically?
A: Application-level reasoning is the engine of innovation

DSLs are reliable vehicles for that innovation bloom
— Patterns: Reinforce healthy design patterns

— Theorems: Formal approaches supporting analysis and code synthesis

— Software: Datacentric DSLs like Bloom are wellsuited to the domain

Opportunities 1: Rethinking
Coordination

* Polyglot Consistency
— Some of my data needs consistency. Some doesn’t.

— How to avoid leaking inconsistency tain t?

* Coordination locality

— E.g. Calvin, Hstore do coordination at job ingress

— E.g. seal generation in Blazes

— Optimize programs to “push” coordination to local spots?
* Programming with Apologies

— Pattern: allow inconsistency, fix things up later (coupons)

— Can we do Pattern—>Theorem—>Software here?

Opportunities 2: DSLs

DSLs for orchestration, service composition
— Deployment is programming! Bugs ensue through incorrect composition.

— Kubernetes/Chef /Puppet are declarative DSLs; extend to richer SW composition

Performance optimization
— Bloom was an exercise in the possible. What about the optimal?

— High-performance concurrent DSL? Interesting for multicore, NewSQL internals, etc.

Bottom-up alternatives to Bloom
— Take a cue from CRDTs, Erlang, Akka, etc.
— Consider design patterns like Event Log Exchange & Edelweiss

— Fix the scope dilemma as Bloom did with monotone functions

Convergence in Big Data
— World 1: async programming and NoSQL (Bloom, Erlang, Akka, node.js)
— World 2: parallel analytics, batch processing, streaming (SQL, Hadoop, Spark, Storm)
— Convergence: Design Opportunity? Benefits?

