
Dancing Calmly
With the Devil

Joe Hellerstein

BOOM Team

peter alvaro neil conway bill marczak haryadi gunawi peter bailis sriram srinivasan

emily andrews andy hutchinson Joshua rosen

joe hellerstein ras bodik david maier alan fekete

I Can Give You Power

All the Compute you desire
All the Storage you desire
All the Data you desire

At What Cost?

The loss of illusions
– Sequential computing
– Single-copy state
– Reliable components

Dancing with the Devil

•  Coordination-Free Distributed Computing
– Write sequential code for each processor
– Communicate without waiting
– Full-bandwidth computation

•  Beware the risks:
– Non-determinism

Dancing with the Devil

•  Coordination-Free Distributed Computing
– Write sequential code for each processor
– Communicate without waiting
– Full-bandwidth computation

•  Beware the risks:
– Non-determinism
– Split brain

Paying the Devil His Due

•  Coordination: the last expensive thing
– But maybe it’s wisest to pay?

Get Away, Satan!

•  Coordination: the last expensive thing

“The first principle of successful
scalability is to batter the consistency
mechanisms down to a minimum, move
them off the critical path, hide them in a
rarely visited corner of the system, and
then make it as hard as possible for
application developers to get permission to
use them”

—James Hamilton (IBM, MS, Amazon)

[Birman, Chockler: “Toward a Cloud Computing
 Research Agenda”, LADIS09]

Are you blithely asserting
that transactions aren’t webscale?

Some people just want to see the world burn.
Those same people want to see the world use inconsistent databases.

 - Emin Gün Sirer

Paying the Devil at Google

•  Spanner latency costs

“The large standard deviation in write latencies is caused by a pretty fat tail due to
lock conflicts.

latency (ms)
operation mean std dev count
all reads 8.7 376.4 21.5B

single-site commit 72.3 112.8 31.2M
multi-site commit 103.0 52.2 32.1M

Table 6: F1-perceived operation latencies measured over the
course of 24 hours.

of such tables are extremely uncommon. The F1 team
has only seen such behavior when they do untuned bulk
data loads as transactions.

Table 6 presents Spanner operation latencies as mea-
sured from F1 servers. Replicas in the east-coast data
centers are given higher priority in choosing Paxos lead-
ers. The data in the table is measured from F1 servers
in those data centers. The large standard deviation in
write latencies is caused by a pretty fat tail due to lock
conflicts. The even larger standard deviation in read la-
tencies is partially due to the fact that Paxos leaders are
spread across two data centers, only one of which has
machines with SSDs. In addition, the measurement in-
cludes every read in the system from two datacenters:
the mean and standard deviation of the bytes read were
roughly 1.6KB and 119KB, respectively.

6 Related Work

Consistent replication across datacenters as a storage
service has been provided by Megastore [5] and Dy-
namoDB [3]. DynamoDB presents a key-value interface,
and only replicates within a region. Spanner follows
Megastore in providing a semi-relational data model,
and even a similar schema language. Megastore does
not achieve high performance. It is layered on top of
Bigtable, which imposes high communication costs. It
also does not support long-lived leaders: multiple repli-
cas may initiate writes. All writes from different repli-
cas necessarily conflict in the Paxos protocol, even if
they do not logically conflict: throughput collapses on
a Paxos group at several writes per second. Spanner pro-
vides higher performance, general-purpose transactions,
and external consistency.

Pavlo et al. [31] have compared the performance of
databases and MapReduce [12]. They point to several
other efforts that have been made to explore database
functionality layered on distributed key-value stores [1,
4, 7, 41] as evidence that the two worlds are converging.
We agree with the conclusion, but demonstrate that in-
tegrating multiple layers has its advantages: integrating
concurrency control with replication reduces the cost of
commit wait in Spanner, for example.

The notion of layering transactions on top of a repli-
cated store dates at least as far back as Gifford’s disser-
tation [16]. Scatter [17] is a recent DHT-based key-value
store that layers transactions on top of consistent repli-
cation. Spanner focuses on providing a higher-level in-
terface than Scatter does. Gray and Lamport [18] de-
scribe a non-blocking commit protocol based on Paxos.
Their protocol incurs more messaging costs than two-
phase commit, which would aggravate the cost of com-
mit over widely distributed groups. Walter [36] provides
a variant of snapshot isolation that works within, but not
across datacenters. In contrast, our read-only transac-
tions provide a more natural semantics, because we sup-
port external consistency over all operations.

There has been a spate of recent work on reducing
or eliminating locking overheads. Calvin [40] elimi-
nates concurrency control: it pre-assigns timestamps and
then executes the transactions in timestamp order. H-
Store [39] and Granola [11] each supported their own
classification of transaction types, some of which could
avoid locking. None of these systems provides external
consistency. Spanner addresses the contention issue by
providing support for snapshot isolation.

VoltDB [42] is a sharded in-memory database that
supports master-slave replication over the wide area for
disaster recovery, but not more general replication con-
figurations. It is an example of what has been called
NewSQL, which is a marketplace push to support scal-
able SQL [38]. A number of commercial databases im-
plement reads in the past, such as MarkLogic [26] and
Oracle’s Total Recall [30]. Lomet and Li [24] describe an
implementation strategy for such a temporal database.

Farsite derived bounds on clock uncertainty (much
looser than TrueTime’s) relative to a trusted clock refer-
ence [13]: server leases in Farsite were maintained in the
same way that Spanner maintains Paxos leases. Loosely
synchronized clocks have been used for concurrency-
control purposes in prior work [2, 23]. We have shown
that TrueTime lets one reason about global time across
sets of Paxos state machines.

7 Future Work

We have spent most of the last year working with the
F1 team to transition Google’s advertising backend from
MySQL to Spanner. We are actively improving its mon-
itoring and support tools, as well as tuning its perfor-
mance. In addition, we have been working on improving
the functionality and performance of our backup/restore
system. We are currently implementing the Spanner
schema language, automatic maintenance of secondary
indices, and automatic load-based resharding. Longer
term, there are a couple of features that we plan to in-

Published in the Proceedings of OSDI 2012 12

10	
 TPS!	

[Corbett, et al. “Spanner:…”, OSDI12]

Distributed Throughput Costs

Figure 1: Microbenchmark performance of coordinated and
coordination-free execution of transactions of varying size writ-
ing to eight items located on eight separate multi-core servers.

Quantifying coordination overheads. To further understand the
costs of coordination, we performed two sets of measurements—one
using a database prototype and one using traces from prior studies.

We first compared the throughput of a set of coordinated and
coordination-free transaction execution. We partitioned a set of
eight data items across eight servers and ran one set of transactions
with an optimized variant of two-phase locking (providing serializ-
ability) [15] and ran another set of transactions without coordination
(Figure 1; see [10, Appendix A] for more details). With single-item,
non-distributed transactions, the coordination-free implementation
achieves, in aggregate, over 12M transactions per second and bot-
tlenecks on physical resources—namely, CPU cycles. In contrast,
the lock-based implementation achieves approximately 1.1M trans-
actions per second: it is unable to fully utilize all multi-core pro-
cessor contexts due to lock contention. For distributed transactions,
coordination-free throughput decreases linearly (as an N-item trans-
action performs N writes), while the throughput of coordinating
transactions drops by over three orders of magnitude.

While the above microbenchmark demonstrates the costs of a
particular implementation of coordination, we also studied the ef-
fect of more fundamental, implementation-independent overheads
(i.e., also applicable to optimistic and scheduling-based concur-
rency control mechanisms). We determined the maximum attainable
throughput for coordinated execution within a single datacenter
(based on data from [60]) and across multiple datacenters (based on
data from [9]) due to blocking coordination during atomic commit-
ment [15]. For an N-server transaction, classic two-phase commit
(C-2PC) requires N (parallel) coordinator to server RTTs, while de-
centralized two-phase commit (D-2PC) requires N (parallel) server
to server broadcasts, or N2 messages. Figure 2 shows that, in the
local area, with only two servers (e.g., two replicas or two coordi-
nating operations on items residing on different servers), throughput
is bounded by 1125 transactions/s (via D-2PC; 668/s via C-2PC).
Across eight servers, D-2PC throughput drops to 173 transactions/s
(resp. 321 for C-2PC) due to long-tailed latency distributions. In the
wide area, the effects are more stark: if coordinating from Virginia
to Oregon, D-2PC message delays are 83 ms per commit, allowing
12 operations per second. If coordinating between all eight EC2
availability zones, throughput drops to slightly over 2 transactions/s
in both algorithms. ([10, Appendix A] provides more details.)

These results should be unsurprising: coordinating—especially
over the network—can incur serious performance penalties. In
contrast, coordination-free operations can execute without incurring
these costs. The costs of actual workloads can vary: if coordinating
operations are rare, concurrency control will not be a bottleneck.
For example, a serializable database executing transactions with
disjoint read and write sets can perform as well as a non-serializable
database without compromising correctness [34]. However, as these

a.) Maximum transaction throughput over local-area network in [60]

+OR +CA +IR +SP +TO +SI +SY
Participating Datacenters (+VA)

0
2
4
6
8

10
12

M
ax

. T
hr

ou
gh

pu
t (

tx
n/

s)

D-2PC
C-2PC

b.) Maximum throughput over wide-area network in [9] with transactions origi-
nating from a coordinator in Virginia (VA; OR: Oregon, CA: California, IR: Ire-
land, SP: São Paulo, TO: Tokyo, SI: Singapore, SY: Sydney)

Figure 2: Atomic commitment latency as an upper bound on
throughput over LAN and WAN networks.

results demonstrate, minimizing the amount of coordination and
its degree of distribution can therefore have a tangible impact on
performance, latency, and availability [1,9,28]. While we study real
applications in Section 6, these measurements highlight the worst
of coordination costs on modern hardware.

Our goal: Minimize coordination. In this paper, we seek to min-
imize the amount of coordination required to correctly execute an
application’s transactions. As discussed in Section 1, serializability
is sufficient to maintain correctness but is not always necessary; that
is, many—but not all—transactions can be executed concurrently
without necessarily compromising application correctness. In the
remainder of this paper, we identify when safe, coordination-free
execution is possible. If serializability requires coordinating be-
tween each possible pair of conflicting reads and writes, we will
only coordinate between pairs of operations that might compromise
application-level correctness. To do so, we must both raise the
specification of correctness beyond the level of reads and writes
and directly account for the process of reconciling the effects of
concurrent transaction execution at the application level.

3. SYSTEM MODEL
To characterize coordination avoidance, we first present a sys-

tem model. We begin with an informal overview. In our model,
transactions operate over independent (logical) “snapshots” of da-
tabase state. Transaction writes are applied at one or more snap-
shots initially when the transaction commits and then are integrated
into other snapshots asynchronously via a “merge” operator that
incorporates those changes into the snapshot’s state. Given a set
of invariants describing valid database states, as Table 1 outlines,
we seek to understand when it is possible to ensure invariants are
always satisfied (global validity) while guaranteeing a response
(transactional availability) and the existence of a common state (con-
vergence), all without communication during transaction execution
(coordination-freedom). This model need not directly correspond to

[Bailis et al., “Coordination Avoidance…”, VLDB 2015]

Curse you, speed of light!
Only 7 global round-trips per sec

The Big Question: Dance or Pay?

•  That is:
–  Run without coordination, and risk inconsistency?
–  Or pay for coordination?

•  More subtly: when to coordinate?
–  A case-by-case decision?
–  Can uncoordinated stuff taint your coordinated stuff?

Takeaway… and Foreshadowing

•  Coordination is the last expensive thing in computing

•  When can we avoid coordination without inconsistency?
–  CALM Theorem answers this question

•  How can we avoid coordination?
–  Not via Read/Write consistency games
–  At application-level—preferably with language support

Outline

•  Cloud: A Deal with the Devil
•  Bottom-Up and Top-Down systems
•  Creativity from the bottom
•  Good news from the top: CALM
•  Grounding CALM: Bloom and Blazes
•  Lessons and Challenges

CS262 @ Berkeley

•  Joint OS/DB intro grad course, 1999 and on
–  Brewer + Hellerstein
–  An early sense of convergence: data-driven services

•  Initial lectures
–  UNIX: Bottom-up system elegance
–  System R: Top-down semantic guarantees

•  Good system designers fluidly transit worldviews

A Bottom-Up Hazard

•  Starting from the wrong bottom…

The Von Neumann Model

Focus on Mutable State
Primacy of Ordering
– LIST of Instructions
– ARRAY of Memory
– MUTATION in time (R/W)

The Von Neumann Model

Focus on Mutable State
Primacy of Ordering
– LIST of Instructions
– ARRAY of Memory
– MUTATION in time (R/W)
– Remember our lost illusions?

The Von Neumann Model

Focus on Mutable State
Primacy of Ordering
– LIST of Instructions
– ARRAY of Memory
– MUTATION in time (R/W)
– Remember our lost illusions?
•  Sequential computing

•  Single-copy state
•  Reliable components

Common Modern Responses

•  Bottom-Up
–  Define specific consistency guarantees for R/W interface

•  Causal, weak isolated xactions, session guarantees…

•  Top-Down
–  Build consistent apps despite inconsistent storage

•  Dynamo shopping cart

•  Know-Nothing
–  Consistency? Why worry?*

•  Much dispute, esp. in NoSQL. Each is (often) right.

 *[Bailis, et al., “Probabilistically Bounded Staleness…”, VLDB12]

Last Week on Twitter

Last Week on Twitter

Dancing on the Wrong Bottom

•  Actually, top-down can be made to work
– Consistent apps on inconsistent storage
– Much to be learned here from developer patterns!

•  But the tools are a poor fit for the patterns
–  Sequential languages
– Debuggers for ordered R/W of state
– Test harnesses that can’t cover the space

•  End results that are hard to test, hard to trust

Takeaway … and Foreshadowing

•  Von Neumann model underlies all our bottom-up thinking
–  And it’s a terrible match to the cloud

•  What lessons can we learn from today’s successful developers?

Outline

•  Cloud: A Deal with the Devil
•  Bottom-Up and Top-Down systems
•  Creativity from the bottom
•  Good news from the top: CALM
•  Grounding CALM: Bloom and Blazes
•  Lessons and Challenges

Dynamo: Building on Quicksand

•  The roots of NoSQL
•  Write a shopping cart on a mutable key/value store?
–  You’ll need to coordinate R/W!

•  Instead, accumulate a log of shopping events.
–  At checkout, tally the full contents

[DeCandia, et al. 2007]
[Campbell and Helland, 2009]

The Dynamo Shopping Cart

Client

Cart
Replica

Cart
Replica

Cart
Replica

Add/Remove
Items

Checkout
Request

Lazy
Replication

The KVS Cart

•  Built on a replicated key-value store (KVS)
– put(item, count-so-far)
– get(item, count-so-far)

Key Value

2

Key Value

1 1

1 1

2

The Coordinated KVS Cart

•  Build on a replicated KVS
•  With a round of Paxos or 2PC per write

Key Value Key Value

Key Value Key Value

-1 -1

Key Value Key Value

1 1 1 1

Key Value Key Value

1 1 1 1

Key Value

1 1

Key Value

1 1

1 1

Key Value Key Value

1 1

1 1

Key Value Key Value

2 2
✔

1 1

The Disorderly Log Cart

•  Using an no-overwrite event log per session
– append(cart, action)

A “seal” or “manifest” ✔ ✔

Takeaways … and Foreshadowing

•  Learning from Developers
•  Anti-Pattern: R/W mutable shared state
•  Pattern: “ACID 2.0”

–  Associative, Commutative, Idempotent, Distributed
–  See also CRDTs
–  See also Event Log Exchange

•  Questions:
1.  Can I always write code that follows the pattern?
2.  Will I sometimes need to coordinate? When and How?

Patterns —> Theorems —> Software

Again I Ask: Dance or Pay?

A Theory Question! (Patterns —> Theorems)
–  Why coordinate? When can I avoid it?
–  The CALM theorem

Note well:
–  These are not questions about reads, writes, and races!

•  Maybe a better programmer can avoid the contention!
•  Must think top-down here!

–  These are expressivity/complexity questions
•  What can be computed without a coordination construct?

Again I Ask: Dance or Pay?

A Practical Question! (Theorems —> Software)

•  Languages/libraries that encourage coordination-freeness
–  E.g. Bloom

•  Program analysis that detects the need for coordination
–  E.g. Blazes

Outline

•  Cloud: A Deal with the Devil
•  Bottom-Up and Top-Down systems
•  Creativity from the bottom
•  Good news from the top: CALM
•  Grounding CALM: Bloom and Blazes
•  Lessons and Challenges

Keep CALM

As it turns out, a data centric view helps a lot
– But not from the transactions literature

•  The limitations of R/W thinking

– Better: dataflow, queries, data lineage!

There are positive results to be had!

The CALM Theorem

Also:
•  CRON Conjecture
•  Coordination Complexity

[Hellerstein: PODS ’09 keynote,
“The Declarative Imperative”]

Monotonic => Consistent
– Dance monotonically with the Devil
– Consistent w/o coordination!

¬Monotonic => ¬Consistent
– To achieve consistency, you must use coordination
–  “Seal” input to non-monotonic operations.

Much Depends on Definitions

•  Consistency
•  Monotonicity
•  Coordination

Consistency: Confluence

•  Non-Determinism
(of Message Ordering)

•  Yet deterministic outcomes
– Upon eventual receipt of

same set of messages
– Deterministic outcomes

(“state” and “computation”)

CALM Intuition: Logic & Sets

•  Monotonic logic
–  Sets with accumulation
–  Select/Project/Join
–  Streaming execution

•  Non-Monotonic logic
–  Negation (Not Exists)
–  Deletion/Mutation
–  Set Difference
–  No streaming execution. Requires “sealing” a set.

Intuition from the Integers

VON NEUMANN

int ctr;

operator:= (x) {
 // assign

 ctr = x;

}

ACID 2.0

int ctr;

operator<= (x) {

 // merge

 ctr = MAX(ctr, x);

}

DISORDERLY INPUT STREAMS:
2, 5, 6, 7, 11, 22, 44, 91
5, 7, 2, 11, 44, 6, 22, 91, 5

Intuition from the Integers

VON NEUMANN ACID 2.0

DISORDERLY INPUT STREAMS:
2, 5, 6, 7, 11, 22, 44, 91
5, 7, 2, 11, 44, 6, 22, 91, 5

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	

Intuition: Storing an Integer

VON NEUMANN ACID 2.0

DISORDERLY INPUT STREAMS:
2, 5, 6, 7, 11, 22, 44, 91
5, 7, 2, 11, 44, 6, 22, 91, 5

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	

+ monotonic “progress”
+ order-insensitive outcome

So Much for Monotonicity

•  What’s the problem with non-monotonicity?

Sealing, Time, Space, Coordination

•  Non-monotonicity requires sealing things
 ¬∃item ∊ Cart (fragile(item))
 ⟺ ∀item ∊ Cart (¬fragile (item))

•  Time: a mechanism to seal fate.
–  Before and after

“Time is what keeps everything from happening at once.”
— Ray Cummings

Sealing, Time, Space, Coordination

•  Non-monotonicity requires sealing things
 ¬∃item ∊ Cart (fragile(item))
 ⟺ ∀item ∊ Cart (fragile(item))

•  Time: a mechanism to seal fate.
–  Before and after

•  Space: multiple perceptions of time

Sealing, Time, Space, Coordination

•  Non-monotonicity requires sealing things
 ¬∃item ∊ Cart (fragile(item))
 ⟺ ∀item ∊ Cart (fragile(item))

•  Time: a mechanism to seal fate.
–  Before and after

•  Space: multiple perceptions of time
•  Coordination: sealing across space/time.

–  Global Consensus on the “final” contents of a piece of state
–  2-Phase Commit & Paxos are the classic protocols

Is Monotonicity Restrictive?

•  Actually, it’s all of PTIME!
•  Maybe time doesn’t matter so much
–  Remember: Time is the thing that prevents everything

from happening all at once.
•  Anti-parallelism!

–  Avoid it

Theoretical Results

•  CALM Proofs
–  Abiteboul, et al.: M=>C [PODS ’11]

–  Ameloot, et al.: CALM [PODS ’11, JACM ‘13]

–  Marczak, et al.: Model-Theory treatment [Datalog 2.0 ’12]

–  Ameloot, et al.: More permissive M [PODS ’14 best paper]

•  CRON (Proofs & Refutations)
–  Ameloot, et al.: [JCSS ’15]

•  Coordination Complexity: MP Model
–  Koutris & Suciu (min-coordination & LB): [PODS ’11]

–  Beame et al. (minimizing replication): [PODS ’13]

•  More! See survey by Ameloot [SIGMOD Record 6/14]

Thinking CALMly

•  Using CALM as a guide to analyze designs…

Client

Cart
Replica

Cart
Replica

Cart
Replica

Add/Remove
Items

Checkout
Request

Lazy
Replication

CALM Analysis: KVS Cart

Conclusion:
Every operation might
require coordination!

Non-monotonic!

Client

Cart
Replica

Cart
Replica

Cart
Replica

Add/Remove
Items

Checkout
Request

Lazy
Replication

CALM Analysis: Disorderly Log Cart

Conclusion:
Replication is safe;
coordinate on checkout

Monotonic

Client

Cart
Replica

Cart
Replica

Cart
Replica

Add/Remove
Items

Checkout
Request

Lazy
Replication

CALM Analysis: Disorderly Logs with
Seals

Conclusion:
Replication is safe;
Client generates
seal on checkout

Monotonic

Takeaways … and Foreshadowing

•  Dance monotonically
•  Pay for non-monotonicity
•  Try to find ways to be monotonic
– Or not to care! E.g. confluence only of invariants*

•  How do we get back to bottom-up?
– Can software worry about coordination for us?
– How can we test our code for monotonicity?
– How can we write monotonic code?

* [Bailis, et al. “Invariant Confluence…”, VLDB 2015]

Outline

•  Cloud: A Deal with the Devil
•  Bottom-Up and Top-Down systems
•  Creativity from the bottom
•  Good news from the top: CALM
•  Grounding CALM: Bloom and Blazes
•  Lessons and Challenges

Getting Practical

•  How can new PLs/libraries help?
1.  Encourage monotonicity
2.  Guard non-monotonicity cheaply

•  Can they address hard debugging problems?
1.  Consistency and Coordination
2.  Fault tolerance
3.  Garbage collection

•  Can we define a nice PL that people can use?

… but little help building up

One Direction: ACID 2.0 as a Datatype

•  CRDTs: ACID 2.0 object classes (lattices)
•  Natural library of lattices

–  Sets with Union — Integers with Max
–  Booleans with OR — Multisets with Union

•  Fancier custom CRDTs
–  E.g. concurrent editors

•  Problem: Scope Dilemma
–  Guarantees are per-object
–  What happens across objects?
–  How do you test complex CRDTs?

•  Bottom

[Shapiro, et al. “A Comprehensive Study of Convergent and Commutative
Replicated Data Types, 2011]

✓	

✓	
 ✓	
 ✓	

?? ??

?

up

Another direction: Datalog-based DSLs

•  Practical success in declarative networks* and SDNs
•  Rich theory, monotonicity is easy to analyze
•  Can we write everything this way?

–  You can go far: BOOM Analytics**
–  But gotchas with mutable state

•  Dedalus: Datalog in space and time
–  Minimally captures state evolution and messaging
–  Lovely basis for the theory work

•  Problem: Not always natural
–  E.g. vector clocks in Dedalus

•  Still too top-downish?

*[Loo, et al. “Declarative Networking”, CACM09]
**[Alvaro, et al. “BOOM Analytics…”, Eurosys10]

•  A disorderly language of data, space and time
•  Based on Alvaro’s Dedalus logic
•  Extended with lattices and lattice composition

<~ bloom

[Alvaro, et al. “Dedalus: Datalog in Time and Space”, 2009]
[Hellerstein, et al. “Consistency Analysis in Bloom:….”, CIDR ‘11]
[Conway, et al. “Logic and Lattices for Distributed Progamming”, SOCC ‘12]
http://bloom-lang.org

Syntax: Temporal Merge Rules

<= now

<+ next

<- del_next

<~ async

state <= expression(events/state)

time: for mutation }	

for communication }	

DSLs

A user immersed in a domain already
knows the domain semantics. All the DSL
designer needs to do is provide a notation
to express that semantics.

“ “
—Paul Hudak

•  Initially all clocks are zero.
•  Each time a process experiences an

internal event, it increments its own
logical clock in the vector by one.

•  Each time a process prepares to send a
message, it increments its own logical
clock in the vector by one
and then sends its entire vector along
with the message being sent.

•  Each time a process receives a message,
it increments its own logical clock in
the vector by one
and updates each element in its vector
by taking the maximum of the value in
its own vector clock and the value in
the vector in the received message (for
every element).

Vector Clocks: Bloom v. Wikipedia

bootstrap do  
 my_vc <=  
 {ip_port => Bud::MaxLattice.new(0)}  
end

bloom do  
 next_vc <= out_msg  
 { {ip_port => my_vc.at(ip_port) + 1} }
 out_msg_vc <= out_msg  
 {|m| [m.addr, m.payload, next_vc]}  
 next_vc <= in_msg  
 { {ip_port => my_vc.at(ip_port) + 1} }  
 next_vc <= my_vc  
 next_vc <= in_msg {|m| m.clock}  
 my_vc <+ next_vc  
end

Further Evidence of Fit

•  BOOM Analytics & follow-ons
– BFS
– KVS variants

•  MV, Causal, Session Guarantees, Transactional, …

•  Wide variety of classical protocols
•  Concurrent editing
•  Programming the Cloud Course

http://programthecloud.github.io

 [Alvaro, et al. “BOOM Analytics: …”, Eurosys10]

Takeaways … and Foreshadowing

•  Building from a better bottom
–  Lattices are nice disorderly building blocks

•  Restarting from the top
–  Dedalus is a formal declarative framework for specifying and

computing data lineage across space and time

•  Bloom: an approachable compromise of the two

•  How can a good DSL help with distributed SW engineering?
–  Coordination minimization (Blazes)
–  Fault tolerance (Molly)
–  Event log garbage collection (Edelweiss)

Outline

•  Cloud: A Deal with the Devil
•  Bottom-Up and Top-Down systems
•  Creativity from the bottom
•  Good news from the top: CALM
•  Grounding CALM: Bloom and Blazes
•  Lessons and Challenges

Below Declarative: Dataflow

•  A popular semi-imperative model
•  Components, dataflow and composition
– Async:

•  Service Oriented Architectures
•  Functional Reactive Programming

– Bulk/Streaming:
•  Relational Algebra
•  MapReduce

•  If you squint, it’s all surprisingly the same

Ensuring Confluent Dataflow

•  Key flow concern
–  Order-sensitive operator downstream of communication

•  Cheap coordination
–  Sometimes we can handle this without global consensus
–  Basic idea: “Sealing” (as in the cart example)
–  Question: how to choose/propagate seals across SW

components?

Components

Input interfaces Output interface

Streams

Nondeterministic order

Example: a join operator

R

S
T

Example: a key/value store

put

get
response

Logical dataflow

“Software architecture”

Data source

client

Service X filter cache

c

a

b

Dataflow is compositional

Components are recursively defined

Data source

client

Service X filter aggregator

Physical dataflow

Physical dataflow

Data source

client

Service X filter aggregator

c

a

b

Physical dataflow

Data source

Service X filter

aggregator

client
“System architecture”

What Could Go Wrong

•  Transitive Non-Determinism: Order-sensitive component
downstream from (disorderly) communication
–  Unordered streams, or
–  Multiple interleaved streams

Cross-instance nondeterminism

Data	
 source	

Service	
 X	

client	

Transient replica disagreement

Divergence

Data	
 source	

Service	
 X	

client	

Permanent replica disagreement

Confluence

output	
 set	
 =	
 f(input	
 set)	
 	
 	

{	
 	
 	
 	
 	
 	
 	
 	
 }	

{	
 	
 	
 	
 	
 	
 	
 	
 }	

=	

Confluence is Compositional
Confluence is compositional

output&set&=&f&#&g(input&set)&&&output set = f · g(input set)

Blazes

•  Given an annotated dataflow
–  Some operators marked as order-insensitive
–  Some keys marked as determining value of other keys

•  E.g. “sessionID” determines value of “cart_contents”
•  A.k.a. functional dependencies

•  Add minimalist logic to ensure confluence
–  Win: seal a (sub)set of data without global coordination
–  Very much like we did with shopping cart seals

•  But synthesized automatically!

[Alvaro, et al. “Blazes: Coordination Analysis…”, ICDE14]

Annotated dataflow?

•  Who adds the annotations
–  Order-insensitivity? Dependencies?

•  We can ask a dataflow programmer: “gray boxes”
–  E.g. a Storm programmer, CRDTs
–  Blazes guarantees correct composition of these gray boxes

•  We can ask a compiler
–  About composition and components
–  Starting from a higher-level language
–  Blazes guarantees entire Bloom programs, unassisted

Back to Shopping

•  Remember the typical KVS cart implementation
–  Bottom-up reusable component
–  But expensive coordination on every write

•  The sealed, replicated log as a design pattern
–  A bit more top-down, custom

•  What Would Blazes Do
–  If we give it the KVS cart?

KVS
module KVS
 state do
 interface input, :put, [:key, :val]
 interface input, :get, [:ident, :key]
 interface output, :response,

[:response_id, :key, :val]
 table :log, [:key, :val]
 end
 bloom do
 log <+ put
 log <- (put * log).rights(:key => :key)
 response <= (log * get).pairs(:key=>:key) do |s,l|

[l.ident, s.key, s.val]
 end

 end
end

KVS
module KVS
 state do
 interface input, :put, [:key, :val]
 interface input, :get, [:ident, :key]
 interface output, :response,

[:response_id, :key, :val]
 table :log, [:key, :val]
 end
 bloom do
 log <+ put
 log <- (put * log).rights(:key => :key)
 response <= (log * get).pairs(:key=>:key) do |s,l|

[l.ident, s.key, s.val]
 end

 end
end Negation (à order sensitive)

KVS
module KVS
 state do
 interface input, :put, [:key, :val]
 interface input, :get, [:ident, :key]
 interface output, :response,

[:response_id, :key, :val]
 table :log, [:key, :val]
 end
 bloom do
 log <+ put
 log <- (put * log).rights(:key => :key)
 response <= (log * get).pairs(:key=>:key) do |s,l|

[l.ident, s.key, s.val]
 end

 end
end Negation (à order sensitive)

Partitioned by :key

KVS
module KVS
 state do
 interface input, :put, [:key, :val]
 interface input, :get, [:ident, :key]
 interface output, :response,

[:response_id, :key, :val]
 table :log, [:key, :val]
 end
 bloom do
 log <+ put
 log <- (put * log).rights(:key => :key)
 response <= (log * get).pairs(:key=>:key) do |s,l|

[l.ident, s.key, s.val]
 end

 end
end

put àresponse: OWkey
get à response: ORkey

Negation (à order sensitive)

Partitioned by :key

Client

Cart
Replica

Cart
Replica

Cart
Replica

Add/Remove
Items

Checkout
Request

Lazy
Replication

Blazes

Conclusion:
Every operation might
require coordination!

Non-monotonic,
Sealable on key

Client

Cart
Replica

Cart
Replica

Cart
Replica

Add/Remove
Items

Checkout
Request

Lazy
Replication

Blazes
Seals on session
 session à key

Non-monotonic,
Sealable on key

Client

Cart
Replica

Cart
Replica

Cart
Replica

Add/Remove
Items

Checkout
Request

Lazy
Replication

Blazes

Conclusion:
Replication is safe.

Generated code:
Client seals on checkout

Monotonic response
on seal satisfaction

Seals on session
 session à key

Non-monotonic,
Sealable on key

Blazes Takeaways

•  CALM intuition exported to dataflow
–  E.g. Apache Storm, via “gray-box” annotations

•  Bloom is easy to check in “white-box” mode
–  Dataflow + annotations easily pulled from syntax

•  Sealing as a cheap source of coordination
–  Data that’s partitioned so a single site generate seals

Two more analysis results

•  Failures and Fault Tolerance
•  Application-aware Garbage Collection

LDFI … tl;dr

•  How to test end-to-end Fault Tolerance?
•  Lineage-Driven Fault Injection (LDFI)

–  Start with a known good outcome
–  Ask: what could have gone wrong?

•  A lineage question

–  Synthesize failures to ensure things go wrong
–  Execute and look for a new good outcome to explore

[Alvaro, et al. 2015]

Kafka durability bug

Replica b Replica c Zookeeper Replica a Client

1 1

2

1

3

4

CRASHED

1

3

5

m m

m l

m

a

c

w

Brief network
partition

a becomes
leader and
sole replica

a ACKs
client write

Data
loss

Edelweiss … tl;dr

Bloom … and grow?
–  If we keep exchanging monotonic logs
–  Can we ever throw anything away?

Edelweiss
–  A restricted subset of Bloom
–  Removes constructs for deletion and mutation

Automatically generate safe,
application-specific GC protocols

[Conway, et al. “Edelweiss:…”, VLDB 2014]

Comparison of Program Size

0

10

20

30

40

50

60

70

un
ica

st

broa
dca

st
(fix

ed
)

broa
dca

st
(ep

oc
hs

)

ca
us

al
broa

dca
st

req
ue

st-
res

pon
se

kv
s

ca
us

al
kv

s

ato
mic

reg
ist

er

reg
ist

er
(w

rite
 xa

cts
)

reg
ist

er
(re

ad
 xa

cts
)

N
um

be
r o

f R
ul

es

Edelweiss

Bloom
Only

19 rules!

Outline

•  Cloud: A Deal with the Devil
•  Bottom-Up and Top-Down systems
•  Creativity from the bottom
•  Good news from the top: CALM
•  Grounding CALM: Bloom and Blazes
•  Lessons and Challenges

Summary
•  Coordination is the key remaining cost in cloud computing

–  Paxos, 2PC, etc.

•  Q: When can coordination be avoided w/o inconsistency?
A: CALM: exactly for monotonic programs

•  Q: How can coordination be avoided practically?
A: Application-level reasoning is the engine of innovation

•  DSLs are reliable vehicles for that innovation
–  Patterns: Reinforce healthy design patterns
–  Theorems: Formal approaches supporting analysis and code synthesis
–  Software: Data-centric DSLs like Bloom are well-suited to the domain

<~ bloom	

Opportunities 1: Rethinking
Coordination

•  Polyglot Consistency
–  Some of my data needs consistency. Some doesn’t.
–  How to avoid leaking inconsistency taint?

•  Coordination locality
–  E.g. Calvin, Hstore do coordination at job ingress
–  E.g. seal generation in Blazes
–  Optimize programs to “push” coordination to local spots?

•  Programming with Apologies
–  Pattern: allow inconsistency, fix things up later (coupons)
–  Can we do Pattern—>Theorem—>Software here?

Opportunities 2: DSLs

•  DSLs for orchestration, service composition
–  Deployment is programming! Bugs ensue through incorrect composition.
–  Kubernetes/Chef/Puppet are declarative DSLs; extend to richer SW composition

•  Performance optimization
–  Bloom was an exercise in the possible. What about the optimal?
–  High-performance concurrent DSL? Interesting for multicore, NewSQL internals, etc.

•  Bottom-up alternatives to Bloom
–  Take a cue from CRDTs, Erlang, Akka, etc.
–  Consider design patterns like Event Log Exchange & Edelweiss
–  Fix the scope dilemma as Bloom did with monotone functions

•  Convergence in Big Data
–  World 1: async programming and NoSQL (Bloom, Erlang, Akka, node.js)
–  World 2: parallel analytics, batch processing, streaming (SQL, Hadoop, Spark, Storm)
–  Convergence: Design Opportunity? Benefits?

