consistency analysis in bloom
a CALM and collected approach

peter alvaro, neil conway, joseph m. hellerstein, william r. marczak

uc berkeley

the state of things

* distributed programming increasingly common
* hard?

(parallelism + asynchrony + failure) x (software engineering)

choices

ACID

general correctness via
theoretical foundations

read/write: serializability
coordination/consensus

concerns: latency, availability

loose consistency

app-specific correctness
via design maxims

semantic assertions

custom compensation

concerns: hard to trust, test

desire: best of both worlds

* theoretical foundation for correctness under loose consistency

* embodiment of theory in a programming framework

progress

CALM consistency (maxims = theorems)

Bloom language (theorems = programming)

outline

* motivation: language-level consistency
* foundation: CALM theorem
* implementation: bloom prototype

discussion: tolerating inconsistency taint

3

monotonicity

monotonic code

info accumulation

the more you know,
the more you know

non-monotonic code

belief revision

new inputs can
change your mind

e.g. aggregation,
negation, state update

an aside

* double-blind review

an aside

* double-blind review

Intuition
* counting requires waiting

Jdr. el = L=t —
. b : 3

Intuition

* counting requires waiting

CALM Theorem

CALM: consistency and logical monotonicity
monotonic code = eventually consistent
non-monotonic = coordinate only at non-monotonic points of order

conjectures at pods 2010
(web-search for “the declarative imperative”)

results submitted to pods 2011
Marczak, Alvaro, Hellerstein, Conway
Ameloot, Neven, Van den Bussche

practical implications

compiler can identify non-monotonic “points of order”
inject coordination code
or mark uncoordinated results as “tainted”

compiler can help programmer think about coordination costs

easy to do this with the right language...

outline

* motivation: language-level consistency
* foundation: CALM theorem
* implementation: bloom prototype

discussion: tolerating inconsistency taint

bloom

disorderly programming

why is distributed programming hard?
the von neumann legacy: obsession with order

state: ordered array
logic: ordered instructions, traversed by program counter

disorderly programming
state: unordered collections
logic: unordered set of declarative statements

bud: bloom under development

based in 5 years experience with Overlog

culmination: APl-compliant HDFS++ implementation [Eurosys10]
i got the itch to prototype a more usable language

dsl for distributed programming, embedded in ruby

interpreter: ~2300 lines of ruby

bloom features

fully declarative semantics (based on dedalus temporal logic)
disorderly programming with pragmatics of modern language (ruby)
domain-specific code analysis

bloom operational model

really a metaphor for dedalus logic
each node runs independently

local clock, local data, local execution

timestepped execution loop at each node

2

bloom rules
atomic, local

local updates i

system events

etwork
network

bloom statements

<collection> <accumulator> <collection expression>

bloom statements

<collection> <accumulator> <collection expression>
<= now
<+ next
<-| del_next
<= async

bloom statements

<collection> <accumulator> <collection expression>
persistent table <= now
transient scratch <+ next
networked transient channel <-| del_next
scheduled transient, per 10dic P aSYie

transient| 1hterface

bloom statements

<collection expression>

<collection>

map, flat_map

<collection>
persistent table
transient scratch
networked transient channel

reduce, group

scheduled transient

periodic

<accumulators
<= now
<+ next
= del next
<= async

transient

1interface

join, natjoin,
outerjoin

empty? include?

e NO Bloom

abstract interface

t()y example- module DeliveryProtocol
def state

delivery super
interface input, :pipe_in,

[’dst’, ’src’, ’ident’], [’payload’]
interface output, :pipe_sent,

[’dst’, ’src’, ’ident’], [’payload’]

end
end

simple concrete
implementation
of the

delivery
protocol

e NO Bloom

module BestEffortDelivery
include DeliveryProtocol

def state
channel :pipe_chan,
['@dst', 'src', 'ident'], ['payload']
end

declare
def snd

pipe_chan <~ pipe_in
end

declare
def done
pipe_sent <= pipe_in
end
end

S NOO Bloom

module ReliableDelivery

an alternative include BestEffortDelivery
1 : . def state
implementation: cuper
1 table :pipe, ['dst', 'src', 'ident'], ['payload']
rehable channel :ack, ['@src', 'dst', 'ident']
delivel‘y periodic :tock, 10
end
declare

def remember_resend

pipe <= pipe_1in

pipe_chan <~ join([pipe, tock]).map{lp, tl p }
end

declare
def rcv

ack <~ pipe_chan.map {lpl [p.src, p.dst, p.ident] }
end

declare
def done
apj = join [ack, pipe], [ack.ident, pipe.ident]
pipe_sent <= apj.map {la, pl p }
pipe <- apj.map{la, pl p}
end
end

the payoft is in the paper

case study: 2 replicated shopping cart implementations
replicated key/value-store with “destructive” overwriting
“disorderly” version that accumulates/replicates user actions

demonstrates automatic consistency analysis
isolate points of order for coordination
highlights why the 2" implementation is preferable to 15t

tolerating inconsistency (autoPat)
identify “tainted” data in a program
automatically generate scaffolding for compensation logic

destructive
cart

full source in
paper including
replicated KVS

e N O Bloom

module DestructiveCart
include CartProtocol

include KVSProtocol

declare
def
kvget <= action_msg.map{lal [a.reqid, a.key]}
kvput <= action_msg.map do lal
if a.action == "A"
unless kvget_response.map{lbl b.key}.include? a.session
[a.server, a.client, a.session, a.reqid, [a.item]]
end
end
end
old_state = join [kvget_response, action_msg],
[kvget_response.key, action_msg.session]
kvput <= old_state.map do Ib, al

if a.action == "A"
[a.server, a.client, a.session, a.reqid, b.value.push(a.item)]
elsif a.action == "D"
[a.server, a.client, a.session, a.reqid, delete_one(b.value,
a.item)]
end
end
end
declare
def

kvget <= checkout_msg.map{lcl [c.reqid, c.session]}

lookup = join [kvget_response, checkout_msg],
[kvget_response.key, checkout_msg.session]

response_msg <~ lookup.map do Ir, cl
[c.client, c.server, c.session, r.value]

end

end
end

e N O Bloom

module DisorderlyCart
include CartProtocol

disorderly include BestEffortDelivery

def state
table :cart_action, ['session', 'item', 'action', 'reqid']
(:Ell‘t: table :action_cnt, ['session', 'item', 'action'], ['cnt']
scratch :status, ['server', 'client', 'session', 'item'], ['cnt']
end

declare
def do_action
fu” source in cart_action <= action_msg.map do Icl
[c.session, c.item, c.action, c.reqid]
end
pa per; action_cnt <= cart_action.group(
. - [cart_action.session, cart_action.item, cart_action.action],
|nC|Ud|ng count(cart_action.reqid))
end
replication declare
def do_checkout
del_items = action_cnt.map{lal a.item if a.action == "Del"}
status <= join([action_cnt, checkout_msg]).map do la, cl
if a.action == "Add" and not del_items.include? a.item
[c.client, c.server, a.session, a.item, a.cnt]
end
end
status <= join([action_cnt, action_cnt,
checkout_msg]).map do lal, a2, cl
if al.session == a2.session and al.item == aZ2.item and
al.session == c.session and
al.action == "A" and a2.action == "D"
[c.client, c.server, c.session, al.item, al.cnt - a2.cnt]
end
end
response_msg <~ status.group(
[status.client, status.server, status.session],
accum(status.cnt.times.map{status.item}))

end
end

conclusion

CALM theorem
what is coordination for? non-monotonicity.

pinpoint non-monotonic points of order
coordination or taint tracking

Bloom
declarative, disorderly DSL for distributed programming
bud: organic Ruby embedding
CALM analysis of monotonicity
synthesize coordination/compensation
releasing to the dev community

friends-and-family next month
public beta, Fall 2011

more?

http://bloom.cs.berkeley.edu

thanks to:
Microsoft Research
Yahoo! Research
IBM Research

NSF

AFOSR

backup

influence propagation...?

Technology Review TR10 2010:

“The question that we ask is simple: is the technology — v
likely to change the world?” W50 E

Fortune Magazine 2010 Top in Tech:
“Some of our choices may surprise you.”

Twittersphere:
“Read this. Read this now.”

relative to LP and active DB

“Unlike earlier efforts such as Prolog, active database languages,
and our own Overlog language for distributed systems [16], Bloom
is purely declarative: the syntax of a program contains the full spec-
ification of its semantics, and there is no need for the programmer
to understand or reason about the behavior of the evaluation
engine. Bloom is based on a formal temporal logic called Dedalus

[BE=

why ruby?

“Bud uses a Ruby-flavored syntax, but this is not fundamental; we
have experimented with analogous Bloom embeddings in other
languages including Python, Erlang and Scala, and they look similar
in structure.”

what about erlang?

“we did a simple Bloom prototype DSL in Erlang (which we cannot
help but call “Bloomerlang”), and there is a natural correspondence
between Bloom-style distributed rules and Erlang actors. However
there is no requirement for Erlang programs to be written in the
disorderly style of Bloom. It is not obvious that typical Erlang
programs are significantly more amenable to a useful points-of-
order analysis than programs written in any other functional
language. For example, ordered lists are basic constructs in
functional languages, and without program annotation or deeper
analysis than we need to do in Bloom, any code that modifies lists
would need be marked as a point of order, much like our
destructive shopping cart”

CALM analysis for traditional
languages?

We believe that Bloom’s “disorderly by default” style encourages
order-independent programming, and we know that its roots in
database theory helped produce a simple but useful program
analysis technigue. While we would be happy to see the analysis
“ported” to other distributed programming environments, it may
be that design patterns using Bloom-esque disorderly programming
are the natural way to achieve this.

dependency graphs

Scratch collection

Persistent table

Dataflow source

Dataflow sink

SO0

A B C A, B, C mutually recursive
o via a non-monotonic edge

A appears in RHS,
Bin LHS of arule R

R is a temporal rule
(uses <+ or <-)

R is non-monotonic
(uses aggregation,
negation, or deletion)

B is a channel

dependency graphs

BestEffortDelivery ReliableDelivery

2 cart implementations

O @@@

cart_ action

getj, kvget_response, kvput, kvstate,
old_state, prev

' response_msg

destructive disorderly

example analysis in paper:
replicated shopping carts

“destructive” cart implements a replicated key/value store
key: session id
value: array of the items in cart
add/delete “destructively” modify the value

“disorderly” cart uses accumulation and aggregation
adds/deletes received/replicated monotonically

checkout requires counting up the adds/deletes
hence coordinate only at checkout time

Building on Quicksand

Campbell/Helland CIDR 2009

goal: avoid coordination entirely
maxim: memories, guesses and apologies

can we use Bloom analysis to automate/prove correctness of this?
initial ideas so far

from quicksand & maxims
to code & proofs

“guesses”: easy to see in dependency graph
any collection downstream of an uncoordinated point of order

compiler rewrites schema to add “taint” attribute to these
* and rewrites rules to carry taint bit along

“memories” at interfaces

compiler interposes table in front of any tainted output interface
“apologies”

need to determine when “memory” tuples were inconsistent

idea: wrap tainted code blocks with “background” coordination check
* upon success, garbage-collect relevant “memories”
* upon failure, invoke custom “apology” logic to achieve some invariant
* ideally, prove that inconsistent tuples + apology logic = invariant satisfied

the shift

application logic J

application logic

system infrastructure

system infrastructure

theoretical.foundation | quicksand

ruby embedding

class Bud
“declare” methods for collections of Bloom statements
* checked for legality, potentially optimized/rewritten

template methods for schemas and data

all the usual Ruby goodness applies

rich dynamic type system
OO inheritance, mixins (*multiple inheritance), encapsulation

functional programming comprehension syntax
libraries for everything under the sun

a taste of ruby

module MixMeln
def mixi
"who do we appreciate"
end
end

class SuperDuper

def doit
"a super duper bean"
end
end

inheritance
mixins

class Submarine < SuperDuper
include .MixMeIn
def doit

"a yellow submarine"

end
def sing
puts "we all live in " + doit
end
def chant(nums)
out = nums.map { Inl n*2 }
puts out.inspect + " L mixi
end
end

s = Submarine.new
s.sing ; s.chant([1,2,3,4])

example app: shopping cart

replicated for HA and low latency
clients associated with unique session IDs
add_item, deleted _item, checkout

challenge: guarantee eventual consistency of replicas

maxim: use commutative operations
c.f. Amazon Dynamo, Campbell/Helland “Building on Quicksand”

easier said than done!

8006

Bloom

module CartClientProtocol

abStI'aCt def state

interface input, :client_action,
. ['server', 'session', 'reqid'], ['item', 'action']
lnterfaces interface input, :client_checkout,
['server', 'session', 'reqid']
interface output, :client_response,

['client', 'server', 'session'], ['contents']
end

end

module CartProtocol
def state

channel :action_msg,
['@server', 'client', 'session', 'reqid'],
["item', 'action']

channel :checkout_msg,
['@server', 'client', 'session', 'reqid']

channel :response_msg,

['@client’, 'server', 'session'], ['contents']
end

end

e N O Bloom

~ module CartClient
Simple | include CartProtocol

include CartClientProtocol
realization

declare
def client
action_msg <~ client_action.map do lal

[a.server, @local_addr, a.session, a.reqid, a.item,
a.action]

end
checkout_msg <~ client_checkout.map do lal
[a.server, @local_addr, a.session, a.reqid]
end
client_response <= response_msg
end
end

destructive cart

disconnected
because we

haven’t picked a
kvs
implementation
yet

destructive cart -5 s

basic KVS interposes a point
of order into the dataflow

getj, kvget_response, kvput, kvput_internal, N
cvstate, old_state, prev

abstract and concrete clients

note that concrete client is still underspecified: we haven’t supplied
an implementation of the cart yet!

simple

key/
value

store

(L HSNG)

Bloom

module KVSProtocol
def state
super
interface input,

interface input,
interface output,

end
end

:kvput, ['client', 'key', 'reqid'],
['value']
:kvget, ['reqid'], ['key']
:kvget_response, ['reqid'],
['key', 'value']

simple
KVS

no replication

deletion on

each put
gets worse
with
replication!

e N O Bloom

module BasicKVS
include KVSProtocol

def state
table :kvstate, ['key'], ['value']
end

declare
def do_put
kvstate <+ kvput.map{lp!| [p.key, p.value]}

prev = join [kvstate, kvput],
[kvstate.key, kvput.key]

kvstate <- prev.map{lb, pl| b}
end

declare

def do_get
getj = join [kvget, kvstate],

[kvget.key, kvstate.key]
kvget_response <= getj.map do Ig, tl
[g.reqid, t.key, t.value]

end

end

end

simple key /val store

any path through kvput crosses

both a point of order and a

temporal edge.

where’s the non-monotonicity?
state update in the KVS

easy syntactic check! sttate, pre;l

kvstate <- prev.map{lb, pl| b}

kvget_response

simple
syntax
check

eSO Bloom

module BasicKVS
include KVSProtocol

def state
table :kvstate, ['key'], ['value']
end

declare
def do_put
kvstate <+ kvput.map{lp!| [p.key, p.value]}
prev = join [kvstate, kvput],
[kvstate.key, kvput.key]
dude, it's here! (<-)
kvstate <- prev.map{lb, pl b}
end

declare

def do_get
getj = join [kvget, kvstate],

[kvget.key, kvstate.key]
kvget_response <= getj.map do lg, tl
[g.reqid, t.key, t.value]

end

end

end

complete
destructive cart

members

analysis: bad news

C/[ent act'[on kvput, kvstore, mcast_done, pipe_chan,

pipe_in, pipe_out, readback, rep_can_store,

. add or delete send_mcast, stor_saved

coordinate on each
KVS replication

coordinate on each
r bigtable, can_store, joldstate, jst,

what if we skip
coordination?

assert: actions are
commutative

no way for compiler
to check

and in fact it’s wrong!

complete T
. b S g
disorderly cart SHesp il

Jm—

< send_mcast >
=

e

client actions and cart checkout_msg >

replication all
monotonic

pipe_in

.
point of order to meast_done > (_pipe_chan
handle checkout

. /
messages Gclion_cnb
Q ®
status

BFponze_mE

/"L\

O

final analysis: destructive

point of order on each client request for cart update
this was visible even with the simplest KVS

only got worse with replication
what to do?

assert that operations commute, and leave as is

* informal, bug-prone, subject to error creep over time

* there’s already a bug: deletes may arrive before adds at some replicas
add a round of distributed coordination for each update

* e.g. 2PC or Paxos
* this makes people hate ACID

best solution: a better cart abstraction!

* move that point of order to a lower-frequency operation

simple disorderly skeleton

concrete implementation has points of order as abstractig

client updates and replication of cart state can be c ord{nggitcighf ee

response_msg

... and its composition with the
client code

note points of order (circles)
corresponding to aggregation

checkout_msg

response_msg
client_response

replication

We take the
abstract class
Multicast...

S NOO Bloom

module MulticastProtocol
def state
super
table :members, ['peer']
interface input, :send_mcast, ['ident'], ['payload']
interface output, :mcast_done, ['ident'], ['payload']
end
end

module Multicast
include MulticastProtocol
include DeliveryProtocol
include Anise
annotator :declare

declare
def snd_mcast
pipe_in <= join([send_mcast, members]).map do |s, ml
[m.peer, @addy, s.ident, s.payload]
end
end

declare
def done_mcast
override me
mcast_done <= pipe_sent.map{lp| [p.ident, p.payload] }
end
end

o MO Bloom

module ReplicatedDisorderlyCart

replication include DisorderlyCart

include Multicast
include BestEffortDelivery

declare
def
send_mcast <= action_msg.map do lal
[a.reqid, [a.session, a.reqid, a.item, a.action]]

end
... and extend the cart_action <= mcast_done.map {Iml m.payload }
disorderly cart to cart_action <= pipe_chan.map{lcl c.payload }
use it (along with end
the concrete . end
multicast

implementation
BestEffortDelivery)

final analysis: disorderly cart

concrete implementation has points of order as abstraction
client updates and replication of cart state can be coordination-free
some coordination may be necessary to handle checkout messages

