PROGRAMMING
PRINCIPLES

FOR A
DISTRIBUTED

ERA

JOE HELLERSTEIN

BERKELEY
TRIFACTA

OUTLINE

)
ANALOGY

THE GLORY
OF

HISTORY

http://i.dailymail.co.uk/i/pi
article-1052881-028A5C60

ELEGANTLY
TENACIOUS

A
EPJII g h pl ryﬂ
1_pic_t

FRUSTRATINGLY
PERSISTENT

tEp: www.theurb‘agent.com/ 011/04/style-of-prince-willia g -

| Waleselie o carfbridge, htril

§ HISTORY

;! TENACITY

a5 FRUSTRATION

OUTLINE

@ voN NEUMANN

8] TRANSACTIONS

OUTLINE

"y HISTORY

TENACITY
FRUSTRATION

OUTLINE

CALM

@ voN NEUMANN

TRANSACTIONS

OUTLINE I

5 caALm

THE
von NEUMANN
MACHINE

- ORDER

— LIST of Instructions
— ARRAY of Memory

- THE STATE

— Mutation In time

http://en.wikipedia.org/wiki/File:JohnvonNeumann-LosAlamos.gi

THE
von NEUMANN
MACHINE

“ " . ORDER
— LIST of Instructions
— ARRAY of Memory

- THE STATE

— Mutation In time

ORDER
AND
THE STATE

ERLANG

HISTORY

fn\ TENACITY

FRUSTRATION

OUTLINE

CALM

voN NEUMANN

8] TRANSACTIONS

OUTLINE I

RACE

DISORDER
AND
THE STATE

THE
TRANSACTION
CONCEPT

% - ORDER
— Disorder across
transactions

— Illusion of order within
transactions

- THE STATE

http://www.nytimes.com/2009/12/15/science/15books.html — RegiSterS, Memory
- |Isolation

— Mutation in time
- Atomicity

THE
TRANSACTION
CONCEPT

88 . ELEGANT THEORY
— Serializability

- PRACTICAL
ENGINEERING

— A transparent illusion
http://www.nytimes.com/2009/12/15/science/15books.html

- Easy to ensure correct
applications

- Tricky to scale
infrastructure

SUMMARY

& TRIUMPH oF ORDER
s TRIUMPH oF THE STATE

@& ELEGANT ILLUSION

oF ORDER AND STATE

— FORMAL THEORY
— NATURAL API

— EFFICIENT
IMPLEMENTATION

HISTORY

TENACITY

% FRUSTRATION

OUTLINE

CALM

vON NEUMANN

TRANSACTIONS

OUTLINE

ORDER,
THE STATE

AND
GLOBALIZATION

DISTRIBUTED

COMPUTING
IS THE

NEW NORMAL

« ORDER IsTO0 COSTLY

— Synchronization
— Coordination

S - THE STATE 1s HEARSAY
i — Delay

— Failure

— Partition

{ "‘

http:llwvs); flickr.com/phe

simsannnnas, UM IEES
gtos/scobleizer/4870 00:4Q98/§izesll/in/

THE

CAP
THEOREM

THE

CAP
* MIND THE CAP |
THEOREM

A NEGATIVE

RESULT
MIND THE CAP FOR A TIME OF

DISILLUSIONMENT

COPING
WITH

DISORDER

¥+ - DESIGN MAXIMS

— Commutative methods
— Inverse methods
— Free coupons

ENGINEERING

— Pragmatic Systems

- Easy to scale
infrastructure

 Tricky to ensure correct
applications

THEORY MAXIMS

N =11 - Easy
applications infrastructure
. Tricky - Tricky

infrastructure applications

SUMMARY

ELEGANCE & ORDER
/ EXPENSIVE ILLUSIONS

MAXIMS & DISORDER
FRAGILE APPLICATIONS

MIND THE CAP

HISTORY

TENACITY

— FRUSTRATION
OUTLINE
¥ CALM

voN NEUMANN

TRANSACTIONS

OUTLINE [
4 CALM

POSITIVE THINKING
FOR THE

CLOUDY FUTURE

THEORY

« Easy
infrastructure

* Tricky
applications

THEORY
FOR

APPLICATIONS

COMPILERS
TRUMP

INFRASTRUCTURE

ELEGANCE
AND

DISORDER

« ELEGANT THEORY

— Maxims = Theorems
- Lattices
- @ CALM Theorem

- PRACTICAL
ENGINEERING

— Theorems = Compilers

bloom
- CALM Analysis

™
-
»

i
i
!

\

o
[

H

o

D . N
http://www.flickr.com/photos/25579597 @ N00/40955407/

Associative
— (XoY)oZ=Xo(Y0oZ)
— batch-insensitive

Commutative
— X0o0Y=YoX
— order-insensitive

ldempotent
— XoX=X
— resend-insensitive

Distributed

2 < . . ‘____ . u ", .
http://www.flickr.com/photos/25579597 @N00/40955407/ —_ acronym-lnsenSItlve

Article Talk

WIKIPEDIA Semilattice

The Free Encyclopedia From Wikipedia, the free encyclopedia

Semilattices can also be defined algebraically: join and meet
are associative, commutative, idempotent binary operations,

Associative
— (XoY)oZ=Xo(Y0oZ)
— batch-insensitive

Commutative
— X0o0Y=YoX
— order-insensitive

ldempotent
— XoX=X
— resend-insensitive

Distributed
— acronym-insensitive

Storing an Integer

voN NEUMANN ACID 2.0
int ctr; int ctr;

operator:= (x) { operator<= (x) {

// assign
ctr = X; ctr = MAX(ctr, Xx);

DISORDERLY INPUT STREAMS:
2,5,6,7,11,22,44,91
5,7,2,11,44,6,22,91,5

Storing an Integer

voN NEUMANN ACID 2.0

100
90
80
70
60
50
40
30
20
10

0
1 2 3 4 5

DISORDERED INPUT STREAMS:
2,5,6,7,11,22,44,91
5,7,2,11,44,6,22,91,5

6

7

8

9

PROGRESS

Lemma:
— ACID 2.0 = monotonic

Lemma:
— ACID 2.0 = confluent

Corollary:
— ACID 2.0 = convergent

— a.k.a. “Eventually Consistent”
« No coordination!

CRDTs

convergent replicated data types
[Shapiro, et al. 2011]

Article Talk

WIKIPEDIA Semilattice

The Free Encyclopedia From Wikipedia, the free encyclopedia

Semilattices can also be defined algebraically: join and meet
are associative, commutative, idempotent binary operations,

- Semilattice objects
— A class

— merge() is ACID 2.0

- Many examples:
— int w/ Max
— set w/ Union
— map w/lnsert

CRDTs

convergent replicated data types
[Shapiro, et al. 2011]

I: "‘.’(& .
3' * ~ 3 .“
* Q " i Article Talk

&t

1 /

= ey

WIKIPEDIA Semilattice

The Free Encyclopedia From Wikipedia, the free encyclopedia

Semilattices can also be defined algebraically: join and meet
are associative, commutative, idempotent binary operations,

CRDTs

convergent replicated data types
[Shapiro, et al. 2011]

Article Talk

o -

WIKIPEDIA Semilattice

The Free Encyclopedia From Wikipedia, the free encyclopedia

Semilattices can also be defined algebraically: join and meet
are associative, commutative, idempotent binary operations,

SCOPE DILEMMA

— SINGLE-OBJECT
PROGRAMS?

— PROVE ACID 2.0
- formalism?
* unit testing?

DESIRE:
COMPOSITION

- PIECEWISE ANALYSIS
— Multiple simple CRDTs
— Each easy to test
— Rules for composition

"M . SET LATTICES KNOWN

— Database query languages
- select/project/join rules
- even with recursion!

— Distributed Datalog
- see P2, etc.

« CONSISTENCY?

http://www.flickr.com/photos/44606255@N00/370973576/

w CONSISTENCY
THE AS

LOGICAL
CALM MONOTONICITY

THEOREM

1. MONOTONICITY
S S = EVENTUAL
0 CONSISTENCY

THE

CALM gt

THEOREM [ERSadArdias

THEORY

o, = COMPILER
1Ry
KEEPING COMPILERS
CALM TRUMP

INFRASTRUCTURE

THE

PROGRAMMING

LANGUAGE

:{) Java

——

A pgthon

)_

Ruby

APr ogrammer 5 Best Friend

ERLANG

ANACHRONISM

A THING BELONGING OR
APPROPRIATE TO A PERIOD
OTHER THAN THAT IN WHICH IT
EXISTS

bloom

A disorderly
language of lattices
and mappings.

Encourages
monotonicity.

Highlights non-
monotonicity.

Designed for
distribution.

<~ bloom operational model

* really a metaphor for a logic called dedalus

* each node runs independently
— local clock, local data, local execution

* timestepped execution loop at each node

NnOow

2

local updates oxt

system events

etwork
network

Hello World in bloom

a chat server
bloom do
nodelist <= connect.map {lcl c.val}
mcast <~ (mcast*nodelist).pairs { Im,nl|
[n.key, m.val]

h

end

Hello World in bloom

o roicrise

sets of kcy/va[uc rairs

Hello World in bloom

Ustantaneous merge (uw;on)

async mer ge (W(iM)

Hello World in bloom

map){lcl c.val}
pairs {
[n.key, m.val]

1 monotone (Wtcﬁons

Monotone Function

7 monotone if

x=<y = f(x) <f(y)

Hello World in bloom

map){lcl c.val}
pairs {
[n.key, m.val]

1 monotone (Wtcﬁons

Tables and Channels

table ‘nhodelist
channel :connect
channel :mcast

See GeH’M Started docs ou le\Mb

a chat server
bloom do
nodelist <= connect.map {lcl c.val}
mcast <~ (mcast*nodelist).pairs { Im,nl
[n.key, m.val]

}

Hello World in bloom

state do La+ﬁccymeh76
table 'nhodelist
channel :connect —+

channel :mcast
Monotone Functions

end

MONOTONIC PROGR-AM

a chat server

bloom do
nodelist <= connect.map {lcl c.val} hetce
mcast <~ (mcast*nodelist).pairs { Im,nl

[n.key, m.val] EVENTUALLY
I CONSISTENT

More Lattices

Lmax :cnt
lbool :crowded
end

cnt <= nodelist.group([], count())
crowded <= cnt.gt(100)

More Lattices

lmax :cnt # integer with MAX
lbool :crowded # bool with OR
end

cnt <= nodelist.group([], count())
crowded <= cnt.gt(100)

More Lattices

lmax :cnt # integer with MAX
lbool :crowded # bool with OR
end

cnt <= nodelist,(g) _
crowded <= cnt. 7 VMOV(O‘I'OVté \[WlC‘l’IOV(S

across lattice b’rés

Monotone Functions AcCross
Lattice Types

Non-Monotonicity
Downstream of Asynchrony

channel :disconnect aS)/V(C C,O”6C+i0'4

nodelist @disconnect.map {lcl c.val}

Noun-monotone

end function

il

CALM Analysis

For any path through a Bloom module, label:

— Asynchrony
— Non-Monotonicity
— Inconsistency

Compute labels transitively across modules
Identify code that needs coordination

Assess comm pattern, suggest coordination
— 1-1, 1-many : ordered delivery
— many-many :order proxy, Paxos, etc.

Alvaro Diagrams

Basic KVS

Lattice KVS

Vector Clocks 1n

module
state do
lmap :my_vc
lmap :next_vc
scratch :in_msg, [:addr, :payload] => [:clock]
scratch :out_msg, [:addr, :payload]
scratch :out_msg_vc, [:addr, :payload] => [:clock]
end

bootstrap do
my_vcC <= {ip_port => Bud::MaxLattice.new(@)}
end

bloom do
next_vc <= out_msg { {ip_port => my_vc.at(ip_port) + 1} }
out_msg_vc <= out_msg {Iml [m.addr, m.payload, next_vc]}
next_vc <= in_msg { {ip_port => my_vc.at(ip_port) + 1} }
next_vc <= my_vc
next_vc <= in_msg {Iml m.clock}
my_vc <+ next_vc

end

Vector Clocks
bloom v. wikipedia

bootstrap do
my_vc <=
{ip_port => Bud: :MaxLattice.new(@)}
end

bloom do
next_vc <= out_msg
{ {ip_port => my_vc.at(ip_port) + 1} }
out_msg_vc out_msg
{Im| [m.addr, m.payload, next_vc]}
next_vc <= in_msg
{ {ip_port => my_vc.at(ip_port) + 1} }
next_vc <= my_vc
next_vc <= in_msg {Iml m.clock}
my_vc <+ nhext_vc
end

Initially all clocks are zero.

Each time a process experiences an
internal event, it increments its own
logical clock in the vector by one.

Each time a process prepares to send a
message, it increments its own

logical clock in the vector by one and
then sends its entire vector along with
the message being sent.

Each time a process receives a message,
it increments its own

logical clock in the vector by one and
updates each element in its vector by
taking the maximum of the value in its
own vector clock and the value in the
vector in the received message (for
every element).

COROLLARIES:
WHY COORDINATE?

m CAUSALITY REQUIRED ONLY

THE

FOR NON-MONOTONICITY

COORDINATION

c AL M COMPLEXITY
HOW MUCH COORDINATION IS

TRULY NEEDED FOR YOUR

THEOREM &K
FATEFUL TIME

THE ONLY USE FOR “TIME” IS TO
“SEAL FATE".

SUMMARY:
UNITY

R % MAXIMIZE DISORDER
| et 74 22 f AND

UNDERSTAND ORDER'’S
ROLE

DISORDERLY CODE
AND
WHOLE-PROGRAM
ANALYSIS

BOOM TEAM

joe hellerstein ras bodik alan fekete

bill marczak haryadi gunawi sriram srinivasan

emily andrews andy hutchinson

bloom-lang.org
boom.cs.berkeley.edu

« Papers
— CALM/Bloom, CIDR ‘11
— Bloom+Lattices, SOCC 12
— BloomUnit, DBTest 12

« Videos

& & — Declarative Imperative,
PODS 10

— Bloom, Lang.Next "12

b l O Om — Bloom+Lattices, Basho
Meetup "12

& &
bloom

ACM SOCC 10/16
10:45AM
SAN JOSE MARRIOT

DATA CONSISTENCY SESSION

NEIL CONWAY ON LATTICE
SUPPORT IN BLOOM

PETER BAILIS ON POTENTIAL
DANGERS OF CAUSAL
CONSISTENCY

http://www.socc2012.org

POSITIVE THINKING
FOR THE

CLOUDY FUTURE

