
D E C L A R A T I V E 
I M P E R A T I V E  
XXXxXXXXXX

JOSEPH M HELLERSTEIN BERKELEY 

THE

EXPERIENCES AND CONJECTURES 
I N D I S T R I B U T E D L O G I C 



two unfinished stories
urgency & resurgency

a dedalus primer

experience

implications and conjecture

TODAY



two unfinished stories
urgency & resurgency

a dedalus primer

experience

implications and conjecture

TODAY



STORY #1: URGENCY

A.K.A.
The Programming Crisis



   Once upon a time there was a little 

chicken called Chicken Licken.  One 

day, processor clock speeds stopped 

following Moore’s Law. Instead, 

hardware vendors started making 

multicore chips — one of which 

dropped on Chicken Licken’s head.

DOOM AND GLOOM



URGENCY“The sky is falling! The sky is 

falling!  Computers won’t get any 

faster unless programmers learn to 

write parallel code!” squawked 

Chicken Licken.

Henny Penny clucked in agreement: 

“Worse, there is Cloud Computing on 

t h e h o r i z o n , a n d i t r e q u i r e s 

programmers to write parallel AND 

distributed code!”



URGENCY
“I would be panicked if I were in 

industry!” said John Hennessy, then 

President of Stanford University.  

Many of his friends agreed, and 

together they set off to tell the 

funding agencies.



STORY #2: RESURGENCY

A.K.A.
Springtime for Datalog



URGENCY
    In a faraway land, database 

theoreticians had reason for cheer.  

Datalog variants, like crocuses in 

the snow, were cropping up in 

fields well outside the walled 

garden of PODS where they were 

first sown.

SPRINGTIME FOR DATALOG

http://www.flickr.com/photos/47262904@N00/107270153/
http://www.flickr.com/photos/14293046@N00/3451413312/

http://www.flickr.com/photos/14293046@N00/3451413312/
http://www.flickr.com/photos/14293046@N00/3451413312/


URGENCYMany examples of Datalog were 

blossoming:

- security protocols

- compiler analysis

- natural language processing

- probabilistic inference

- modular robotics

- multiplayer games

    And, in a patch of applied ground 

in Berkeley, a small group was 

p l a y i n g w i t h D a t a l o g f o r 

networking and distributed systems.

Spring, John Collier



URGENCYThe Berkeley folk named their 

project BOOM, short for the 

Berkeley Orders Of Magnitude 

project. The name commemorated 

Jim Gray’s twelfth grand challenge, 

to make it Orders Of Magnitude 

easier to write software.

They also chose a name for the 

language in the BOOM project: 

                                           Bloom.  



THE END OF THE STORY?
Doom and Gloom?

BOOM and Bloom!



THE END OF THE STORY?
Doom and Gloom?

BOOM and Bloom!

be not chicken licken!



THE END OF THE STORY?
Doom and Gloom?

BOOM and Bloom!

be not chicken licken!

give in to spring fever



THE DECLARATIVE 
IMPERATIVE

a dark period for programming, yes.
but we have seen the light ... long ago!

1980’s: 

parallel SQL

computationally complete extensions to query langauges

a way forward: extend languages that parallelize easily
be not “embarrassed” by your parallelism

spread the news: spring is dawning!
crisis is opportunity

go forth from the walled garden

be fruitful and multiply

http://www.flickr.com/photos/60145846@N00/258950784/

http://www.flickr.com/photos/60145846@N00/258950784/
http://www.flickr.com/photos/60145846@N00/258950784/


ALONG THE WAY: 
TASTY PODS STUFF

parallel complexity models for the cloud

expressivity of logics w.r.t such models

uncovering parallelism via LP properties

semantics of distributed consistency

time, time travel and fate

"Concepts are delicious snacks with 
which we try to alleviate our amazement" 

— A. J. Heschel
http://www.flickr.com/photos/megpi/861969/

http://www.flickr.com/photos/megpi/861969/
http://www.flickr.com/photos/megpi/861969/


two unfinished stories

a dedalus primer

experience

implications and conjecture

TODAY



two unfinished stories

a dedalus primer

experience

implications and conjecture

TODAY



A BRIEF INTRODUCTION TO 
DEDALUS

Stephen Dedalus

ht
tp

://
ul

ys
se

ss
ee

n.
co

m
/la

nd
in

g/
20

09
/0

4/
st

ep
he

n-
de

da
lu

s/

http://ulyssesseen.com/landing/2009/04/stephen-dedalus/
http://ulyssesseen.com/landing/2009/04/stephen-dedalus/


A BRIEF INTRODUCTION TO 
DEDALUS

Stephen Dedalus Daedalus (and Icarus)

ht
tp

://
ul

ys
se

ss
ee

n.
co

m
/la

nd
in

g/
20

09
/0

4/
st

ep
he

n-
de

da
lu

s/

http://ulyssesseen.com/landing/2009/04/stephen-dedalus/
http://ulyssesseen.com/landing/2009/04/stephen-dedalus/


DEDALUS IS DATALOG

+ stratified negation/aggregation

+ a successor relation

+ a common final attribute in every predicate

+ unification on that last attribute



BASIC DEDALUS



BASIC DEDALUS

deductive rules
    p(X, T) :- q(X, T).   
                                 (i.e. “plain old datalog”, timestamps required)



BASIC DEDALUS

deductive rules
    p(X, T) :- q(X, T).   
                                 (i.e. “plain old datalog”, timestamps required)

inductive rules
    p(X, U) :- q(X, T), successor(T, U).
                                                                  (i.e. induction in time)



BASIC DEDALUS

deductive rules
    p(X, T) :- q(X, T).   
                                 (i.e. “plain old datalog”, timestamps required)

inductive rules
    p(X, U) :- q(X, T), successor(T, U).
                                                                  (i.e. induction in time)

asynchronous rules
    p(X, Z) :- q(X, T), choice({X, T}, {Z}).
                                              (i.e. Z chosen non-deterministically 
                                               per binding in the body [GZ98])



SUGARED DEDALUS

deductive rules
    p(X, T) :- q(X, T).   
                                 

inductive rules
    p(X, U) :- q(X, T), successor(T, U).
                                                                  

asynchronous rules
    p(X, Z) :- q(X, T), choice({X, T}, {Z}).
                                              



 SUGARED DEDALUS

deductive rules
    p(X) :- q(X).   
                                      

inductive rules
    p(X)@next :- q(X).
                                     

asynchronous rules
    p(X)@async :- q(X).
                                     



 SUGARED DEDALUS

deductive rules
    p(X) :- q(X).   
                                      (omit ubiquitous timestamp attributes)

inductive rules
    p(X)@next :- q(X).
                                     (sugar for induction in time)

asynchronous rules
    p(X)@async :- q(X).
                                     (sugar for non-determinism in time)



A LITTLE PROGRAM



A LITTLE PROGRAM

state(‘flip’)@1. 



A LITTLE PROGRAM

state(‘flip’)@1. 

toggle(‘flop’) :- state(‘flip’).



A LITTLE PROGRAM

state(‘flip’)@1. 

toggle(‘flop’) :- state(‘flip’).

toggle(‘flip’) :- state(‘flop’).



A LITTLE PROGRAM

state(‘flip’)@1. 

toggle(‘flop’) :- state(‘flip’).

toggle(‘flip’) :- state(‘flop’).

state(X)@next :- toggle(X).



A LITTLE PROGRAM

state(‘flip’)@1. 

toggle(‘flop’) :- state(‘flip’).

toggle(‘flip’) :- state(‘flop’).

state(X)@next :- toggle(X).

announcement(X)@async :- toggle(X).



PERSISTENCE: 
BE PERSISTENT



PERSISTENCE: 
BE PERSISTENT

“Accumulate-only” storage:
pods(X)@next :- pods(X).
pods(‘Ullman’)@1982.



PERSISTENCE: 
BE PERSISTENT

“Accumulate-only” storage:
pods(X)@next :- pods(X).
pods(‘Ullman’)@1982.

Updatable storage:
pods(X)@next :- pods(X), !del_pods(X).
pods(‘Libkin’)@1996.
del_pods(‘Libkin’)@2009.



PERSISTENCE: 
BE PERSISTENT

“Accumulate-only” storage:
pods(X)@next :- pods(X).
pods(‘Ullman’)@1982.

Updatable storage:
pods(X)@next :- pods(X), !del_pods(X).
pods(‘Libkin’)@1996.
del_pods(‘Libkin’)@2009. note: deletion via breaking induction

Libkin did publish in PODS ’09



ATOMICITY 
& VISIBILITY



ATOMICITY 
& VISIBILITY

Example: priority queue



ATOMICITY 
& VISIBILITY

Example: priority queue

pq(V, P)@next :- pq(V, P), !del_pq(V, P).



ATOMICITY 
& VISIBILITY

Example: priority queue

pq(V, P)@next :- pq(V, P), !del_pq(V, P).
qmin(min<P>) :- pq(V, P).



ATOMICITY 
& VISIBILITY

Example: priority queue

pq(V, P)@next :- pq(V, P), !del_pq(V, P).
qmin(min<P>) :- pq(V, P). qmin “sees” only the current timestamp



ATOMICITY 
& VISIBILITY

Example: priority queue

pq(V, P)@next :- pq(V, P), !del_pq(V, P).
qmin(min<P>) :- pq(V, P).
del_pq(V,P) :- pq(V,P), qmin(P).
out(V,P)@next :- pq(V,P), qmin(P).

qmin “sees” only the current timestamp



ATOMICITY 
& VISIBILITY

Example: priority queue

pq(V, P)@next :- pq(V, P), !del_pq(V, P).
qmin(min<P>) :- pq(V, P).
del_pq(V,P) :- pq(V,P), qmin(P).
out(V,P)@next :- pq(V,P), qmin(P).

removes min from pq, adds to out.
atomically visible at “next” time

qmin “sees” only the current timestamp



ATOMICITY 
& VISIBILITY

Example: priority queue

pq(V, P)@next :- pq(V, P), !del_pq(V, P).
qmin(min<P>) :- pq(V, P).
del_pq(V,P) :- pq(V,P), qmin(P).
out(V,P)@next :- pq(V,P), qmin(P).

Two Dedalus features working together:
timestamp unification controls visibility 

temporal induction “synchronizes” timestamp assignment

removes min from pq, adds to out.
atomically visible at “next” time

qmin “sees” only the current timestamp



two unfinished stories

a dedalus primer

experience

implications and conjecture

TODAY



TODAY

two unfinished stories

a dedalus primer

experience

implications and conjecture



TODAY

two unfinished stories

a dedalus primer

experience

implications and conjecture



BUT FIRST, A GAME



EXPERIENCE



EXPERIENCE

No practical applications of recursive query 
theory ... have been found to date.
...
I find it sad that the theory community is so 
disconnected from reality that they don’t 
even know why their ideas are irrelevant.



EXPERIENCE

No practical applications of recursive query 
theory ... have been found to date.
...
I find it sad that the theory community is so 
disconnected from reality that they don’t 
even know why their ideas are irrelevant.

Hellerstein and Stonebraker, 
Readings in Database Systems

3rd edition (1998)



MORE EXPERIENCE



MORE EXPERIENCE

In the last 7 years we have built 



MORE EXPERIENCE

In the last 7 years we have built 
distributed crawlers [Coo04,Loo04]



MORE EXPERIENCE

In the last 7 years we have built 
distributed crawlers [Coo04,Loo04]

network routing protocols [Loo05a,Loo06b]



MORE EXPERIENCE

In the last 7 years we have built 
distributed crawlers [Coo04,Loo04]

network routing protocols [Loo05a,Loo06b]

overlay networks (e.g. Chord) [Loo06a]



MORE EXPERIENCE

In the last 7 years we have built 
distributed crawlers [Coo04,Loo04]

network routing protocols [Loo05a,Loo06b]

overlay networks (e.g. Chord) [Loo06a]

a full-service embedded sensornet stack [Chu07]



MORE EXPERIENCE

In the last 7 years we have built 
distributed crawlers [Coo04,Loo04]

network routing protocols [Loo05a,Loo06b]

overlay networks (e.g. Chord) [Loo06a]

a full-service embedded sensornet stack [Chu07]

network caching/proxying [Chu09]



MORE EXPERIENCE

In the last 7 years we have built 
distributed crawlers [Coo04,Loo04]

network routing protocols [Loo05a,Loo06b]

overlay networks (e.g. Chord) [Loo06a]

a full-service embedded sensornet stack [Chu07]

network caching/proxying [Chu09]

relational query optimizers (System R, Cascades, Magic Sets) [Con08]



MORE EXPERIENCE

In the last 7 years we have built 
distributed crawlers [Coo04,Loo04]

network routing protocols [Loo05a,Loo06b]

overlay networks (e.g. Chord) [Loo06a]

a full-service embedded sensornet stack [Chu07]

network caching/proxying [Chu09]

relational query optimizers (System R, Cascades, Magic Sets) [Con08]

distributed Bayesian inference (e.g. junction trees) [Atul09]



MORE EXPERIENCE

In the last 7 years we have built 
distributed crawlers [Coo04,Loo04]

network routing protocols [Loo05a,Loo06b]

overlay networks (e.g. Chord) [Loo06a]

a full-service embedded sensornet stack [Chu07]

network caching/proxying [Chu09]

relational query optimizers (System R, Cascades, Magic Sets) [Con08]

distributed Bayesian inference (e.g. junction trees) [Atul09]

distributed consensus and commit (Paxos, 2PC) [Alv09]



MORE EXPERIENCE

In the last 7 years we have built 
distributed crawlers [Coo04,Loo04]

network routing protocols [Loo05a,Loo06b]

overlay networks (e.g. Chord) [Loo06a]

a full-service embedded sensornet stack [Chu07]

network caching/proxying [Chu09]

relational query optimizers (System R, Cascades, Magic Sets) [Con08]

distributed Bayesian inference (e.g. junction trees) [Atul09]

distributed consensus and commit (Paxos, 2PC) [Alv09]

a distributed file system (HDFS) [Alv10]



MORE EXPERIENCE

In the last 7 years we have built 
distributed crawlers [Coo04,Loo04]

network routing protocols [Loo05a,Loo06b]

overlay networks (e.g. Chord) [Loo06a]

a full-service embedded sensornet stack [Chu07]

network caching/proxying [Chu09]

relational query optimizers (System R, Cascades, Magic Sets) [Con08]

distributed Bayesian inference (e.g. junction trees) [Atul09]

distributed consensus and commit (Paxos, 2PC) [Alv09]

a distributed file system (HDFS) [Alv10]

map-reduce job scheduler [Alv10]



MORE EXPERIENCE

In the last 7 years we have built 
distributed crawlers [Coo04,Loo04]

network routing protocols [Loo05a,Loo06b]

overlay networks (e.g. Chord) [Loo06a]

a full-service embedded sensornet stack [Chu07]

network caching/proxying [Chu09]

relational query optimizers (System R, Cascades, Magic Sets) [Con08]

distributed Bayesian inference (e.g. junction trees) [Atul09]

distributed consensus and commit (Paxos, 2PC) [Alv09]

a distributed file system (HDFS) [Alv10]

map-reduce job scheduler [Alv10]
+ OOM smaller code
+ data independence (optimization)
− 90% declarative Datalog variants:
      Overlog, NDLog, SNLog, ...



DESIGN PATTERNS



DESIGN PATTERNS

despite flaws in our languages, patterns emerged

three main categories today



DESIGN PATTERNS

despite flaws in our languages, patterns emerged

three main categories today
1. recursion (“rewriting the classics”)



DESIGN PATTERNS

despite flaws in our languages, patterns emerged

three main categories today
1. recursion (“rewriting the classics”)

2. communication across space-time



DESIGN PATTERNS

despite flaws in our languages, patterns emerged

three main categories today
1. recursion (“rewriting the classics”)

2. communication across space-time

3. engine architecture: threads/events



1. RECURSION
(REWRITING THE CLASSICS)



1. RECURSION
(REWRITING THE CLASSICS)

finding closure without the Ancs*



1. RECURSION
(REWRITING THE CLASSICS)

finding closure without the Ancs*

* SIGMOD people can EMP-athize!



1. RECURSION
(REWRITING THE CLASSICS)

finding closure without the Ancs*
the web is a graph.

* SIGMOD people can EMP-athize!



1. RECURSION
(REWRITING THE CLASSICS)

finding closure without the Ancs*
the web is a graph.

e.g. crawlers = simple monotonic reachability

* SIGMOD people can EMP-athize!



1. RECURSION
(REWRITING THE CLASSICS)

finding closure without the Ancs*
the web is a graph.

e.g. crawlers = simple monotonic reachability

the internet is a graph.

* SIGMOD people can EMP-athize!



1. RECURSION
(REWRITING THE CLASSICS)

finding closure without the Ancs*
the web is a graph.

e.g. crawlers = simple monotonic reachability

the internet is a graph.
e.g. routing protocols, overlay nets

* SIGMOD people can EMP-athize!



1. RECURSION
(REWRITING THE CLASSICS)

finding closure without the Ancs*
the web is a graph.

e.g. crawlers = simple monotonic reachability

the internet is a graph.
e.g. routing protocols, overlay nets

recursive queries matter!
[Coo04,Loo04,Loo05,Loo06a,Loo06b]

* SIGMOD people can EMP-athize!



1. RECURSION
(REWRITING THE CLASSICS)

finding closure without the Ancs*
the web is a graph.

e.g. crawlers = simple monotonic reachability

the internet is a graph.
e.g. routing protocols, overlay nets

recursive queries matter!
[Coo04,Loo04,Loo05,Loo06a,Loo06b]

challenges:

* SIGMOD people can EMP-athize!



1. RECURSION
(REWRITING THE CLASSICS)

finding closure without the Ancs*
the web is a graph.

e.g. crawlers = simple monotonic reachability

the internet is a graph.
e.g. routing protocols, overlay nets

recursive queries matter!
[Coo04,Loo04,Loo05,Loo06a,Loo06b]

challenges:
distributed join semantics

* SIGMOD people can EMP-athize!



1. RECURSION
(REWRITING THE CLASSICS)

finding closure without the Ancs*
the web is a graph.

e.g. crawlers = simple monotonic reachability

the internet is a graph.
e.g. routing protocols, overlay nets

recursive queries matter!
[Coo04,Loo04,Loo05,Loo06a,Loo06b]

challenges:
distributed join semantics
asynchronous fixpoint computation

* SIGMOD people can EMP-athize!



RECURSION + CHOICE = 
DYNAMIC PROGRAMMING

many examples
shortest paths [Loo05,Loo06b]

query optimization

Evita Raced: an overlog optimizer written in overlog [Con08]

bottom-up and top-down DP written in datalog

Viterbi inference [Wan10]

main challenge
distributed stratification



2. SPACE & COMMUNICATION

location specifiers

partition a relation across machines

communication “falls out”

declare each tuple’s “resting place”



link(@X,Y,C)

path(@X,Y,Y,C) :- link(@X,Y,C)

path(@X,Z,Y,C+D) :- link(@X,Y,C), path(@Y,Z,N,D)

LOCSPECS INDUCE 
COMMUNICATION



link(@X,Y,C)

path(@X,Y,Y,C) :- link(@X,Y,C)

path(@X,Z,Y,C+D) :- link(@X,Y,C), path(@Y,Z,N,D)

LOCSPECS INDUCE 
COMMUNICATION

a b c d
a b 1 c b 1

c d 1

b a 1

b c 1
link: d c 1

link(@X,Y,C)



link(@X,Y,C)

path(@X,Y,Y,C) :- link(@X,Y,C)

path(@X,Z,Y,C+D) :- link(@X,Y,C), path(@Y,Z,N,D)

LOCSPECS INDUCE 
COMMUNICATION

a b c d
a b 1 c b 1

c d 1

b a 1

b c 1
link: d c 1

a b b 1 c b b 1

c d d 1

b a a 1

b c c 1
path: d c c 1

path(@X,Y,Y,C) :- link(@X,Y,C)



link(@X,Y,C)

path(@X,Y,Y,C) :- link(@X,Y,C)

path(@X,Z,Y,C+D) :- link(@X,Y,C), path(@Y,Z,N,D)

LOCSPECS INDUCE 
COMMUNICATION

a b c d
a b 1 c b 1

c d 1

b a 1

b c 1
link: d c 1

a b b 1 c b b 1

c d d 1

b a a 1

b c c 1
path: d c c 1

path(@X,Z,Y,C+D) :- link(@X,Y,C), path(@Y,Z,N,D)



link(@X,Y,C)

path(@X,Y,Y,C) :- link(@X,Y,C)

path(@X,Z,Y,C+D) :- link(@X,Y,C), path(@Y,Z,N,D)

LOCSPECS INDUCE 
COMMUNICATION

a b c d
a b 1 c b 1

c d 1

b a 1

b c 1
link: d c 1

a b b 1 c b b 1

c d d 1

b a a 1

b c c 1
path: d c c 1

path(@X,Z,Y,C+D) :- link(@X,Y,C), path(@Y,Z,N,D)



link(@X,Y,C)

path(@X,Y,Y,C) :- link(@X,Y,C)

path(@X,Z,Y,C+D) :- link(@X,Y,C), path(@Y,Z,N,D)

LOCSPECS INDUCE 
COMMUNICATION

a b c d
a b 1 c b 1

c d 1

b a 1

b c 1
link: d c 1

a b b 1 c b b 1

c d d 1

b a a 1

b c c 1
path: d c c 1

path(@X,Z,Y,C+D) :- link(@X,Y,C), path(@Y,Z,N,D)



link(@X,Y,C)

path(@X,Y,Y,C) :- link(@X,Y,C)

path(@X,Z,Y,C+D) :- link(@X,Y,C), path(@Y,Z,N,D)

LOCSPECS INDUCE 
COMMUNICATION

a b c d
a b 1 c b 1

c d 1

b a 1

b c 1
link: d c 1

a b b 1 c b b 1

c d d 1

b a a 1

b c c 1
path: d c c 1

path(@X,Z,Y,C+D) :- link(@X,Y,C), path(@Y,Z,N,D)



link(@X,Y,C)

path(@X,Y,Y,C) :- link(@X,Y,C)

path(@X,Z,Y,C+D) :- link(@X,Y,C), path(@Y,Z,N,D)

LOCSPECS INDUCE 
COMMUNICATION

a b c d
a b 1 c b 1

c d 1

b a 1

b c 1
link: d c 1

a b b 1 c b b 1

c d d 1

b a a 1

b c c 1
path: d c c 1

path(@X,Z,Y,C+D) :- link(@X,Y,C), path(@Y,Z,N,D)



link(@X,Y)

path(@X,Y,Y,C) :- link(@X,Y,C)

link_d(X,@Y,C) :- link(@X,Y,C)

path(@X,Z,Y,C+D) :- link_d(X,@Y,C), path(@Y,Z,N,D)

LOCSPECS INDUCE 
COMMUNICATION

a b c d
a b 1 c d 1

c d 1

b a 1

b c 1
link: d c 1

link_d:

a b b 1 c d d 1

d c c 1

b a a 1

b c c 1
path: d c c 1

Localization Rewrite



link(@X,Y)

path(@X,Y,Y,C) :- link(@X,Y,C)

link_d(X,@Y,C) :- link(@X,Y,C)

path(@X,Z,Y,C+D) :- link_d(X,@Y,C), path(@Y,Z,N,D)

LOCSPECS INDUCE 
COMMUNICATION

a b c d
a b 1 c d 1

c d 1

b a 1

b c 1
link: d c 1

link_d:

a b b 1 c d d 1

d c c 1

b a a 1

b c c 1
path: d c c 1

Localization Rewrite



link(@X,Y)

path(@X,Y,Y,C) :- link(@X,Y,C)

link_d(X,@Y,C) :- link(@X,Y,C)

path(@X,Z,Y,C+D) :- link_d(X,@Y,C), path(@Y,Z,N,D)

LOCSPECS INDUCE 
COMMUNICATION

a b c d
a b 1 c d 1

c d 1

b a 1

b c 1
link: d c 1

link_d:

a b b 1 c d d 1

d c c 1

b a a 1

b c c 1
path: d c c 1

a b 1

Localization Rewrite



link(@X,Y)

path(@X,Y,Y,C) :- link(@X,Y,C)

link_d(X,@Y,C) :- link(@X,Y,C)

path(@X,Z,Y,C+D) :- link_d(X,@Y,C), path(@Y,Z,N,D)

LOCSPECS INDUCE 
COMMUNICATION

a b c d
a b 1 c d 1

c d 1

b a 1

b c 1
link: d c 1

link_d: b a 1 b c 1

d c 1

a b 1

c b 1

c d 1

a b b 1 c d d 1

d c c 1

b a a 1

b c c 1
path: d c c 1

a b 1

Localization Rewrite



link(@X,Y)

path(@X,Y,Y,C) :- link(@X,Y,C)

link_d(X,@Y,C) :- link(@X,Y,C)

path(@X,Z,Y,C+D) :- link_d(X,@Y,C), path(@Y,Z,N,D)

LOCSPECS INDUCE 
COMMUNICATION

a b c d
a b 1 c d 1

c d 1

b a 1

b c 1
link: d c 1

link_d: b a 1 b c 1

d c 1

a b 1

c b 1

c d 1

a b b 1 c d d 1

d c c 1

b a a 1

b c c 1
path: d c c 1

a b 1

Localization Rewrite



link(@X,Y)

path(@X,Y,Y,C) :- link(@X,Y,C)

link_d(X,@Y,C) :- link(@X,Y,C)

path(@X,Z,Y,C+D) :- link_d(X,@Y,C), path(@Y,Z,N,D)

LOCSPECS INDUCE 
COMMUNICATION

a b c d
a b 1 c d 1

c d 1

b a 1

b c 1
link: d c 1

link_d: b a 1 b c 1

d c 1

a b 1

c b 1

c d 1

a b b 1 c d d 1

d c c 1

b a a 1

b c c 1
path: d c c 1

a b 1

Localization Rewrite



link(@X,Y)

path(@X,Y,Y,C) :- link(@X,Y,C)

link_d(X,@Y,C) :- link(@X,Y,C)

path(@X,Z,Y,C+D) :- link_d(X,@Y,C), path(@Y,Z,N,D)

LOCSPECS INDUCE 
COMMUNICATION

a b c d
a b 1 c d 1

c d 1

b a 1

b c 1
link: d c 1

link_d: b a 1 b c 1

d c 1

a b 1

c b 1

c d 1

a b b 1 c d d 1

d c c 1

b a a 1

b c c 1
path: d c c 1

a b 1

a c b 2

Localization Rewrite



link(@X,Y)

path(@X,Y,Y,C) :- link(@X,Y,C)

link_d(X,@Y,C) :- link(@X,Y,C)

path(@X,Z,Y,C+D) :- link_d(X,@Y,C), path(@Y,Z,N,D)

LOCSPECS INDUCE 
COMMUNICATION

a b c d
a b 1 c d 1

c d 1

b a 1

b c 1
link: d c 1

link_d: b a 1 b c 1

d c 1

a b 1

c b 1

c d 1

a b b 1 c d d 1

d c c 1

b a a 1

b c c 1
path: d c c 1

a b 1

a c b 2

Localization Rewrite

THIS IS 

DISTANCE 

V E C T O R 

xx



THE MYTH OF THE 
GLOBAL DATABASE

the problem with space?

distributed join consistency
path(@X,Z,Y,C+D) :- 
             link(@X,Y,C), path(@Y,Z,N,D) 

needs coordination, e.g. 2PC?
“localized” async rules more “honest”

perils of a false abstraction



THE MYTH OF THE 
GLOBAL DATABASE

the problem with space?

distributed join consistency
path(@X,Z,Y,C+D) :- 
             link(@X,Y,C), path(@Y,Z,N,D) 

needs coordination, e.g. 2PC?
“localized” async rules more “honest”

perils of a false abstraction



3. ENGINE ARCHITECTURE

engine architecture

threads? events?  

join!

session state w/events

modeling ephemera

events, timeouts, soft-state

in the paper



3. ENGINE ARCHITECTURE

engine architecture

threads? events?  

join!

session state w/events

modeling ephemera

events, timeouts, soft-state

in the paper

Because the original of the following paper by Lauer and Needham is not 

widely available, we are reprinting it here. If the paper is referenced 

in published work, the citation should read: "Lauer, H.C., Needham, R.M., 

"On the Duality of Operating Systems Structures," in Proc. Second Inter- 

national Symposium on Operating Systems, IRIA, Oct. 1978, reprinted in 

Operating Systems Review, 13,2 April 1979, pp. 3-19. 

On the Duality of Operating System Structures 

Hugh C. Lauer 
Xerox Corporation 

Palo Alto, California 

Roger M. Needham* 
Cambridge University 
Cambridge, England 

Abstract 

Many operating system designs can be placed into one of two very rough 

categories, depending upon how they implement and use the notions of 
process and synchronization. One category, the "Message-oriented System," 

is characterized by a relatively small, static number of processes with an 
explicit message system for communicating among them. The other category, 
the "Procedure-oriented System," is characterized by a large, rapidly 

changing number of small processes and a process synchronization 
mechanism based on shared data. 

In this paper, it is demonstrated that these two categories are duals of each 
other and that a system which is constructed according to one model has a 
direct counterpart in the other. The principal conclusion is that neither model 
is inherently preferable, and the main consideration for choosing between 
them is the nature of the machine architecture upon which the system is 

being built, not the application which the system will ultimately support. 

This is an empirical paper, in the sense of  empirical studies in the natural sciences. We have 

observed a number of samples from a class of  objects and identified a classification of  some of  

their properties. We have then generalized our classification and constructed abstract models to 

describe these properties. With the aid of these models, we were able to make some observations 

about the nature of the objects themselves, observations which are supported by other experimental 

evidence. Finally, we have drawn some conclusions about the class of  objects which better aid our 

understanding of  that class and the decisions which affect the design of members of that class. 

The universe in this investigation is the class of operating systems, and the properties in which we 

are interested are the ways in which the concepts of  process, synchronization, and interprocess 

communication occur within these systems and among their clients. There appear to be two 

general categories in this respect, which we designate the Message-oriented Systems and the 

Procedure-oriented Systems. Most systems which we have observed tend to be biased fairy 

strongly in favour of one or the other, rather than being neutral or indeterminate. Moreover, 

* This work was done while the author was on sabbatical leave at the Xerox Pale Alto Research Center during 

the summer of 1977. 3 



TODAY

two unfinished stories

a dedalus primer

experience

implications and conjecture



TODAY

two unfinished stories

a dedalus primer

experience

implications and conjecture



TODAY

two unfinished stories

a dedalus primer

experience

implications and conjecture



IMPLICATIONS AND 
CONJECTURES

the CALM conjecture

the CRON conjecture

Coordination Complexity

the Fateful Time conjecture



IMPLICATIONS AND 
CONJECTURES

the CALM conjecture

the CRON conjecture

Coordination Complexity

the Fateful Time conjecture



IMPLICATIONS AND 
CONJECTURES

the CALM conjecture

the CRON conjecture

Coordination Complexity

the Fateful Time conjecture



IMPLICATIONS AND 
CONJECTURES

the CALM conjecture

the CRON conjecture

Coordination Complexity

the Fateful Time conjecture



IMPLICATIONS AND 
CONJECTURES

the CALM conjecture

the CRON conjecture

Coordination Complexity

the Fateful Time conjecture



BUT FIRST, THE ENDGAME!



COUNTING WAITS.
WAITING COUNTS.

distributed aggregation?
esp. with recursion?!

requires coordination (consider “count-to-zero”)

counting requires waiting

coordination protocols?
all entail “voting”

2PC, Paxos, BFT

waiting requires counting



IMPLICATIONS AND 
CONJECTURES

the CALM conjecture

the CRON conjecture

Coordination Complexity

the Fateful Time conjecture



THE FUSS ABOUT
EVENTUAL CONSISTENCY

cloud folks, etc. don’t like transactions
they involve waiting (counting)

eventually consistent storage
no waiting

loose Consistency, but Availability during network Partitions

things work out when partitions “eventually” reconnect

(see Brewer’s CAP Theorem)

spawned the noSQL movement



MONOTONIC?
EVENTUALLY CONSISTENT!

my definition of eventual consistency
given: distributed system, finite trace of messages

eventual consistency if the final state of the system is independent of 
message ordering

and ensuring so does not require coordination!

more than the usual

typical focus is on replicas and versions of state

we are interested in consistency of a whole program

replication is a special case:  p_rep(X, @r)@async :- p(X, @a).



EXAMPLE: 
SHOPPING CART

shopping: a growing to-do list
e.g., “add n units of item X to cart”
e.g., “delete m units of item Y from cart”
easily supported by eventually-consistent infrastructure

check-out: aggregation
compute totals

validate stock-on-hand, confirm with user (and move on to billing logic)

typically supported by richer infrastructure. not e.c.

a well-known pattern
“general ledger”, “escrow transactions”, etc.



THE CALM CONJECTURE

CONJECTURE 1. Consistency And Logical Monotonicity (CALM). 
A program has an eventually consistent, coordination-free evaluation 
strategy iff it is expressible in (monotonic) Datalog.

monotonic ⇒ EC

via pipelined semi-naive evaluation (PSN)

positive derivations can “accumulate”

!monotonic ⇒ !EC

distributed negation/aggregation

the end of the game!



THE CALM CONJECTURE

CONJECTURE 1. Consistency And Logical Monotonicity (CALM). 
A program has an eventually consistent, coordination-free evaluation 
strategy iff it is expressible in (monotonic) Datalog.

monotonic ⇒ EC

via pipelined semi-naive evaluation (PSN)

positive derivations can “accumulate”

!monotonic ⇒ !EC

distributed negation/aggregation

the end of the game!



CALM IMPLICATIONS

NoSQL = Datalog!

ditto lock-free data structures

whole-program tests over e.c. storage

automatic relaxation of consistent programs

synthesis of coordination/compensation



IMPLICATIONS AND 
CONJECTURES

the CALM conjecture

the CRON conjecture

Coordination Complexity

the Fateful Time conjecture



CAUSALITY
(WHAT ABOUT PODC?)

Lamport and his Clock Condition

given a partial order → (happens-before)

and a per-node clock C

for any events a, b
  if a → b then C(a) < C(b)

Respect Time & the (partial) Order!



TIME IS FOR 
(NON-MONOTONIC) SUCKERS!



TIME IS FOR 
(NON-MONOTONIC) SUCKERS!

Time flies like an arrow.



TIME IS FOR 
(NON-MONOTONIC) SUCKERS!

Time flies like an arrow.

Fruit flies like a banana.
    — Groucho Marx



TIME TRAVEL

we can send things back in time!
nobody said we couldn’t!

theoretician@async(X) :- pods(X).

but ... temporal paradoxes?
e.g. the grandfather paradox



THE GRANDFATHER 
PARADOX



THE GRANDFATHER 
PARADOX

parent(X, Z) :- has_baby(X,Y,Z).



THE GRANDFATHER 
PARADOX

parent(X, Z) :- has_baby(X,Y,Z).
parent(Y, Z) :- has_baby(X,Y,Z).



THE GRANDFATHER 
PARADOX

parent(X, Z) :- has_baby(X,Y,Z).
parent(Y, Z) :- has_baby(X,Y,Z).
parent@next(X,Y) :- parent(X,Y), 
                                    !del_p(X,Y).



THE GRANDFATHER 
PARADOX

parent(X, Z) :- has_baby(X,Y,Z).
parent(Y, Z) :- has_baby(X,Y,Z).
parent@next(X,Y) :- parent(X,Y), 
                                    !del_p(X,Y).
anc(X, Y) :- parent(X, Y).



THE GRANDFATHER 
PARADOX

parent(X, Z) :- has_baby(X,Y,Z).
parent(Y, Z) :- has_baby(X,Y,Z).
parent@next(X,Y) :- parent(X,Y), 
                                    !del_p(X,Y).
anc(X, Y) :- parent(X, Y).
anc(X, Y) :- parent(X,Z),
                          anc(Z,Y).



THE GRANDFATHER 
PARADOX

parent(X, Z) :- has_baby(X,Y,Z).
parent(Y, Z) :- has_baby(X,Y,Z).
parent@next(X,Y) :- parent(X,Y), 
                                    !del_p(X,Y).
anc(X, Y) :- parent(X, Y).
anc(X, Y) :- parent(X,Z),
                          anc(Z,Y).

kill@async(X,Y) :- mistreat(Y,X).



THE GRANDFATHER 
PARADOX

parent(X, Z) :- has_baby(X,Y,Z).
parent(Y, Z) :- has_baby(X,Y,Z).
parent@next(X,Y) :- parent(X,Y), 
                                    !del_p(X,Y).
anc(X, Y) :- parent(X, Y).
anc(X, Y) :- parent(X,Z),
                          anc(Z,Y).

kill@async(X,Y) :- mistreat(Y,X).
del_p(Y, Z) :- kill(X, Y).



THE GRANDFATHER 
PARADOX

parent(X, Z) :- has_baby(X,Y,Z).
parent(Y, Z) :- has_baby(X,Y,Z).
parent@next(X,Y) :- parent(X,Y), 
                                    !del_p(X,Y).
anc(X, Y) :- parent(X, Y).
anc(X, Y) :- parent(X,Z),
                          anc(Z,Y).

kill@async(X,Y) :- mistreat(Y,X).
del_p(Y, Z) :- kill(X, Y).

Murder is Non-Monotonic.



THE CRON CONJECTURE

CONJECTURE 2. Causality Required Only for Non-Monotonicity.  
(CRON).  Program semantics require causal message ordering if and 
only if the messages participate in non-monotonic derivations.

intuition: local stratification
assume a cycle through non-monotonic predicates across timesteps.

looping derivations prevented if timestamps are monotonic



IMPLICATIONS AND 
CONJECTURES

the CALM conjecture

the CRON conjecture

Coordination Complexity

the Fateful Time conjecture



UNSTRATIFIABLE?  
SPEND SOME TIME.



UNSTRATIFIABLE?  
SPEND SOME TIME.

this is a problem:
p(X) :- !p(X), q(X).



UNSTRATIFIABLE?  
SPEND SOME TIME.

this is a problem:
p(X) :- !p(X), q(X).

this is a solution:
q(X)@next :- q(X).
p(X)@next :- !p(X), q(X).



UNSTRATIFIABLE?  
SPEND SOME TIME.

this is a problem:
p(X) :- !p(X), q(X).

this is a solution:
q(X)@next :- q(X).
p(X)@next :- !p(X), q(X).

this is just dumb:
anc(X, Y)@next :- parent(X, Y).
anc(X, Y)@next :- parent(X,Z), 
                                    anc(Z,Y).



UNSTRATIFIABLE?  
SPEND SOME TIME.

this is a problem:
p(X) :- !p(X), q(X).

this is a solution:
q(X)@next :- q(X).
p(X)@next :- !p(X), q(X).

how does Dedalus time 
relate to complexity?

this is just dumb:
anc(X, Y)@next :- parent(X, Y).
anc(X, Y)@next :- parent(X,Z), 
                                    anc(Z,Y).



PRACTICAL (?? !!)
SIDENOTE



PRACTICAL (?? !!)
SIDENOTE

Challenge: win a benchmark with free computers.



PRACTICAL (?? !!)
SIDENOTE

Challenge: win a benchmark with free computers.

Yahoo Petasort:



PRACTICAL (?? !!)
SIDENOTE

Challenge: win a benchmark with free computers.

Yahoo Petasort:
3,800 8-core, 4-disk machines



PRACTICAL (?? !!)
SIDENOTE

Challenge: win a benchmark with free computers.

Yahoo Petasort:
3,800 8-core, 4-disk machines
i.e. each core sorted 32 MB (1/512 of RAM!)



PRACTICAL (?? !!)
SIDENOTE

Challenge: win a benchmark with free computers.

Yahoo Petasort:
3,800 8-core, 4-disk machines
i.e. each core sorted 32 MB (1/512 of RAM!)
3799/3800 of a Petabyte streamed across the network



PRACTICAL (?? !!)
SIDENOTE

Challenge: win a benchmark with free computers.

Yahoo Petasort:
3,800 8-core, 4-disk machines
i.e. each core sorted 32 MB (1/512 of RAM!)
3799/3800 of a Petabyte streamed across the network
16.25 hours



PRACTICAL (?? !!)
SIDENOTE

Challenge: win a benchmark with free computers.

Yahoo Petasort:
3,800 8-core, 4-disk machines
i.e. each core sorted 32 MB (1/512 of RAM!)
3799/3800 of a Petabyte streamed across the network
16.25 hours

rental cost in the cloud



PRACTICAL (?? !!)
SIDENOTE

Challenge: win a benchmark with free computers.

Yahoo Petasort:
3,800 8-core, 4-disk machines
i.e. each core sorted 32 MB (1/512 of RAM!)
3799/3800 of a Petabyte streamed across the network
16.25 hours

rental cost in the cloud
Amazon EC2 “High-CPU extra large” @ $0.84/hour



PRACTICAL (?? !!)
SIDENOTE

Challenge: win a benchmark with free computers.

Yahoo Petasort:
3,800 8-core, 4-disk machines
i.e. each core sorted 32 MB (1/512 of RAM!)
3799/3800 of a Petabyte streamed across the network
16.25 hours

rental cost in the cloud
Amazon EC2 “High-CPU extra large” @ $0.84/hour

3800 * 0.84 * 16.25 = $51,870



PRACTICAL (?? !!)
SIDENOTE

Challenge: win a benchmark with free computers.

Yahoo Petasort:
3,800 8-core, 4-disk machines
i.e. each core sorted 32 MB (1/512 of RAM!)
3799/3800 of a Petabyte streamed across the network
16.25 hours

rental cost in the cloud
Amazon EC2 “High-CPU extra large” @ $0.84/hour

3800 * 0.84 * 16.25 = $51,870
not a perfect clone, but rather impressive



PRACTICAL (?? !!)
SIDENOTE

Challenge: win a benchmark with free computers.

Yahoo Petasort:
3,800 8-core, 4-disk machines
i.e. each core sorted 32 MB (1/512 of RAM!)
3799/3800 of a Petabyte streamed across the network
16.25 hours

rental cost in the cloud
Amazon EC2 “High-CPU extra large” @ $0.84/hour

3800 * 0.84 * 16.25 = $51,870
not a perfect clone, but rather impressive

pretty close to free



PRACTICAL (?? !!)
SIDENOTE

Challenge: win a benchmark with free computers.

Yahoo Petasort:
3,800 8-core, 4-disk machines
i.e. each core sorted 32 MB (1/512 of RAM!)
3799/3800 of a Petabyte streamed across the network
16.25 hours

rental cost in the cloud
Amazon EC2 “High-CPU extra large” @ $0.84/hour

3800 * 0.84 * 16.25 = $51,870
not a perfect clone, but rather impressive

pretty close to free
so where’s the complexity?



COORDINATION 
COMPLEXITY

coordination the main cost
failure/delay probabilities

compounded by queuing effects

coordination complexity: 

# of sequential coordination steps 
required for evaluation

CALM: coordination manifest in logic!
coordination at stratum boundaries



DEDALUS TIME AND 
COORD COMPLEXITY 

CONJECTURE 3. Dedalus Time ⇔ Coordination Complexity.  The 
minimum number of Dedalus timesteps required to evaluate a program 
on a given input data set is equivalent to the program’s Coordination 
Complexity.



IMPLICATIONS AND 
CONJECTURES

the CALM conjecture

the CRON conjecture

Coordination Complexity

the Fateful Time conjecture



BUT WHAT IS TIME FOR?

we’ve seen when we don’t need it
monotonic deduction

we’ve seen when we do need it
“spending time” examples

if we need it but try to save it?
no unique minimal model!

multiple simultaneous worlds

paradoxes: inconsistent assertions in time



FATEFUL TIME
CONJECTURE 4. Fateful Time. Any Dedalus program P can be 
rewritten into an equivalent temporally-minimized program P’ such that 
each inductive or asynchronous rule of P’ is necessary: converting that 
rule to a deductive rule would result in a program with no unique 
minimal model.

the purpose of time is to seal fate:
time = simultaneity + succession

dedalus: timestamp unification + inductive rules

multiple worlds ⇒ monotonic sequence of unique worlds



TODAY

two unfinished stories

a dedalus primer

experience

implications and conjecture



TODAY

two unfinished stories

a dedalus primer

experience

implications and conjecture



WHAT NEXT? PITFALLS, 
PROMISE & POTENTIAL

audacity of scope
     pitfall: database languages per se
 promise: data finally the central issue in computing
potential: attack the general case, change the way software is built

formalism
     pitfall: disconnection of theory/practice
 promise: theory embodied in useful programming tools
potential: validate and extend a 30-year agenda

networking
     pitfall: the walled garden
 promise: db topics connect pl, os, distributed systems, etc.
potential: db as an intellectual crossroads



CARPE DIEM

affirm, refute, or ignore the conjectures 
(thank you for indulging me)

but do not miss this opportunity!
we can address a real crisis in computing

we have the ear of the broad community

time to sift through known results and apply them

undoubtedly there is more to do .. jump in!



JOINT WORK
7 years
3 systems (P2, Overlog, DSN)
6 PhD, 2 MS students
friends in academia, industry

special thanks to the 
BOOM team:

Peter ALVARO
Ras BODÍK
Tyson CONDIE 
Neil CONWAY 
Khaled ELMELEEGY 
Haryadi GUNAWI
Thibaud HOTTELIER
William MARCZAK
Rusty SEARS



web search: “springtime for datalog”

http://boom.cs.berkeley.edu

http://boom.cs.berkeley.edu
http://boom.cs.berkeley.edu
http://boom.cs.berkeley.edu
http://boom.cs.berkeley.edu
http://boom.cs.berkeley.edu
http://boom.cs.berkeley.edu
http://boom.cs.berkeley.edu
http://boom.cs.berkeley.edu
http://boom.cs.berkeley.edu
http://boom.cs.berkeley.edu


BACKUP



DESIGN PATTERN #3
EVENTS AND DISPATCH

challenge: manage thousands of sessions on a server
A. “process” or “thread” per session.  

stack variables and PC keep context

B: one single-threaded event-loop
state-machine per session on heap

problem: long tasks like I/O require care

arguments about scaling, programmability

session mgmt is just data mgmt!
scale a join to thousands of tuples?  big deal!!

programmability?  hmm...

Because the original of the following paper by Lauer and Needham is not 

widely available, we are reprinting it here. If the paper is referenced 

in published work, the citation should read: "Lauer, H.C., Needham, R.M., 

"On the Duality of Operating Systems Structures," in Proc. Second Inter- 

national Symposium on Operating Systems, IRIA, Oct. 1978, reprinted in 

Operating Systems Review, 13,2 April 1979, pp. 3-19. 

On the Duality of Operating System Structures 

Hugh C. Lauer 
Xerox Corporation 

Palo Alto, California 

Roger M. Needham* 
Cambridge University 
Cambridge, England 

Abstract 

Many operating system designs can be placed into one of two very rough 

categories, depending upon how they implement and use the notions of 
process and synchronization. One category, the "Message-oriented System," 

is characterized by a relatively small, static number of processes with an 
explicit message system for communicating among them. The other category, 
the "Procedure-oriented System," is characterized by a large, rapidly 

changing number of small processes and a process synchronization 
mechanism based on shared data. 

In this paper, it is demonstrated that these two categories are duals of each 
other and that a system which is constructed according to one model has a 
direct counterpart in the other. The principal conclusion is that neither model 
is inherently preferable, and the main consideration for choosing between 
them is the nature of the machine architecture upon which the system is 

being built, not the application which the system will ultimately support. 

This is an empirical paper, in the sense of  empirical studies in the natural sciences. We have 

observed a number of samples from a class of  objects and identified a classification of  some of  

their properties. We have then generalized our classification and constructed abstract models to 

describe these properties. With the aid of these models, we were able to make some observations 

about the nature of the objects themselves, observations which are supported by other experimental 

evidence. Finally, we have drawn some conclusions about the class of  objects which better aid our 

understanding of  that class and the decisions which affect the design of members of that class. 

The universe in this investigation is the class of operating systems, and the properties in which we 

are interested are the ways in which the concepts of  process, synchronization, and interprocess 

communication occur within these systems and among their clients. There appear to be two 

general categories in this respect, which we designate the Message-oriented Systems and the 

Procedure-oriented Systems. Most systems which we have observed tend to be biased fairy 

strongly in favour of one or the other, rather than being neutral or indeterminate. Moreover, 

* This work was done while the author was on sabbatical leave at the Xerox Pale Alto Research Center during 

the summer of 1977. 3 



A THIRD WAY



A THIRD WAY

// keep requests pending until a response is generated

pending(Id, Clnt, P) :- request(Clnt, Id, P).
pending(Id, Clnt, P)@next :- pending(Id, Clnt, P),   
                                                 !response(Id, Clnt, _).



A THIRD WAY

// keep requests pending until a response is generated

pending(Id, Clnt, P) :- request(Clnt, Id, P).
pending(Id, Clnt, P)@next :- pending(Id, Clnt, P),   
                                                 !response(Id, Clnt, _).

// call an asynchronous service, via input “interface” service_in()

service_out(P, Out)@async :- request(Id, Clnt, P), 
                                                  service_in(P, Out).



A THIRD WAY

// keep requests pending until a response is generated

pending(Id, Clnt, P) :- request(Clnt, Id, P).
pending(Id, Clnt, P)@next :- pending(Id, Clnt, P),   
                                                 !response(Id, Clnt, _).

// call an asynchronous service, via input “interface” service_in()

service_out(P, Out)@async :- request(Id, Clnt, P), 
                                                  service_in(P, Out).

// join service answers back to pending to form response

response(Clnt, Id, O) :- pending(Id, Clnt, P), service_out(P, O).



EPHEMERA

3 common distributed persistence models

stable storage (persistent)

event streams (ephemeral)

soft state (bounded persistence)



EPHEMERA

3 common distributed persistence models

stable storage (persistent)

event streams (ephemeral)

soft state (bounded persistence)



EPHEMERA

3 common distributed persistence models

stable storage (persistent)

event streams (ephemeral)

soft state (bounded persistence)



EPHEMERA

3 common distributed persistence models

stable storage (persistent)

event streams (ephemeral)

soft state (bounded persistence)



EPHEMERA

3 common distributed persistence models

stable storage (persistent)

event streams (ephemeral)

soft state (bounded persistence)



OVERLOG: PERIODICS 
AND PERSISTENCE

Overlog provided metadata modifiers for persistence
materialize(pods, infinity).
materialize(cache, 60).

absence of a materialize clause implies an emphemeral event stream

Overlog’s built-in event stream:
periodic(@Node, Id, Interval).

a declarative construct, to be evaluated in real-time



CACHING EXAMPLE
IN OVERLOG

materialize(pods, infinity).
materialize(msglog, infinity).
materialize(link, infinity).
materialize(cache, 60).

cache(@N, X) :- pods(@M, X), link(@M, N), 
                           periodic(@M, _, 40).

msglog(@N, X) :- cache(@N, X). but what does that mean??

cool!



CACHING
IN DEDALUS

pods(@M, X)@next :- pods(@M,X), !del_pods(@M,X).
msglog(@M,X)@next) , msglog(@M,X), !del_msglog(@M,X).
link(@M, X)@next :- link(@M,X), !del_link(@M,X). 
cache(@M,X,Birth)@next :- cache(@M,X,Birth), now() - Birth > 60.

cache(@N, X) :- pods(@M, X), link(@M, N), 
                           periodic(@M, _, 40).

msglog(@N, X) :- cache(@N, X). in tandem with inductive rule above, 
msglog grounded in this base-case!

still cool!



GRAY’S TWELFTH 
CHALLENGE

“automatic” programming
Do What I Mean

3 OOM “easier”

with Memex, Turing Test, etc.

predates multicore/cloud
the sky had already fallen?

44 

Automatic Programming 
 Do What I Mean (not 100$ Line of code!, no programming bugs) 

 The holy grail of programming languages & systems 

12.  Devise a specification  language or  UI  
1.  That is easy for people to express designs (1,000x easier), 
2.  That computers can compile, and 
3.  That can describe all applications (is complete). 

•  System should “reason” about application 
–  Ask about exception cases. 
–  Ask about incomplete specification. 
–  But not be onerous. 

•  This already exists in domain-specific areas. 
  (i.e. 2 out of 3 already exists) 

•  An imitation game for a programming staff. 



MONOTONIC?
EMBARRASSING! 

Monotonic evaluation is order-independent

derivation trees “accumulate”

Loo’s Pipelined Semi-Naive evaluation

streaming (monotonic) Datalog

same # derivations as Semi-Naive

Intuition: network paths again



Link	  Table Network

SEMI-NAIVE EVALUATION

Slide	  courtesy	  Boon	  Thau	  Loo



Path	  TableLink	  Table Network

SEMI-NAIVE EVALUATION

Slide	  courtesy	  Boon	  Thau	  Loo



Path	  Table

1-‐hop

Link	  Table Network

SEMI-NAIVE EVALUATION

Slide	  courtesy	  Boon	  Thau	  Loo



Path	  Table

1-‐hop

Link	  Table Network

SEMI-NAIVE EVALUATION

Slide	  courtesy	  Boon	  Thau	  Loo



Path	  Table

1-‐hop

Link	  Table Network

SEMI-NAIVE EVALUATION

Slide	  courtesy	  Boon	  Thau	  Loo



Path	  Table

1-‐hop

2-‐hop

Link	  Table Network

SEMI-NAIVE EVALUATION

Slide	  courtesy	  Boon	  Thau	  Loo



Path	  Table

1-‐hop

2-‐hop

Link	  Table Network

SEMI-NAIVE EVALUATION

Slide	  courtesy	  Boon	  Thau	  Loo



Path	  Table

1-‐hop

2-‐hop

Link	  Table Network

SEMI-NAIVE EVALUATION

Slide	  courtesy	  Boon	  Thau	  Loo



Path	  Table

3-‐hop

1-‐hop

2-‐hop

Link	  Table Network

SEMI-NAIVE EVALUATION

Slide	  courtesy	  Boon	  Thau	  Loo



Path	  Table

3-‐hop

1-‐hop

2-‐hop

Link	  Table Network

SEMI-NAIVE EVALUATION

Slide	  courtesy	  Boon	  Thau	  Loo



Path	  TableLink	  Table Network

0
412

3

PIPELINED
SEMI-NAIVE EVALUATION



Path	  Table

1

Link	  Table Network

0
412

3

PIPELINED
SEMI-NAIVE EVALUATION



Path	  Table

2

1

Link	  Table Network

0
412

3

PIPELINED
SEMI-NAIVE EVALUATION



Path	  Table

2

1

3

Link	  Table Network

0
412

3

PIPELINED
SEMI-NAIVE EVALUATION



Path	  Table

2

1

3

Link	  Table Network

4

0
412

3

PIPELINED
SEMI-NAIVE EVALUATION



Path	  Table

2

1

3

Link	  Table Network

4

0
412

3

PIPELINED
SEMI-NAIVE EVALUATION



BORGES SAID IT BETTER

“The denial of time involves two negations: the negation of 
the succession of the terms of a series, negation of the 
synchronism of the terms in two different series.”

   — Jorge Luis Borges, “A New Refutation of Time”


