QUANTITATIVE DATA CLEANING FOR LARGE DATABASES

JOSEPH M. HELLERSTEIN

BACKGROUND

- * a funny kind of keynote
 - a trip to the library
 - robust statistics, DB analytics
 - some open problems/directions
 - scaling robust stats, intelligent data entry forms
 - J. M. Hellerstein, "Quantitative Data Cleaning for Large Databases", http://db.cs.berkeley.edu/jmh/papers/cleaning-unece.pdf

TODAY

- background
- * outliers and robust statistics
- * multivariate settings
- ** research directions

QDB ANGLES OF ATTACK

- data entry
 - data modeling, form design, interfaces
- organizational management
 - **# TDQM**
- data auditing and cleaning
 - the bulk of our papers?
- exploratory data analysis
- the more integration, the better!

CULTURAL VALUES: WHAT IS A VALUE?

DB View: data	Stat View: evidence
descriptive statistics	inductive (inferential) statistics
model-free (nonparametric)	model the process producing the data (parametric)
+ works with any data + no model fitting magic	+ probabilistic interpretation # likelihoods on values # imputation of missing data # forecasting future data

TODAY

- background
- * outliers and robust statistics
- * multivariate settings
- ** research directions

DAD, WHAT'S AN OUTLIER?

FAR FROM THE CENTER

- **% center**
- **端 dispersion**

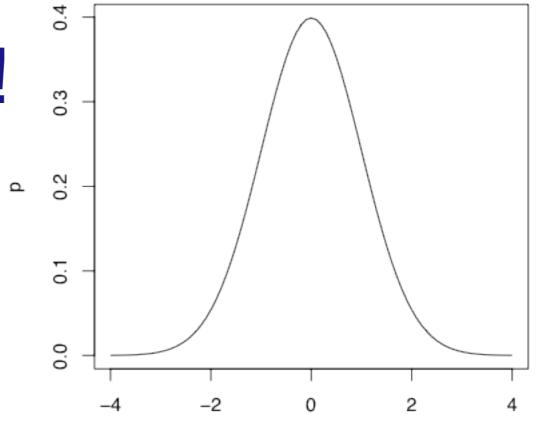
FAR FROM THE CENTER

- **% center**

% Normal distribution!

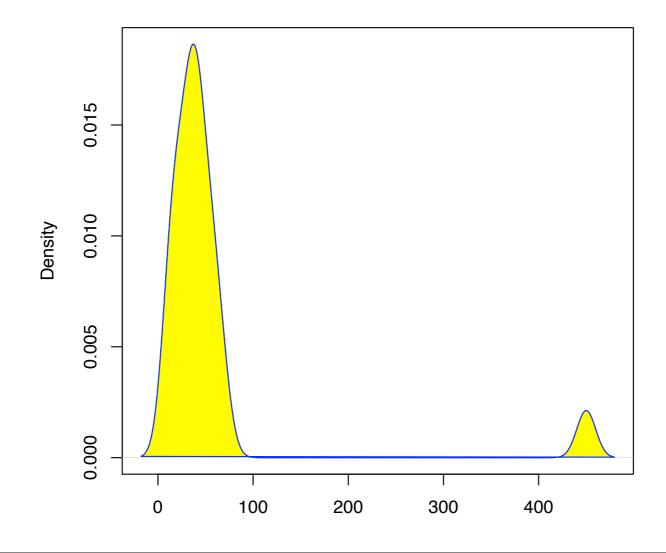
** a.k.a Gaussian, bell curve

* mean, variance



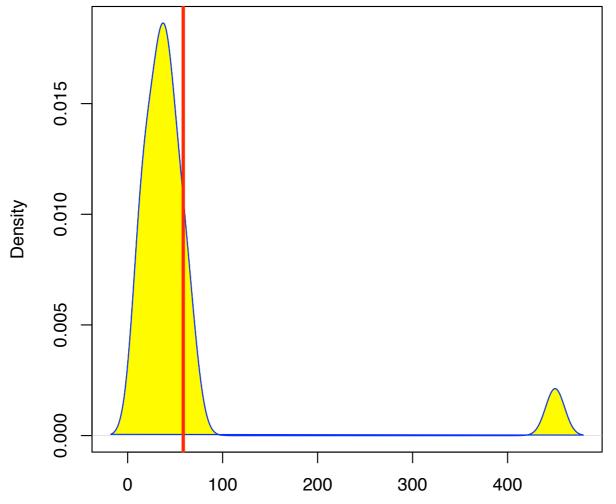
12 | 13 | 14 | 21 | 22 | 26 | 33 | 35 | 36 | 37 | 39 | 42 | 45 | 47 | 54 | 57 | 61 | 68 | 450

ages of employees (US)



12 | 13 | 14 | 21 | 22 | 26 | 33 | 35 | 36 | 37 | 39 | 42 | 45 | 47 | 54 | 57 | 61 | 68 | 450

ages of employees (US)

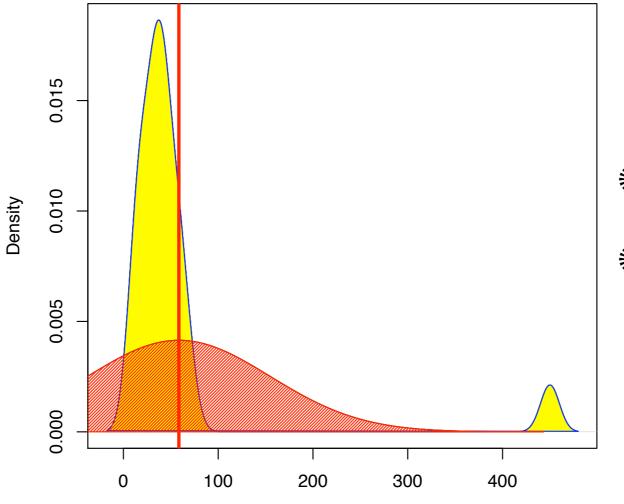


貒

mean 58.52632

12 | 13 | 14 | 21 | 22 | 26 | 33 | 35 | 36 | 37 | 39 | 42 | 45 | 47 | 54 | 57 | 61 | 68 | 450

ages of employees (US)



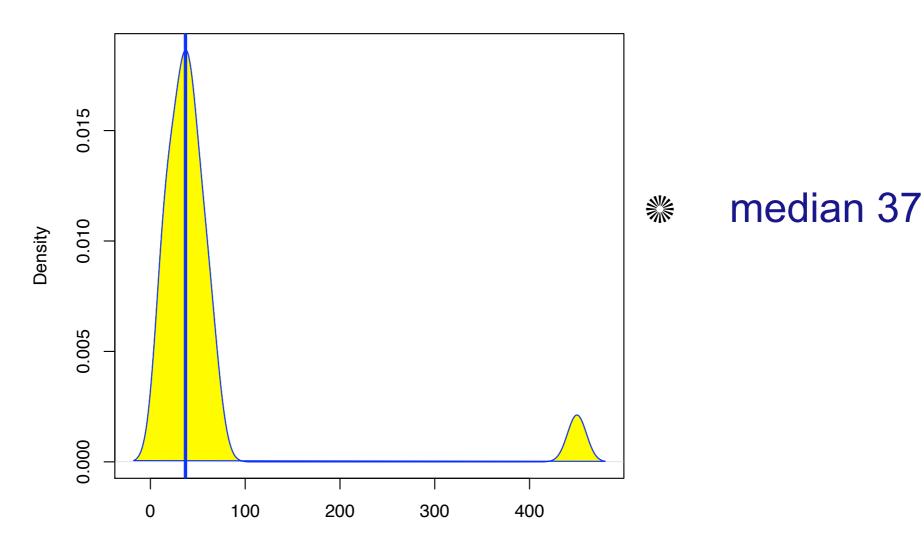
貒

mean 58.52632

variance 9252.041

12 | 13 | 14 | 21 | 22 | 26 | 33 | 35 | 36 | 37 | 39 | 42 | 45 | 47 | 54 | 57 | 61 | 68 | 450

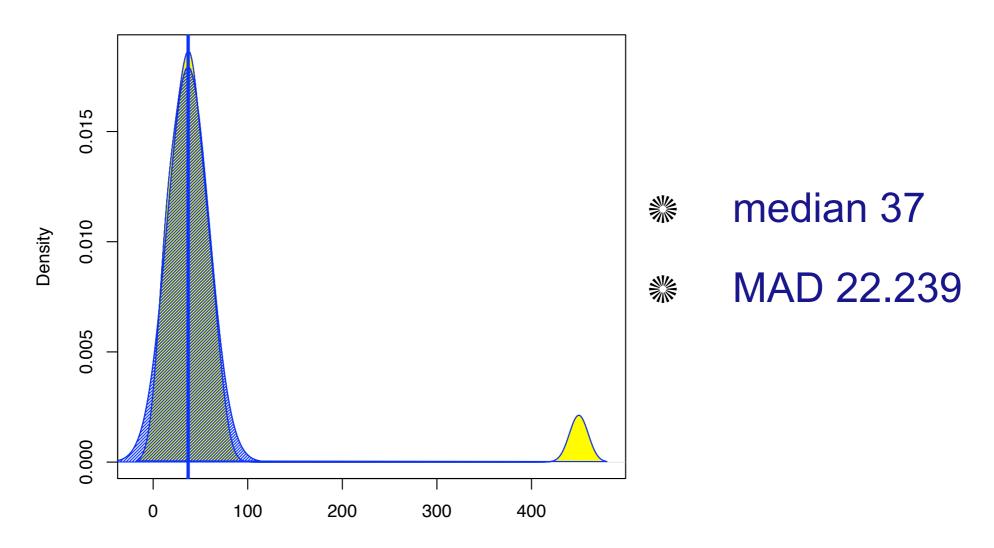
ages of employees (US)



CENTER/DISPERSION (ROBUST)

12 | 13 | 14 | 21 | 22 | 26 | 33 | 35 | 36 | 37 | 39 | 42 | 45 | 47 | 54 | 57 | 61 | 68 | 450

ages of employees (US)



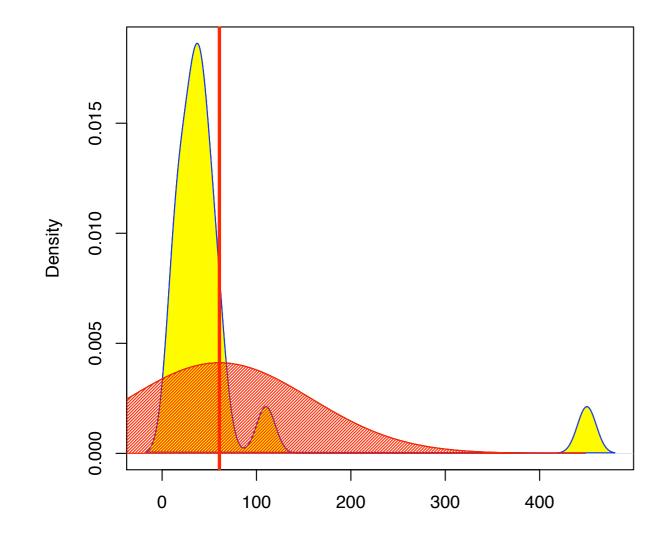
12 | 13 | 14 | 21 | 22 | 26 | 33 | 35 | 36 | 37 | 39 | 42 | 45 | 47 | 54 | 57 | 61 | 68 | 450 |

12 | 13 | 14 | 21 | 22 | 26 | 33 | 35 | 36 | 37 | 39 | 42 | 45 | 47 | 54 | 57 | 61 | 110 | 450

12 | 13 | 14 | 21 | 22 | 26 | 33 | 35 | 36 | 37 | 39 | 42 | 45 | 47 | 54 | 57 | 61 | 110 | 450



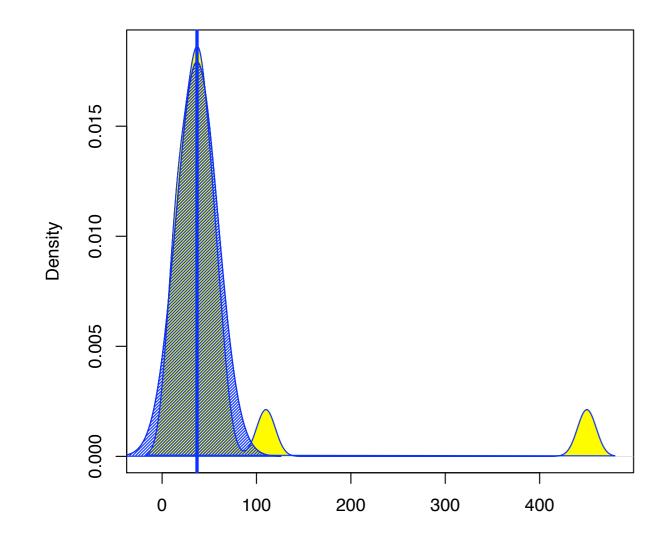
12 | 13 | 14 | 21 | 22 | 26 | 33 | 35 | 36 | 37 | 39 | 42 | 45 | 47 | 54 | 57 | 61 | 110 | 450



Masking

- magnitude of one outlier masks smaller outliers
- ** makes manual removal of outliers tricky

12 | 13 | 14 | 21 | 22 | 26 | 33 | 35 | 36 | 37 | 39 | 42 | 45 | 47 | 54 | 57 | 61 | 110 | 450



- Robust stats:
 - * handle multiple outliers
 - robust w.r.t. magnitude of outliers

ROBUSTNESS: INTUITION

- % handle multiple outliers
- ** robust to magnitude of an outlier

HOW ROBUST IS ROBUST?

- Breakdown Point
 measures robustness of an estimator
 - proportion of "dirty" data the estimator can handle before giving an arbitrarily erroneous result
 - think adversarially
- best possible breakdown point: 50%
 - beyond 50% "noise", what's the "signal"?

SOME BREAKDOWN POINTS

12 | 13 | 14 | 21 | 22 | 26 | 33 | 35 | 36 | 37 | 39 | 42 | 45 | 47 | 54 | 57 | 61 | 110 | 450

※ median

value that evenly splits set/distribution into higher and lower halves

* k% trimmed mean

- ** remove lowest/highest k% values
- compute mean on remainder

* k% winsorized mean

- ** remove lowest/highest k% values
- replace low removed with lowest remaining value
- replace high removed with highest remaining value
- compute mean on resulting set

12 | 13 | 14 | 21 | 22 | 26 | 33 | 35 | 36 | 37 | 39 | 42 | 45 | 47 | 54 | 57 | 61 | 110 | 450

** value that evenly splits set/distribution into higher and lower halves

- ** remove lowest/highest k% values
- compute mean on remainder

* k% winsorized mean

- remove lowest/highest k% values
- replace low removed with lowest remaining value
- replace high removed with highest remaining value
- compute mean on resulting set

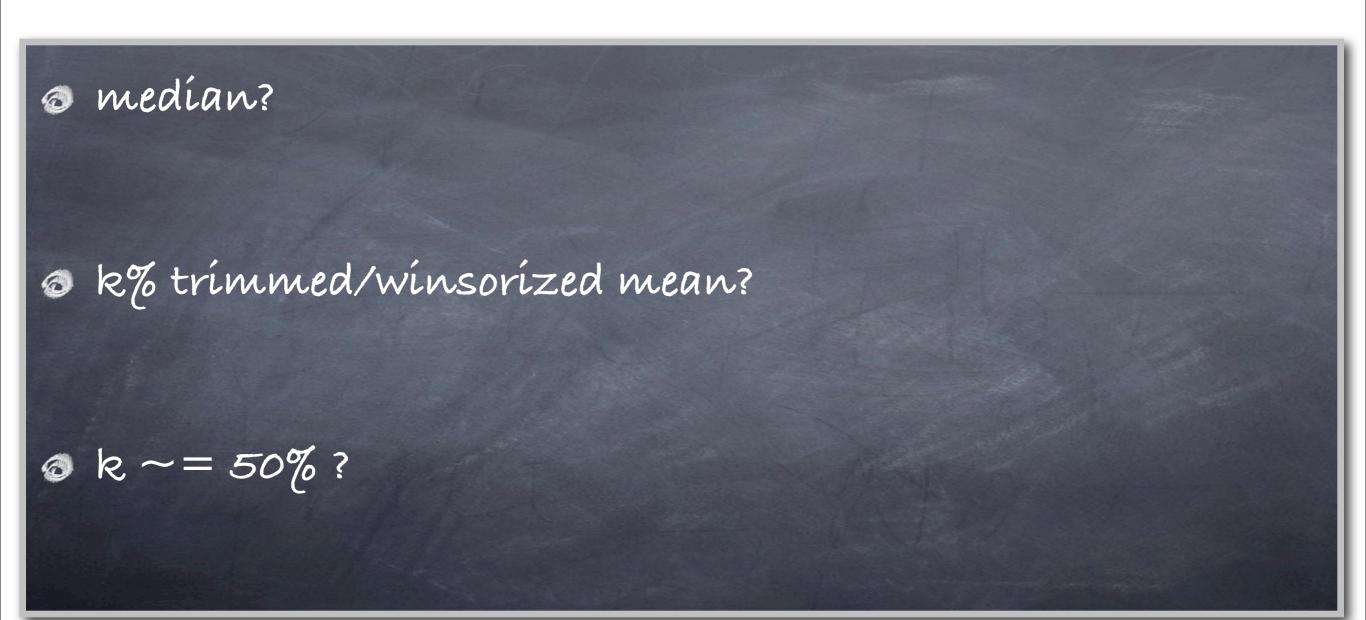
12 | 13 | 14 | 21 | 22 | 26 | 33 | 35 | 36 | 37 | 39 | 42 | 45 | 47 | 54 | 57 | 61 | 110 | 450

- - value that evenly splits set/distribution into higher and lower halves
- - * remove lowest/highest k% values
 - compute mean on remainder
- * k% winsorized mean
 - ** remove lowest/highest k% values
 - replace low removed with lowest remaining value
 - replace high removed with highest remaining value
 - compute mean on resulting set

14 14 14 21 22 26 33 35 36 37 39 42 45 47 54 57 61 61 61

- - value that evenly splits set/distribution into higher and lower halves
- - * remove lowest/highest k% values
 - compute mean on remainder
- ** k% winsorized mean (37.842)
 - ** remove lowest/highest k% values
 - replace low removed with lowest remaining value
 - replace high removed with highest remaining value
 - compute mean on resulting set

ROBUST CENTER BREAKDOWN POINTS



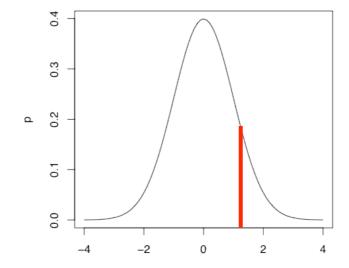
ROBUST DISPERSION (1D)

12 | 13 | 14 | 21 | 22 | 26 | 33 | 35 | 36 | 37 | 39 | 42 | 45 | 47 | 54 | 57 | 61 | 68 | 450

- interquartile range (IQR)
 - difference between 25% and 75% quartiles
- MAD: Median Absolute Deviation
 - $\gg median(|Y_i \tilde{Y}|)$ where $\tilde{Y} = median(Y)$
- * breakdown points?
- note for symmetric distributions:
 - MAD is IQR/2 away from median

ROBUSTLY FIT A NORMAL

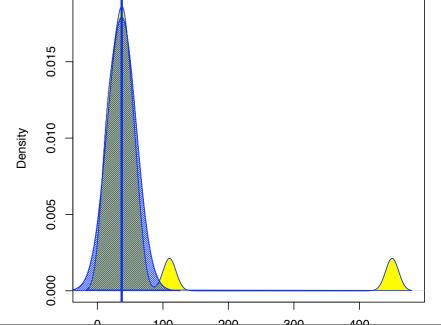
base case: Standard Normal symmetric, center at 0



so estimate std dev in term's of MAD

$$\hat{\sigma} = 1.4826 \cdot \text{MAD}$$

center at median and off you go!



SCALABLE IMPLEMENTATION

- our metrics so far: Order Statistics
 - position in value order
- non-trivial to scale up to big data
 - * but there are various tricks

SQL FOR MEDIAN?

SQL FOR MEDIAN?

```
-- A naive median query
SELECT c AS median
  FROM T
WHERE (SELECT COUNT(*) from T AS T1 WHERE T1.c < T.c)
  = (SELECT COUNT(*) from T AS T2 WHERE T2.c > T.c)
```

SQL FOR MEDIAN?

[Rozenshtein, Abramovich, Birger 1997]

SORT-BASED SQL FOR MEDIAN

EFFICIENT APPROXIMATIONS

- one-pass, limited memory Median/Quantile
 - Manku, et al., SIGMOD 1998
 - Greenwald/Khanna, SIGMOD 2001
 - * keep certain exemplars in memory (with weights)
 - bag of exemplars used to approximate median
- Hsiao, et al 2009: one-pass approximate MAD
 - based on Flajolet-Martin "COUNT DISTINCT" sketches
 - a Proof Sketch: distributed and verifiable!
- natural implementations
 - SQL: user-defined agg
 - # Hadoop: Reduce function

SQL FOR APPROXIMATE MEDIAN

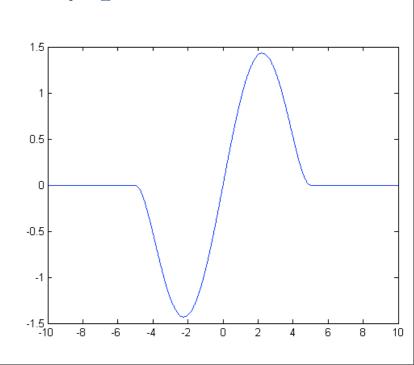


ORDER STATISTICS

- methods so far: "L-estimators"
 - linear (hence "L") combinations of order statistics
- simple, intuitive
- * well-studied for big datasets
- but fancier stuff is popular in statistics
 - e.g. for multivariate dispersion, robust regression...

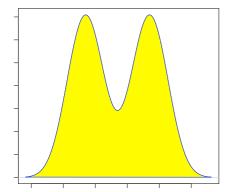
M-ESTIMATORS

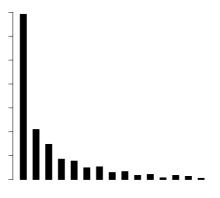
- widely used class
- based on Maximum Likelihood Estimators (MLEs)
 - # MLE: maximize $\prod_{i=1}^{n} f(x_i)$ (minimize $\sum_{i=1}^{n} -\log f(x_i)$)
 - **M-estimators generalize to minimize** $\sum_{i=1}^{n} \rho(x_i)$
 - ** where ρ is chosen carefully
 - πice if dρ/dy goes up near origin, decreasing to 0 far from origin
 - ** redescending M-estimators



STUFF IN THE PAPER

- No time today for outliers in:
 - indexes (e.g. inflation) and rates (e.g. car speed)
 - ** textbook stuff for non-robust case, robustification seems open
 - * timeseries
 - a relatively recent topic in the stat and DB communities
 - non-normality
 - # multimodal, power-series (zipf) distributions



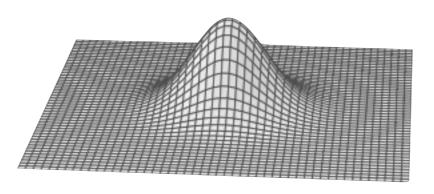


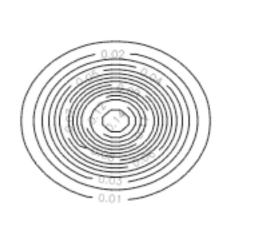
TODAY

- background
- * outliers and robust statistics
- * multivariate settings
- ** research directions

MOVING TO MULTIPLE DIMENSIONS

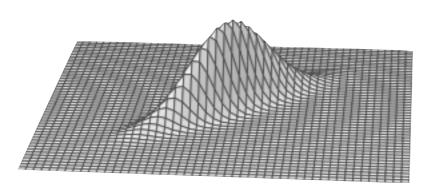
- intuition: multivariate normal
 - center: multidimensional mean
 - dispersion: ?

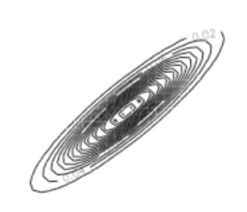




MOVING TO MULTIPLE DIMENSIONS

- intuition: multivariate normal
 - center: multidimensional mean
 - dispersion: ?





(SAMPLE) COVARIANCE

** dxd matrix for N d-dimensional points

$$q_{ij} = \frac{1}{N-1} \sum_{k=1}^{N} (x_{ik} - \bar{x}_i)(x_{kj} - \bar{x}_j)$$

- properties
 - symmetric
 - diagonal is independent variance per dimension
 - off-diagonal is (roughly) correlations

MULTIVARIATE DISPERSION

% Mahalanobis distance of vector x from mean μ :

$$\sqrt{(x-\mu)^T S^{-1}(x-\mu)}$$

- * where S is the covariance matrix
- Not robust!
- Simple SQL in 2d, much harder in >2d
 - ** requires matrix inversion!

ROBUST MULTIVARIATE OUTLIERS

proposed Heuristics:

- iteratively trim max-Mahalanobis point.
- rescale units component-wise, then use Euclidean threshholds

* robust estimators for mean/covariance

- this gets technical, e.g. Minimum Volume Ellipsoid (MVE)
- scale-up of these methods typically open

depth-based approaches

- "stack of oranges": Convex hull peeling depth
- others...

TIME CHECK

time for distance-based outlier detection?

DISTANCE-BASED OUTLIERS

- * non-parametric
- * various metrics:
 - p = (k, D)-outlier if at most k other points lie within D of p [Kollios, et al., TKDE 2003]
 - p an outlier if % of objects at large distance is high
 [Knorr/Ng, ICDE 1999]
 - top n elements in distance to their kth nearest neighor [Ramaswamy, et al. SIGMOD 2000]
- accounting for variations in cluster density
 - average density of the node' neigborhood w.r.t. density of nearest neighbors' neighborhoods [Breunig, et al, SIGMOD 2000]

ASSESSING DISTANCE-BASED METHODS

- descriptive statistics
 - mo probability densities, so no expectations, predictions
- distance metrics not scale-invariant
 - complicates usage in settings where data or units not well understood

TODAY

- background
- * outliers and robust statistics
- * multivariate settings
- ** research directions

RESEARCH DIRECTIONS

- ※ open problems in scaling
- new agenda: intelligent forms

SOME OPEN ISSUES

- robustly cleaning large, non-normal datasets
- scalable, robust multivariate dispersion
 - scalable matrix inversion for Mahalanobis (already done?)
 - Minimum-Volume Ellipsoid (MVE)?
- scale-invariant distance-based outliers?

OK, THAT WAS FUN

now let's talk about filling out forms.

joint work ... with kuang chen, tapan parikh and others

DATA ENTRY

- repetitive, tedious, unglamorous
 - often contracted out to low-paid employees
 - often "in the way" of more valuable content

- the topic of surprisingly little CS research
 - compare, for example, to data visualization!

DATA ENTRY!

- the first & best place to improve data quality
 - opportunity to fix the data at the source
- … rich opportunity for new data cleaning research
 - with applications for robust (multidimensional) outlier detection!
 - synthesis of DB, HCI, survey design
- reform the form!

BEST PRACTICES (FROM OUTSIDE CS)

survey design literature

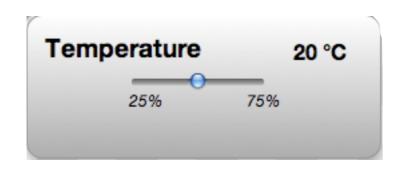
- question wording, ordering, grouping, encoding, constraints, cross-validation
- # double-entry
 - followed by supervisor arbitration
- can these inform forms?
 - push these ideas back to point of data entry
 - computational methods to improve these practices

DATA COLLECTION IN LOW-RESOURCE SETTINGS

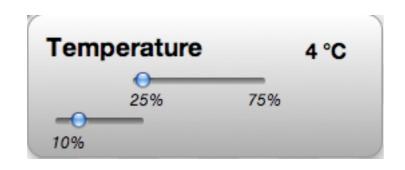
- lack of resources and expertise
- trend towards mobile data collection
 - opportunity for intelligent, dynamic forms
- though well-funded orgs often have bad forms too
 - deterministic and unforgiving
 - e.g. the spurious integrity problem
- time for automated and more statistical approach
 - informed by human factors

PROPOSED NEW DATA ENTRY RULES

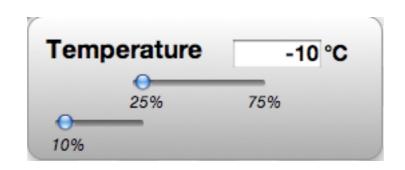
- # feedback, not enforcement
 - interface friction
 - inversely proportional to likelihood
 - a role for data-driven probabilities during data entry
 - annotation should be easier than subversion
- friction merits explanation
 - role for data visualization during data entry
 - gather good evidence while you can!
- theme: forms need the database
 - and vice versa



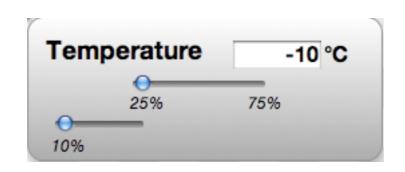
- ※ a simple example
 - the point: these need not be exotic



- ※ a simple example
 - the point: these need not be exotic



- ※ a simple example
 - the point: these need not be exotic



- ※ a simple example
 - the point: these need not be exotic
 - a pure application of simple robust stats!

REQUIRES MULTIVARIATE MODELING

age:

favorite drink:

computationally, and from HCI angle

REQUIRES MULTIVARIATE MODELING

age: 4

favorite drink:

this is harder to manage

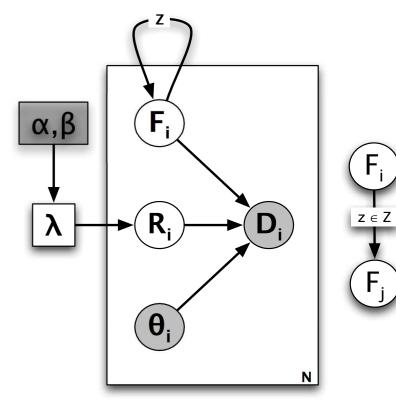
computationally, and from HCl angle

QUESTION ORDERING!

- greedy information gain
 - enables better form feedback
 - accounts for attention span
 - ***** curbstoning

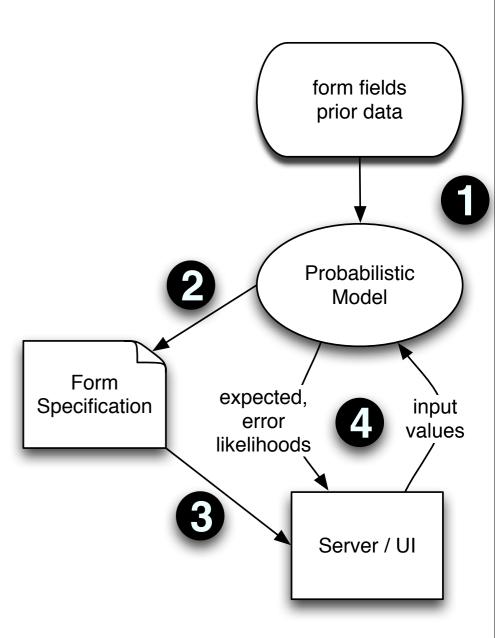
REASKING AND REFORMULATION

- need joint data model and error model
 - requires some ML sophistication
- error model depends on UI
 - will require some HCI sophistication
- reformulation can be automated:
 - # e.g. quantization:
 - I. adult/child
 - 2. age

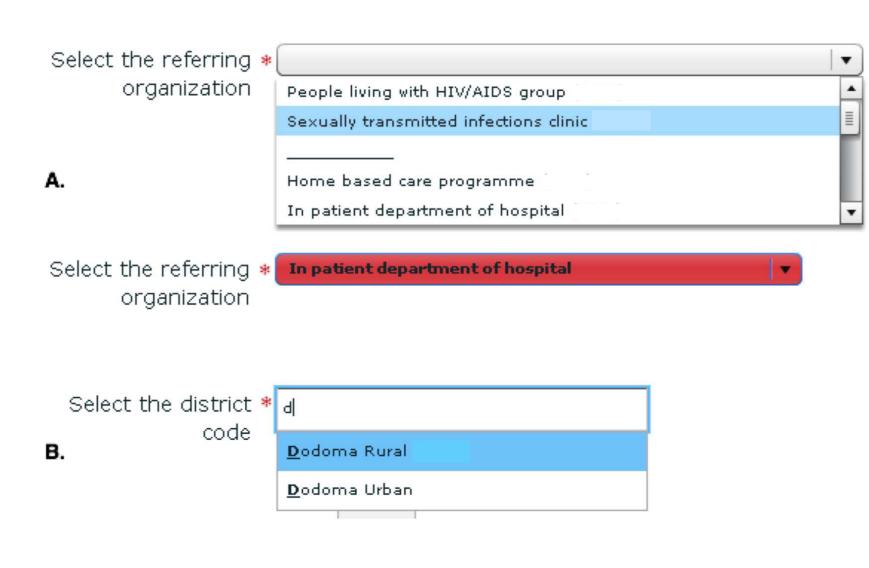


USHER

- learn a graphical model of all form variables, learn error model
 - structure learning & parameters
- optimize flexible aspects of form
 - # greedy information gain principle for question ordering
 - subject to designer-provided constraints
 - dynamically parameterize during form filling
 - decorate widgets
 - reorder, reask/reformulate questions



EXAMPLE WIDGETS



Choose the * Male (40%)

Female (59%)

C. patient's gender

reduced friction, likelihood hints

post-hoc assessment

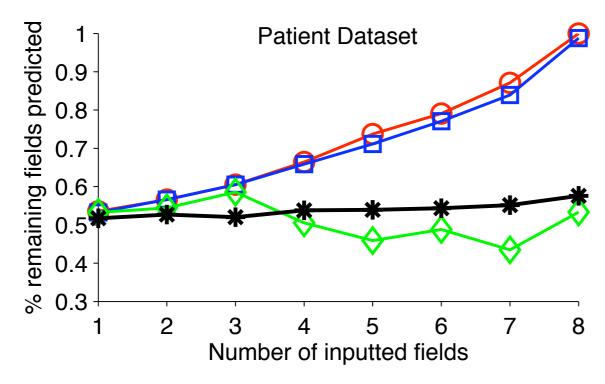
reduced friction

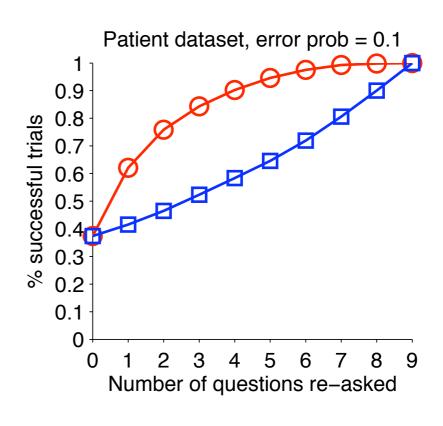
explicit probabilities

INITIAL ASSESSMENTS

- Tanzanian HIV/AIDS forms, US political survey
- Simulation shows significant benefits
 - both in reordering and reasking models

User study in the works





CONCLUSIONS

- DB community has much to learn about quantitative data cleaning
 - e.g. robust statistics
- * and much to offer
 - scalability, end-to-end view of data lifecycle
- note: everything is "quantitative"
 - we live in an era of big data and statistics!
- * work across fields, build tools!
 - DB, stats, HCl, org mgmt, ...

ADDITIONAL READING

- Exploratory Data Mining and Data Cleaning,

 Tamraparni Dasu and Theodore Johnson, Wiley, 2003.

 **Tamraparni Dasu and Data Cleaning, Wiley, 2003.

 **Tamraparni Dasu and Data Cleaning, Wiley, 2003.

 **Tamraparni Dasu and Theodore Johnson, Wiley, 2003.

 **Tamraparni Dasu and Theodore Dasu and Theo
- ** Robust Regression and Outlier Detection, Peter J. Rousseeuw and Annick M. Leroy, Wiley 1987.
- "Data Streams: Algorithms and Applications".
 S. Muthukrishnan. Foundations and Trends in Theoretical Computer Science 1(1), 2005.
- Exploratory Data Analysis,
 John Tukey, Addison-Wesley, 1977.
- William S. Cleveland. Hobart Press, 1993.

WITH THANKS TO...

- Steven Vale
 - ****** UN Economic Council for Europe
- Sara Wood, PLOS
- the Usher team:
 - **Kuang Chen**, Tapan Parikh, UC Berkeley
 - # Harr Chen, MIT

EXTRA GOODIES

RESAMPLING: BOOTSTRAP & JACKNIFE

- computational solution to small or noisy data
 - sample, compute estimator, repeat
 - at end, average the estimators over the samples
- recent work on scaling
 - see MAD Skills talk Thursday
- meeds care: any bootstrap sample could have more outliers than breakdown point
- note: turns data into a sampling distribution!

ASIDE 1: INDEXES

- Rates of inflation over years
 - **%** 1.03, 1.05, 1.01, 1.03, 1.06
 - \$ \$10 at start = \$11.926 at end
 - # want a center metric μ so $10^*\mu^5 = 11.926
- # geometric mean: $\int_{n}^{n} \int_{1}^{n} k_{i}$
 - sensitive to outliers near 0.
 - breakdown pt 0%

ASIDE 2: RATES

- Average speed on a car trip
 - 50km@10kph, 50km@50kph
 - * travel 100km in 6 hours
 - "average" speed 100km/6hr = 16.67kph
- ** harmonic mean:

$$\sum_{i=1}^{n} \frac{1}{k_i}$$

- reciprocal of reciprocal of rates
- sensitive to very large outliers
- breakdown point: 0%

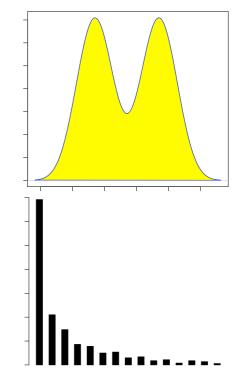
ROBUSTIFYING THESE

- Can always trim
- Winsorizing requires care
 - weight of "substitute" depends on its value
 - other proposals for indexes (geometric mean)
 - **%** 100%
 - * 1/2 the smallest measurable value
- Useful fact about means
 - harmonic <= geometric <= arithmetic</pre>
 - can compute (robust version of) all 3 to get a feel

NON-NORMALITY

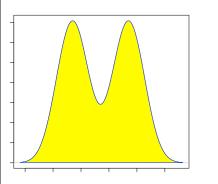
Not everything is normal

- Multimodal distributions
 - **Cluster before looking for outliers**
- Power Laws (Zipfian)
 - Easy to confuse with normal data+ a few frequent outliers
 - Nice blog post by Panos Ipeirotis



Warious normality tests

- dip statistic is a robust test
- Q-Q plots against normal good for intuition



NON-NORMAL. NOW WHAT?

assume normality anyhow

- consider likely false positives, negatives
- * model data, look for outliers in residuals
 - often normally distributed if sources of noise are i.i.d.
- partition data, look in subsets
 - ** manual: data cubes, Johnson/Dasu's data spheres
 - ** automatic: clustering
- non-parametric outlier detection methods
 - a few slides from now...