

 1

Querying and Routing
Data-Centric Forays into Networking

Joe Hellerstein
UC Berkeley and Intel Research

Note

• These slides were made on PowerPoint for Mac 2004
• There are incompatibilities between the Mac and

Windows versions of PowerPoint, particularly with
regard to animations.

• Please email the author with questions.

Road Map

• Emerging synergies in databases and networking
• Internet-Scale Querying: PIER and ϕ

• Agenda, design space

• Toward a Network Oracle (ϕ)

• The PIER Query Processor
• Design principles & challenges
• Overlay Networks: DHTs
• Query Processing on DHTs
• PIER in action

• If time permits
• Routing with queries
• Related issues in Sensor Networks (TinyDB and BBQ)

Background: CS262 Experiment w/ Eric
Brewer
• Merge OS & DBMS grad class, over a year
• Eric/Joe, point/counterpoint
• Some tie-ins were obvious:

• memory mgmt, storage, scheduling, concurrency

• Surprising: QP and networks go well side by side
• Query processors are dataflow engines.
• So are routers (e.g. Kohler’s CLICK toolkit).
• Adaptive query techniques look even more like networking idea

• E.g. “Eddy” tuple routers and TCP Congestion Control
• Use simple Control/Queuing to “learn”/affect unpredictable dataflows

Networking for DB Dummies (i.e. me)

• Core function of protocols: data xfer
• Data Manipulation

• buffer, checksum, encryption, xfer to/fr app space, presentation
• Transfer Control

• flow/congestion ctl, detecting xmission probs, acks, muxing,
timestamps, framing

Clark & Tennenhouse, “Architectural Considerations for a New
Generation of Protocols”, SIGCOMM ‘90

• Basic Internet assumption:
• “a network of unknown topology and with an unknown,

unknowable and constantly changing population of competing
conversations” (Van Jacobson)

Exchange!

Query
Opt!

Data Modeling!

• Thesis: nets are good at xfer control, not so good at
data manipulation

• Some C&T wacky ideas for better data manipulation

• Xfer semantic units, not packets (ALF)

• Auto-rewrite layers to flatten them (ILP)

• Minimize cross-layer ordering constraints

• Control delivery in parallel via packet content

C & T’s Wacky Ideas

 2

Wacky Ideas in Query Processing

• What if…
• We had unbounded data producers and consumers (“streams” …

“continuous queries”)
• We couldn’t know our producers’ behavior or contents?? (“federation” …

“mediators”)
• We couldn’t predict user behavior? (“CONTROL”)
• We couldn’t predict behavior of components in the dataflow? (“web

services”)
• We had partial failure as a given? (transactions not possible?)

• Yes … networking people have been here!
• Recall Van Jacobson’s quote

Convergence

NETWORKING RESEARCH

Content-Based
Routing

Knowledge
Plane

Router
Toolkits

Wireless
Meshes

Adaptivity, Federated Control, NodeScalability

DATABASE RESEARCH

P2P Queries Approximate/
Interactive QP

Adaptive
Dataflow

SensorNet
Queries

Data Models, Query Opt, DataScalability

PIER
ϕ

TinyDB
BBQ

Road Map

• Emerging synergies in databases and networking
• Internet-Scale Querying: PIER and ϕ

• Agenda, design space

• Toward a Network Oracle (ϕ)

• The PIER Query Processor
• Design principles & challenges
• Overlay Networks: DHTs
• Query Processing on DHTs
• PIER in action

• If time permits
• Routing with queries
• Related issues in Sensor Networks (TinyDB and BBQ)

PIER

• P2P Information Exchange and Retrieval
• An Internet-Scale (peer-to-peer) query engine

Our story at VLDB:
What is a Very Large Data Base?

Single Site
Clusters

Internet Scale
1000’s - Millions

Distributed
10’s – 100’s

• Challenge: How to run DB style queries at Internet Scale?!
• Challenge: How can DB functionality change the Internet?

Database Community Network Community

[HHLLSS VLDB 03]
What are the Key Properties?

• Lots of data that is:
• Naturally distributed (where it’s generated)
• Centralized collection undesirable
• Homogeneous in schema
• Data is more useful when viewed as a whole

• This is the design space we have chosen to
investigate.
• As opposed to …

• Enterprise Information Integration
• Semantic Web

• Challenges tilted more heavily toward systems/algorithms
• As opposed to data semantics & cleaning

 3

Who Needs Internet Scale Querying?
Example 1: Filenames
• Simple ubiquitous schemas:

• Filenames, Sizes, ID3 tags
• Early P2P filesharing apps

• Napster, Gnutella, KaZaA, etc.
• Built “in the garage”
• “Normal” non-expert users
• Not the greatest example

• Often used to break copyright
• Fairly trivial technology

• But…
• Points to key social issues driving adoption of decentralized systems
• Provide real workloads to validate more complex designs

Example 2: Network Traces

• Schemas are mostly standardized:
• IP, SMTP, HTTP, SNMP log formats, firewall log formats, etc.

• Network administrators are looking for patterns
within their site AND with other sites:
• DoS attacks cross administrative boundaries
• Tracking epidemiology of viruses/worms
• Timeliness is very helpful

• Might surprise you just how useful this is:
• Network on PlanetLab (distributed research test bed) is mostly

filled with people monitoring the network status

Road Map

• Emerging synergies in databases and networking
• Internet-Scale Querying: PIER and ϕ

• Agenda, design space

• Toward a Network Oracle (ϕ)

• The PIER Query Processor
• Design principles & challenges
• Overlay Networks: DHTs
• Query Processing on DHTs
• PIER in action

• If time permits
• Routing with queries
• Related issues in Sensor Networks (TinyDB and BBQ)

ϕ: Public Health for the Internet

• Thought experiment: A Network Oracle
• Queryable entity that knows about all network state

• Network maps
• Link loading
• Point-to-point latencies/bandwidth
• Event detection (e.g. firewall events)
• Naming (DNS, ASs, etc.)
• End-system configuration
• Router configuration

• Data from recent past up to near-real-time
• Available to all end-systems

• What might this enable?

[HPPRSW 04]

Applications of a Network Oracle

• Performance fault diagnosis
• Tracking network attacks

• Correlating firewall logs

• New routing protocols
• E.g. app-specific route selection

• Adaptive distributed applications
• “Internet Screensavers”

• A la SETI@Home

• Serendipity!

Benefits?

• Short term:
• Connect net measurement and security researchers’ datasets.

Enable distributed queries for network characterization,
epidemiology and alerts.

• E.g. top 10 IP address result from Barford et.al.
• Medium term:

• Provide a service for overlay networks and planetary-scale
adaptive applications

• E.g. feed link measurement results into CDNs, server selection
• Long term:

• Change the Internet: protocols no longer assume ignorance of
network state. Push more intelligence into end systems.

• E.g. Host-based source routing solutions, congestion avoidance
(setting timeouts)

 4

A Center for Disease Control?

• Who owns the Center? What do they Control?
• This will be unpopular at best

• Electronic privacy for individuals
• The Internet as “a broadly surveilled police state”?

• Provider disincentives
• Transparency = support cost, embarrassment

• And hard to deliver
• Can monitor the chokepoints (ISPs)
• But inside intranets??

• E.g. Intel IT
• E.g. Berkeley dorms
• E.g. Grassroots WiFi agglomerations?

Energizing the End-Users

• Endpoints are ubiquitous
• Internet, intranet, hotspot
• Toward a uniform architecture

• End-users will help
• Populist appeal to home users is timely
• Enterprise IT can dictate endpoint software
• Differentiating incentives for endpoint vendors

• The connection: peer-to-peer technology
• Harnessed to the good!
• Ease of use
• Built-in scaling
• Decentralization of trust and liability

Road Map

• Emerging synergies in databases and networking
• Internet-Scale Querying: PIER and ϕ

• Agenda, design space

• Toward a Network Oracle (ϕ)

• The PIER Query Processor
• Design principles & challenges
• Overlay Networks: DHTs
• Query Processing on DHTs
• PIER in action

• If time permits
• Routing with queries
• Related issues in Sensor Networks (TinyDB and BBQ)

4 Principles for Internet-Scale Querying

• Relaxed Consistency
• ACID transactions not an option
• We provide best-effort results (“dilated snapshot”)

• Organic Scaling
• Applications may start small, without a priori knowledge of size

• Data in its Natural Habitat
• No CREATE TABLE/INSERT
• No “publish to server”
• Data must be wrapped at the source

• Standard Schemas via Grassroots software
• Data is produced by widespread software, de-facto schemas
• Start with data that’s easy to homogenize

Coarse Architecture of PIER

IP

Network

Network

DHT

Wrapper

Storage

Manager

Overlay

Routing

DHT

Core
Relational
Execution

EngineCatalog
Manager

Query
Optimizer

PIER

Network

Monitoring

Other User

Apps

Applications

Physical Network

Overlay Network

Query Plan

Declarative
Queries

 5

Road Map

• Emerging synergies in databases and networking
• Internet-Scale Querying: PIER and ϕ

• Agenda, design space

• Toward a Network Oracle (ϕ)

• The PIER Query Processor
• Design principles & challenges
• Overlay Networks: DHTs
• Query Processing on DHTs
• PIER in action

• If time permits
• Routing with queries
• Related issues in Sensor Networks (TinyDB and BBQ)

Some Background on Overlay Networks

• A P2P system like PIER needs to:
• Track identities & (IP) addresses of peers currently online

• May be many!
• May have significant Churn
• Best not to have n2 ID references

• Route messages among peers
• If you don’t track all peers everywhere, this is “multi-hop”

• This is an overlay network
• Peers are doing both naming and routing
• IP becomes “just” the low-level transport

• All the IP routing is opaque

[RH ITR 03]

What is a DHT?

• Hash Table
• data structure that maps “keys” to “values”
• essential building block in software systems

• Distributed Hash Table (DHT)
• similar, but spread across the Internet

• Interface
• insert(key, value)
• lookup(key)

How?

• Every DHT node supports a single operation:

• Given key as input; route messages toward node holding key

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

DHT in action

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

DHT in action

 6

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

DHT in action

Operation: take key as input; route messages to node holding key

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

DHT in action: put()

insert(K1,V1)

Operation: take key as input; route messages to node holding key

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

DHT in action: put()

Operation: take key as input; route messages to node holding key

insert(K1,V1)

(K1,V1)

K V

K V
K V

K V

K V

K V

K V

K V

K V

K V

K V

DHT in action: put()

Operation: take key as input; route messages to node holding key

retrieve (K1)

K V

K V
K V

K V

K V

K V

K V

K V

K V

K V

K V

DHT in action: get()

Operation: take key as input; route messages to node holding key

DHT Design Goals

• An “overlay” network with:
• Flexible mapping of keys to physical nodes
• Small network diameter
• Small degree (fanout)
• Local routing decisions
• Robustness to churn
• Routing flexibility
• Decent locality (low “stretch”)

• A “storage” or “memory” mechanism with
• Best-effort persistence (via soft state)

 7

DHT Topologies

• DHTs emulate InterConnect
Networks

• These have group-theoretic
structure
• Cayley and Coset graphs
• Rich families of such graphs with

different properties
• We can exploit the structure (i.e.

constraints) of the overlay
• E.g. to embed complex computations

with efficient communication
• E.g. to reason about the “influence” of

malicious nodes in the network

An Example DHT: Chord

• Overlayed 2k-Gons

Routing in Chord

• At most one of each Gon
• E.g. 1-to-0

Routing in Chord

• At most one of each Gon
• E.g. 1-to-0

Routing in Chord

• At most one of each Gon
• E.g. 1-to-0

Routing in Chord

• At most one of each Gon
• E.g. 1-to-0

 8

Routing in Chord

• At most one of each Gon
• E.g. 1-to-0

Routing in Chord

• At most one of each Gon
• E.g. 1-to-0
• What happened?

• We constructed the
binary number 15!

• Routing from x to y
is like computing
y - x mod n by
summing powers of 2

4

1

8

2

Diameter: log n (1 hop per gon type)
Degree: log n (one outlink per gon type)

Deconstructing DHTs

• A DHT is composed of
• A logical, underlying interconnection network
• An “emulation scheme”

• works on a “non-round” #of nodes
• without global knowledge of network size

• Self-monitoring components
• Track and react to churn

Road Map

• Emerging synergies in databases and networking
• Internet-Scale Querying: PIER and ϕ

• Agenda, design space

• Toward a Network Oracle (ϕ)

• The PIER Query Processor
• Design principles & challenges
• Overlay Networks: DHTs
• Query Processing on DHTs
• PIER in action

• If time permits
• Routing with queries
• Related issues in Sensor Networks (TinyDB and BBQ)

DHTs Gave Us Equality Lookups

• That’s a start on database query processing.
• But what else might we want?

• Range Search
• Aggregation
• Group By
• Join
• Intelligent Query Dissemination

• Theme
• All can be built elegantly and opaquely on DHTs!

• No need to build a “special” DHT for any of these
• Can leverage advances in DHT design

• This is the approach we take in PIER

Aggregation in a DHT

• SELECT COUNT(*)
FROM firewalls

• One common approach:
• Everybody routes their firewall records

to a particular “collector”
• This forms a tree

• Along the way, count up totals
• At root, form final result

• Note: the shapes of these trees
depend on the DHT topology!
• Can reason about comm costs,

sensitivity to failure, influence of
malefactors, etc.

binomial tree

15
0

1

2

3

4

5

6

7
8

9

10

11

12

13

14

 9

Aggregation in Koorde

• Recall the DeBruijn graph:
• Each node x points to 2x mod n and (2x + 1) mod n

Grouped Aggregation

• SELECT COUNT(*)
FROM firewalls
GROUP BY root-domain

• Everybody routes record r to hash(r.root-domain)
• Simply forms a tree per group

Joins

• SELECT F.sourceIP,
 COUNT(DISTINCT p.*), COUNT(DISTINCT p.destIP)
 FROM firewalls F, packets P
 WHERE F.sourceIP = P.sourceIP
 AND F.destIP = <myIP>
GROUP BY P.sourceIP

• “Rehash” join:
• Everybody routes their F and P records to hash(sourceIP)
• Forms a tree per sourceIP, can combine tuples in each tree

independently
• Automatically parallelizes the join algorithm

• No notion of parallelism in the code; falls out the DHT
• Other join algorithms available

• “Fetch matches”
• Semi-join variants

• Bloom-filter variants

For each of my attackers,
how many sites did they attack,

and how many packets were involved?
Exploiting Algebraic Topology I

• Consider malicious
aggregators

• Identify & limit their influence?

influence: 8 nodes

influence: 1 node

Exploiting Algebraic Topology II

• Some computations need
specific aggregation
topologies

• Distributed Haar Wavelet

Exploiting Algebraic Topology II

• Some computations need
specific aggregation
topologies

• Distributed Haar Wavelet

 10

Exploiting Algebraic Topology II

• Some computations need
specific aggregation
topologies

• Distributed Haar Wavelet

Exploiting Algebraic Topology II

• Some computations need
specific aggregation
topologies

• Distributed Haar Wavelet

Exploiting Algebraic Topology II

• Some computations need
specific aggregation
topologies

• Distributed Haar Wavelet

Exploiting Algebraic Topology II

• Some computations need
specific aggregation
topologies

• Distributed Haar Wavelet

Exploiting Algebraic Topology II

• Some computations need
specific aggregation
topologies

• Distributed Haar Wavelet

binomial tree

Ephemeral Overlays

• A new kind of DHT
• On-Demand overlays for specific computations
• E.g. for a single operator in a dataflow graph!

• Challenge:
• Given a DHT that’s up and running
• What’s the overhead of constructing a new, appropriate topology among

(a subset of) the nodes?
• How quickly can you re-ID those nodes?

• What is the API
• When you register an aggregation f’n, what do say about it?

• E.g. specify the exact agg topology? (bad)
• E.g. specify some simple algebraic property of the function (better!)

• This “API definition problem” is where systems and theory really meet?
• Mathematical abstraction = Engineering abstraction !!

 11

Road Map

• Emerging synergies in databases and networking
• Internet-Scale Querying: PIER and ϕ

• Agenda, design space

• Toward a Network Oracle (ϕ)

• The PIER Query Processor
• Design principles & challenges
• Overlay Networks: DHTs
• Query Processing on DHTs
• PIER in action

• If time permits
• Routing with queries
• Related issues in Sensor Networks (TinyDB and BBQ)

Current PIER Applications (I)

• Filesharing
• Implemented PIERSearch: keyword search over PIER
• Deployed a hybrid PIERSearch/Gnutella client on PlanetLab

• Sniffed real Gnutella queries at 50 sites worldwide
• Results

• Gnutella is very efficient on popular items
• PIER far better on rare items

• Both in recall and latency
• Hybrid solution very tenable

• Trick: identify rare queries!

Current PIER Applications (II)

• Engine for ϕ •

 12

Initial Tidbits from PIER Efforts

• “Multiresolution” simulation critical
• Native simulator was hugely helpful
• Emulab allows control over link-level performance
• PlanetLab is a nice approximation of reality

• Debugging still very hard
• Need to have a traced execution mode.

• Radiological dye? Intensive logging?
• DB workloads on NW technology: some mismatches

• E.g. Bamboo aggressively changes neighbors for single-message
resilience/performance

• Can wreak havoc with stateful aggregation trees
• E.g. returning results: SELECT * from Firewalls

• 1 MegaNode of machines want to send you a tuple!
• A relational query processor w/o storage

• Where’s the metadata?

[HMR WORLDS 04, HH+ CIDR 04]
Internet-Scale Querying: Summary

• Query processing on DHT overlays
• Many traditional querying tasks fall out gracefully
• Some new opportunities that take advantage of ephemeral

overlays

• We’re active with two applications
• Major gamble: Network Oracle (ϕ)

• Aggregating firewall logs, packet traces, etc.
• Customizable routing with recursive queries

Parallel Agendas

• Database Agenda
• Query the Internet?

• Networks Agenda
• Network measurement?

Be the internet. Network Oracle.

• Lovely opportunities for synergy here
• And much research to be done!

• Rallying efforts around an open spec for an Information-
Plane/Network-Oracle
• Rooted in PlanetLab community
• Data sources, community-building (screensavers?), experimental

workloads, applications, protocol definitions, etc.
• Note: PIER was a prototype system
• Next-gen effort beginning, starting with protocols

Acknowledgments

• For specific slides
• Sylvia Ratnasamy
• Timothy Roscoe

• Additional Collaborators
• Ron Avnur, Brent Chun,

Tyson Condie, Amol
Deshpande, Mike Franklin,
Carlos Guestrin, Wei Hong,
Ryan Huebsch, Bruce Lo,
Boon Thau Loo, Sam
Madden, Petros Maniatis,
Alexandra Meliou, Vern
Paxson, Larry Peterson,
Vijayshankar Raman, Raghu
Ramakrishnan, David
Ratajczak, Sean Rhea, Scott
Shenker, Ion Stoica, Nina
Taft, David Wetherall

http://pier.cs.berkeley.edu/
http://telegraph.cs.berkeley.edu/tinydb
http://www.cs.berkeley.edu/~jmh

Road Map

• Emerging synergies in databases and networking
• Internet-Scale Querying: PIER and ϕ

• Agenda, design space

• Toward a Network Oracle (ϕ)

• The PIER Query Processor
• Design principles & challenges
• Overlay Networks: DHTs
• Query Processing on DHTs
• PIER in action

• If time permits
• Routing with queries
• Related issues in Sensor Networks (TinyDB and BBQ)

Backup Slides

 13

Adaptive Dataflow Engine

• Processing dataflow graphs for unpredictable flows
• Unpredictable data properties (sizes, distributions)
• Unpredictable access/arrival times

• Originally targeted at querying the “deep web”
• Bush/Gore ’00 Campaign Finance

• More recently Continuous Queries over data streams
• E.g. packet traces, sensor & RFID reader feeds

[CIDR ‘03]

One Challenge in Adaptive Dataflow: Operator
Ordering

One Challenge in Adaptive Dataflow: Operator
Ordering

• Deal with pipelines of commutative operators
• Adapt at very fine granularity

• On a tuple-by-tuple basis?
• Regional properties of the data!

Continuous Adaptivity: Eddies

• A little more state per tuple
• Ready/done bits

• Routers, not flowgraphs
• Query processing = dataflow routing!!
• Router is adaptive, observing results of prior decisions
• A recurring theme

[AH SIGMOD 00, RH SIGMOD 02, MSH SIGMOD 02,
RDH ICDE 03, DH VLDB 04]

Eddy

 14

Eddies: Two Key Observations

• Break the set-oriented boundary
• Usual DB model: algebra expressions: (R S) T
• Reasoning about operators, not data!

• Don’t re-wire graph. Impose a router.
• Any graph can be achieved
• Router can observe operator consumption/production rates

• Consumption rate: cost
• Production: cost * selectivity

Road Map

• How I got myself into this
• CONTROL project
• Telegraph

• Connections to Networking
• Two arenas over the past few years

• Internet: PIER ⇒ ϕ
• Sensor networks: TinyDB & BBQ

Coincidence: Eddie Comes to Berkeley

• CLICK: a NW router is a dataflow engine!
• “The Click Modular Router”, Robert Morris, Eddie Kohler, John

Jannotti, and M. Frans Kaashoek, SOSP ‘99

Background: CONTROL

• Continuous
Output,
Navigation and
Transformation with
Refinement
On
Line

• Interactive Systems for
long-running data
processing

• Based on
• Streaming samples
• Reactive, pipelining

operators
• Statistical methods

• approximate queries
• pattern detection
• outlier detection

• Academic & commercial
implementation

• Postgres ⇒ Informix
• Potter’s Wheel ⇒

PeopleSoft

[IEEE Computer 8/99, DMKD 3/2000]

Example: Online Aggregation
[HHW SIGMOD 97, HH SIGMOD 99]

Example: Online Aggregation

 15

Goals for Online Processing

• Performance metric: 
• Statistical (e.g. conf. intervals)
• User-driven (e.g. weighted by

widgets)

• “Greedy” regime
• Maximize 1st derivative of 

•  defined on-the-fly
 ⇒ Feedback & CONTROL

Time



100%

Online
Traditional

Themes

• Real-time interaction with streaming data
• In this case, streaming samples coming off disks

• Interactivity ⇒ Unpredictability
• Statistical properties
• User interaction
• Parameterized on regions of the data

• Followup challenge:
• A reusable infrastructure (single-site) for adaptive dataflow

Example: Online Data Visualization

• CLOUDS

Example: Scalable Spreadsheets
[RCH DMKD 99]

Example: Potter’s Wheel
[RH VLDB 01]

 16

Potter’s Wheel Also Scout

Dataflow Paths key to comm-centric OS
• “Making Paths Explicit in the Scout Operating System”, David

Mosberger and Larry L. Peterson. OSDI ‘96.

Why Now?

• The social case (see previous slide)
• Technology trends

• Conjecture: Net “behavior metadata” grows slower than data
• Data volume scales with capacity
• Descriptions of behavior scale with # of end-systems

• Ample processing power at end-points
• End-systems have plenty of spare CPU cycles to “think” about traffic
• This is a differentiation (value-add) opportunity for endpoint vendors

• HW, OS, Apps

• Maturation of p2p technologies
• A Networking/DB nexus!

High-Level Idea: Indirection

• Indirection in space
• Logical (content-based) IDs, routing to those IDs

• “Content-addressable” network
• Tolerant of churn

• nodes joining and leaving the network to h

y

z

h=y

High-Level Idea: Indirection

• Indirection in space
• Logical (content-based) IDs, routing to those IDs

• “Content-addressable” network
• Tolerant of churn

• nodes joining and leaving the network

• Indirection in time
• Want some scheme to temporally decouple send and receive
• Persistence required. Typical Internet solution: soft state

• Combo of persistence via storage and via retry
• “Publisher” requests TTL on storage
• Republishes as needed

• Metaphor: Distributed Hash Table

to h
z

h=z

What is happening here? Algebra!

• Underlying group-theoretic structure
• Recall a group is a set S and an operator • such that:

• S is closed under •
• Associativity: (AB)C = A(BC)
• There is an identity element I ∈ S s.t. IX = XI = X for all X 8

• There is an inverse X-1 8 for each element X 8
s.t. XX-1 = X-1X = I

• The generators of a group
• Elements {g1, …, gn} s.t. application of the operator on the generators

produces all the members of the group.
• Canonical example: (Zn, +)

• Identity is 0
• A set of generators: {1}
• A different set of generators: {2, 3}

 17

Cayley Graphs

• The Cayley Graph (S, E) of a group:
• Vertices corresponding to the underlying set S
• Edges corresponding to the actions of the generators

• (Complete) Chord is a Cayley graph for (Zn,+)
• S = Z mod n (n = 2k).
• Generators {1, 2, 4, …, 2k-1}
• That’s what the gons are all about!

• Fact: Most (complete) DHTs are Cayley graphs
• And they didn’t even know it!
• Follows from parallel InterConnect Networks (ICNs)

• Shown to be group-theoretic [Akers/Krishnamurthy ‘89]

Note: the ones that aren’t Cayley Graphs are coset graphs,
a related group-theoretic structure

Range Search

• Numerous proposals in recent years
• Chord w/o hashing, + load-balancing [Karger/Ruhl SPAA ‘04, Ganesan/Bawa

VLDB ‘04]
• Mercury [Bharambe, et al. SIGCOMM ‘04]. Specialized “small-world” DHT.
• P-tree [Crainiceanu et al. WebDB ‘04]. A “wrapped” B-tree variant.
• P-Grid [Aberer, CoopIS ‘01]. A distributed trie with random links.
• (Apologies if I missed your favorite!)

• We’ll do a very simple, elegant scheme here
• Prefix Hash Tree (PHT). [Ratnasamy, et al ‘04]

• Works over any DHT
• Simple robustness to failure
• Hints at generic idea: direct-addressed distributed data structures

Prefix Hash Tree (PHT)

• Recall the trie (assume binary trie for now)
• Binary tree structure with edges labeled 0 and 1
• Path from root to leaf is a prefix bit-string
• A key is stored at the minimum-distinguishing prefix (depth)

• PHT is a bucket-based trie addressed via a DHT
• Modify trie to allow b items per leaf “bucket” before a split
• Store contents of leaf bucket at DHT address corresponding to prefix

• So far, not unlike Litwin’s “Trie Hashing” scheme, but hashed on a DHT.
• Punchline in a moment…

PHT DHT ContentLogical Trie

PHT DHT ContentsLogical Trie

Search for 011101?

PHT Search

• Observe: The DHT allows
direct addressing of PHT nodes
• Can jump into the PHT at any node

• Internal, leaf, or below a leaf!
• So, can find leaf by binary search

• loglog |D| search cost!
• If you knew (roughly) the data distribution, even better

• Moreover, consider a failed machine in the system
• Equals a failed node of the trie
• Can “hop over” failed nodes directly!

• And… consider concurrency control
• A link-free data structure: simple!

 18

Reusable Lessons from PHTs

• Direct-addressing a lovely way to emulate robust, efficient
“linked” data structures in the network

• Direct-addressing requires regularity in the data space
partitioning
• E.g. works for regular space-partitioning indexes (tries, quad trees)
• Not so simple for data-partitioning (B-trees, R-trees) or irregular space

partitioning (kd-trees)

Another Emerging PIER Application

• Custom Route Construction via Recursive Queries
• Key building block: reachability queries

• Consider a distributed routing relation
link(source, destination, metric1, metric2, ..)

• Route construction can easily be expressed as recursive queries
• path(S,D,P,C) :- link(S,D,C),

 P = concatPath(link(S,D,C), nil).
• path(S,D,P,C) :- link(S,Z,C1), path(Z,D,P2,C2),

 P = concatPath(link(S,Z,C1),P2), C=C1 +C2.
• Query: path(S,D,P,C).

Find me all pairs of reachable
nodes and paths between them

Minor Variants Give Lots of Options

• “Best-Path” Routing
• path(S,D,P,C) :- link(S,D,C),

 P = concatPath(link(S,D,C), nil).
• path(S,D,P,C) :- link(S,Z,C1), path(Z,D,P2,C2),

 P = concatPath(link(S,Z,C1),P2), C=C1 op C2.
• bestPathCost(S,D,AGG<C>) :- path(S,D,P,C).
• bestPath(S,D,P,C) :- bestPathCost(S,D,C), path(S,D,P,C).
• Query: bestPath(S,D,P,C).

• Agg and op chosen depending on metric C

Minor Variants Give Lots of Options

• “Policy-Based” Routing
• path(S,D,P,C) :- link(S,D,C),

 P = concatPath(link(S,D,C), nil).
• path(S,D,P,C) :- link(S,Z,C1), path(Z,D,P2,C2),

 P = concatPath(link(S,Z,C1),P2), C=C1 + C2.
• permitPath(S,D,P,C) :- path(S,D,P,C), excludeNode(S,W),

 ¬inPath(P,W).
• Query: permitPath(S,D,P,C).

Minor Variants Give Lots of Options

• Distance Vector Protocol
• path(S,D,D,C) :- link(S,D,C),

 P = concatPath(link(S,D,C), nil).
• path(S,D,Z,C) :- link(S,Z,C1), path(Z,D,P2,C2),

 P = concatPath(link(S,Z,C1),P2), C=C1 +C2.
• shortestLength(S,D,min<C>) :- path(S,D,Z,C)
• nextHop(S,D,Z,C) :- path(S,D,Z,C), shortestLength(S,D,C)
• Query: nextHop(S,D,Z,C).

Minor Variants Give Lots of Options

• Dynamic Source Routing
• path(S,D,P,C) :- link(S,D,C),

 P = concatPath(link(S,D,C), nil).
• path(S,D,P,C) :- path(S,Z,P1,C1), link(Z,D,C2),

 P = concatPath(P1, link(Z,D,C2)), C=C1 +C2.
• Query: path(N,M,P,C).

• Uses “left recursion”

 19

Sensor networks

• A collection of devices that can sense, compute, and
communicate over a wireless network

• Available resources
• 4 MHz, 8 bit CPU
• 40 Kbps wireless
• 3V battery (lasts days or months)

• Sensors for temperature, humidity, pressure, sound,
magnetic fields, acceleration, visible and ultraviolet
light, etc.

Leach's Storm Petrel

Real deployments

• Great Duck Island

• Redwoods

• Precision
agriculture

• Fabrication
monitoring

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIET

STORAGE

CONFERENCE

OFFICEOFFICE

Example:
Intel Berkeley Lab deployment

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIET

STORAGE

CONFERENCE

OFFICEOFFICE
50

51

52
53

54

46

48

49

47

43

45

44

42 41

3739

38 36

33

3

6

10

11

12

13 14

15
16

17

19

20
21

22

2425

26283032

31

2729

23

18

9

5

8

7

4

34

1

2

35
40

Every
time step

Analogy: SensorNet as a Database

Query

Distribute
query

Collect
query answer

or data

SQL-style
query

Declarative interface:
 Sensor nets are not just for PhDs
 Decrease deployment time

Data aggregation:
 Can reduce communication

TinySQL Examples

3

3

3

3

CNT(…)

520

370

520

360

AVG(…)

South0

North1

South1

North

region

0

Epoch

“Count the number occupied
nests in each loud region of
the island.”

SELECT region, CNT(occupied)
 AVG(sound)

FROM sensors

GROUP BY region

HAVING AVG(sound) > 200

EPOCH DURATION 10s

2

Regions w/ AVG(sound) > 200

SELECT AVG(sound)

FROM sensors

EPOCH DURATION 10s

1

TinyDB execution pattern

• “flood” query to all nodes
• a tree is formed based on arrival

pattern

• periodically communicate up
the tree
• data reduction opportunities
• tree reconfigures itself online

 20

TinyDB execution pattern

• “flood” query to all nodes
• a tree is formed based on arrival

pattern

• periodically communicate up
the tree
• data reduction opportunities
• tree reconfigures itself online

TinyDB execution pattern

• “flood” query to all nodes
• a tree is formed based on arrival

pattern

• periodically communicate up
the tree
• data reduction opportunities
• tree reconfigures itself online

TinyDB execution pattern

• “flood” query to all nodes
• a tree is formed based on arrival

pattern

• periodically communicate up
the tree
• data reduction opportunities
• tree reconfigures itself online

TinyDB execution pattern

• “flood” query to all nodes
• a tree is formed based on arrival

pattern

• periodically communicate up
the tree
• data reduction opportunities
• tree reconfigures itself online

Hypothesis Testing, SnoopingCOUNT : monotonic
AVG : non-monotonic

Monotonicity

Routing RedundancyMIN : dup. insensitive,
AVG : dup. sensitive

Duplicate Sensitivity

Applicability of Sampling, Effect of
Loss

MAX : exemplary
COUNT: summary

Exemplary vs.
Summary

Effectiveness of TAGMEDIAN : unbounded,
MAX : 1 record

Partial State
AffectsExamplesProperty

Taxonomy of Aggregates

• TAG insight: classify aggregates according to various functional properties
• Yields a general set of optimizations that can automatically be applied
• Drives an extensibility API to register new aggregates, get them optimized

An Alternative Approach

• BBQ: Model-Drien Data Acquisition for SensorNets
• Tiny Model-Driven Queries

 21

Every
time step

Limitations of TinyDB approach

Query

Distribute
query

Collect
data

New Query
SQL-style

query

Redo
process
every
time
query

 changes

Query distribution:
 Every node must receive query

Data collection:
 Every node must wake up at every time step
 Data loss ignored
 No quality guarantees
 Data inefficient – ignoring correlations

Sensor net data is correlated

Spatial-temporal correlation

Inter-attributed correlation

• Data is not i.i.d. ⇒
shouldn’t ignore missing data

• Observing one sensor ⇒
information about other sensors
(and future values)

• Observing one attribute ⇒
information about other attributes

10 20 30
0

0.1

0.2

0.3

0.4

Dt

SQL-style query
with desired
confidence

Model-driven data acquisition: overview

Probabilistic
Model

10 20 30
0

0.1

0.2

0.3

0.4

Query

Data
gathering

plan

Condition
on new

observations

10 20 30
0

0.1

0.2

0.3

0.4

New Query

posterior belief

Strengths of model-based data acquisition
 Observe fewer attributes
 Exploit correlations
 Reuse information between queries
 Directly deal with missing data
 Answer more complex (probabilistic) queries

