
I Do Declare: Consensus in a Logic Language

Peter Alvaro, Tyson Condie, Neil Conway, Joseph M. Hellerstein, Russell Sears

June 5, 2009

Abstract

The Paxos consensus protocol can be specified con-
cisely, but is notoriously difficult to implement in
practice. We recount our experience building Paxos
in Overlog, a distributed declarative programming
language. We found that the Paxos algorithm is eas-
ily translated to declarative logic, in large part be-
cause the primitives used in consensus protocol spec-
ifications map directly to simple Overlog constructs
such as aggregation and selection. We discuss the
programming idioms that appear frequently in our
implementation, and the applicability of declarative
programming to related application domains.

1 Introduction

Consensus protocols are a common building block
for fault-tolerant distributed systems [2]. Paxos is
a widely-used consensus protocol, first described by
Lamport [4, 5]. While Paxos is conceptually sim-
ple, practical implementations of the algorithm are
notoriously difficult to achieve, and typically require
thousands of lines of carefully written code [1, 3, 7].

Much of this implementation complexity arises be-
cause high-level protocol specifications must be trans-
lated into low-level imperative code, yielding a mas-
sive increase in program size and complexity. In prac-
tical implementations of Paxos, the simplicity of the
consensus algorithm is obscured by common but of-
ten tricky implementation details such as event loops,
timer interrupts, explicit concurrency, and the serial-
ization and persistence of data structures.

By contrast, consensus protocols such as two-phase
commit and Paxos are specified in the literature at a
high level, in terms of messages, invariants, and state
machine transitions. Overlog supports each of these
concepts directly. By using a declarative language to
implement consensus protocols, we hoped to achieve
a more concise implementation that is conceptually
closer to the original protocol specification. We dis-

cuss our Paxos implementation below, and describe
how we mapped concepts from the Paxos literature
into executable Overlog code.

Earlier work [11] implemented the Synod proto-
col (the kernel of Paxos) in P2 [6]. However, that
work did not address practical details such as Multi-
paxos, log replication, reconciliation, and leader elec-
tion. Here, we describe a complete Paxos implemen-
tation that addresses these issues. More importantly,
we reflect on the design patterns that we discovered
while building this classical distributed service in a
declarative language. The process of identifying these
patterns helped us better understand why a declara-
tive networking language is particularly well-suited to
programming distributed systems. It has also clari-
fied our thinking about the more general challenge of
designing a more targeted domain-specific language
for distributed computing.

1.1 Overlog

Overlog is a logic language based on Datalog. Data-
log programs consist of rules that take the form:

head(A, B) :- clause1(A), clause2(B);

where head, clause1, and clause2 are relations,
“:-” denotes implication (⇐) and “,” denotes con-
junction. A rule may have any number of clauses, but
only a single head. The example rule ensures that the
head relation contains a tuple (A,B) for each pair of
A and B in the clause relations. A Datalog program
begins with some base tuples, and derives new tuples
by evaluating rules in a bottom-up fashion (substitut-
ing tuples in the clause relations to derive new tuples
in the head relations) until no more derivations can be
made. Such a computation is called a fixpoint. A set
of rules essentially express the constraint that base
facts and their transitive consequences will always be
consistent at fixpoint.

Overlog computes a new fixpoint whenever new tu-
ples arrive at a node. Overlog programs accept in-
put from network events, timers, and native methods,

1



each of which produce new tuples. Because evalua-
tion of an Overlog program proceeds in discrete time
steps, rules may be interpreted as invariants over
state: the consistency of the rule specifications will
be true across all fixpoints.

Network communication is expressed using a sim-
ple extension to the Datalog syntax:

recv_msg(@A, Payload) :-

send_msg(@B, Payload), peers(@B, A);

@ introduces a location specifier field of a relation, and
the associated variables A and B contain network ad-
dresses. A tuple moves between nodes if the address
in its location specifier is distinct from the address of
the node that deduced the tuple.

It is often useful to compute an aggregate on a
set of tuples, typically to choose an element of the
set with a particular property (e.g. min, max) or to
compute a summary statistic over the set (e.g. count,
sum). For example:

min_msg(min<SeqNum>) :-

queued_msgs(SeqNum, _);

defines an aggregate relation that contains the queued
message with the smallest sequence number, and

next_msg(Payload) :-

queued_msgs(SeqNum, Payload),

min_msg(SeqNum);

states that the content of next msg is the payload of
the queued message with the smallest sequence num-
ber. We encountered this pattern of selection over
aggregation frequently when implementing consensus
protocols.

Finally, Overlog allows special timer relations to be
defined. The runtime inserts a tuple into each timer
relation at a user-defined period; joining against a
timer relation allows for periodic evaluation of a rule.

2 Two-phase commit

Before tackling a full-featured implementation of
Paxos in Overlog, we began by using Overlog to build
two-phase commit (2PC), a simple consensus proto-
col that decides on a series of Boolean values (“com-
mit” or “abort”). Unlike Paxos, 2PC does not at-
tempt to make progress in the face of node failures.

Both Paxos and 2PC are based on rounds of mes-
saging and counting. In 2PC, the coordinator node
communicates the state of a transaction to the peer
nodes. When the transaction state transitions to
“prepare” at a peer node, the peer responds with a

/* Count number of peers and "yes" votes */

peer_cnt(@Commander, count<Peer>) :-

peers(@Commander, Peer);

yes_cnt(@Commander, Xact, count<Peer>) :-

vote(@Commander, Xact, Peer, Vote),

Vote == "yes";

/* Prepare => Commit if unanimous */

transaction(@Commander, Xact, "commit") :-

peer_cnt(@Commander, NumPeers),

yes_cnt(@Commander, Xact, NumYes),

transaction(@Commander, Xact, State),

NumPeers == NumYes, State == "prepare";

/* Prepare => Abort if any "no" votes */

transaction(@Commander, Xact, "abort") :-

vote(@Commander, Xact, _, Vote),

transaction(@Commander, Xact, State),

Vote == "no", State == "prepare";

/* All peers know transaction state */

transaction(@Peer, Xact, State) :-

peers(@Commander, Peer),

transaction(@Commander, Xact, State);

Figure 1: Two-phase commit coordinator in Overlog.
The first two columns of transaction are a primary
key.

“yes” or “no” vote. The coordinator counts these
responses; if all peers respond “yes” then the trans-
action commits. Otherwise it aborts. In terms of the
Overlog primitives described above, this is just mes-
saging, followed by a count aggregate, and a selection
for the string “no” in the peers’ responses (Figure 1).

A practical 2PC implementation must address two
additional details: timeouts and persistence. Time-
outs allow the coordinator to return an error if the
peers take too long to respond. This is straightfor-
ward to implement using timer relations (Figure 2).

Our Overlog implementation uses Stasis [10] to
provide persistence on a per-table basis; depend-
ing on which variant of two-phase commit is in use
(Presumed Commit, Presumed Abort, etc.), prepare,
commit or abort messages should be persisted [8].

In short, the 2PC protocol is naturally specified
in terms of aggregation, selection, messaging, timers,
and persistence. Overlog provides each of these con-
structs, leading to an implementation whose size and
complexity resemble the original pseudocode specifi-
cation.

2



timer(ticker, 1000ms);

tick(Commander, Xact, C) :-

transaction(Commander, Xact, State),

State == "prepare", C := 0;

tick(Commander, Xact, C) :-

ticker(),

tick(Commander, Xact, Count),

C := Count + 1;

transaction(Commander, Xact, "abort") :-

tick(Commander, Xact, C), C > 10,

transaction(Commander, Xact, State),

State == "prepare";

Figure 2: Timeout-based abort. The first two
columns of tick are a primary key.

2.1 Discussion

As we employed the primitives of messaging, timers
and aggregation to implement 2PC, we found our-
selves reasoning in terms of higher-level constructs
that were more appropriate to the domain.

Multicast, a frequently occurring pattern in con-
sensus protocols, can be implemented by composing
the messaging primitive described in Section 1.1 with
a join against a relation containing the membership
list. The last rule in Figure 1 implements a multicast.

The tick relation introduced in Figure 2 imple-
ments a sequence, a single-row relation whose at-
tribute values change over time. A sequence is defined
by a base rule that initializes the counter attribute of
interest, and an inductive rule that increments this
attribute. Combining this pattern with timer rela-
tions allows an Overlog programmer to count the
clock ticks, and therefore the number of seconds, that
have elapsed since some event. This is the basis of our
timeout mechanism (Figure 2).

A coordinator node can hold a roll call to discover
which peers are alive by combining a coordinator-side
multicast with a peer-side unicast response. A round
of voting is a roll call with a selection at the peer
(which vote to cast, probably implemented as selec-
tion over aggregation) and a count aggregate at the
coordinator. The first three rules listed in Figure 1
implement this voting example of the roll call idiom.

Even in a simple case like 2PC, a variety of fairly
typical distributed design patterns emerge quite nat-
urally from the high-level Overlog specification. We
now turn our attention to a more complicated proto-
col, Paxos, and see if these patterns are sufficient.

agent_cnt(Master, count<Agent>) :-

parliament(Master, Agent);

promise_cnt(Master, Round, count<Agent>) :-

send_promise(Master, Round, Agent, _);

quorum(Master, Round) :-

agent_cnt(Master, NumAgents),

promise_cnt(Master, Round, NumVotes),

NumVotes > (NumAgents / 2);

Figure 3: We have quorum if we have collected
promises from more than half of the agents.

can_promise(Agent, Round, OldRound, OldUpdate, Master) :-

prepare(Agent, Round, Update, Master),

prev_vote(Agent, OldRound, OldUpdate),

Round >= OldRound;

Figure 4: An agent sends a constrained promise if it
has voted for an update in a previous view.

3 Paxos and Multipaxos

In order to explore Paxos and its variants, we began
by looking at the idealized protocol originally pro-
posed by Lamport for reaching a single consensus.
We then extended it to the Multipaxos protocol that
can make an unbounded series of consensus decisions.
In this section, we describe our Paxos implementation
in terms of the idioms we identified for 2PC, and de-
tail additional constructs that we found necessary.

3.1 Prepare Phase

Paxos is bootstrapped by the selection of a leader and
an accompanying view number: this is called a view
change. To initiate a view change, a would-be leader
multicasts a prepare message to all agents; this mes-
sage includes a view number that is globally unique
and monotonically increasing. View numbers are im-
plemented using a sequence that is seeded with the
local network address and advanced by the number
of agents in the view.

The Paxos protocol dictates that when an agent
receives a prepare message, if it has already voted
for a lower view number, it must respond with its
previous vote. This constrains the update. Other-
wise, it must send an unconstrained promise mes-
sage. This invariant coupling requests and history
is implemented with a query that joins the prepare
stream with the local prev vote relation (Figure 4).
Finally, the prospective leader performs a count ag-

3



gregate over the promise messages; if it has received
responses from a majority of agents then the new view
has quorum (Figure 3). The prepare phase employs
the idioms of sequences, multicast and counting.

3.2 Voting Phase

Once leadership has been established through this
view change, the new leader performs a query to see if
any responses constrain the update. If so, the leader
chooses an update from one of the constraining re-
sponses (by convention, it uses a max aggregate over
the view numbers). In the absence of constraining re-
sponses, it is free to choose an update from its request
queue.

The remainder of the voting phase is a general-
ization of 2PC. The leader multicasts a vote mes-
sage to all agents in the view, containing the cur-
rent view number and the chosen update. Each agent
joins this message against a local relation containing
the agent’s current view number. If the two agree,
it responds with an accept message. An update is
committed once it has been accepted by a quorum
of agents; when the leader detects this, it responds
to the client who initiated the update. The second
phase of Lamport’s original Paxos is a straightfor-
ward composition of multicast and counting.

3.3 Multipaxos

Multipaxos extends the algorithm described above to
pass an ordered sequence of updates, and requires the
introduction of additional state to capture the log his-
tory and the current instance number identifying the
ordinal of the latest update. A practical implemen-
tation performs the prepare phase only once, and as-
suming a stable leader, carries out as many instances
of the voting phase as are necessary.

Accommodating the notion of instances in our data
model is a straightforward matter of schema mod-
ification. A prepare message now includes an in-
stance number indicating the intended position of
the next update in the globally ordered log. Each
agent keeps track of the current instance number, and
promise and accept message transmission is further
constrained by joining against this relation: an agent
only votes for a proposed update if its sequence num-
ber agrees with the current local high-water mark.
Though the rule modifications to support instances
and history were significant, we did not need to em-
ploy any new programming idioms.

top_of_queue(Agent, min<Id>) :-

stored_update_request(Agent, _, _, Id);

begin_prepare(Agent, Update) :-

stored_update_request(Agent, Update, _, Id),

top_of_queue(Agent, Id);

delete

stored_update_request(Agent, Update, From, Id) :-

stored_update_request(Agent, Update, From, Id),

update_passed(Agent, _, _, Update, Id);

Figure 5: Choice and Atomic Dequeue.

3.4 Leader Election

Leader election protocols choose Multipaxos leaders,
typically in response to leader failure.

When building a distributed file system on top of
our Multipaxos implementation, we found that appli-
cation semantics dictated that the client implement a
particular set of timeout and policies. These policies
led us to a simplistic, yet adequate leader election
protocol. As an exercise, we also implemented the
more general approach of [3] (which is presented in
31 lines of pseudocode) in 6 Overlog rules. The Over-
log implementation was based on multicast, aggrega-
tion, sequences and timeouts, and left the Multipaxos
implementation unchanged.

3.5 Discussion

Most of the logic of the basic Paxos algorithm is cap-
tured by combining voting with a sequence that al-
lows us to distinguish new from expired views. Hence
the idioms we described in our treatment of 2PC
were nearly sufficient to express the significantly more
complicated consensus protocol. Generalizing some
of the more complicated implementation details, two
new idioms emerged.

Using an exemplary aggregate function like min in
combination with selection implements a choice con-
struct that selects a particular tuple from a set. In
Paxos, this construct is necessary for the leader’s
choice of a constrained update during the prepare
phase. Combining the choice pattern with a condi-
tional delete rule against the base relation allows us
to express an atomic dequeue operation, which is use-
ful for implementing data structures such as FIFOs,
stacks, and priority queues. We found this construct
useful as a flow control mechanism, to ensure that at
most one tuple enters the prepare phase dataflow at
a time (Figure 5).

4



4 Safety and Liveness

The correctness of a distributed system can be de-
scribed in terms of its safety and liveness proper-
ties [9]. Informally, a safety property states that that
nothing bad will happen during an execution of a sys-
tem, while a liveness property states that something
good will eventually happen. In other words, safety
properties are invariants that ensure correctness of
system state. Liveness properties ensure that forward
progress is always made, and must be enforced using
timeout mechanisms.

Overlog rules allow programmers to implement a
distributed system in terms of their original specifi-
cation: as a set of invariants, (e.g. [4]). In the case
of 2PC the vote counting aggregate (which triggers
once the agents unanimously vote “yes”) is both the
implementation of the protocol, and an invariant that
enforces safety (Figure 1). Paxos depends on the in-
variant that a quorum is reached when more than
half the agents have responded. This safety property
is encoded as a choice by the last rule in Figure 3.

Overlog’s ability to express timeouts allows us to
easily specify liveness properties. Figure 2’s timeout-
based abort mechanism enforces a 2PC liveness in-
variant through counting and reference to physical
time. Paxos’ liveness is guaranteed by the leader elec-
tion protocols discussed in Section 3.4.

Safety and liveness are typically specified in terms
of three concepts: messaging, invariants and time-
outs. Location specifiers define messages; selection
over aggregation defines invariants, and sequences
with timers define timeouts. An Overlog program
specifies an implementation in terms of these idioms.

5 Conclusion

As the P2 authors discovered for network proto-
cols [6], we found that a few simple Overlog idioms
cover an impressive amount of the design space for
consensus protocols. The correspondence between
these idioms and consensus protocol specifications al-
lows us to directly reason about the correctness of
our implementations. We believe that such an ap-
proach will be fundamental to future approaches to
distributed programming.

References

[1] T. D. Chandra, R. Griesemer, and J. Redstone.
Paxos made live: An engineering perspective. In

PODC, 2007.

[2] M. J. Fischer. The consensus problem in un-
reliable distributed systems (A brief survey).
In Proceedings of the 1983 International FCT-
Conference on Fundamentals of Computation
Theory, 1983.

[3] J. Kirsch and Y. Amir. Paxos for system
builders. Technical Report CNDS-2008-2, Johns
Hopkins University, 2008.

[4] L. Lamport. The part-time parliament. ACM
Trans. Comput. Syst., 16(2):133–169, 1998.

[5] L. Lamport. Paxos made simple. SIGACT News,
32(4):51–58, December 2001.

[6] B. T. Loo, T. Condie, J. M. Hellerstein, P. Ma-
niatis, T. Roscoe, and I. Stoica. Implementing
declarative overlays. SIGOPS Oper. Syst. Rev.,
39(5):75–90, 2005.

[7] D. Mazières. Paxos made practical. http://www.
scs.stanford.edu/∼dm/home/papers/paxos.pdf,
January 2007.

[8] C. Mohan, B. Lindsay, and R. Obermarck.
Transaction management in the R* distributed
database management system. ACM TODS,
11(4):378–396, 1986.

[9] S. Mullender, editor. Distributed Systems.
Addison-Wesley, second edition, 1993.

[10] R. Sears and E. Brewer. Stasis: Flexible trans-
actional storage. In OSDI, pages 29–44, 2006.

[11] Szekely, Benjamin and Torres, Elias. A
Paxon evaluation of P2. http://klinewoods.com/
papers/p2paxos.pdf.

5


