GETTING STARTED IN INGRES - A TUTORIAL

by

M. Stonebraker

Memorandum No. ERL-M518

23 April 1975

GETTING STARTED IN INGRES ~ A TUTORIAL

by

Michael Stonebraker

Memorandum No. ERL~M518

23 April 1975

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Research sponsored by the National Science Foundation Grant GK~43024x,
U.S. Army Research Office ~~ Durham Contract DAHCO4~74~G0087, the Naval
Electroni¢ Systems Command Contract N00039-75-~C-0034, and a Grant from the
Sloan Foundation,

GETTING STARRTED IN INGRES
' f
TUTORIAL

by

MICHAREL STONEBRAKER

This document contains an introduction to the date base manage-
ment system, INGRES, and in particular stresses its user language
QUEL . It is meant to be read while interacting with the INGRES
system at a terminal.

One’s first encounter with INGRES is to type the UNIX shell con-
mand

ingres data-base-nane

which has the effect of turning you over to INGRES for subsequent
interactions. The actual sequence is'

Xingres demo

Here., we have entered INGRES and specified that ve cre interested
in the data base "demo® which will have in it the retations of
interest to this document. After o momentary pause the following
vill be returned to your terminal.

IHKGRES vers 2.3 login

Sat Mar 15 14:16:04 1975
Set operators, Aggregate functions and X.ALL are not yet implenented.

go

The first three lines constitute the current “dayfile® which
gives relevant informnation on the status of INGRES. The stote-
ment *go* indicates INGRES is waiting for your input .

How type

help
hg

“help" is an INGRES coamand which can deluge you with information

GETTIHG STARTED -1- 3-20-75

about the
the [INGR
\g is a
without

response

query for

HELP

NANME

-

systen. In this case, you will receive the pege fron

ES reference nanual which describes the help coanand.
statenent to INGRES to execute the “help® coanand
waiting for additional .input fronm the terninal. The
from INGRES is:

nulation coaplete

(X) 4/22/73 HELP(X)

help - get information about how to use INGRES

SYNOPSIS

HELP [*iten-in-question®]

DESCRIPTION

EXAN

SEE

DIAG

BUGS

HELP may be used to obtain information about eny section of
this mnanual, the content of the current data base, or o
specific relation in the data base, depending on the iten-

in-question. Onission of that argument is functionally
equivalent to HELP “help® . The other legal forms ore as
follow:

HELP “"section® - Produces a copy of the specified section of
the [NGRES Programmer’s Manual, and prints it on the
standard output device.

HELP *" - Gives informetion about eall relations that exist
in the current database.

HELP *"relnane® - Gives information about the specified rela-
tion, but in greater detail than would HELP *°*

PLE

HELP

HELP ®"quel®
HELP **
HELP ‘enp"

RLSO
NOSTICS

Unknoun nane - The iten-in-question could not be recognized.

fAlphabetics appearing within the iten-in-question nAust be

GETTING STARTED -2~ 3-20-7?5

lower-case to be recognized.

continue

The final line contains the wvord “"continue®. This indicates
IHGRES is ready to listen to you again.

At this point it is important for you to realize that INGRES
maintains a workspace in which you foraulate your interactions.
This vorkspace is desirable so that you <cen correct spelling
errors and other nistakes which you may from time to time nmoke
without having to type in your entire interaction again.

ft the present timne your workspace contains

help

If you type in "\g" once more, INGRES will sinple execute your
vorkspace which will give you a second printout of vwhat you have

just seen obove.

In order to clear out our workspace we use the command “\r®as
follows:

\e

go

Qur workspace now is enpty. It is still possible to type in "\g"
es follows. Hovever, it has no effect.

Ng

query formulation complete

continue

Ve will now try to exercise the “retrieve” command and will do so
on the data thaet nouw follows. To print the contents of any rela-
tion Cor taeble if you are more comnforteble with that terminolo-

9y, sinply type:
print relaetion-nane
If we type help*" we can obtoin a list of relations in the datao

base demo. One relation from this list is called ‘“parts®. Ve
cen print this relation as follows:

GETTING STARTED -3- 3-20-75

print parts

query formnulation conmnplete

ports relation

Ipnun fIpname lcolor lveightiqoh §
I L Ll e L DL L R L e L L et DL el DL S |
{ flcentral processor Ipink | 101 11
{ 2inenory lgray i 201 321
{ 3idisk drive Iblack i 6851 21
{ 4ltape drive Iblack { 4501 41
I Sltapes lgray t 11 2501
{ 6lline printer fyellow I 5781 3t
{ 7il-p paper tuhite { 151 9351
{ Biterminals Iblue { 191 151
i {3lpaper tape reader Iblack i 1071 ot
{ 14fipaper tape punch Iblack l 1471 ot
{ Slterminal paper fvhite i 2t 3501
{ 10ibyte-soap fclear | 01 1431
| iilcard reader lgray 1 3271 ct
t 12lcard punch lgray ! 4271 ot
cont inue

Motice thot the "parts” relation has information about the com-
ponents in a hypothetical computer instellation. Each row of
this table (or tuple in this reletion) contains information on a
given part including its part number, its part name. its color,
its weight, and the quantity thet are on hand.

Using o "retrieve" command we vill be able to obtain portions of
this teble which are of interest to us. (There is almost no lin-
it on how large the tables can be; these examnples are done on
small ones so that this tutorial does not become too large. In
fact, the actuel linit on the size of ¢ table s approxinastely
30,000,000 bytes for those who are interested.)

To obtein information, we nust first tell INGRES what tabtle it is
that ve wish to interogate. One way to do this might be the com-
mnand

I MANT TO0 TALK ARBOUT pearts
Although this is natural to the beginner, [INGRES makes you do
something slightly more <conmplicated. This added complexity is

necessary so that one does not get into trouble with nore conpli-
ceted interactions.

GETTING STRRTED -4~ 3-20-7?5

The statement required in INGRES is
raenge of variable-name is relation-nane

The variable-name is indicated to be a surrogate for the relation
name specified. e can declaere p to be this surrogate for
parts gs follows:

AN

go
range of p is parts

Hotice thet we first cleered our workspace so thet the vhole
parts relation would not be printed agein.

Now, ve can add o "retrieve®” commaend which can be the following

retrieve p.pnamne

The interpretation is thet we wish to obtain the pname coluan of
the relation specified by the variable “p".

In order to ensure that we have typed our interaction correctly
we may use the special command "\p*. This will sinply print the
contents of our workspace as follows:®

Np
range of p is parts
retrieve p.pnane

Since it appears to be a correct query we can execute it by the
“Sg“ conmand as follows:

't‘g

query formulation conmplete

PERIOD = ./ 1+ line 3, syntax error
continue

Unfortunately, we have made a syntax error. What is nore unfor-
tunate is that INGRES is not always overly helpful in showing us
vhat it is.

The problem with this interaction is an arbitrary convention in
INGRES that whatever you wish to retrieve nust be enclosed in ¢
» . Ve will correct our nmistake by retyping the query as
follous:

GETTING STARTED -5~ 3-20-?5

\r
go
range of p is parts
retrieve (p.pnane)

Ng
query formnulation complete
{pname {

]
1
1
1
1
t
]
]
]
]
]
]
]
]
i
]
]
]
]
!

lcentral processor
Inemory

Idisk derive

{tape drive

itapes

lline printer

I1-p paper
{terminals

ipaper tope reader
ipaper tape punch
{terminal paper
fbyte-soap

{card reader

tcard punch
continue

— cumn G e e Gvm mmm @ AL WS GRS SR ahe

Everything hes now worked out all right and we have obtained the
column of the parts table which contains the nanes of the parts.

Ve can retrieve more than one colunn at once by simply indicating
e sequence of colunn names separcted by a COARe. Hence we could
obtain part names and colors as follows.

AN >

go

range of p is parts
retrieve (p.pnane, p.color)

Ng

query fornmulation conplete
ipname lcolor {
R b E L L L L B LRl Kl I
fcentral processor Ipink {
imenory lgray t
tdisk drive tblack i
ttape drive Iblack t
ltapes fgray !
lline printer lyellow |
il-p paper lvhite i
{terninals tblue |

GETTING STARTED -6~ 3-20-73

(paper tape reader iblack

{
Ipaper tape punch iblack |
fterminal paper luhite i
ibyte-soep lclear {
tcerd reader lgray i
tcard punch igray i
continue

Hotice in the printout each columnn contains the nane of the

colunn so we do not get confused. Sometimes wve require mnore Comn-
plex results than siaply the nanes of colunns. Suppose, for
exanple, we require the conputation "1000-qoh®. In other wuwords,

ve wish to know for each part how many less than 1000 we possess.
This caen be stated as follows!

e

go

renge of p is parts

retrieve (p.pname, computation=1000-p.qoh)

"g
query formulation complete

ipname icomput!
R e b b it s l
lcentral processor | 9991
Imenmnory t 2681
fdisk drive { 998t
ftape drive | 99%¢l
ltapes l 7501
Iline printer | 9971
i1-p paper | 9051
{terminals { 9851
Ipaper tape reader | 1000l
Ipaper tape punch I 10001
fterminal paper ! 6501
ibyte-soap [8571
fcard reader t 10001
lcard punch t 10001

continue

Hote that the heading on our printout is the first six characters
of the name "computation® which we have given to the computed
quantity *“1000-p.qoh".

In order for INGRES to accept computed quantities you nust always

give them o name. This is sinply done by picking o nane and put-
ting it to the left of an equals sign in the retrieval.

GETTING STARTED -7~ 3-20-75

Note also that the presence or absence of blanks nakes no differ-
ence in between the “()%,

It is important that you spell correctly any column nanes which
you use in en interaction, since INGRES has no spelling correcter
at the present tine.

Note lastly that you need not put interactions on three lines as
we have been doing. The following works equally well.

\p
go

range of p is parts retrieve (p.pnane, conputation = 1000-p.qoh) \g

query formulation conplete

lpname lcomputl
I e R R ke it dind t
{central processor | 999
Imenory ! 9681t
Idisk drive | 9981
ttape drive l 99%¢ |
|tapes | 7501
iline printer | 9971
il-p paper 1 9051
[terminals | 2851
ipaper tape reader { 10001
Ipaper tape punch t 1000!
lterminal paper { 6501
ibyte-soap | 8571
fcard reader I 10001
fcard punch I 10001

continue

It is usually wise to space your interactions so they are as
readable as possible.

So far we have produced interactions which give us colunns of the
“parts® relation. We now indicate how to obtain only portions of
colunns. The basic mechanisn is o "where® clause which can be
edded onto the end of the interactions we have been doing. I[f ve
wanted the previous query only perforned for those parts whose
color is pink we would do the following:

\r

g0

range of p is parts

retrieve (p.pnane, conputation=1000-p.qoh) where p.color = “pink®
Ng

query formulation complete

GETTING STARTED -8~ 3-20-73

fpnane lcomputl

icentral processor i 9891
continue

The "where" clause limits the number of rows which are exanined
to only those which satisfy the qualification given i.e. to those
which satisfy “p.color="pink". Only the central procesor has
this property so it is the only entry in the output.

Ve are now to the point where wve are typing enough information so
that errors in typing are likely. It is very annoying to have to
reset the workspace and try again every time an error is encoun-
tered. Two mechanisms are supported in IHGRES to help with this
problenm.

1) INGRES eccepts the symbol % to mean “backspace®. Consequent -
ly, one can simply backspace and retype errors which occur. Gne
can backspace as many times as one wishes) INGRES will continue
to back up wuntil it reaches the beginning of the current line.
Subsequent backspaces will have no effect. If o line has becone
so garbled thet the user wishes to sinply erase it and start typ-
ing agein one can use the symnbol @ which neans “erase the wvhole
line"

2) More conpliceted corrections are often necessary than can be
done easily using mechanism 1). These are supported by calling

on the features of the UNIX program called the editor. R tu-
torial on the editor is availeble in the UNIX programamer’s manu-
al. Here, we will simply discuss two features of this progran.

Since it is o very powverful program, the serious INGRES progranm-
mer would be vise to study that tutorial in more detail than the
few exerpts we present here.

Suppose we type in an incorrect query as follows:

AN)

go

renhe of p is perts
retrieve p.pnane

where p.pcolor = "pink="

This query has many errors and we mnight do better to start over,
but for the exercise we Wwill use the editor which we obtain by
typing \e as follows:

e
> ded

GETTING STARTED -9- 3-20-735

The statement ">ded” says now we are in the hands of the UNIX
editor and our workspace has been sent to it.

Ye can sequence through our progrem by typing a line numnber fol-
lowed by a carriage return i.e.

;nnhe of p is perts
fetrieve p.phane

3heve p.pcolor = "pink="
iunhe of p is perts

D

retrisve p.pname

3

where p.pcolor = "pinks=*

Ve have now looked at each line twice and are ready to fix each
one .

Ve do this with o substitute conmnand. This has the fora:
s/this character string/that character string/

The editor goes through the current line of our connand aend finds
the first instance of "this character string" eoend replaces it
with “that character string®. In this vay we can find offending
portions of our interaction and fix then.

First we do it for line 1.

1

renhe of p is perts
s/ranhe/range/
s/perts/parts/

1

range of p is parts

After two substitutions, everything is fine.

Hotice that you only need to specify enough of “this cheracter
string” so that the editor can correctly nake the substitution.

Also, if you sinply put a "p* after the last *“/° . the current
line will be automatically printed.

GETTING STARTED -10- 3-20-75

Hotice lastly, that & and @ vork the soame way in the editor as in
[NGRES. ‘

Ue now proceed to fix the rest of our statement vithout further
comments.

2

retrieve p.pnane
s/pfip/

s/ne/med/p
retrieve (p.pnane)

3

where p.pcolor = "pink=*
s/pe/c/

slk=rk/p

where p.color = *"pink"*

Ve have now fixed all lines and use the coanand "u®" to send the
corrected statement back to INGRES as followus!

]

e now issue a "q" command to quit the editor and return to
INGRES as follows:

q
{{monitor

The echo "<{monitor" is to remind you that you have returned to
INGRES .

It is wusuellly wise to maoke sure INGRES got your corrected in-
teraction back from the editor correctly by typing "\p" i.e.

\p

range of p is parts
retrieve (p.pnane)
vhere p.color = “pink"*

A "\g" will now execute the corrected command.
hg

query formutation complete

Ipname |

lcentral processor I

GETTING STARTED -11- 3-20-75

continue

Ve now tindicate ¢the boolean opperators which ray be used. For
exanple, the interaction that follows is eccepted by I[HGRES.

\r

go

range of p is parts

retrieve (p.pnane)

where p.color ="pink® or p.color = *gray"

\‘g

query formulation complete
{pname 1

{central processor i
fmemory !
ftapes |
tcard reader |
icard punch {
continue

The operators "not", “and® and "or®" are supported in INGRES .
Users may simply use the operators remnenbering only to put o
space on either side of then. It is sometimes essential to
remember that the precedence of boolean operators is “"not® then
“and” then “or®. Users who wish to alter this precedence (or who
do not remember it) may use parentheses to precisely specify
their meaning. The folloving interaction gives an exanple of
nultiple boolean operators.

\r

go

range of p is parts

retrieve (p.pnane)

where (p.color="pink® or p.color = *gray®) and p.pnun £ 10
\g

query formnulation complete

ipname {

fcentral processor {
imenory |
ltapes t
continue

Three points should be carefully noted about the ebove
interaction:

GETTING STARTED -12- 3-20-79

1) Character strings mnust be enclosed in double quote marks while
nunbers may be typed with no special delimniters.

2) Note the arithmetic operator *(* in the above interaction.
valid relational operators include:

(equals to)

(less than?

(greater than)

(less than or equal to)
(greater then or equal to)
(not equel to?

_—g A AN

3) There is no linit to the conplexity of the expressions which
can be constructed using relational and boolean expressions.

Ye nov do one last exanple concerning arithmetic operators in
QUEL. This example finds the total weight (weight tines qoh) for
each part with a part number less than 10.

e

go

range of p is perts

retrieve (p.pname, tot= p.weightep.qoh)
vhere p.pnum < 10

5

"9

query fornmulation complete
Ipnanme ltot l
R e i {
tcentral processor | 101
Imemory | 6401
{fdisk drive I 13701
ltape drive { 18001
ltapes i 2501
{line printer I 17341
{l-p paper I 14251
ftermninals { 2851
Iterminal paper { 7001

continue

It should be noted that arithmnetic operators can be used in the
qualification portion of an interaction as vwell as in the portion
indicating the desired information. Valid earithnetic operators
include!

+ (addition?
- (subtraction?

GETTING STARTED -13- 3-20-75

« (multiplication)

/ (floating point division)
«x (exponentiation)

nod (integer division)

It should also be noted that any user can save any result of en
interaction by sinply specifying the name of e relation into
vhich the answver should be placed. The following suggests an
equivalent way of obtaining the previous result. First o rela-
tion is created with the answer then the print commnand is used to
display the result.

\r

go

renge of p is parts
retrieve into local(p.pnane, tot=p.weightep.qoh)
vhere p.pnum < 10

\‘g

query formulation complete
continue

s\

g0

print locel

‘.‘g

guery fornulation conplete

local relation

{pnanmne ltot |
R il bl |
fcentral processor l 101
imemory l 6401
Idisk drive I 13701
{tape drive { 1800!
{tapes i 2501
Iline printer 1 17341
{l-p paper I 14251
[terminals { 2851
{terminal paper | 7001

continue

Hotice that local remains as a relation in the date base and nay
be used in any future interactions by sinply declering a range
variable for it.

Ve turn now to interactions which involve more than one relation
et o time. It is in these interactions that QUEL is especially
useful because of its ebility to connect information in different
relations. ‘

GETTING STARTED -14- 3-20-75

First we print a second relation that will be used in the sequel.

\r

go
print supply’hg

query formnulation conmplete

supply relation

{snum fpnum [jnunm _fshipdnteldunn

! 4751 11
| 4751 21
l 8l 11
| 8l 11
1 4751 31
{ 4751 41
! Bl 21
{ 81 21
f 1224 7t
{ 1221 71
[1221 91
t 4401 61
[1311 81
| 2411 41
| 621 31
t 4751 21
{ 4751 11
[81 61
| g1 61!
| Sl 41
! S1 41
! 201 Sl
! 201 51
| 411 St
| 21 St
! 2411 11
i 2411 21
! 2411 31
t 671 St
| 671 4!
{ 9991 11
l 29991 21
! 9991 31
t 9991 41
l 9991 S5t
{ 9991 61
1 9991 71
t 9991 8}

GETTING STARTED

1001 173-12-311
1002174-05-311
1003174-12-311
1004175-01-151
1001173-12=311
1002174-05-311
1003174-12-291
1004175-01-151
1003175-02-011
1004175-02-011
1004175-02-011
1001 174-10-10!
1004174-11-221
1001173-12-311
1002174-06-181
1001173-12-311
1002174-07-011
1003174-12-251
1004175-02-011
1003174-11-1351
1004175-01-221
1001175-01-101
1002175-01-101
1003175-01-021
1004175-02-051
1005175-06-011i
1005175-06-011
1005175-06-011
1005175-07-311
1005175-07-011
1006176-01-011
1006176-01-011
1006176-01-01t
1006176-01-011
1006176-01-011
1006176-01-011
1006176-01-011
1006t76-01-011

-15-

N = = N s

11
1281
2561
1441

481
1441

21

41

11

31

321

11

21

41

31

61

201
751
S01
4001
11
321
11
201
il
11
321
i
11
201
11
101
11

3-20-75

9991 91 1006176-01-011 1001

{

| 999 | 101 1006176-01-011 1441
{ 9991 11 1006i176-01-011 il
H 3991 121 1006176-01-011 11
{ 9991 131 1006176-01-011 i1
§ 9991 141 1006t 7e-01-011 11
t 241t g8l 1005175-07-011 11
{ 2411 91 1005175-07-011 1441
{ 1311 8t 1001175-03-181 , 21
t 1311 8l 1002175-03-151 11
{ 131t 91 1001175-04-311 2001
§ 1311 91 1002175-03-311 1001
f 81 111 1004175-01-011 21
{ 8! 121 1004175-04-311 31
{ g1 11t 1007176-02-011 31
| 81 121 1007176-02-011 21
i 81 8! 1004174-12-201 S
t gl 91 1004174-12-311 S00!
{ 8t 11 1007176-02-01t 11
{ 81 21 1007176-02-011 10241
continue

This relation gives information on conditions under which the
hypothetical computer installation can buy nore parts. It indi-
cates the supplier number from whon each part is availeable, the
quantity in which it can be ordered, the date such an order could
be shipped and the job nunber to which such an order could be
charged. Notice that the coluan pnun appears in both the parts
relation and this relation. Using this infornation we can *con-
nect® the two relations. For exanple, we night vant to know the
supplier nunbers of suppliers who sell central processors.

One way to proceed is to interrogete the parts relation to find
the part number of central processors as followus:

\r

go
range of p is parts
retrieve (p.pnum) where p.pnane = *central processor®

Ng

The answer returned is:
query formulation complete
lpnunm t

! 11

continue

GETTING STARTED -16- 3-20-75

Hence, part numnber 1 is the central processor. Then we could
interrogate the supply relation seeking the suppliers of part
number 1 as followus:

\r

go

range of s is supply

retrieve (s.snumn) wvhere s.pnum =1
Ng ;

query formnulation complete

fsnum |

1
'
[}
]
'
]

t
{
{
{
{ 2411
{
{
continue

‘Motice that suppliers 8,241, 475 and 999 supply centreal proces-
sors.

Hotice also that suppliers 8 and 475 are repeated more than once.
Beceuse of the internal way that INGRES is organized, much faster
response time can be supported if the "answer”® is printed on the
terminel with duplicate values sonetines present. In this case,
the user mnust look at the response and note the duplications. On
the other hand, should the user wish the system to detect and
delete the duplicates, the wuser need only retrieve his ansver
into o temporary relation and then print that relation. The
instructions are the following:

Ay

go

range of s is supply

retrieve into cpu(s.snum) where s.pnum = |
print cpu :
hg

cpu relation

GETTING STARTED -17- 3-20-7?5

{ 2411
f 9991
continue

In eny case, it is rather inconvenient to have to issue two re-
trieve commands to get the information we require.

Yhat is even more inconvenient is the necessity of obtaining the
first output, namely the numnber 1, end then nanually substituting
this into the second query. It would have been extremely incon-
venient if the central processor had had several part numbers; we
would haove had to substitute them all.

The following indicates one way around this inconvenience.

\Ne

go

reange of p is parts

retrieve into cpu(p.pnumn) where p.pnane = "central processor"®
range of Cc is cpu

reange of s is supply

retrieve (s.snum) where s.pnum SC.pnun

’-‘g

Here, we have executed the first half of the query as before
obtaining in cpu the ansver *“{®. Then the second helf of the
query is executed with a variable declared over the cpu relation.
In the second retrieve statement the c.pnum sinply haes the value
“1" and the stotement should work correctly.

Unfortunately, we get the following response!:
In the CREARTE of “"cpu * a duplicate relation nane

“cpu * caused execution to halt.

INGRES tokes the attitude that it should warn you wvhen you are
ebout to destroy information in ¢ relation by putting newvw infor-
mation in it. Hence, it will not let you execute the above
stotement until you either:

1) destroy cpu (which was created earlier) indicating you do not
need the old information any mnore or

2) change the nane of the cpu relation in the interaction so - it
does not conflict with a relation that exists.

Ve take the latter course and change cpu to cpunumn by entering

GETTING STARTED -18- 3-20-75

the editor and using the substitute conmand. Bhen ve return to
[NGRES wve should have the following:

range of p is parts

retrieve into cpunun(p.pnun’ where p.pnane = “central processor"®
range of ¢ is cpununm

renge of s is supply

retrieve (s.snum) vhere s.pnumn =c.phun

hg

A nore precise way to think about queries with more thaen one
variable is the following. Ve will indicate a conceptual way
that INGRES MIGHT process such a query in a step by step fashion.

e deal with the second half of the above query nanmely

range of s is supply
range of € is newcpu
retrieve (s.snum) where S.pRUR=C . .pnun

The first step of processing this query might be:

\re

go

range of s is supply

range of € is cpunun

retrieve into partanswer(Snum=s. SNUA, SPNUN=XS. DRUR,CPRUREC.PNUN)
print partanswer

\‘g

The relation partanswer contains one row for each and every pos-

sible pair of rows in supply and newcpu. The printout is the
following. Examine it carefully so you understand what is hap-
pening.

query formulation conmplete
partanswer relation

fsnum I[spnum lIcpnun |
{ 1
| 2
{ 1
{ gl 1
[3
{ 4

GETTING STARTED -19- 3-20-73

{ 81 21 11
f 81 21 11
l 1221 71 11
{ 1221 71 ti
t 1221 91 11
{ 4401 6! 11
! 1311 81 i
! 2411 41 1
i 621 31 11
1 4751 21 11
{ 4751 11 11
t 81 61 ti
| 8l 6l 11
! Si 41 11
! St 41 ti
! 20 St il
{ 201 51 11
{ 411 St 11
! 21 St 1l
! 2411 i 11
| 241! 21 11
! 2411 31 11
! 671 Sl 11
i 671 41 11
| 9991 11 ti
! 9991 21 i
! 9991 31 11
{ 9991 41 i1
{ 2991 St 1l
{ 2991 61 11
f 9991 72t L
! 999 | 8l 11
! 9994 91 1
| 9991 101 11
i 9991 111 11
{ 9991 121 i
! 999 1| 131 11
i 9991 141 1
l 2411 8l i1
{ 241l 91 11
{ 1311 81 11
{ 13114 8l 11
| 1311 91 i1
{ 131t 91 11
{ 81 111 1
t 8l 121 i1
i 81 111 11
{ 8t 121 11
! 8i 81 11

GETTING STARTED -20- 3-20-735

{ gl 21 11
81 11 11
{ 8l 21 ii
continue

The second portion of the processing of this query nov involves
the partansver relation. Notice that the original quelification
statement

S.SNUR=C.pPNUN

vhich involved tvwo different relations (cpunum and supply) can be
stated using only the partenswer relation as follous:

\e

go

range of o is partanswver

retrieve (o .snum) where a.spnum=q.Cpnunm

g

The response to this interaction is the correct ansver as follous:

ontinue

Nntice what has been printed is each rov of the partansver rela-
tion that has identical entries in its second and third coluans.

Vhenever you are in doubt concerning the mecning of a query with
mnore then one variable in it, always think of the two step pro-
cess described above and you will not go wrong. With this in
mind, convince yourself that the correct answer to our interac-
tion ebove can also be found using the following code.

Ay

go

renge of s is supply

raenge of p is parts

retrieve (s.snum) where s.pnun=p.pnun and p.pnane="central processor"®

\‘g

GETTING STARTED -21- 3-20-7?5

So far in this docunent we have considered hovw to retrieve por-
tions of a relation (or relations) that aere of interest. The
exanples have indicated the pover of QUEL for retrieval purposes.
The only feature which has not yet been considered s aggrega-
tion.

Ue now illustrate the use of this construct in tvo exanples. The
folloving connand finds the nuaber of part nanes from the parts
reletion which are black,

\r

go :

range of p is parts

retrieve (total= count(p.pnane where p.color = "black"))
\g

query formulation complete

Itotal |

{ 41
continue

The next command finds the sum of quantities of part nuaber 6
eble to be supplied before October 1, 1976.

e

go

range of s is supply

retrieve (s = sun(s.quan where s.pnun=6 and s.shipdate(*?6-10-1"))

k‘g

query fornulation complete
is f

{eome=- f

A 91

continue

The following points should be noted about aggregates:

o) aggregates have the fornm
egg-op(target-list where qualification).

agg-op caen be
nin
LY
count
sun
avg (sum/count)

" GETTING STARTED -22- 3-20-75

The target 1list is the quantity for which the aggregate is
desired using those tuples wh:zh satisfy the qualification.

b) There is no limnit on the number of variables which cen appear
in an aggregate.

c) Aggregates can be nested, i.e. the target list and qualifica-
tion may themselves contain aggregates.

d> The “QUEL" section of the reference nanual indicates certain
illegal aggregations. For exanple, avg is only allovwed for quan-
tities which are numeric. An attempt to find the average of a
quantity that is alphanunmeric (for exanple pnane) vwill result in
on error.

e) An aggregate can appear anywhere in a QUEL interaction.

be nov turn to the other feutdres of QUEL.

First, o user may put comments anywvhere in his QUEL statements in
order to make them more readable. This feature is especially
useful when interactions ere saved and reexecuted at a later
time.

[HGRES considers any text string bounded by "/%" on the front and
“«/" on the rear to be a comment. It simply deletes the comnent
during processing as illustrated below.

“\r

go

raeange of s is supply

’/* This is a conmnent to indicate the format acccepted by QUEL for
conmentss/

retrieve (s.snum) where s.pnuan = |

"»9

Another command which .proves useful is the exit connand which s
“\Ng", i.e.

\r
go
\‘q

This command will type o« friendly greeting on your terminal and

return you to the care of UNIX for any further processing you mnay
vish to do. The current greeting is the following!

GETTING STARTED -23- 3-20-7S

query formulation conplete
INGRES vers 2.3 logout

Tue Mar 18 13:39:01 1975
goodbye - come again

The only other way to “"bail out” of INGRES is to hit the “del®
key. This should only be used in emergency (for exanple to abort
o printout which is much too long). It has the effect of return-
ing you directly to UNIX.

The other conmand which you should knov about et this tine is the
destroy command. It has the following syntax:!

\e

go

destroy cpu

g

It "wipes avay" the cpu relation entirely. It should be wused
vhen you are finished with the information in a relation or when
you went to reuse the neme of a relation for new information.

The only response from INGRES which you receive is!

query formaulaotion conplete
continue

Ve will nov discuss the three update commands that are aveilable
in QUEL: respectively delete, replace and append.

The delete comnmand is especially sinple and has the folloving
format:

delete variaoble-name where qualification

The following illustrates the effect of o delete statement.
“p

go

range of § is supply
delete s where s.snun = 8

Ng
A1l that INGRES will echo is:!

query formulation complete
continue

GETTING STARTED -24- 3-20-75

The effect of o delete statement is that all rovs of supply are
found which satisfy the qualification *s.snumn =8" and insteed of
being returned to the user’s terminal are instead deleted.

To convince yourself that this is indeed the case try printing
the suppty relation.

The qualification of a delete statement may be as complicated as
it can be for retrieve stotements. Therefore, it is e sinple
natter to delete from the supply relation the rows corresponding
to those suppliers who supply the part called “central proces-
sor®. Try to formulate this delete statenent and convince your-
self that it worked correctly.

Unfortunately, there is currently no facility in INGRES for the
rows vhich are getting deleted to be echoed on the user’'s terni-
nal.

Also, you nay only delete rows from ONE relation at a time wusing
the delete comnmand. Therefore, only one varieble can appear
between the delete command end the "where®” staotement. There are
several reasons for enfcrcing this restriction which are beyond
the scope of this manual.

Hote finally that a delete statement which has no “"where"” state-
nent is alloved. It has the effect of deleting all the rows in a
relation. bhat remains is a perfectly legal relation which has
nothing in it.

Ve turn now to the effect of replace commands. They have the
folloving general format:

repleace variable-name{colunn-name = result,...,.colunn-namne = result)
where qualification

Before formally explaining this command ve do sone ex(aples.
First, we will <change supplier number 475 to 495 in the supply
relation aos follous:

\r

go
range of s is supply
replace s(snun=495) where s.snum = 475

hg
Again all that is echoed is:

query formnuletion complete

GETTING STARTED -25- 3-20-75

cont inue

You must again print the supply relation if you do not beteive
that INGRES did what you wanted. We will now chenge the supplier
nunber to 400 of all suppliers who supply the part “central pro-
cessor" as follous:

\r

go

raenge of s is supply

range of p is paerts

replace s(snumn=400) wvhere s.pnumn=p.pnun and
p.pnane="central processor®

Ng

fgain the only echo is an indication of conpletion of the con-
nand.

Hore formally, one can think cbout replace statenents in the fol-
loving way.

1) All the rows in the relation specified by the variable direct-
ly after the "replace” are found which satisfy the quelification.
(In this last example it will be those rovs which have s.paua=1).

2) For all such rovs, the information inside the parentheses is
exanined and whatever is on the left of eech equals sign is re-
placed by whatever is on the right of it.

The following points should be noted concerning replace
statements:

ey INGRES echos only a *“continue” or any error nessages which may
be present in the command.

b) The quelification may involve any number of variables and may
be as complex as desired.

c) The quentity on the right of any equals sign may be any compu-
totion possible in a retrieve stotenent.

d) The equals sign may be replaced by any of the words, "is",
Ibu“ .

e) there is no requirement that any of the rovs be changed by o
replace statement; if no rows qualify, then none are changed.

f) It may happen that you try to replace o data item in o relae-
tion by more than one value. This represents a situation of "non

GETTIHG STARTED ~-26- 3-20-75

functionality". The issue of non functionality will not be pur-
sued further in this nanual.

Ye now turn to the issue of getting new information inte IKGRES.
There are two mechanisms which can be used. One is to use the
eppend conmmand.

This command allows the user to add informetion to o relation
which already exists. In its simplist form it looks like the
following:

\r

go

eppend to parts(pnun=18,pnane="disk revinder®,color="btue”,
weight=7,gohs=1)

\‘ g

Again the only message you get from INGRES is:

query formulation complete
continue

Again you must print the parts relation if you do not believe
your update had the correct effect. After you do this try the
commnand to delete the row you just put in.

In this simple form an append comanand has the fornm of

eppend to relation-name(colunn=function,....colunn=function)

Each coluan nmust appear inside the parentheses and nust be set
equal to something (in the exaaple above various constants).
These constants are put into their appropriate places in o new
row of the relation indicated by relation-nanme. Note <clearly

that o new row can be added to any relation in this fashion.

If one wishes to enter data into ¢ new relation, he nust ¢first

create the relation using the INGRES create command. This has
the effect of creating an emnpty relation with a given relation
name and given colunn names. In ¢ create statenent the format of

each column must formally be specified. An exanple of a create
statement is the following.

\r

go
create example(character = c10, integer = i2, float = f4)
\‘g

GETTING STARTED -27- 3-20-75

This statenent creates o new relation called exanple with colunns
character, integer and float. These columnns are respectively o
character string of length 10 bytes, an integer of length 2 bytes
and a floating point number of length 4 bytes. This formet in-
formation encbles INGRES to correctly store and retrieve data of
various types. The types currently supported are the following:

it, 12, i4 (integers)
fe, 8 (floating point numnbers)
ct, €2, ..., €255 (character strings)

Try printing the exanple relation to see what happens.

You can now execute append stotements to add rows to the exanmple
relation gsince it now exists.

Successive application of append statements can add any nunber of
rows to o relation. However, if one has many additions to nmake
it may be easier to use the second update mechanism.

INGRES supports a fecility to copy a relation into INGRES from a
given user file in UNIX. The general form of a copy statement is
the following:

copy relation-name(colunn = format,..., coluan = format)
{from, to) “UNIX-file-nanmne"

Ve do an exanple of the copy operation at this time.

\e

go

copy exanple(character = c10, integer = i2, float = f4)
from */nnt/mike/excnple”

\g

This exanple finds the file "/ant/mnike/exanple® and reeds the
first 16 bytes into row one of the exanple relation . It ¢then
reads the next 16 bytes into rovw 2 and continues until an end of
file. In this vay o user who has o tape in a given fixed length
format can copy it into a UNIX file and then use the INGRES copy
coanand to form o relation from his datea. Likewise, a wuser who
vishes to take information away from INGRES for processing under
control of UNIX way use the INGRES copy command to a UNIX file
(instead of from a UNIX file).

GETTING STARTED -28- 3-20-75

There are several points to be remembered about copy:

a) the relation name to be copied into or from must exist prior
- to the copy command.

b) The format stotements in the copy command specify the detu
format of the UNIX file. This format need not be the some as the
one used for the INGRES relation being copied.

c) The columns in the copy comrmand need not be in the same order
as they appeared in the create conmand which forned the relation
involved. [INGRES correctly reorders columnns where necessary.

d) If the length of the column in the copy command does not equal
the length of the coluan from the creote stetement but the data
types are the seame, the folloving operations take place:

for cheracter string- they are padded with blanks if a larger field
is required. If o shorter field is desired, an error message resutt

for integers- they are converted to the appropriate length. The
result is unpredictoble if this conversion causes en overflow.

for floating point- they are converted to the appropriate length

d) If the date format of a columan is not the saeme in the UNIX
file and the INGRES relation, eppropriate conversions are nade
using stendard conventions.

0ften one wants éonversson to teke place from character strings
of o variable length to either integer or floating point format.

Suppose, for exaomnple, one creates using the UNIX editor a file
called /mnt/nike/sanple with contents:

123, 46.5
402, 34.1
20, 7.3
2000, 700.0

In the editor it is o quick operation to perfora this tesk. Vhat
one would like novw is for INGRES to convert the first field to an
integer and the second to a floating point number for each of the
four desired rovs during the copy operation. Moreover, one would
like INGRES to recognize the comma and carriage return as delin-
iters betuween the variable length fields.

GETTING STARTED -29- _ 3-20-75

This is done os follows:

\r

go

create example2(int = 2, float = f4)

copy exaenple2(int = c0, float = c0) fron "/ant/mnike/sanple”

Ng

This will correctly copy and convert the four rows. The formet c0
says sinply look for a character string delimited by ¢ comma, o
carriege return or other non numeric cheracter and convert it to
the type specified in the create stotement. Unfortunately, you
cannot put a decimal point into fields which you wish converted
to integers. :

0f course, the user could have done the same transfer by correct-
ly elligning the information in /ant/nike/sanple so each colunmn
vwas of fixed length. Hovever, c0 format spares the user this
hassle.

The last notion we discuss in this manual is how to discover what
format a relation is stored in. This is sonetines necessary wvhen
ve have to know whether to put quote marks around strings that we
use in an interaction.

For example in the oparts relation discussed above there is a
column called pnun. In one interaction ve required part nanes
that (among other things) had the property that pnum was less
than 10. If pnum was stored as a character string we would have
been required to put quotes around the 10 in order for the in-
teraction to work correctly. However, ve knew it was an integer
end the interection worked correctly as stated.

To find the format of a relation sinply type

help “relation-nane"

and the various columns, their formats and other information will
be returned to your terminal.

GETTING STARTED -30- 3-20-7S5

