
The POSTGRES Data Model†

Lawrence A. Rowe
Michael R. Stonebraker

Computer Science Division, EECS Department
University of California

Berkeley, CA 94720

Abstract

The design of the POSTGRES data model is described. The data model is a relational
model that has been extended with abstract data types including user-defined operators and pro-
cedures, relation attributes of type procedure, and attribute and procedure inheritance. These
mechanism can be used to simulate a wide variety of semantic and object-oriented data model-
ing constructs including aggregation and generalization, complex objects with shared subobjects,
and attributes that reference tuples in other relations.

1. Introduction

This paper describes the data model for POSTGRES, a next-generation extensible database
management system being developed at the University of California [StR86]. The data model is
based on the idea of extending the relational model developed by Codd [Cod70] with general
mechanisms that can be used to simulate a variety of semantic data modeling constructs. The
mechanisms include: 1) abstract data types (ADT’s), 2) data of type procedure, and 3) rules.
These mechanisms can be used to support complex objects or to implement a shared object
hierarchy for an object-oriented programming language [Row86]. Most of these ideas have
appeared elsewhere [Ste84, Sto85, Sto86a, Sto86b].

We have discovered that some semantic constructs that were not directly supported can be
easily added to the system. Consequently, we have made several changes to the data model and
the syntax of the query language that are documented here. These changes include providing
support for primary keys, inheritance of data and procedures, and attributes that reference tuples
in other relations.

The major contribution of this paper is to show that inheritance can be added to a relational
data model with only a modest number of changes to the model and the implementation of the
system. The conclusion that we draw from this result is that the major concepts provided in an
hhhhhhhhhhhhhhhhhhhhhhhh

† This research was supported by the National Science Foundation under Grant DCR-
8507256 and the Defense Advanced Research Projects Agency (DoD), Arpa Order No. 4871,
monitored by Space and Naval Warfare Systems Command under Contract N00039-84-C-0089.

1

object-oriented data model (e.g., structured attribute types, inheritance, union type attributes, and
support for shared subobjects) can be cleanly and efficiently supported in an extensible relational
database management system. The features used to support these mechanisms are abstract data
types and attributes of type procedure.

The remainder of the paper describes the POSTGRES data model and is organized as fol-
lows. Section 2 presents the data model. Section 3 describes the attribute type system. Section
4 describes how the query language can be extended with user-defined procedures. Section 5
compares the model with other data models and section 6 summarizes the paper.

2. Data Model

A database is composed of a collection of relations that contain tuples which represent
real-world entities (e.g., documents and people) or relationships (e.g., authorship). A relation
has attributes of fixed types that represent properties of the entities and relationships (e.g., the
title of a document) and a primary key. Attribute types can be atomic (e.g., integer, floating
point, or boolean) or structured (e.g., array or procedure). The primary key is a sequence of
attributes of the relation, when taken together, uniquely identify each tuple.

A simple university database will be used to illustrate the model. The following command
defines a relation that represents people:

create PERSON (Name = char[25],
Birthdate = date, Height = int4,
Weight = int4, StreetAddress = char[25],
City = char[25], State = char[2])

This command defines a relation and creates a structure for storing the tuples.

The definition of a relation may optionally specify a primary key and other relations from
which to inherit attributes. A primary key is a combination of attributes that uniquely identify
each tuple. The key is specified with a key-clause as follows:

create PERSON (. . .)
key (Name)

Tuples must have a value for all key attributes. The specification of a key may optionally
include the name of an operator that is to be used when comparing two tuples. For example,
suppose a relation had a key whose type was a user-defined ADT. If an attribute of type box was
part of the primary key, the comparison operator must be specified since different box operators
could be used to distinguish the entries (e.g., area equals or box equality). The following exam-
ple shows the definition of a relation with a key attribute of type box that uses the area equals
operator (AE) to determine key value equality:

create PICTURE(Title = char[25], Item = box)
key (Item using AE)

Data inheritance is specified with an inherits-clause. Suppose, for example, that people in
the university database are employees and/or students and that different attributes are to be
defined for each category. The relation for each category includes the PERSON attributes and
the attributes that are specific to the category. These relations can be defined by replicating the
PERSON attributes in each relation definition or by inheriting them for the definition of

2

PERSON. Figure 1 shows the relations and an inheritance hierarchy that could be used to share
the definition of the attributes. The commands that define the relations other than the PERSON
relation defined above are:

create EMPLOYEE (Dept = char[25],
Status = int2, Mgr = char[25],
JobTitle = char[25], Salary = money)

inherits (PERSON)

create STUDENT (Sno = char[12],
Status = int2, Level = char[20])

inherits (PERSON)

create STUDEMP (IsWorkStudy = bool)
inherits (STUDENT, EMPLOYEE)

A relation inherits all attributes from its parent(s) unless an attribute is overriden in the
definition. For example, the EMPLOYEE relation inherits the PERSON attributes Name, Birth-
date, Height, Weight, StreetAddress, City, and State. Key specifications are also inherited so
Name is also the key for EMPLOYEE.

Relations may inherit attributes from more than one parent. For example, STUDEMP
inherits attributes from STUDENT and EMPLOYEE. An inheritance conflict occurs when the
same attribute name is inherited from more than one parent (e.g., STUDEMP inherits Status
from EMPLOYEE and STUDENT). If the inherited attributes have the same type, an attribute
with the type is included in the relation that is being defined. Otherwise, the declaration is disal-

hh

Figure 1: Relation hierarchy.
hh

3

lowed.1

The POSTGRES query language is a generalized version of QUEL [HSW75], called POST-
QUEL. QUEL was extended in several directions. First, POSTQUEL has a from-clause to
define tuple-variables rather than a range command. Second, arbitrary relation-valued expres-
sions may appear any place that a relation name could appear in QUEL. Third, transitive closure
and execute commands have been added to the language [Kue84]. And lastly, POSTGRES
maintains historical data so POSTQUEL allows queries to be run on past database states or on
any data that was in the database at any time. These extensions are described in the remainder of
this section.

The from-clause was added to the language so that tuple-variable definitions for a query
could be easily determined at compile-time. This capability was needed because POSTGRES
will, at the user’s request, compile queries and save them in the system catalogs. The from-
clause is illustrated in the following query that lists all work-study students who are sophomores:

retrieve (SE.name)
from SE in STUDEMP
where SE.IsWorkStudy

and SE.Status = ‘‘sophomore’’

The from-clause specifies the set of tuples over which a tuple-variable will range. In this exam-
ple, the tuple-variable SE ranges over the set of student employees.

A default tuple-variable with the same name is defined for each relation referenced in the
target-list or where-clause of a query. For example, the query above could have been written:

retrieve (STUDEMP.name)
where STUDEMP.IsWorkStudy

and STUDEMP.Status = ‘‘sophomore’’

Notice that the attribute IsWorkStudy is a boolean-valued attribute so it does not require an expli-
cit value test (e.g., STUDEMP.IsWorkStudy = ‘‘true’’).

The set of tuples that a tuple-variable may range over can be a named relation or a
relation-expression. For example, suppose the user wanted to retrieve all students in the data-
base who live in Berkeley regardless of whether they are students or student employees. This
query can be written as follows:

retrieve (S.name)
from S in STUDENT*
where S.city = ‘‘Berkeley’’

The ‘‘*’’ operator specifies the relation formed by taking the union of the named relation (i.e.,
STUDENT) and all relations that inherit attributes from it (i.e., STUDEMP). If the ‘‘*’’ operator
hhhhhhhhhhhhhhhhhhhhhhhh

1 Most attribute inheritance models have a conflict resolution rule that selects one of the
conflicting attributes. We chose to disallow inheritance because we could not discover an exam-
ple where it made sense, except when the types were identical. On the other hand, procedure in-
heritance (discussed below) does use a conflict resolution rule because many examples exist in
which one procedure is prefered.

4

was not used, the query retrieves only tuples in the student relation (i.e., students who are not
student employees). In most data models that support inheritance the relation name defaults to
the union of relations over the inheritance hierarchy (i.e., the data described by STUDENT*
above). We chose a different default because queries that involve unions will be slower than
queries on a single relation. By forcing the user to request the union explicitly with the ‘‘*’’
operator, he will be aware of this cost.

Relation expressions may include other set operators: union (∪), intersection (∩), and
difference (−). For example, the following query retrieves the names of people who are students
or employees but not student employees:

retrieve (S.name)
from S in (STUDENT ∪ EMPLOYEE)

Suppose a tuple does not have an attribute referenced elsewhere in the query. If the reference is

in the target-list, the return tuple will not contain the attribute.2 If the reference is in the
qualification, the clause containing the qualification is ‘‘false’’.

POSTQUEL also provides set comparison operators and a relation-constructor that can be
used to specify some difficult queries more easily than in a conventional query language. For
example, suppose that students could have several majors. The natural representation for this
data is to define a separate relation:

create MAJORS(Sname = char[25],
Mname = char[25])

where Sname is the student’s name and Mname is the major. With this representation, the fol-
lowing query retrieves the names of students with the same majors as Smith:

retrieve (M1.Sname)
from M1 in MAJORS
where {(x.Mname) from x in MAJORS

where x.Sname = M1.Sname}
⊂ {(x.Mname) from x in MAJORS

where x.Sname=‘‘Smith’’}

The expressions enclosed in set symbols (‘‘{...}’’) are relation-constructors.

The general form of a relation-constructor3 is
{(target-list) from from-clause

where where-clause}

which specifies the same relation as the query

hhhhhhhhhhhhhhhhhhhhhhhh
2 The application program interface to POSTGRES allows the stream of tuples passed back

to the program to have dynamically varying columns and types.
3 Relation constructors are really aggregate functions. We have designed a mechanism to

support extensible aggregate functions, but have not yet worked out the query language syntax
and semantics.

5

retrieve (target-list)
from from-clause
where where-clause

Note that a tuple-variable defined in the outer query (e.g., M1 in the query above) can be used
within a relation-constructor but that a tuple-variable defined in the relation-constructor cannot
be used in the outer query. Redefinition of a tuple-variable in a relation constructor creates a
distinct variable as in a block-structured programming language (e.g., PASCAL). Relation-
valued expressions (including attributes of type procedure described in the next section) can be
used any place in a query that a named relation can be used.

Database updates are specified with conventional update commands as shown in the follow-
ing examples:

/* Add a new employee to the database. */
append to EMPLOYEE(name = value,

age = value, ...)

/* Change state codes using
MAP(OldCode, NewCode). */

replace P(State = MAP.NewCode)
from P in PERSON*
where P.State = MAP.OldCode

/* Delete students born before today. */
delete STUDENT
where STUDENT.Birthdate < ‘‘today’’

Deferred update semantics are used for all updates commands.

POSTQUEL supports the transitive closure commands developed in QUEL* [Kue84]. A
‘‘*’’ command continues to execute until no tuples are retrieved (e.g., retrieve*) or updated
(e.g., append*, delete*, or replace*). For example, the following query creates a relation that
contains all employees who work for Smith:

retrieve* into SUBORD(E.Name, E.Mgr)
from E in EMPLOYEE, S in SUBORD
where E.Name = ‘‘Smith’’

or E.Mgr = S.Name

This command continues to execute the retrieve-into command until there are no changes made
to the SUBORD relation.

Lastly, POSTGRES saves data deleted from or modified in a relation so that queries can be
executed on historical data. For example, the following query looks for students who lived in
Berkeley on August 1, 1980:

retrieve (S.Name)
from S in STUDENT[‘‘August 1, 1980’’]
where S.City = ‘‘Berkeley’’

The date specified in the brackets following the relation name specifies the relation at the desig-
nated time. The date can be specified in many different formats and optionally may include a
time of day. The query above only examines students who are not student employees. To
search the set of all students, the from-clause would be

6

...from S in STUDENT*[‘‘August 1, 1980’’]

Queries can also be executed on all data that is currently in the relation or was in it at some
time in the past (i.e., all data). The following query retrieves all students who ever lived in
Berkeley:

retrieve (S.Name)
from S in STUDENT[]
where S.City = ‘‘Berkeley’’

The notation ‘‘[]’’ can be appended to any relation name.

Queries can also be specified on data that was in the relation during a given time period.
The time period is specified by giving a start- and end-time as shown in the following query that
retrieves students who lived in Berkeley at any time in August 1980:

retrieve (S.Name)
from S in STUDENT*[‘‘August 1, 1980’’,

‘‘August 31, 1980’’]
where S.City = ‘‘Berkeley’’

Shorthand notations are supported for all tuples in a relation up to some date (e.g.,
STUDENT*[,‘‘August 1, 1980’’]) or from some date to the present (e.g., STUDENT*[‘‘August
1, 1980’’,]).

The POSTGRES default is to save all data unless the user explicitly requests that data be
purged. Data can be purged before a specific data (e.g., before January 1, 1987) or before some
time period (e.g., before six months ago). The user may also request that all historical data be
purged so that only the current data in the relation is stored.

POSTGRES also supports versions of relations. A version of a relation can be created from
a relation or a snapshot. A version is created by specifying the base relation as shown in the
command

create version MYPEOPLE from PERSON

that creates a version, named MYPEOPLE, derived from the PERSON relation. Data can be
retrieved from and updated in a version just like a relation. Updates to the version do not modify
the base relation. However, updates to the base relation are propagated to the version unless the
value has been modified. For example, if George’s birthdate is changed in MYPEOPLE, a
replace command that changes his birthdate in PERSON will not be propagated to MYPEOPLE.

If the user does not want updates to the base relation to propagate to the version, he can
create a version of a snapshot. A snapshot is a copy of the current contents of a relation
[AdL80]. A version of a snapshot is created by the following command:

create version YOURPEOPLE
from PERSON[‘‘now’’]

The snapshot version can be updated directly by issuing update commands on the version. But,
updates to the base relation are not propagated to the version.

A merge command is provided to merge changes made to a version back into the base rela-
tion. An example of this command is

7

merge YOURPEOPLE into PERSON

that will merge the changes made to YOURPEOPLE back into PERSON. The merge command
uses a semi-automatic procedure to resolve updates to the underlying relation and the version
that conflict [Gae84].

This section described most of the data definition and data manipulation commands in
POSTQUEL. The commands that were not described are the commands for defining rules, util-
ity commands that only affect the performance of the system (e.g., define index and modify),
and other miscellaneous utility commands (e.g., destroy and copy). The next section describes
the type system for relation attributes.

3. Data Types

POSTGRES provides a collection of atomic and structured types. The predefined atomic
types include: int2, int4, float4, float8, bool, char, and date. The standard arithmetic and com-
parison operators are provided for the numeric and date data types and the standard string and
comparison operators for character arrays. Users can extend the system by adding new atomic
types using an abstract data type (ADT) definition facility.

All atomic data types are defined to the system as ADT’s. An ADT is defined by specify-
ing the type name, the length of the internal representation in bytes, procedures for converting
from an external to internal representation for a value and from an internal to external represen-
tation, and a default value. The command

define type int4 is (InternalLength = 4,
InputProc = CharToInt4,
OutputProc = Int4ToChar, Default = ‘‘0’’)

defines the type int4 which is predefined in the system. CharToInt4 and Int4ToChar are pro-
cedures that are coded in a conventional programming language (e.g., C) and defined to the sys-
tem using the commands described in section 4.

Operators on ADT’s are defined by specifying the the number and type of operands, the
return type, the precedence and associativity of the operator, and the procedure that implements
it. For example, the command

define operator ‘‘+’’(int4, int4) returns int4
is (Proc = Plus, Precedence = 5,

Associativity = ‘‘left’’)

defines the plus operator. Precedence is specified by a number. Larger numbers imply higher
precedence. The predefined operators have the precedences shown in figure 2. These pre-
cedences can be changed by changing the operator definitions. Associativity is either left or
right depending on the semantics desired. This example defined an operator denoted by a sym-
bol (i.e., ‘‘+’’). Operators can also be denoted by identifiers as shown below.

Another example of an ADT definition is the following command that defines an ADT that
represents boxes:

8

hh

iiiiiiiiiiiiiiiiiiiiiiiiii
Precedence Operatorsii

80 ↑iiiiiiiiiiiiiiiiiiiiiiiiii
70 not − (unary)iiiiiiiiiiiiiiiiiiiiiiiiii
60 * /iiiiiiiiiiiiiiiiiiiiiiiiii
50 + − (binary)iiiiiiiiiiiiiiiiiiiiiiiiii
40 < ≤ > ≥iiiiiiiiiiiiiiiiiiiiiiiiii
30 = ≠iiiiiiiiiiiiiiiiiiiiiiiiii
20 andiiiiiiiiiiiiiiiiiiiiiiiiii
10 oriiiiiiiiiiiiiiiiiiiiiiiiiicc

c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c

Figure 2: Predefined operators precedence.
hh

define type box is (InternalLength = 16,
InputProc = CharToBox,
OutputProc = BoxToChar, Default = ‘‘’’)

The external representation of a box is a character string that contains two points that represent
the upper-left and lower-right corners of the box. With this representation, the constant

‘‘20,50:10,70’’

describes a box whose upper-left corner is at (20, 50) and lower-right corner is at (10, 70).
CharToBox takes a character string like this one and returns a 16 byte representation of a box
(e.g., 4 bytes per x- or y-coordinate value). BoxToChar is the inverse of CharToBox

Comparison operators can be defined on ADT’s that can be used in access methods or
optimized in queries. For example, the definition

define operator AE(box, box) returns bool
is (Proc = BoxAE, Precedence = 3,

Associativity = ‘‘left’’, Sort = BoxArea,
Hashes, Restrict = AERSelect,
Join = AEJSelect, Negator = BoxAreaNE)

defines an operator ‘‘area equals’’ on boxes. In addition to the semantic information about the
operator itself, this specification includes information used by POSTGRES to build indexes and
to optimize queries using the operator. For example, suppose the PICTURE relation was defined
by

create PICTURE(Title = char[], Item = box)

and the query

9

retrieve (PICTURE.all)
where PICTURE.Item AE ‘‘50,100:100,50’’

was executed. The Sort property of the AE operator specifies the procedure to be used to sort the
relation if a merge-sort join strategy was selected to implement the query. It also specifies the
procedure to use when building an ordered index (e.g., B-Tree) on an attribute of type box. The
Hashes property indicates that this operator can be used to build a hash index on a box attribute.
Note that either type of index can be used to optimize the query above. The Restrict and Join
properties specify the procedure that is to be called by the query optimizer to compute the res-
trict and join selectivities, respectively, of a clause involving the operator. These selectivity pro-
perties specify procedures that will return a floating point value between 0.0 and 1.0 that indicate
the attribute selectivity given the operator. Lastly, the Negator property specifies the procedure
that is to be used to compare two values when a query predicate requires the operator to be
negated as in

retrieve (PICTURE.all)
where not (PICTURE.Item

AE ‘‘50,100:100,50’’)

The define operator command also may specify a procedure that can be used if the query predi-
cate includes an operator that is not commutative. For example, the commutator procedure for
‘‘area less than’’ (ALT) is the procedure that implements ‘‘area greater than or equal’’ (AGE).
More details on the use of these properties is given elsewhere [Sto86b].

Type-constructors are provided to define structured types (e.g., arrays and procedures) that
can be used to represent complex data. An array type-constructor can be used to define a
variable- or fixed-size array. A fixed-size array is declared by specifying the element type and
upper bound of the array as illustrated by

create PERSON(Name = char[25])

which defines an array of twenty-five characters. The elements of the array are referenced by
indexing the attribute by an integer between 1 and 25 (e.g., ‘‘PERSON.Name[4]’’ references the
fourth character in the person’s name).

A variable-size array is specified by omitting the upper bound in the type constructor. For
example, a variable-sized array of characters is specified by ‘‘char[].’’ Variable-size arrays are
referenced by indexing the attribute by an integer between 1 and the current upper bound of the
array. The predefined function size returns the current upper bound. POSTGRES does not
impose a limit on the size of a variable-size array. Built-in functions are provided to append
arrays and to fetch array slices. For example, two character arrays can be appended using the
concatenate operator (‘‘+’’) and an array slice containing characters 2 through 15 in an attribute
named x can be fetched by the expression ‘‘x[2:15].’’

The second type-constructor allows values of type procedure to be stored in an attribute.
Procedure values are represented by a sequence of POSTQUEL commands. The value of an
attribute of type procedure is a relation because that is what a retrieve command returns. More-
over, the value may include tuples from different relations (i.e., of different types) because a pro-
cedure composed of two retrieve commands returns the union of both commands. We call a
relation with different tuple types a multirelation. The POSTGRES programming language

10

interface provides a cursor-like mechanism, called a portal, to fetch values from multirelations
[StR86]. However, they are not stored by the system (i.e., only relations are stored).

The system provides two kinds of procedure type-constructors: variable and parameterized.
A variable procedure-type allows a different POSTQUEL procedure to be stored in each tuple
while parameterized procedure-types store the same procedure in each tuple but with different
parameters. We will illustrate the use of a variable procedure-type by showing another way to
represent student majors. Suppose a DEPARTMENT relation was defined with the following
command:

create DEPARTMENT(Name = char[25],
Chair = char[25], ...)

A student’s major(s) can then be represented by a procedure in the STUDENT relation that
retrieves the appropriate DEPARTMENT tuple(s). The Majors attribute would be declared as
follows:

create STUDENT(..., Majors = postquel, ...)

Data type postquel represents a procedure-type. The value in Majors will be a query that fetches
the department relation tuples that represent the student’s minors. The following command
appends a student to the database who has a double major in mathematics and computer science:

append STUDENT(Name = ‘‘Smith’’, ...,
Majors =

‘‘retrieve (D.all)
from D in DEPARTMENT
where D.Name = ‘‘Math’’

or D.Name = ‘‘CS’’’’)

A query that references the Majors attribute returns the string that contains the POSTQUEL
commands. However, two notations are provided that will execute the query and return the
result rather than the definition. First, nested-dot notation implicitly executes the query as illus-
trated by

retrieve (S.Name, S.Majors.Name)
from S in STUDENT

which prints a list of names and majors of students. The result of the query in Majors is impli-
citly joined with the tuple specified by the rest of the target-list. In other words, if a student has
two majors, this query will return two tuples with the Name attribute repeated. The implicit join
is performed to guarantee that a relation is returned.

The second way to execute the query is to use the execute command. For example, the
query

execute (S.Majors)
from S in STUDENT
where S.Name = ‘‘Smith’’

returns a relation that contains DEPARTMENT tuples for all of Smith’s majors.

Parameterized procedure-types are used when the query to be stored in an attribute is nearly
the same for every tuple. The query parameters can be taken from other attributes in the tuple or
they may be explicitly specified. For example, suppose an attribute in STUDENT was to

11

represent the student’s current class list. Given the following definition for enrollments:
create ENROLLMENT(Student = char[25],

Class = char[25])

Bill’s class list can be retrieved by the query
retrieve (ClassName = E.Class)
from E in ENROLLMENT
where E.Student = ‘‘Bill’’

This query will be the same for every student except for the constant that specifies the student’s
name.

A parameterized procedure-type could be defined to represent this query as follows:
define type classes is

retrieve (ClassName = E.Class)
from E in ENROLLMENT
where E.Student = $.Name

end

The dollar-sign symbol (‘‘$’’) refers to the tuple in which the query is stored (i.e., the current
tuple). The parameter for each instance of this type (i.e., a query) is the Name attribute in the
tuple in which the instance is stored. This type is then used in the create command as follows

create STUDENT(Name = char[25], ...,
ClassList = classes)

to define an attribute that represents the student’s current class list. This attribute can be used in
a query to return a list of students and the classes they are taking:

retrieve (S.Name, S.ClassList.ClassName)

Notice that for a particular STUDENT tuple, the expression ‘‘$. Name’’ in the query refers to the
name of that student. The symbol ‘‘$’’ can be thought of as a tuple-variable bound to the current
tuple.

Parameterized procedure-types are extremely useful types, but sometimes it is inconvenient
to store the parameters explicitly as attributes in the relation. Consequently, a notation is pro-
vided that allows the parameters to be stored in the procedure-type value. This mechanism can
be used to simulate attribute types that reference tuples in other relations. For example, suppose
you wanted a type that referenced a tuple in the DEPARTMENT relation defined above. This
type can be defined as follows:

define type DEPARTMENT(int4) is
retrieve (DEPARTMENT.all)
where DEPARTMENT.oid = $1

end

The relation name can be used for the type name because relations, types, and procedures have
separate name spaces. The query in type DEPARTMENT will retrieve a specific department
tuple given a unique object identifier (oid) of the tuple. Each relation has an implicitly defined
attribute named oid that contains the tuple’s unique identifier. The oid attribute can be accessed
but not updated by user queries. Oid values are created and maintained by the POSTGRES
storage system [Sto87]. The formal argument to this procedure-type is the type of an object
identifier. The parameter is referenced inside the definition by ‘‘$n’’ where n is the parameter

12

number.

An actual argument is supplied when a value is assigned to an attribute of type DEPART-
MENT. For example, a COURSE relation can be defined that represents information about a
specific course including the department that offers it. The create command is:

create COURSE(Title = char[25],
Dept = DEPARTMENT, ...)

The attribute Dept represents the department that offers the course. The following query adds a
course to the database:

append COURSE(
Title = ‘‘Introductory Programming’’,
Dept = DEPARTMENT(D.oid))

from D in DEPARTMENT
where D.Name = ‘‘computer science’’

The procedure DEPARTMENT called in the target-list is implicitly defined by the ‘‘define type’’
command. It constructs a value of the specified type given actual arguments that are type com-
patible with the formal arguments, in this case an int4.

Parameterized procedure-types that represent references to tuples in a specific relation are
so commonly used that we plan to provide automatic support for them. First, every relation
created will have a type that represents a reference to a tuple implicitly defined similar to the
DEPARTMENT type above. And second, it will be possible to assign a tuple-variable directly to
a tuple reference attribute. In other words, the assignment to the attribute Dept that is written in
the query above as

... Dept = DEPARTMENT(D.oid) ...

can be written as
... Dept = D ...

Parameterized procedure-types can also be used to implement a type that references a tuple
in an arbitrary relation. The type definition is:

define type tuple(char[], int4) is
retrieve ($1.all)
where $1.oid = $2

end

The first argument is the name of the relation and the second argument is the oid of the desired
tuple in the relation. In effect, this type defines a reference to an arbitrary tuple in the database.

The procedure-type tuple can be used to create a relation that represents people who help
with fund raising:

create VOLUNTEER(Person = tuple,
TimeAvailable = integer, ...)

Because volunteers may be students, employees, or people who are neither students nor employ-
ees, the attribute Person must contain a reference to a tuple in an arbitrary relation. The follow-
ing command appends all students to VOLUNTEER:

13

append VOLUNTEER(
Person = tuple(relation(S), S.oid))

from S in STUDENT*

The predefined function relation returns the name of the relation to which the tuple-variable S is
bound.

The type tuple will also be special-cased to make it more convenient. Tuple will be a
predefined type and it will be possible to assign tuple-variables directly to attributes of the type.
Consequently, the assignment to Person written above as

... Person = tuple(relation(S), S.oid) ...

can be written
... Person = S ...

We expect that as we get more experience with POSTGRES applications that more types may be
special-cased.

4. User-Defined Procedures

This section describes language constructs for adding user-defined procedures to POST-
QUEL. User-defined procedures are written in a conventional programming language and are
used to implement ADT operators or to move a computation from a front-end application pro-
cess to the back-end DBMS process.

Moving a computation to the back-end opens up possibilities for the DBMS to precompute
a query that includes the computation. For example, suppose that a front-end application needed
to fetch the definition of a form from a database and to construct a main-memory data structure
that the run-time forms system used to display the form on the terminal screen for data entry or
display. A conventional relation database design would store the form components (e.g., titles
and field definitions for different types of fields such as scalar fields, table fields, and graphics
fields) in many different relations. An example database design is:

create FORM(FormName, ...)

create FIELDS(FormName, FieldName,
Origin, Height, Width,
FieldKind, ...)

create SCALARFIELD(FormName,
FieldName, DataType,
DisplayFormat, ...)

create TABLEFIELD(FormName,
FieldName, NumberOfRows, ...)

create TABLECOLUMNS(FormName,
FieldName, ColumnName, Height,
Width, FieldKind, ...)

The query that fetches the form from the database must execute at least one query per table and
sort through the return tuples to construct the main-memory data structure. This operation must
take less than two seconds for an interactive application. Conventional relational DBMS’s can-
not satisfy this time constraint.

14

Our approach to solving this problem is to move the computation that constructs the main-
memory data structure to the database process. Suppose the procedure MakeForm built the data
structure given the name of a form. Using the parameterized procedure-type mechanism defined
above an attribute can be added to the FORM relation that stores the form representation com-
puted by this procedure. The commands

define type formrep is
retrieve (rep = MakeForm($.FormName))

end
addattribute (FormName, ...,

FormDataStructure = formrep)
to FORM

define the procedure type and add an attribute to the FORM relation.

The advantage of this representation is that POSTGRES can precompute the answer to a
procedure-type attribute and store it in the tuple. By precomputing the main-memory data struc-
ture representation, the form can be fetched from the database by a single-tuple retrieve:

retrieve (x = FORM.FormDataStructure)
where FORM.FormName = ‘‘foo’’

The real-time constraint to fetch and display a form can be easily met if all the program must do
is a single-tuple retrieve to fetch the data structure and call the library procedure to display it.
This example illustrates the advantage of moving a computation (i.e., constructing a main-
memory data structure) from the application process to the DBMS process.

A procedure is defined to the system by specifying the names and types of the arguments,
the return type, the language it is written in, and where the source and object code is stored. For
example, the definition

define procedure AgeInYears(date) returns int4
is (language = ‘‘C’’, filename = ‘‘AgeInYears’’)

defines a procedure AgeInYears that takes a date value and returns the age of the person. The
argument and return types are specified using POSTGRES types. When the procedure is called,
it is passed the arguments in the POSTGRES internal representation for the type. We plan to
allow procedures to be written in several different languages including C and Lisp which are the
two languages being used to implement the system.

POSTGRES stores the information about a procedure in the system catalogs and dynami-
cally loads the object code when it is called in a query. The following query uses the
AgeInYears procedure to retrieve the names and ages of all people in the example database:

retrieve (P.Name,
Age = AgeInYears(P.Birthdate))

from P in PERSON*

User-defined procedures can also take tuple-variable arguments. For example, the follow-
ing command defines a procedure, called Comp, that takes an EMPLOYEE tuple and computes
the person’s compensation according to some formula that involves several attributes in the tuple
(e.g., the employee’s status, job title, and salary):

15

define procedure Comp(EMPLOYEE)
returns int4 is (language = ‘‘C’’,
filename = ‘‘Comp1’’)

Recall that a parameterized procedure-type is defined for each relation automatically so the type
EMPLOYEE represents a reference to a tuple in the EMPLOYEE relation. This procedure is
called in the following query:

retrieve (E.Name, Compensation = Comp(E))
from E in EMPLOYEE

The C function that implements this procedure is passed a data structure that contains the names,
types, and values of the attributes in the tuple.

User-defined procedures can be passed tuples in other relations that inherit the attributes in
the relation declared as the argument to the procedure. For example, the Comp procedure
defined for the EMPLOYEE relation can be passed a STUDEMP tuple as in

retrieve (SE.Name,
Compensation = Comp(SE))

from SE in STUDEMP

because STUDEMP inherits data attributes from EMPLOYEE.

The arguments to procedures that take relation tuples as arguments must be passed in a
self-describing data structure because the procedure can be passed tuples from different rela-
tions. Attributes inherited from other relations may be in different positions in the relations.
Moreover, the values passed for the same attribute name may be different types (e.g., the
definition of an inherited attribute may be overridden with a different type). The self-describing
data structure is a list of arguments, one per attribute in the tuple to be passed, with the following
structure

(AttrName, AttrType, AttrValue)

The procedure code will have to search the list to find the desired attribute. A library of routines
is provided that will hide this structure from the programmer. The library will include routines
to get the type and value of an attribute given the name of the attribute. For example, the follow-
ing code fetches the value of the Birthdate attribute:

GetValue(‘‘Birthdate’’)

The problem of variable argument lists arises in all object-oriented programming languages and
similar solutions are used.

The model for procedure inheritance is nearly identical to method inheritance in object-
oriented programming languages [StB86]. Procedure inheritance uses the data inheritance
hierarchy and similar inheritance rules except that a rule is provided to select a procedure when
an inheritance conflict arises. For example, suppose that a Comp procedure was defined for
STUDENT as well as for EMPLOYEE. The definition of the second procedure might be:

define procedure Comp(STUDENT)
returns int4 is (language = ‘‘C’’,
filename = ‘‘Comp2’’)

A conflict arises when the query on STUDEMP above is executed because the system does not
know which Comp procedure to call (i.e., the one for EMPLOYEE or the one for STUDENT).

16

The procedure called is selected from among the procedures that take a tuple from the relation
specified by the actual argument STUDEMP or any relation from which attributes in the actual
argument are inherited (e.g., PERSON, EMPLOYEE, and STUDENT).

Each relation has an inheritance precedence list (IPL) that is used to resolve the conflict.
The list is constructed by starting with the relation itself and doing a depth-first search up the
inheritance hierarchy starting with the first relation specified in the inherits-clause. For exam-
ple, the inherits-clause for STUDEMP is

... inherits (STUDENT, EMPLOYEE)

and its IPL is
(STUDEMP, STUDENT,
EMPLOYEE, PERSON)

PERSON appears after EMPLOYEE rather than after STUDENT where it would appear in a
depth-first search because both STUDENT and EMPLOYEE inherit attributes from PERSON (see
figure 1). In other words, all but the last occurrence of a relation in the depth-first ordering of

the hierarchy is deleted.4

When a procedure is called and passed a tuple as the first argument, the actual procedure
invoked is the first definition found with the same name when the procedures that take argu-
ments from the relations in the ILP of the argument are searched in order. In the example above,
the Comp procedure defined for STUDENT is called because there is no procedure named Comp
defined for STUDEMP and STUDENT is the next relation in the IPL.

The implementation of this procedure selection rule is relatively easy. Assume that two
system catalogs are defined:

PROCDEF(ProcName, ArgName, ProcId)
IPL(RelationName, IPLEntry, SeqNo)

where PROCDEF has an entry for each procedure defined and IPL maintains the precedence
lists for all relations. The attributes in PROCDEF represent the procedure name, the argument
type name, and the unique identifier for the procedure code stored in another catalog. The attri-
butes in IPL represent the relation, an IPL entry for the relation, and the sequence number for
that entry in the IPL of the relation. With these two catalogs, the query to find the correct pro-
cedure for the call

Comp(STUDEMP)

is5

hhhhhhhhhhhhhhhhhhhhhhhh
4 We are using a rule that is similar to the rule for the new Common Lisp object model

[Boe86]. It is actually slightly more complicated than described here in order to eliminate some
nasty cases that arise when there are cycles in the inheritance hierarchy.

5 This query uses a QUEL-style aggregate function.

17

retrieve (P.ProcId)
from P in PROCDEF, I in IPL
where P.ProcName = ‘‘Comp’’
and I.RelationName = ‘‘STUDEMP’’
and I.IPLEntry = P.ArgName
and I.SeqNo = MIN(I.SeqNo

by I.RelationName
where I.IPLEntry = P.ArgName

and P.ProcName = ‘‘Comp’’
and I.RelationName = ‘‘STUDEMP’’)

This query can be precomputed to speed up procedure selection.

In summary, the major changes required to support procedure inheritance is 1) allow tuples
as arguments to procedures, 2) define a representation for variable argument lists, and 3) imple-
ment a procedure selection mechanism. This extension to the relational model is relatively
straightforward and only requires a small number of changes to the DBMS implementation.

5. Other Data Models

This section compares the POSTGRES data model to semantic, functional, and object-
oriented data models.

Semantic and functional data models [Dae85, HaM81, Mye80, Shi81, SmS77, Zan83] do not
provide the flexibility provided by the model described here. They cannot easily represent data
with uncertain structure (e.g., objects with shared subobjects that have different types).

Modeling ideas oriented toward complex objects [HaL82, LoP83] cannot deal with objects
that have a variety of shared subobjects. POSTGRES uses procedures to represent shared subob-
jects which does not have limitation on the types of subobjects that are shared. Moreover, the
nested-dot notation allows convenient access to selected subobjects, a feature not present in
these systems.

Several proposals have been made to support data models that contain non-first normal
form relations [Bae86, Dae86, Dee86]. The POSTGRES data model can be used to support
non-first normal form relations with procedure-types. Consequently, POSTGRES seems to con-
tain a superset of the capabilities of these proposals.

Object-oriented data models [Ane86, CoM84] have modeling constructs to deal with uncer-
tain structure. For example, GemStone supports union types which can be used to represent
subobjects that have different types [CoM84]. Sharing of subobjects is represented by storing
the subobjects as separate records and connecting them to a parent object with pointer-chains.
Precomputed procedure values will, in our opinion, make POSTGRES performance competitive
with pointer-chain proposals. The preformance problem with pointer-chains will be most obvi-
ous when an object is composed of a large number of subobjects. POSTGRES will avoid this
problem because the pointer-chain is represented as a relation and the system can use all of the
query processing and storage structure techniques available in the system to represent it. Conse-
quently, POSTGRES uses a different approach that supports the same modeling capabilities and
an implementation that may have better performance.

18

Finally, the POSTGRES data model could claim to be object-oriented, though we prefer not
to use this word because few people agree on exactly what it means. The data model provides
the same capabilities as an object-oriented model, but it does so without discarding the relational
model and without having to introduce a new confusing terminology.

6. Summary

The POSTGRES data model uses the ideas of abstract data types, data of type procedure,
and inheritance to extend the relational model. These ideas can be used to simulate a variety of
semantic data modeling concepts (e.g., aggregation and generalization). In addition, the same
ideas can be used to support complex objects that have unpredicatable composition and shared
subobjects.

References

[AdL80] M. E. Adiba and B. G. Lindsay, ‘‘Database Snapshots’’, Proc. 6th Int. Conf. on
Very Large Databases, Montreal, Canada, Oct. 1980, 86-91.

[Ane86] T. Anderson and et. al., ‘‘PROTEUS: Objectifying the DBMS User Interface’’,
Proc. Int. Wkshp on Object-Oriented Database Systems, Asilomar, CA, Sep. 1986.

[Bae86] D. Batory and et.al., ‘‘GENESIS: A Reconfigurable Database Management
System’’, Tech. Rep. 86-07, Dept. of Comp. Sci., Univ. of Texas at Austin, 1986.

[Boe86] D. B. Bobrow and et.al., ‘‘COMMONLOOPS: Merging Lisp and Object-Oriented
Programming’’, Proc. 1986 ACM OOPSLA Conf., Portland, OR, Sep. 1986, 17-29.

[Cod70] E. F. Codd, ‘‘A Relational Model of Data for Large Shared Data Bases’’, Comm. of
the ACM, JUNE 1970.

[CoM84] G. Copeland and D. Maier, ‘‘Making Smalltalk a Database System’’, Proc. 1984
ACM-ACM-SIGMOD Conf. on Management of Data Int. Conf. on the Mgt. of Data,
June 1984.

[Dae86] P. Dadam and et.al., ‘‘A DBMS Prototype to Support Extended NF2 Relations: An
Integrated View on Flat Tables and Hierarchies’’, Proc. ACM-ACM-SIGMOD Conf.
on Management of Data Conf. on Mgt. of Data, Washington, DC, May 1986.

[Dae85] U. Dayal and et.al., ‘‘A Knowledge-Oriented Database Management System’’,
Proc. Islamorada Conference on Large Scale Knowledge Base and Reasoning
Systems, Feb. 1985.

[Dee86] U. Deppisch and et.al., ‘‘A Storage System for Complex Objects’’, Proc. Int. Wkshp
on Object-Oriented Database Systems, Asilomar, CA, Sep. 1986.

[Gae84] H. Garcia-Molina and et.al., ‘‘DataPatch: Integrating Inconsistent Copies of a
Database after a Partition’’, Tech. Rep. Tech. Rep.# 304, Dept. Elec. Eng. and
Comp. Sci., Princeton, NJ, 1984.

19

[HaM81] M. Hammer and D. McLeod, ‘‘Database Description with SDM’’, ACM-Trans.
Database Systems, Sep. 1981.

[HaL82] R. Haskins and R. Lorie, ‘‘On Extending the Functions of a Relational Database
System’’, Proc. 1982 ACM-ACM-SIGMOD Conf. on Management of Data
Conference on Management of Data, Orlando, FL, JUNE 1982.

[HSW75] G. Held, M. R. Stonebraker and E. Wong, ‘‘INGRES -- A Relational Data Base
System’’, Proc. AFIPS AFIPS Nat. Computer Conf., 1975, 409-416.

[Kue84] R. Kung and et.al., ‘‘Heuristic Search in Database Systems’’, Proc. 1st International
Workshop on Expert Data Bases, Kiowah, SC, Oct. 1984.

[LoP83] R. Lorie and W. Plouffee, ‘‘Complex Objects and Their Use in Design
Transactions’’, Proc. Engineering Design Applications Stream of ACM-IEEE Data
Base Week, San Jose, CA, May 1983.

[Mye80] J. Myloupoulis and et.al., ‘‘A Language Facility for Designing Database Intensive
Applications’’, ACM-Trans. Database Systems, JUNE 1980.

[Row86] L. A. Rowe, ‘‘A Shared Object Hierarchy’’, Proc. Int. Wkshp on Object-Oriented
Database Systems, Asilomar, CA, Sep. 1986.

[Shi81] D. Shipman, ‘‘The Functional Model and the Data Language Daplex’’, ACM-Trans.
Database Systems, Mar. 1981.

[SmS77] J. Smith and D. Smith, ‘‘Database Abstractions: Aggregation and Generalization’’,
ACM Trans. Database Systems, JUNE 1977.

[StB86] M. Stefik and D. G. Bobrow, ‘‘Object-Oriented Programming: Themes and
Variations’’, The AI Magazine 6, 4 (Winter 1986), 40-62.

[Ste84] M. R. Stonebraker and et. al., ‘‘QUEL as a Data Type’’, Proc. 1984 ACM-ACM-
SIGMOD Conf. on Management of Data Conf. on the Mgt. of Data, May 1984.

[Sto85] M. R. Stonebraker, ‘‘Triggers and Inference in Data Base Systems’’, Proc.
Islamorada Conference on Large Scale Knowledge Base and Reasoning Systems,
Feb. 1985.

[StR86] M. R. Stonebraker and L. A. Rowe, ‘‘The Design of POSTGRES’’, Proc. 1986
ACM-ACM-SIGMOD Conf. on Management of Data Int. Conf. on the Mgt. of Data,
June 1986.

[Sto86a] M. R. Stonebraker, ‘‘Object Management in POSTGRES Using Procedures’’, Proc.
Int. Wkshp on Object-Oriented Database Systems, Asilomar, CA, Sep. 1986.

[Sto86b] M. R. Stonebraker, ‘‘Inclusion of New Types in Relational Data Base Systems’’,
Proc. Second Int. Conf. on Data Base Eng., Los Angeles, CA, Feb. 1986.

[Sto87] M. R. Stonebraker, ‘‘POSTGRES Storage System’’, Submitted for publication,
1987.

[Zan83] C. Zaniola, ‘‘The Database Language GEM’’, Proc. 1983 ACM-ACM-SIGMOD
Conf. on Management of Data Conference on Management of Data, San Jose, CA.,

20

May 1983.

21

