System Support for Software Fault Tolerancein
Highly Available Database M anagement Systems
Copyright (©1992
by

Mark Paul Sullivan



System Support for Software Fault Tolerancein Highly Available

Database M anagement Systems

by
Mark Paul Sullivan
Abstract

Today, software errors are the leading cause of outages in fault tolerant systems. System
availability can be improved despite software errors by fast error detection and recovery
techniquesthat minimizetotal downtimeafter an outage. Thisdissertation analyzessoftware
errors in three commercial systems and describes the implementation and evaluation of
several techniques for early error detection and fast recovery in a database management
system (DBMYS).

The software error study examines errors reported by customersin three IBM systems
programs. the MVS operating system and the IMS DBMS and DB2 DBMS. The study
classifies errors by the type of coding mistake and the circumstances in the customer’s
environment that caused the error to arise. It observes a higher availability impact from
addressing errors, such as uninitialized pointers, than software errors as a whole. It also
detailsthe frequencies and types of addressing errorsand characterizesthe damagethey do.

The error detection work evaluates the use of hardware write protection both to detect
addressing-related errors quickly and to limit the damage that can occur after a software

error. System calls added to the operating system allow the DBM S to guard (write-protect)



some of its internal data structures. Guarding DBMS data provides quick detection of
corrupted pointers and similar software errors. Data structures can be guarded as long as
correct softwareisgiven ameansto temporarily unprotect the datastructures before updates.
The dissertation analyzes the effects of three different update models on performance,
software complexity, and error protection.

To improve DBMS recovery time, previous work on the POSTGRES DBMS has sug-
gested using a storage system based on no-overwrite techniques instead of write-ahead log
processing. The dissertation describes modifications to the storage system that improve
its performance in environments with high update rates. Analysis shows that, with these
modifications and some non-volatile RAM, the /O requirements of POSTGRES running a
TP1 benchmark will be the same asthose of aconventional system, despitethe POSTGRES
force-at-commit buffer management policy. The dissertation also presents an extension to
POSTGRES to support the fast recovery of communication links between the DBMS and
its clients.

Finally, the dissertation adds to the fast recovery capabilities of POSTGRES with two
techniquesfor maintaining B-treeindex consistency without log processing. Onetechnique
is similar to shadow paging, but improves performance by integrating shadow meta-data
with index meta-data. The other technique uses a two-phase page reorganization scheme
to reduce the space overhead caused by shadow paging. Measurements of a prototype
implementation and estimates of the effect of the algorithms on large trees show that they

will have limited impact on data manager performance.






go here

Acknowledgements



Contents

List of Figures

List of Tables

1

2

Introduction

1.1 SoftwareFailuresand DataAvailability . . . . . ... ... ... ....
1.2 A Mode of Software Errors Incorporating Error Propagation . . . . . . .
1.3 Existing Approachesto Software Fault Tolerance . . . . . .. .. .. ..
1.4 Organization of ThisDissertation . . . . . . .. ... .. ... .....

A Survey of Software Errorsin Systems Programs

21 Introduction . . . . . . . . ...

22 PreviousWork . . . ...

2.3 Gathering SoftwareErrorData. . . . . . . . . ... ...
231 SamplingfromRETAIN . . . . . . . .. ... ... ... ....
23.2 Characterizing SoftwareDefects. . . . . . .. ... ... .. ..

24 Results . . . . . . e
241 Error TypeDigtributions . . . . . . . . ...
24.2 Comparing Productsby Impact . . . . . ... ... ... ....
243 FError TriggeringEvents . . . . . . . .. ..o
244 FalureSymptoms . . . . .. ...

25 Summary. . ...

Using Write-Protected Data Structuresin POSTGRES

3.1 Introduction . . . . . . . . ... ...
311 SystemAssumptions. . . . . . ...

3.2 Modelsfor Updating ProtectedData . . . . . . . . ... ... ......
3.21 Overview of Page Guarding Strategies. . . . . . . . ... .. ..
3.22 TheExposePageUpdateModel . . . . . . ... ... ... ...
3.23 TheDeferred WriteUpdateModel . . . . . . . ... ... ...

Vi

viii

[ENe IS I =

15
18
20
24
25
31
32
48
50
57
61



CONTENTS

3.24 The Expose Segment UpdateModdl . . . . . . .. . ..
3.3 Peformance Impact of Guarded Data Structures. . . . . . . . .
331 Performanceof GuardinginaDBMS . . . .. ... ..
3.3.2 Performanceof GuardinginaDBMS . . . . . . .. ..
3.3.3 Reducing Guarding Costs Through Architectural Support
3.4 Reliability Impact of Guarded Data Structures . . . . . . . . ..
3.5 Previous Work Related to Guarded Data Structures . . . . . . .
36 Summary. . . . ...

Fast Recovery in the POSTGRESDBM S

41 Introduction . . . . .. ...

4.2 A No-OverwriteStorageSystem . . . . . . . .. ... .. ...
421 Saving VersonsUsing Tuple Differences . . . . . . . .
422 GarbageCollectionand Archiving. . . . . . . .. ...
4.2.3 Recovering the Database After Failures . . . . . . . ..
4.24 Vaidating Tuples During Historical Queries. . . . . . .

4.3 Performance Impact of Force-at-Commit Policy . . . . . . . ..

44
45

431
4.3.2
433
434
435
4.3.6
4.3.7

Benchmark . . . . . ... ... . ...
Conventional Disk Subsystem . . . . . . .. ... .. .. ....
GroupCommit. . . . . . .. .. . ...
Non-VolatileRAM . . . . . . . . ... ...
RAID Disk Subsystems . . . . . . . .. ... ... .......
RAID and the Log-Structured FileSystem . . . . . . . . . . ..
Summary ... oL

GuardingtheDisk Cache . . . . .. .. ... ... ... ........
Recovering SessonContext . . . . . . . .. .. ... .. ...,

451 Communication Architecture of POSTGRES . . . . . .
452 Recovery Mechanism for POSTGRES Sessions . . . . .
453 Restarting Transactions Lost During Failure . . . . . . .

46 SUMMAY . . . . . . o

5.1

Supporting Indicesin the POSTGRES Storage System

Introduction . . . . . . .. ...
52 ASSUMPLIONS . . . . . . ..
5.3 Supportfor POSTGRESIndices. . . . . .. ... ... ... ......

531
532
5.3.3
534
535
5.36
5.3.7

Traditional B-tree DataStructure . . . . . . . .. .. ... ...
Sync Tokensand SynchronousWrites . . . . . . . .. .. .. ..
Technique One: Shadow Pagelndices . . . . . .. .. ... ...
Technique Two: Page ReorganizationIndices . . . . . .. .. ..
Delete, Merge, and Rebalance Operations . . . . . . . ... . ..
Secondary Pathsto Leaf Pages: B'™-tree . . . . . .. ... ...
Dynamic Hashing for POSTGRES . . . . . . .. ... ... ..



CONTENTS

54 Concurrency Control . . . . .
5.5 Using Shadow IndicesinLogical Logging . . . . . . . .. .. .. ....
5.6 Performance Measurements .
5.6.1 Modelling The Effect of Increased TreeHeights. . . . . . . . ..
5.6.2 Measurements of the POSTGRES B'"™¢-tree Implementation
5.6.3 Estimating Additional 1/0 Costs During Recovery . . . . . . ..
57 Summary. . ... ... ...

6 Conclusions

6.1 FutureWork . ... .. ...
Providing Availability for Long-Running Queries . . . . . . . ..
Fast Recovery inaMain Memory Database Manager . . . . . . .
Automatic Code and Error Check Generation . . . . . . ... ..

6.1.1
6.1.2
6.1.3
6.1.4

Bibliography

High Level Languages

200
204
209
210
213
216
218

220
224
224
225
226
227

229



Vi

List of Figures

11

2.1
22
2.3
24
2.5
2.6
2.7
2.8
29
2.10
211
212
2.13
214
2.15
2.16
217

31
3.2
3.3
3.4
35
3.6

41
4.2
4.3

Causesof Outagesin TandemSystems . . . . . . .. .. .. ... ... 3
DB2 Error Type Digtribution . . . . . . . . . ... ... ... .. 33
IMS Error Type Didtribution . . . . . . . .. ... ... ... ... 33
MV S Regular Sample Error Type Distribution . . . . . . . ... ... .. 34
Control/Addressing/Data Error Breakdown DB2, IMS, and MVS Systems 35
Summary of Addressing Error Percentagesin PreviousWork . . . . . . . 37
Distribution of the Most Common Control Errors . . . . . . . . ... .. 40
Distribution of the Most Common AddressingErrors . . . . . . . .. .. 43
MV S Overlay Sample Error Type Distribution . . . . . . . .. . ... .. 44
DB2 Error Trigger Distribution . . . . . . . ... ... ... ... 51
IMS Error Trigger Distribution . . . . . .. ... ... ... ... ... 51
MVS Error Trigger Distribution . . . . . . . .. . ... ... ... ... 52
Error Type Distribution for Error-Handling-TriggeredinDB2 . . . . . . . 56
Error Type Distribution for Error-Handling-TriggeredinIMS . . . . . . . 56
MVS Overlay Sample Failure Symptoms . . . . . . . .. .. ... ... 58
MV S Regular Sample Failure Symptoms . . . . . .. .. .. ... ... 59
IMSFailureSymptoms . . . . . . . .. ... 59
DB2 FailureSymptoms . . . . . . . . ... 60
POSTGRES ProcessArchitecture . . . . . . . . ... ... ... .... 67
Example of Extensble DBMSQuery . . . . . . .. .. ... ... ... 72
Expose Page UpdateModel . . . . . . . .. .. .. 75
Deferred WriteUpdateModel . . . . . . . . .. .. .. ... .. ... . 78
Remapping to Avoid Copiesin Deferred Write . . . . . . . . . ... .. 83
Costs of Updating Protected Records . . . . . . . .. ... ... .... 91
Forward DifferenceChain . . . . . . . ... .. ... .. ... ..... 114
Backward DifferenceChain . . . . . . . .. ... ... ... .. ..., 114

CreatinganOverflowPage . . . . . . . . . . .. ... ... ... .... 121



LIST OF FIGURES Vil

4.4
45

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

Tuple Qualification. . . . . . .. ... ... ... ... ... ... 130
Phases of the Client/Server Communication Protocol . . . . . . . . . .. 159
Conventional B-treePage . . . . . . . . .. . ... ... ... 176
ShadowingPageStrategy . . . . . . . . . . ... 179
ShadowingPageSplit . . . . .. .. ... . ... ... L 180
Two Page SplitsDuring the Same Transaction . . . . . . . ... ... .. 180
Page Split For Page ReorganizationB-trees . . . . . . . . .. .. .. .. 188
A merge operationon abalanced shadow B-tree. . . . . . .. .. .. .. 193
Normal B -Tree . . . . . . . . . . .. . ... ... 195
Worst-Case Inconsistent B"™-Tree. . . . . . ... ... ... ...... 196

Height of Treefor Different SizeB-trees. . . . . . . . . . .. .. .. .. 212



List of Tables

21
22
2.3

31
3.2
3.3

41
4.2
4.3
4.4
45

5.1

Average Sizeof anOverlay . . . . . . . .. ... ...
Distance From Intended Write Address . . . . . . . . . . .. .. .. ..
Operating System and DBMSError Impacts. . . . . . .. ... ... ..

Raw Costsof Guarding SystemCalls . . . . . . .. ... ... ... ..
Performance Impact of Guarding a CPU-Bound Version of POSTGRES .
Performance Impact of Guarding an |O-Bound Version of POSTGRES . .

Summary of 1/0 Trafficin a Conventiona Disk Subsystem . . . . . . ..
Group Commit in a Conventional Disk Subsystem . . . . . . ... .. ..
Summary of 1/0 traffic When NVRAM isAvailable . . . . . ... .. ..
Comparison of Random 1/0Osin RAID and a Conventional Disk Subsystem
Comparison of 1/0sin LFS RAID and a non-LFS Conventional Disk Sub-
SySteM ..

Insert/Lookup PerformanceComparison . . . . . . .. .. .. ... ...

viii



Chapter 1

| ntroduction

1.1 Software Failuresand Data Availability

Commercial computer users expect their systems to be both highly reliable and highly
available. Given a system’s service specification, the system isreliable if does not deviate
from the specification when it performsits services. The system isavailableif it isprepared
to perform the services when legitimate users requests them. A fault tolerant systemisone
that is designed to provide high availability and reliability in spite of failuresin hardware
or software components of the system. Once a fault tolerant system is in production, it
maintainshigh reliability through error detection, halting an operation rather than providing
an incorrect result. Fault tolerant systems achieve high availability by recovering transient
state quickly after an error isdetected, minimizingdowntimetoincrease overall availability.

Traditionally, fault tolerant systems have focused on detecting and masking hardware



CHAPTER 1. INTRODUCTION 2

(material) faults through hardware redundancy [42]. In today’s fault tolerant systems,
however, software failures, rather than hardware failures, are the largest cause of system
outage [30]. Figure 1.1 compares outage distributions in three years of a five year study
of Tandem Corporation’s highly available systems. In the figure, outages are classified by
the nature of the failure that caused the outage. Software outages are caused by failures
of the operating system, database management system, or application software. Hardware
outagesare caused by doublefailuresof hardware components, including microcode. Errors
made by the people who manage and maintain the system are separated into operator
and maintenance errors, since the system’s owners controlled day-to-day operations while
Tandem wasresponsiblefor routine maintenance. Environment failuresincludefires, floods,
and power outages of greater than one hour.

Tandem’s studies found that outages shifted over time from afairly even mix across all
sources to adistribution dominated by software failures. From 1985 to 1989, softwarewent
from causing 33% of outages to 62%. By 1989, the second and third largest contributors,
operations and hardware, were at fault only 15% and 7% of the time, respectively.

For Tandem, the trend is not due to worsening software quality, but to success in
curtailing outages caused by hardware and maintenancefailures. Overall, Tandem’ssystems
have gradually become morereliable; the mean time between system failureshas risen from
8 yearsto 21 years. Thereliability of the hardware components from which the systemsare
built has increased. Hardware redundancy techniques have gone a long way in detecting

and masking faults when those hardware components do wear out. The increasingly



CHAPTER 1. INTRODUCTION

g
604 w
Percentof  soq4— 4
Failures )
40 & R
11985 ‘
1987 ' H |
1989 T E
10 - ;
0
Hardware Maint.
Software Operator Environ.

Figure 1.1: Causesof Outagesin Tandem Systems. The chart representsthe
resultsof threeyearsof afiveyear study. Outagesare classified by thenature
of the component that failed. The graph shows a dramatic shift to software
astheprimary cause of system outage. Thebarsfor a given year do not sum
to 100% becausethe causes of some outages could not beidentified.



CHAPTER 1. INTRODUCTION 4

reliable hardware al so needs |ess maintenance. When maintenance isrequired, many of the
maintenance tasks have been automated in order to limit the errors that the maintenance
engineers can make. The rate of operator errors has remained constant, but it should soon
improve for some of the same reasons that maintenance error rates improved. Operator
interfaces are becoming less complex, hence, operators are less likely to make mistakes.
Over time, more of the tasks currently done by operators will be automated as well, which
removes the opportunity for operator errors. Thus, while progress in these areas has had
a noticeable impact, the growing dominance of software outages is making continued
advances in non-software fault tolerance less and |ess important.

A second study from Tandem indicates another software-related limit to system fault
tolerance [29]. Even when software does not cause the original outage, it often determines
the duration of the outage. Once an outage of any sort occurs, the system must reestablish
software state lost at the time of the failure. While the system is reinitializing, it is
unavailable to its users. A thorough approach to improving system availability must also
address software restart time.

This dissertation focuses on part of the software fault tolerance problem: improving the
reliability and availability of the database management system (DBMS). The integrity and
availability of datamanaged by aDBMSisusually animportant feature of the environments
in which fault tolerant systems are used. In Tandem’s outage study, the DBM S accounted
for about athird of the software failures (the remainder being divided between operating

system, communication software, and other applications). While we focus on the DBMS,



CHAPTER 1. INTRODUCTION 5

much of the work is applicable to other systems programs.

Before presenting the approach to software fault tolerance taken in the dissertation, this
chapter introduces a model of errors and describes some existing software fault tolerance
techniques. The model and some of the terms defined in the first section below will be
used throughout the dissertation. A review of the software fault tolerance literatureisinthe
section following the description of the error model. The final section below outlines the

remainder of the dissertation.

1.2 A Mode of SoftwareErrorslncorporating Error Prop-
agation

The software error model used in this dissertation highlights one of the significant
differences between hardware and software failure modes, error propagation. Using
redundancy, hardware components can detect their own errors and often recover without
disturbing the system. Software errors, on the other hand, sometimes cause damage that
is not detected immediately. The damaged system can initiate a sequence of additional
software errors as it executes, eventually causing the system to corrupt permanent data or
fail. Error propagation complicates software failure modes, making the code difficult to
reason about, test, and debug. Reproducing propagation-related failures during debugging
isdifficult since error propagation can be timing dependent.

To explore software fault tolerance techniques in the DBMS, we propose a model that



CHAPTER 1. INTRODUCTION 6

distinguishes between software errors based on the waysin which they propagate damageto
other partsof thesystem. Themodel breaks software errorsinto threeclasses. control errors,
addressing errors, and data errors. Control errors include programmer mistakes such as
deadlock in which the point of control (the program counter) islost or the program makes
an illegal state transition. The only corruption that occurs is to the variables representing
the current state of the program. Control errorscan propagate only when the broken module
communicates with other parts of the system. Addressing errors corrupt values that the
faulty routine did not intend to operate on. An uninitialized pointer would be an addressing
error, for example. Propagation from addressing errorsisthe most difficult to control since,
from the standpoint of the module whose data has been corrupted, the error is “random”;
it happens at a time when the module designers do not expect to communicate with the
faulty module. Data errors corrupt the values computed by the faulty routine. A data
error causes the program to miscalculate or misreport a result. Like control errors, data
errors can propagate only to modules related to the routine with the error. Unlike many
addressing errors, the source of the corruption in a data or control error can be tracked
during debugging by examining the code that is known to use the corrupted data.

In future database management systems, the impact of the cross-module error propaga-
tion caused by addressing errors may increase because of two trendsin DBM S design: data
manager extensbility and main memory resident databases. Extensible DBMSs include
extended relational systems[70], object-oriented systems [6], and DBMStoolkits[14]. An

extensible DBMS lets users or database administrators add access methods, operators, and



CHAPTER 1. INTRODUCTION 7

data types to manage complex objects. Moving functionality from DBMS clients to the
DBMS itself improves application performance but could worsen system failure behavior.
Extensibility alows different object managers with varying degrees of trustworthiness to
run together in the data manager. Every time one user on the system tries to use a new
object manager or combine existing ones in a different way, there is arisk of uncovering
latent errors. Because of addressing errors, thisrisk is not confined to the person using the
new feature; it affectsthe reliability and availability achieved by al concurrent users of the
database.

System designers have realized for some time that DBM S performance would improve
dramatically if the database resided entirely in main memory instead of residing primarily
ondisk (e.g. [20]). Yearsago, main memory capacity was the factor limiting the appeal of
main memory DBMSs. In high-end systems today, however, main memories large enough
to hold many databases are available, and memory prices are dropping. Commercial
systems still do not use main memory DBMSs, probably because system designers believe
that data stored main memory is more likely to be corrupted by errors than data stored
on disk. Corruption due to hardware and power failures can be eliminated if existing
redundancy techniques based on those discussed in [42] are applied to large main memories.
Operator and maintenance errors could harm dataon disk aseasily asdatain memory. This
leaves software errors as the largest remaining reliability difference between disk-resident
databases memory-resident ones. Inamain memory DBMS, thedanger of error propagation

makes addressing errors one of the most important differencesin the risk to datain main



CHAPTER 1. INTRODUCTION 8

memory and on disk.

1.3 Existing Approaches to Software Fault Tolerance

Current strategies for reducing the impact of software errors on systems fall into two
classes: fault prevention and fault tolerance. System designerswould obvioudy prefer not to
havesoftwareerrorsat all thantoinvent techniquesfor tolerating them. Somesoftwareerrors
are prevented through modular design, exhaustive testing, and formal software verification.
A survey of error prevention techniques is presented in [57]. Although most software
designsincorporate one or more of these techniques, the complexity and size of concurrent
systems programs such as the operating system and database management system make
error prevention alone insufficient for achieving high system reliability and availability.

Since fault prevention alone is not effective, software fault tolerance techniques are
used to detect and mask errors when they occur in the system. Like hardware fault
tolerance, software fault toleranceis usually based on redundancy. Because software errors
are usually design errors, rather than material failures, redundancy-based techniques have
limited effectiveness in software. Redundant hardware components can be expected to
fail independently, but software design errors often do not cause failure independently in
each redundant components. Most redundant software schemes only mask software errors
triggered by hardware transients and unusual events, such asinterrupts, that might arrive at

the redundant components at different times.



CHAPTER 1. INTRODUCTION 9

Systems that tolerate software faults usually employ either spatial redundancy, tem-
poral redundancy, or a hybrid of the two. Spatial redundancy uses concurrent instances
of the program running on separate processors in the hope that an error that strikesin one
instance will not occur in any of the others. In temporal redundancy, the system tries to
clean up any system state damaged by the error and retry the failed operation. Wulf [81]
makes the distinction between spatial and temporal redundancy in a paper on reliability in
the Hydra system.

N-version programming [3] is a famous spatial redundancy technique designed as a
software analog of the triple modular redundancy (TMR) techniques commonly used for
hardware fault tolerance. In N-Version programming, there are several versions of a
program each of which is designed and implemented by a different team of programmers.
The N versions run simultaneously, comparing results and voting to resolve conflicts. In
theory, the independent programs will fail independently. In practice, multiple version
failures are caused by errors in common tools, errors in program specification, errorsin
the voting mechanism, and commonalities introduced during bug fixes [78]. Furthermore,
experimental work [43][67] has indicated that even independent programmers often make
the same mistakes. Not surprisingly, different programmers find the same tasks difficult
to code correctly. For example, different programmers often forget to check for the same
boundary conditions.

Most database management systems rely on tempora redundancy to recover from

software errors. Most of recovery techniques surveyed in Haerder and Reuter [34] restore



CHAPTER 1. INTRODUCTION 10

the database to a transaction-consistent state in the hopes that the error does not occur. The
database management system’s clients then reinitiate any work aborted as a result of the
failure. In[62], Randell describes atemporal redundancy method called recovery blocks.
At the end of a block of code, an acceptance test isrun. If the test fails, the operation is
retried using an “alternate” routine. Ideally, thisis areimplementation of the routinethat is
simpler, but perhapsless efficient, than the original routine. Recovery blocks require fewer
hardware resources than N-version programs, but may be ineffective for the same reasons
as N-version programs.

Process pairing [7] is a hybrid between spatial and tempora redundancy in which
an identical version of the program runs as a backup to the primary one. The primary
and backup run as separate processes on different processors. In addition to masking
unrepeatable software errors, process pairs reduce the availability impact of hardware
errors since the primary and backup run on different processors. If a hardware error causes
the processor running the primary process to fail, the backup process will take over the
clients of the primary. Because only one team of programmers is required, a process
pair is considerably cheaper than an N-version program. Auragen [13] used a similar
scheme. Another spatial/temporal redundancy hybrid method uses redundant data in the
same address space to reconstruct data structures damaged by errors[76]. When an error is
detected during an operation on the datastructure, the structureisrebuilt using the redundant
dataand the operation isretried.

A system can only tolerate software errors if these errors are detected in the first



CHAPTER 1. INTRODUCTION 11

place. The most common approach to error detection in systems programs is to lace the
program with additional code that checksfor errors. Sometimesthese include data structure
consistency checkers that pass over program data and examine it for internal consistency.
By detecting errors quickly, even systems without redundant components limit the chance
that minor errorswill propagate into worse ones.

Unfortunately, checking for errors is expensive. No published figures are available
regarding the cost of error checking in the DBMS, but run time checks for array bounds
overruns in Fortran programs can double program execution time [32]. Furthermore,
the checkers themselves can have software errors. Error checking is not usualy done
systematically. The checking code has to be maintained as the software it checks is

maintained. Implementing and testing error checkers increases development cost.

1.4 Organization of ThisDissertation

The dissertation makesthree contributionstowardsthe goal of improving software fault
tolerance in database management systems. First, it assembles and analyzes a body of
information about software errorsthat will be useful to software availability and reliability
researchers. Second, it describes the implementation and evaluation of a mechanism for
detecting addressing errorsthat can be used in conjunction with existing ad-hoc consistency
checkers. Finally, it extendsthe DBM Sfast recovery techniques of the POSTGRES storage

system [69] in order to improve availability.



CHAPTER 1. INTRODUCTION 12

Chapter Two examines error data collected after software failures at IBM customer
sites in order to improve system designers understandings of the ways in which software
causes outage. The chapter presents the results of two software error studies in the MVS
operating system and the IMS and DB2 database management systems and compares these
results to those of earlier software error studies. Chapter Two shows that 40-55% of the
errorsreported in these three systems were control errors, while addressing and data errors
were 25-30% and 10-15%, respectively (others could not be classified according to the
model). In addition to the control/addressing/data error breakdown, Chapter Two provides
finer grain classes that include more detail about exactly how the programmer made the
error. The MVS study gives some specific information about the error propagation caused
by addressing errors. For example, these errors are more likely than other software errors
to have high impact on the availability experienced by customers. Addressing errorsin
MV S tend to be small and often corrupt data very near the data structure that the software
intended to operateon. Thisand other data presented in Chapter Two can be used to provide
alarger picture of software failuresin high-end commercia systems that, we hope, will be
useful to others studying fault tolerance and software testing outside of the context of the
dissertation.

Chapter Threefocuses on the use of hardwarewrite protection both to detect addressing-
related errors quickly and to limit the damage that can occur after a software error. System
calls added to the Sprite operating system allow the DBMS to guard (write-protect) some

of itsinternal data structures. Guarding DBM S data provides quick detection of corrupted



CHAPTER 1. INTRODUCTION 13

pointers and array bounds overruns, acommon source of software error propagation. Data
structures can be guarded as long as correct software is given a means to temporarily
unprotect the data structures before updates. The dissertation analyzes the effects of
three different update models on performance, software complexity, and error protection.
Measurements of a DBMS that uses guarding to protect its buffer pool show two to eleven
percent performance degradation in a debit/credit benchmark run against a main-memory
database. Guarding has a two to three percent impact on a conventional disk database, and
read-only data structures can be guarded without any affect on DBMS performance.

To lessen the availability impact of errorsoncethey are detected, the DBM S must restart
quickly after such errors are detected. Chapter Four devel ops an approach to fast recovery
centered on the POSTGRES storage system [69]. The original POSTGRES storage system
was designed to restore consistency of the disk database quickly, but did not consider
fast restoration of non-disk state such as network connections to clients. Chapter Four
describes extensions to POSTGRES required for fast reconnection of the DBMS and its
client processes. The chapter also describes a set of optimizations that reduce the impact
of the storage system on everyday performance, making fast recovery more practical for
databases with high transaction rates. Finally, Chapter Four presents an analysis of the I/O
impact of the POSTGRES storage system on a TP2 debit/credit workload. This analysis
shows that the optimized storage system does the same amount of 1/0 as a conventional
DBMS when a sufficient amount of non-volatile RAM is available.

Chapter Five also widens the applicability of the POSTGRES fast recovery techniques



CHAPTER 1. INTRODUCTION 14

by extending the POSTGRES storage system to handle index data structures. While the
POSTGRES storage system recovery strategies are effective for restoring the consistency
of heap (unkeyed) relation without log processing, different strategies must be taken for
maintaining the consistency of more complex disk data structures such as indices. The
two algorithms described in Chapter Five allow POSTGRES to recover B-tree, R-tree,
and hash indices without a write-ahead log. One agorithm is similar to shadow paging,
but improves performance by integrating shadow meta-data with index meta-data. The
other algorithm uses a two-phase page reorgani zation scheme to reduce the space overhead
caused by shadow paging. Although designed for the POSTGRES storage system, these
algorithms would also be useful in a conventional storage system as support for logical
logging. Using these techniques, POSTGRES B-tree lookup operations are slower than a
conventional system’s by 3-5% under most workloads. Inafew cases, POSTGRES |ookups
also requirean extradisk 1/0. On the other hand, the system can begin running transactions
immediately on recovery without first restoring the consistency of the database.

The sixth chapter concludes and describes some avenues for future research. Because
the dissertation has four very distinct sections, the literature review for each chapter will be
included in the chapter. Together, these chapters attack three problems of interest to fault
tolerant system designers. they describe the character of software errors, improve error

detection, and widen the applicability of some existing fast recovery techniques.



15

Chapter 2

A Survey of Software Errorsin Systems

Programs

2.1 Introduction

Any technique for improving system reliability and availability has underlying it a
model of system failure. A given technique is successful only if real systemsfail in ways
covered by the model. The introduction described a model of system failure based on
three kinds of software errors that propagate errorsin different ways. This model guided
our approach to maintaining high availability in POSTGRES and motivated some of the
techniques described in Chapters Three, Four, and Five. In this chapter, we present an
analysis of errorsdiscovered in three commercial systems programs. The analysis helpsto

clarify the control/addressing/dataerror model, hence, thereliability and availability impact



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 16

of the techniques described in the dissertation.

The chapter describes two studies of software errors identified in the MV'S operating
system and the IMS and DB2 database management systems. The data available for the
studies comes from an internal IBM database of error reports. Each report was filed by a
customer service representative when the software failed at acustomer siteinthefield. The
IBM programmers who repair a fault amend the error report with further details about the
fix. The studies only considered errors for which fixes were eventually found.

We classified the IBM error data in several different ways, each considering the cause
of an error from a dightly different perspective. Chapter Two concentrates on two of
these classifications: error type and error trigger. The error type providesinsight into the
programming mistakesthat cause softwarefailuresat customer sites. A better understanding
of programming mistakes will help programmers, recovery system designers, and software
tool designers to improve code quality. The error trigger illustrates the circumstances
under which latent errors arise a customer sites. Since software testing is supposed to
uncover these latent errors before the code is shipped to customers, the trigger data should
help show how testing strategies can be improved. The chapter also includes statistics on
failure symptoms, that characterize the way the system failed when it executed the faulty
code.

Because both the original data and the classification process are proneto error, studying
several different programswasimportant. Each program providesafairly independent error

sample; the programmers and the people who wrote bug reports were different for each



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 17

one. MV Sisnot anideal source of error data, sSinceit is an operating system not a database
management system. However, many of the resource management issues in DBMSs and
OSs are the same. DBMS and OS programs also have similar size, are written in similar
systems programming languages, and have the same kinds of concurrency, availability, and
performance requirements. Given the available data, MV'S seemed a good choice for an
additional source of error information.

A second reason that MV Swaschosen asasource of error dataisthat MV S maintenance
programmers noted the existence of addressing errors in a standard way. In MVS, the
damage caused by an addressing-related error is called an overlay by IBM field service
personnel. Searching for error reports that use this term allowed us to collect a large
sample of error reports that discuss addressing-related errors. These error reports could
be compared to MVS error reports as a whole. Because the error detection mechanism
described in Chapter Three only affects addressing errors, it was important to gather as
much additional information as possible about the character of addressing errors.

The chapter is organized as follows. Section Two summarizes several related software
error studies. Section Three describesthedata used intheBM studies and the classification
systems used to characterize the data. Section Four presents the results of the studies,
and Section Five summarizes the implications of these results for our system availability
techniques. For additional details about the studies themselves, see [73], which compares
addressing errors to errors overall in MVS, and [74], which focuses on control errors and

discusses differences between operating system and database management system errors.



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 18

2.2 Previous Work

We would have liked to use asurvey of datacollected and analyzed by other researchers
to evaluate the effectiveness of the POSTGRES error detection techniques, rather than
gather our own data. Unfortunately, error studies are often difficult to adapt to purposes
other than the onesthat the original researchershadinmind. Several early error studiestried
to show the importance of clear software specifications for improved code quality. Endres
[24] studied software errorsfound during internal testing of the DOS/V S operating system.
His classification was oriented towards differentiating between high-level design faults
and low-level programming faults. Glass [28] provides another high-level, specification-
oriented picture of software errors discovered during the development process. Neither
study gave much detail about what kind of coding errors caused the programs to fail, so
neither is of much help to us.

Another important reason why existing surveys of software errors are not ideal for
studying system availability is that they focus only on errors discovered during the system
test and code development phases of program life cycles. The errors that actually affect
availability are the ones discovered at customer sites, after development and testing are
complete. Another early error study, [77], provides some of the samelevel of error analysis
that our study provides, but on errors discovered during the testing and validation phases.
Basili and Perricone study the relationship between software errors and complexity in
Fortran programs [8]. Their study finds a predominance of errors in interfaces between

modules, but the study also focuses on development and test phases. In [44], Knuth



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 19

describes both design and coding errors uncovered in his TeX text processing program.
The presentation includes some efforts at fault categorization, but is largely a collection
of anecdotes. It isless applicable than the other studies since the program was written by
one person, rather than ateam of programmers, and it is a very different application from
database manager. Like the other studies, it covers mostly program development and early
test phases.

A few researchers have examined failuresin system software at customer sites, but they
providelittle detail about the types of software errorsthat led to the failure. One exampleis
Levendel’s study of the software that manages the ESS5 telephone switch [49]. The study
does not break errorsinto classes, but instead uses error data to estimate the effectiveness
of some standard reliability metrics. These metrics use trendsin bug-fix rates to guess how
many more errors remain in a given piece of code. Managers can use this information to
make decisions about release dates, but it is not the kind of information that can be used to
evaluate potential error detection or recovery strategies.

Several studies used datafrom error logsto track failuresat customer sites[58][39][15].
Error log records are generated automatically by the system after a program fails. Because
the log entries are generated automatically, they give extremely high-level representations
of the error. For example, thelog entry might be acode indicating that the program tried to
storeinto aninvalid address. The error log does not include the semantic information about

the error needed to determine what the programmer did wrong.



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 20

2.3 Gathering Software Error Data

The data available for our studies came from an IBM internal field service database
called REmote Technical Assistance Information Network (RETAIN). RETAIN serves
as a central database for hardware problems, software problems, bug fixes, and release
information. When an IBM system fails, IBM service personnel use RETAIN to determine
if the same failure has occurred at another site. If so, information stored in RETAIN
identifies a tape containing afix for the problem. If the problem has never occurred before,
people must be assigned to track down and repair the fault that caused thefailure. It isquite
possible for the same fault to occur at multiple sites. Although IBM fixes errors as soon
as possible when they are detected, customers often delay installing the fixes until their
systems have to be taken down for other reasons, such as maintenance. In these cases, the
customer prefersto risk the occurrence of aknown bug rather than suffer periodic additional
outages to install fixes.

When a new software error has arisen in an IBM product, a customer service person
files an Authorized Program Analysis Report (APAR) describing the fault in RETAIN.
Every APAR identifies a few standard attributes associated with the faulty software, such
as the type of machine running the software, the software release number, a symptom code
describing thefailure, and a severity rating. The service person filing the APAR also adds a
text description of the fault if any informationis available. After the error is repaired, one
of the programmersresponsible for the repair writes a description of the fix and amendsthe

initial problem description and severity rating.



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 21

An APAR doesnot contain standardized fieldsidentifyingthe“ cause” of afault. Seman-
ticinformation about the fault and the circumstances under which it arisesisonly contained
in the APAR text. The text is oriented toward future RETAIN searches by IBM service
personnel after the fault occursat adifferent site. Often it contains more information about
the effects of the fault than about the fault itself.

IBM saves an APAR for each distinct fault that occurs in its software products, but the
APAR does not include an accurate count of the frequency with which that error occurs.
Problem Reports, or PMRs, are filed for each customer outage whether it is caused by
a unique fault or not. Since PMRs include a field for the APAR associated with a given
software problem, they could be used, in theory, to determine the frequency of observed
faults. PMRs, however, are not retained by IBM for more than a few months. Also, the
accuracy of some PMR-APAR associationsisquestionable. |f an untraceable softwareerror
occurs, IBM service and the customer site will often agree to reboot the newest version of
the software and hope for the best. If thefault wastransient, the error will seem to go away
even if the new software does not contain afix. Earlier studies, such as [29], suggest that
transient software faults are fairly frequent.

Some software errors are worse, from the customer’s perspective, than others, so it
would be a mistake for the error studies to give all APARs in RETAIN equal weight.
APARS describing errors with little or no impact on availability were discarded in our
studies. These included suggestions for user interface changes and errors which affected

the presentation but not the content of program results (e.g. garbage characters are printed



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 22

to theterminal after the prompt). Errors with especially high impact were singled out to be
examined in moredetail. RETAIN does not identify high impact errorsdirectly, but several

standard APAR attributes can be used to estimate the impact of the error described.

Severity Code issupposed to indicate how badly inconvenienced the customer was by the
outage. It isalso used do indicate the priority of the bug to the people who assign
maintenance programmers to fix it. Severity one APARSs have the worst affect on
availability. The customer has stated that work at his or her site cannot progress until
thefaultisfixed. Severity two errorshave customer impact, but have lower priority to
the maintenance teams because the customer hasfound acircumvention or temporary
solution to the fault. Severity three and four APARS correspond to lesser damage

and can range from annoyance to look and feel or interface problems.

HIPER TheHIghly PERvasiveerror flagisassigned by the changeteam that fixesthefaulty
code. HIPER software errors are those considered likely to affect many customer
sites — not just the one that first discovered the error. Flagging an error as HIPER
provides a message to branch offices to encourage their customers to upgrade with

thisfix.

IPL errors destroy the operating system’s recovery mechanism and require it to initiate
an Initial Program Load (IPL) or “reboot.” An IPL is clearly a high impact event
since it can cause an outage of at least 15 minutes. This metric is probably the most

objective of the impact measurements since there is little room for data inaccuracy.



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 23

While labeling an error HIPER or severity oneis ajudgement call, the occurrence of
IPL is difficult to mistake. Note that IPL is an effective impact estimator for MVS,
but in the DBMS error study there were no errorsthat cause the operating system to
IPL. DB2/IMS errorsin which the DBM S failed and had to restart should be counted

as high impact, but thisinformation was not alwaysincluded in the APAR.

Using these impact estimators, RETAIN’s APARs can be broken into three groups. Low
impact APARSs with severity ratings of three and four were discarded from the study.
Severity two APARs were serious enough to be considered in the study, but not labeled as
high impact. Errors flagged as HIPER, IPL, or severity one are considered high impact
errors. When error distributions are presented later in the chapter, high impact errors will
be singled out and presented separately.

The MV'S study uses error data from the MV S Operating System for the period 1986-
1989, representing several thousand machine years of execution. It only includes errors
in the operating system and some of the low-level software products that are bundled with
it. The IMS and DB2 APARSs were drawn from those recorded against those two database
management systems in the years 1987-1990. The second study took errors from a later
period because it was conducted a year later and because DB2 was not mature enough in

1986 to have alarge APAR base.



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 24

2.3.1 Sampling from RETAIN

If it were possible to classify APARs using software, each of the APARs in RETAIN
associated with MVS, IMS and DB2 could be classified in order to find the complete
distribution of errors for those products. RETAIN provides some help in this regard. It
allowsuserstoidentify subsets of APARs using simplekeyword searches on thekeyedfields
(eg. HIPER, severity). Keyword searches allow us to report customer impact statistics
based on the entire population of APARs associated with each product.

The error type and triggering event, unfortunately, are too complex to identify without
reading the APAR text and extracting fault information from the change team’s problem
description. Classifying the thousands of available APARsto get thisinformation would be
beyond the resources available for this study. Therefore, we sampled from the population
of available APARsin order to restrict the number of APARS to be read.

For the MV S study, we constructed two sets of APARs — the regular sample and the
overlay sample. To gather the regular sample we drew 150 APARs from the popul ation of
all severity one or two APARs from 1986-1989 filed against MVS. To derive the overlay
sample, we could not just take the subset of MV S APARs that involved overlay errors since
the MVS sample itself was so small. Instead, we searched the text parts of the APAR
for strings containing words such as “overlay” and “overlaid.” From this restricted set of
APARs, wedrew APARsthat werepotential overlays. IBM software engineersusetheterm
overlay to mean “stored on top of” data currently in memory, so occasionaly the overlay

is legitimate behavior unrelated to the error described. Further reading allowed us to weed



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 25

out APARs in which the overlay was not caused by broken software, leaving 91 overlay
APARs. For the DBMS study, we randomly sampled 201 of IMS's severity one and two
APARs and 222 of DB2's.

The MV Sregular sample isnot taken in the straightforward way because of asampling
error in the initial phases of the first study. We had first planned to examine only severity
one APARs. Later, werealized that severity two errors had a high enough customer impact
that it would be a mistake to ignore them in the study. To overcome this problem, we
pulled a second independent random sample from the population of severity two APARSs.
We then combined the results from the severity one and two samplesin the proportion they
are represented in the population. We used boot-strapping [21] to combine the samples
rather than a ssimple weighted average. Boot-strapping is a common statistical technique
that does not build in any assumptions about the distribution of the parent population as

would aweighted average.

2.3.2 Characterizing Softwar e Defects

The error studies approach the “cause” of an error from both the standpoint of a
programmer/recovery-manager and from the standpoint of a system test designer. Error
type is the low level programming mistake that led to the software failure. The error
trigger classification was meant to give insight into the softwaretesting process. Both IBM
and its customers test software thoroughly before the customer relies heavily enough on

the software for its failures to have an impact. When an error arises at a customer site,



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 26

some aspect of the customer’s execution environment must have caused the defective code
to be executed, even though the same code was never executed during system test. The
error trigger classification distinguishes the different kinds of events that cause errors that
remained dormant during testing to surface at the customer site. Better understanding of
these triggering events should improve the testing process.

To identify error type and error trigger classes, we made severa passes through the
sample looking for commonalities in the errors. Once some general categories were
chosen, we read each APAR more carefully, placing it into one of the possible categories
for error type and one category of error trigger. Each of the APARs in the samples
was associated with only one error type and error trigger even though the same APAR
occasionally mentioned several related faultsin the software. After classifying the APARs
we found several categories with one or two APARs in them, which we merged into larger,
more general classes. Several of the one and two APAR categories were grouped together
into an “ Other” category when they could not reasonably be grouped together with APARS

of amore meaningful error type.

Error Types

A few programming errors caused most of the errorsin the programswe studied. These

were the error types defined during the study of MV S:

Allocation Management : One module deallocates a region of memory while the region

isgtill in use. After the region is reallocated, the original module continues to use it



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 27

initsoriginal capacity. The few errorsin which the memory region allocated was too
small for the datato be stored in it were counted as allocation management errors as

well.

Copying Overrun : The program copies bytes past the end of a buffer.

Data Error : An arithmetic miscalculation or other error in the code makes it produce or

read the wrong data.

Pointer Management : A variable containing the address of data was corrupted. For
example, alinked list is terminated by setting the last chain pointer to NIL when it

should have been set to the head element in the list.

Statement Logic : Statements were executed in the wrong order or were omitted. For
example, a routine returns too early under some circumstances. Forgetting to check

aroutine'sreturn code is also a statement logic error.

Synchronization : An error occurred in locking code or synchronization between threads

of control.

TypeMismatch : A field is added to a message format or a structure, but not all of the
code using the structure is modified to reflect the change. Type mismatch errors also

occur when the meaning of abit inabit field is redefined.

Undefined State : The system goes into a state that the designers had not anticipated. For

example, the program may have no code to handle an end-of -session message which



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 28

arrives before the session is compl etely initialized.

Uninitialized Variable : A variable containing either a pointer or datais used beforeit is
initialized.

Other : Several error categories which had few members were combined into a single

category called Other.

Unknown : The error report described the effects of the error, but not adequately enough

for usto classify it.

During the DBM S study, we added three error typesto the set used to classify MV S. The
additional error typesrepresent arefinement to the classification system based on thedatain
the second study. Errorsfrom each of these classes were present in MV S, but uncommon,

so they fell into the Other classin the original MV S study.

Interface Error : A module’s interface is defined incorrectly or used incorrectly by a

client.

Memory Leak : The program does not deallocate memory it has alocated.

Wrong Algorithm : The program works, but uses the wrong algorithm to do the task at

hand. Usually these were performance-related problems.



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 29

Error Triggering Events

This classification describes the circumstances which allowed alatent error to surfacein
the customer environment. For every error in the sample, we assigned one of the following

trigger events:

Workload : Often software failures occur under limit conditions. Users can submit
requests with unusual parameters (e.g., please process zero records). The hardware
configuration may be unique (e.g., system is run with afaster disk than was available
during testing). Workload or system configuration could be unique. (e.g., too little

memory for network message buffering).

Bug Fixes : An error was introduced when an earlier error was fixed. The fix could be
in error in away that is triggered only in the customer environment, or the fix could

uncover other latent bugs in related parts of the code.

Client Code : A few errors occurred when errors were propagated from application code
running in protected mode. Inorder for theseto appear inthe APARsthat we sampled,

the code for recovering from the propagated error would have had to contain afault.

Recovery or Exception Handling : Recovery code is notorioudly difficult to debug and
difficult to test completely. The DBMS data distinguishesfull DBM S recovery (using

thelog) from cleanup after transient errors (exception handling).



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 30

Timing : Timing triggers are an important special case of workload triggers in which
an unanticipated sequence of events directly causes an error. An error that only
occurswhen the program isinterrupted at an inopportune moment would be atiming-

triggered error.

Unknown : The triggering event could not be determined from the available data.

Failure Symptom Codes

When an APAR is opened, a symptom code is recorded describing one of the external
effects of the fault. Thisfield is often used by customer service personnel to search for an
existing fix when an error isfirst discovered. They focus on symptoms because symptoms
are usually the best information available about afault when it first occurs.

The symptom code of an APAR wasnot assigned as part of our APAR studies; wesimply
used and analyzed data already present in RETAIN. Also, a single failure may have many
symptoms. Maintenance programmers decide which is the most interesting one to record
in the APAR symptom code field. “Interesting” failure symptoms for the maintenance
programmer may not be interesting for fault tolerance research. For example, the unusual
error message that the system printed to the screen before it went into an infinite loop might
be recorded as the failure symptom, rather than the infinite loop itself.

Failure symptomsfall into these classes:

ABEND : Anabnormal program termination occurred. The currently running application

program failed and must be restarted.



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 31

AddressError : The system fails after trying to use a bad address.

Endless Wait : Processes wait for an event that will never occur.

Incorrect Output : The system produces incorrect output without detecting the failure.

InfiniteLoop : The system goesinto an infinite loop.

Error Message : The system cannot perform the requested function but prints an error

message on the screen and performslocal recovery rather than ABENDing

2.4 Results

We describe the results of the two IBM studies together in the following section,
comparing MV'S, IMS, and DB2 wherever possible. The results section isdivided into four
subsections, based on the different APAR categorization schemes defined in Section 2.3.
Thelargest of these four subsections discusses error type, the categorization based on types
of programmer mistakes. Theerror type subsection givesbreakdownsof control, addressing,
and data errorsin order to provide a better understanding of the error propagation model
given in Chapter One. It also gives finer-grain description of programmer errors based on
the error types defined in Subsection 2.3.2. The next subsection, which describes error
triggering events, will be of most interest to system test suite designers. However, it is
also of interest in recovery system design because it indicates the frequency of repeatable

software errors. The third subsection compares the number of high impact errors in the



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 32

DB2, IMS, MVS overdl, and MVS overlay-only APAR samples. The fourth subsection

gives the failure symptoms that describe the system behavior after the error occurred.

2.4.1 Error Type Distributions

Figures2.1 and 2.2 summarizetheerror typedistributionsfor each database management
system. Figure 2.3 shows a breakdown of error types from the regular sample in the MVS
study. Each figure shows two distributions. one for availability-related APARs as awhole,
and one for high impact APARs. The high impact distribution is superimposed on the
overall distribution since the high impact APARSs are a subset of the overall APAR sample.
Each bar in the figure represents one of the error types defined in Section 2.3.2. The length
of the bar shows the number of errors represented in the APAR sample which were caused
by that type of error.

In both DBMS products, undefined state, a control error, was the largest error type.
In IMS, undefined state errors accounted for 40% of the whole and 29% of the high
impact errors. The next largest class was pointer management, an addressing error, which
accounted for 11% of the APARs sampled. In DB2, undefined state accounted for 20%
of APARs and 18% of the high impact ones. DB2’s next highest class overall was again
pointer management errors with 10%. Undefined state was an important source of errorsin
MV'S, but it did not dominate the error type distribution as much asin IMS and DB2 (17%
of the whole and 25% of the high impact errors). The pointer management classin MVS

was 12% of errors, about the same as it wasin the two DBMSs.



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS

Error Type Freq (Perct)

Allocation Mgmt. 18 ( 8.1%)
Copying Overrun 12 ( 5.4%)
Pointer Mgmt. 23 (10.4%)
Uninitialized Var 14 ( 6.3%)
Undefined State | 45 (20.3%)
Interface Error 15 ( 6.8%)

Memory Leak 8 ( 3.6%)

Statement Logic 16 ( 7.2%)
Synchronization 20 ( 9.0%)
Data Error 19 ( 8.6%)
Wrong Algorithm 20 ( 9.0%)
Other 12 ( 5.4%)

0 10 20 30 40

Number of Apars

B HighImpact APARs [ All APARSs
222 APARSs, 68 High Impact

Figure2.1: DB2 Error Type Distribution.

Error Type Freq (Perct)
Allocation Mgmt. 10 ( 5.0%)
Copying Overrun 7 ( 3.5%)

Pointer Mgmt. 22 (10.9%)
Uninitialized Var. 12 ( 6.0%)
Undefined State | 80 (39.8%)
Interface Error || 15 ( 7.5%)
Memory Lesk [] 7 ( 3.5%)
Statement Logic 17 ( 8.5%)
Synchronization 9 ( 4.5%)
Data Error 10 ( 5.0%)
Wrong Algorithm 4 ( 2.0%)
Other 8 ( 4.0%)

o
N
o
5
[o2]
o
o)
o

Number of Apars

B Highimpact APARs [ All APARSs
201 APARSs, 38 High Impact

Figure2.2: IMSError Type Distribution.

33



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 34

Error Type Perct
AllocationMgmt. [ ] 7%
Copying Overrun [ ] 2%
Pointer Mgmt. [ ] 12%
Uninitidized Var. [ | 8%
Type Mismaich [] 1%
Undefined State | 17%
Synchronization L: 14%
Statement Logic [ ] 7%
DataError [ ] 6%
Unknown [ ] %
other [l ] 10%

PTF Compilation [ ] 8%

o 5 10 15

Percent of APARs

B Highimpact APARs [ All APARSs
150 APARSs, 16 High Impact

Figure2.3: MVSRegular Sample Error Type Distribution.

The remainder of this subsection exploresthe error type datain greater detail. First, we
combine error types into the broader classes of control, addressing, and data error used in
the model in Chapter One. Next, we describe the programming mistakes that led to control
errors and to addressing errors. The subsections focus on undefined state errors since they
dominatethe control error distribution and on the kindsof error propagation that result from

addressing errors.

Control/Addressing/Data Error M odel

Figure 2.4 groups the errorsin the three products into the categories of control-related
errors, addressing-related errors, data-related errors and unclassified errors. To produce

Figure 2.4, error type categories defined in Section 2.3.2 were combined into the cate-



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 35

60
Percent of 50
Total Faults
40
L[] MVS
Jimms  ® B
[] bB2 ] At _
20 Be
° Control \ Déta

Addressing Unclassified

Figure2.4: Control/Addressing/DataError Breakdown DB2, IMS, and MVS
Systems.

gories of the control/addressing/data model. Errorsin the unclassified group were largely
performance-related problems (e.g. Wrong Algorithm) and errors in the “unknown” and
“other” categories. The MV'S study has the largest fraction of unclassified APARs in part
because it was the first study and our error types were less well-defined during that study.
The Y-axisin this chart showsthe percentage of errorsfrom each product’s sample that fall
into each class, not the absolute number of APARs. MV, in this chart, isthe MV S regular
sample.

In al three products, control errors make up the most significant fraction of errors and
addressing errors, the second most significant. Control errors are more common than the

other two, composing 40% to 55% of the total for each product. A much larger fraction



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 36

of the IMS errors are control-related than errors in the other two products. In part, this
is because IMS was late in the product life cycle during the time covered by the study.
Few new features are added to IMS any more, so most of the changes to the code occur
during maintenance. From the data, it seems that maintenance programmers have difficulty
understanding all of the implications of a given change to the control flow of the program.
DB2 has more data errors than the other two products. Many of these errors were mistakes
in calculating the cost of a prospective query plan during the planning stage of query
execution.

Because this data comes from errors discovered once the software had been released to
customers, there are two possible causes for the error distributionsin Figure 2.4. Possibly,
the distributions represent the frequency with which each kind of programming mistake
occurs. Programmers may ssimply be more likely to make control errors than data errors.
A more likely explanation of the figure, however, is that some errors, such as data errors,
are detected relatively easily during program development and test by standard debugging
techniques. Hence, thedistributionin thefigureisskewed towardsthe errorsthat are hardest
to detect during normal development and test. Aswill be shown below, control errors often
occur during error handling. If the error condition is difficult to generate during system
test, the error handling code might not be fully tested. Incomplete testing may prevent
some addressing errors from being uncovered early, as well. Addressing errors sometimes
cause corruption of storage that is near a data structure managed by faulty code. The

order in which data structures are alocated may determine which one is damaged by the



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 37

Percent of
50
Tota Faults

40

30

20
[ ] Addressing

10

0
DOSIVS MVSII Unpubl |
MVSI MVSIII Unpubl 11

Figure2.5: Summary of Addressing Error Percentagesin Previous Work.

error. Because testing cannot cover all allocation orders, the error may never occur during
development and test.

In Chapter One, we suggested that addressing-related errors were the most dangerous
error class in terms of error propagation. An addressing error can corrupt data unre-
lated to the module in which the error occurs, hence can be difficult to find and remove.
Addressing-related errors, including copy overruns, allocation management, pointer man-
agement problems and uninitialized pointers, make up 25 to 30 percent of the APARsfiled
against IMS, MVS, and DB2. Thisisconsistent with several other studies of softwareerrors
in operating systems summarized in Figure 2.5. The published studiesin thefigurearefrom
DOS/VS[24] and MV'S (one from [79] and two from [58]). The Unpublished | study was

asurvey of errorsreported in the 4.1/4.2 releases of BSD UNIX [72]. The Unpublished II



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 38

operating system error study was conducted internally at a company that would not allow
therelease of its name. Control and data errors are not pictured because the studies in the
figure did not categorize errorsin a way that mapped to the control/addressing/data error
model. Each study identified some errors as addressing-related, however, which allows
some comparison between these studies and our own.

The BSD study showed many fewer addressing-related errors than the other studies.
Most of the errorsin the BSD study were synchronization or configuration problemsrel ated
to device drivers and network protocols. The error report information available did not
distinguish between errors discovered in test phase and production-use phase and many
of the device driver problems would probably have been discovered during testing in a
commercia enterprise with alarge, in-house quality assurance group. If we could consider
only post-test-phase software errors in BSD, the fraction of addressing errors might be
closer to that seen in the other studies.

Together, theavailableinformation on programmer mistakessuggeststhat at | east twenty
to thirty percent of the faults that cause systems to fail involve addressing errors. Thirty
percent may not be an upper bound since these studies usually only report addressing errors
when they are the primary cause of a software failure. Even in the APAR data, an error
report describing acontrol or dataerror will occasionally mention that the system failed with
an address trap, indicating that secondary addressing errors occurred but were considered
too unimportant to describe in the APAR.

The next four subsections describe control and addressing errors in more detail. The



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 39

first subsection lists the major causes of control errors. The second details the dominant
control error, undefined state. The third subsection givesthe distribution of addressing error
types along with some examples, and the fourth describes some additional information on

addressing errors gathered in the MV'S overlay study.

Characterizing Control Errors

Figure 2.6 shows the distributions of the most common of the control-related error
types for each of the IBM products studied. Each bar in the figure represents one of the
error types defined in Section 2.3.2. The MVS bars represent error type distributions in
the MV S regular sample, not the overlay sample. The MVS sample has no memory leak
errors because memory leak was not selected as an error type until the DBMS error study.
There were memory leak errorsin MV'S, but so few that we did not identify it as a separate
error type during the study. Memory leak counts as a control error because these errors
eventually cause the system to be reinitialized in order to allow reallocation the memory
lost in the leak.

For each of the products, undefined stateisthemost common control error. Synchronization-
related errorsarefairly commonin DB2 and MV S. The DB2 synchronization errorsusually
occur when DB2 is used interactively, and they are often related to cleanup after errors.
Clean up after the user cancels acommand from the keyboard caused some synchronization
problemsin DB2, also. MV S synchronization errors were usually related to communica-

tion protocols, although some of the highest impact ones were errorsin interrupt handlers.



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 40

8|

Percent of 7.
Control Faults °

5

L] MVS 1
] IMS
[ ] DB2 3

- 7 .

Undefined Statement  Synch- Memory
State Logic  ronization Leak

oooooooooooj

Figure 2.6: Distribution of the Most Common Control Errors.

Because the mgority of control errorsin the DBMS are caused by undefined state, the next

subsection describes these errorsin some detail.

DBM S Undefined State Errors

An undefined state error occurs when an event in the program execution environment
arises which the program has not anticipated. The program either has no code to handle
the event or misinterprets the event and makes a faulty state transition as a response. The
MV'S study showed that undefined state errors were common, but did not provide details
about what caused them. In general, the undefined state errors involved concurrency. For
example, a process takes a page fault, then an interrupt for an 1/0 completion, and never

completely initializes the page table of the faulted page.



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 41

Inthe DBMS study, we kept more systematic notes about how undefined states arosein
the program. Thisturned out to be important since undefined state was even more common
in the two DBMS products than they were in the operating system. These errors represent
20% of all DB2 errors sampled from RETAIN and 40% of al IMS errors. In both systems,
undefined state errors had a dightly lower impact than the average error.

For IMS, about athird of the undefined state errorsoccurred when the program lost track
of its current state. In IMS, current state for network connections, database recovery, and
log management is represented by a collection of flags. Sometimes the program changes
state without updating the flags correctly, or checks the wrong combination of flags to
determine the current state. Many of these APARS had to do with error handling. An error
would occur causing the program to change state, but flags representing the current state
would not be reset. The program made the wrong response to subsequent events because it
was mistaken about its current state.

Another third of the IMS undefined state errorswere “missing case” problemsinwhich
a programmer forgot about a state or an external event that could arise during execution.
Some of these were classic boundary conditions. For example, the programmer writes a
routine comparing one element to each of the elementsin alist and does not consider that
the list could have zero elements. Many others arose after unanticipated error conditions.
For example, a higher level and a lower level routine each expect the other to handle
authorization failures. When the higher level routine sees an authorization failure, it fails

since it expects the error to have been handled at alower level.



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 42

Most of the remaining undefined state errorsin IMS came from incomplete protocol
specifications or implementations. The protocol might not be complete because it does not
consider some states that arise. For example, after an error condition, some kinds of log
records do not make sense. A log record specifying changes to sessions does not make
sense if thereis no longer a current session. Sometimes the implementation omitted states
that were defined in the protocol. A bug fix occasionally prevented aportion of the protocol
implementation from being executed.

InDB2, the samekindsof behavior were observed but in somewhat different proportions.
The missing case problems were much more common in DB2 than in IMS. Nearly half of
the undefined state errors were due to unhandled error conditions or forgotten states arising
from boundary conditions. Additional DB2 undefined state problems resulted when data
structure consistency checkers were called at the wrong time. Sometimes the error checks
detected inconsistencies that were not going to cause the software to fail. About fifteen
percent of undefined state errorsin DB2 were false alarms due to data structure consistency
checkers.

As one would expect, about two thirds of the undefined state errors in each database
manager happened because the programmer omitted logic from the program rather than
because the programmer did something incorrectly. Therefore, undefined state problems

generally arose not from mishandled events but from forgotten events.



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 43

50

Percent of 40

Address Faults
30

[ ] MVS
11MS B
[ ] DB2

10

o ,
Alloc Mgmt Ptr Mgmt
Copy Overrun Misc

Figure2.7: Distribution of the M ost Common Addressing Errors.

Characterizing Addressing Errors

Figure 2.7 shows the distributions of the most common of the addressing-related error
types for each of the IBM products studied. The figure shows pointer management, allo-
cation management, and copy overrun errors for the IMS sample, the DB2 sample, and the
MV S regular sample. Asin the control error figures, the length of the bar tells the percent
of al control errorsthat fall into the type associated with the bar. The miscellaneous errors
in this case were largely uninitialized pointer errors (in particular, the large number of
miscellaneous addressing errorsin MV S were often uninitialized pointer errors).

Among these three common types of addressing-related faults, pointer management

problemswere the largest classification, accounting for 35-40% of the addressing faults. A



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS
Error Type Perct

Allocation Mgmt. 19%

Copying Overrun 20%

Pointer Mgmt. 13%

Synchronization 8%
Type Mismatch 12%
Undefined State 1%

Uninitialized Var. 5%

Unknown 13%

Percent of APARs

. High Impact APARs |:| All APARs

91 APARSs, 28 High Impact

Figure2.8: MVSOverlay Sample Error Type Distribution.

44

fairly common type of pointer management error was mis-termination of alinked list data

structure. Another common pointer error arose when two different kinds of pointers could

be stored in the same location (i.e. asin PASCAL or C union types). The programmer

would mistake a pointer of one type for a pointer of another type. A third common pointer

management subclass were “register reuse” errors. The languagein which IMS, DB2, and

MV S are written allowed programmersto explicitly control register use, if necessary. This

explicit control allowed for mistakes in which two variables were assigned to the same

register, allowing the second value stored to overwrite thefirst. If thiswas a pointer value,

an overlay often followed.

Usingthe MV S Overlay Sampleto Understand Addressing Errors



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 45

Because MV Serror reportsgave additional textual cluesabout addressing-related errors,
the MVS overlay error sample was constructed containing 91 overlay-only error reports.
The overlay sample shows that some overlay errors eventually follow after non-overlay
error types have occurred. For example, asynchronization error sometimes allowed unsyn-
chronized accessto pointer datastructures. The APAR describing the synchronization error,
then, mentioned that MV S used the corrupted pointers at the time of the failure. Figure 2.8
givesthe breakdown of error typesfor thissample. Each bar in thefigurerepresentsan error
typedefined in Section 2.3.2. Asinthe previousfigures, the highimpact APAR distribution
is super-imposed over the overal error distribution.

Since most of the MV S operating system’s tasks invol ve managing a system of control
blocks and buffers connected by pointers, one might expect that these pointers would
account for most of the overlay errors in MVS. In fact, pointer management errors and
uninitialized pointers were important, but accounted for only 18% of the overlay APARS
studied and 27% of the high impact overlay APARSs.

Together, copying overruns (miscopying data into buffers) and allocation management
errors (deallocating storage incorrectly) accounted for 39% of the total overlay APARs and
34% of the high impact ones. Although allocation management and copying overrun have
about the same number of APARSs filed against them, copying overruns have lower impact.
Many of these errors appeared in the terminal I/0O handling code or in code for displaying
messages on the console. Copying overruns were often caused by overflows or underflows

of the counter used to determine how many bytes to copy. Many other copying overruns



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 46

were “off-by-one” errors. In network-management code and terminal 1/0 handlers, buffers
are processed dightly and passed from one routine to another. If the offset to the beginning
of valid data or the count of valid bytesis corrupted, copying overrunsoccur. Most copying
overruns involved only a few bytes. The few overruns which had high impact, however,
caused massive corruption of memory.

One would expect some overlays to be caused by unsynchronized access to storage.
In the APARSs we studied, however, more overlay errors came from memory allocation
mistakes than from mistakesin acquiring and releasing locks. Even when the compl exity of
the programming task involves synchronization, the error itself invol ved garbage collection.
For example, a process can request a software interrupt and then free a region of memory
before the interrupt is scheduled. If theinterrupt tries to use this freed memory, an overlay
occurs. In this case, synchronization is correct since the interrupt is not scheduled while
the original process is using the memory region. Garbage collection is not correct, since
the region is freed before the operating system has finished with it. When unsynchronized
access to memory did occur, usually too few levels of interrupts had been masked. In these
cases, unmasked interrupts allowed concurrent access to linked list data structures.

The few overlay errorsthat occurred after the system went into an undefined state were
fairly severe. For the most part, these errors occurred in page fault handling. When the
page fault handler became confused about a process state, the process eventually corrupted
so much of the system that no recovery was possible. The errors were often extremely

complex. The reports usually listed along chain of separate events and propagations that



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 47

Overlay Size Percent of Overlay APARS
Less than 100 bytes 48.4
100 to 256 bytes 25.3
One or more pages 4.4
Unknown size 22.0

Table 2.1: Average Size of an Overlay.

had to occur before the failure happened.

The overlay sampleallowed usto collect two additional pieces of information about how
addressing errors propagate: the overlay’s size and its distance from the correct destination
address. Table 2.1 shows the average size of an overlay in bytes. Note that most overlays
are small: nearly half are less than 100 bytes. Table 2.2 gives arough “distance” between
the overlaid dataand the areathat should have been written. For example, acopying overrun
error corrupts dataimmediately following the buffer that the operating system is supposed
to be using, hence, has distance “ Following data structure.” An exampleof thedistancetype
“Within data structure” is a type mismatch error in which the operating system overlays a
field of the same structure it intendsto update.

Summarizing the size and distance tables, we find that most of the overlays are small
with a vast mgjority of them close to their intended destination. Only about a fifth were
definitely “wild stores’ that overwrote distant, unrelated areas of storage (one quarter of the
APARs involved wild stores if we disregard the Unknown cases).

This subsection has described an APAR categorization based on error type. The error



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 48

Overlay Distance Percent of Overlay APARS
Following data struct 30.8
Anywhere in storage 18.7
Within data struct 26.4
Unknown 24.2

Table 2.2: Distance From Intended Write Address.

type category has been used to show what kinds of programmer mistakes cause the system
to fail at customer sites. The other important APAR categorization schemes based on error
trigger and failure symptoms are described in sections 2.4.3 and 2.4.4, respectively. Before
beginning the trigger and symptom subsections, we compare the customer impact of the
APARs filed against MVS, IMS, and DB2. Estimating the impacts of the MV S errorsis
especially important because it allows us to compare the impact of the overlay and regular

sample.

2.4.2 Comparing Products by I mpact

Table 2.3 compares the fraction of APARS that have high impact in MVS, IMS, and
DB2. The rows show the differences between the products in Severity one errors (errors
identified by the customer as high impact), HIPER errors (error identified by maintenance
programmersas highly pervasive) and high impact errorsoverall. For theMV S overlay and
regular samples, the table lists the fraction of errorsthat cause the system to | PL (reboot).

Comparing the high impact error percentages in the MVS overlay and MVS regular



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 49

sample shows that overlay errors have higher availability impact than non-overlay errors.
Table 2.3 lists 30.8 percent of the overlay errors as high impact. When overlay and non-
overlay errors are considered together in the regular sample, the high impact APAR total
dropsto 18 percent. Overlay errorswere three times more likely to be flagged as HIPER or
IPL than MV S errorsoverall.

The high impact of overlay-related errorsis amost certainly because of error propaga-
tion. The potential for error propagation is onefactor field service personnel consider when
they flag APARS as HIPER. The higher HIPER rate in overlay errors was one reason for
the higher impact of overlay APARs. Also, propagated errors lessen the effectiveness of
system recovery mechanisms, hence, force the system to IPL after an error.

The table also indicates that DB2 has higher impact errors than MVS and IMS by all
three impact metrics. DB2 is till fairly early inits product life cycle, and software defect
rates have been shown to go down over time. Perhaps the impact of DB2's APARs will go
down over time as well.

Several other reasons for the high HIPER and Severity ratings in DB2 have been
suggested to us by the product developers. Different people assign HIPER and severity
ratingsfor IMS, MV Sand DB2. The service peopleassigned to DB2 may bemorewillingto
take the customer’s side than the service people in the older products. Also, MVSand IMS
customers know exactly what these products should do; if the applications that use these
products continue to work well, the customer is satisfied. System test can anticipate the

workloadfor these productsfairly well. Ontheother hand, DB2 customersarewriting many



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 50

Percent of APARs
Impact Metric MVSRegular  MVSOverlay IMS DB2
IPL (reboot) 6.3 19.8 NA NA
HIPER 52 18.7 125 210
Severity 1 12.6 17.6 95 16.0
Overall 18.0 30.8 190 300

Table 2.3: Operating System and DBMS Error Impacts. The same APAR
could fall into each high impact category: I1PL, HIPER, and Severity 1. Thus,
the Overall high impact errorsfigureislessthan thesum of thefiguresin the
other threerows.

new applications. System test probably has a harder time anticipating the way these new
applications will use the DBMS. The fact that high impact DB2 errors are often triggered

by unusual workloads and boundary conditions supports this suggestion.

2.4.3 Error Triggering Events

This section characterizes the events that make latent faults surface in code that has
passed through system test. Most software faults that affect availability at customer sites
have remained latent in the code for some time. Often, the program has been executed
successfully for months at many other sites before it fails for one customer. The trigger is
meant to capture the condition that causes defective code to be executed. By determining
triggering events for the APARs examined in the two studies, we hoped to help quality
assurance engineersretarget futuretesting effortsaswell asfocuseffortsinbuilding recovery

systems.



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS

Error Trigger Event Freq (Perct)
Workload 107 (48.2%)

Timing 28 (12.6%)

Exception Handling 22 ( 9.9%)
Database Recovery 36 (16.2%)
Bug Fixes 23 (10.4%)

Client Code 4 ( 1.8%)

Unknown 2 ( 0.9%)

0 20 40 60 80 100
Number of Apars
. High Impact APARs D All APARs

222 APARs, 68 High Impact

Figure2.9: DB2 Error Trigger Distribution.

Error Trigger Event Freq (Perct)
Workload 48 (23.9%)
Timing 25 (12.4%)
Exception Handling 34 (16.9%)
DB Recovery 45 (22.4%)
Bug Fixes 45 (22.4%)

Client Code 1 ( 0.5%)

Unknown 3 ( 1.5%)

0 10 20 30 40

Number of Apars
. High Impact APARs D All APARs

201 APARs, 38 High Impact

Figure2.10: IMSError Trigger Distribution.

51



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 52

Error Trigger Event Perct

Workload ‘ 34%

Timing 11%

Recovery 13%

Bug Fixes 16%

ClientCode D 2%

Unknown :' 13%

No-Trigger 12%

0 20 3
Percent of APARs

o

. High Impact APARs D All APARs

150 APARSs, 16 High Impact

Figure2.11: MVSError Trigger Distribution.

Figures 2.9, 2.10, and 2.11 summarize the triggering events found in DB2, IMS, and
MVS. The bars in this case are the error trigger events defined in Section 2.3.2. Again,
the bar length shows the number of APARS from the sample associated with the event
represented by the bar. Asin the figures for error types, the high impact distributions are
super-imposed on top of the overall trigger event distributions.

Conventional wisdom says that software failures at customer sites are usually timing-
related. Because it is impossible to test all possible interleavings of events before the
software is released, failures are assumed to involve untested interleavings of events that
occur after months or years of use in the field. Our data does not support this hypothesis.
Timing directly triggersarelatively small percentage of errorsin each of the APAR samples
we examined. The dominant trigger for most errorsis unusual workload conditions. Most

failures recorded in our APAR samples occurred when customers used new features, new



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 53

hardware configurations, or used old featuresin a new way.

In IMS, most high impact errors were triggered by bug fixes (45%) and error handling
(both full DBMS recovery 24% and low level exception handling 5%). In DB2, workload
(35%) and error handling (24% full recovery and 7% exception handling for atotal of 31%)
were the most common high impact triggers. MV S had few high impact errors. The ones
we saw were divided fairly evenly between recovery, unusual workload conditions and
unusual timing. When high and low impact errors are combined, workload is the dominant
trigger type for DB2 and MV S. Considering both high and low impact IMS triggers, many
triggering events such as workload, DBM S recovery, exception-handling, and bug fixes are
more common than timing. Overall, al three systems had roughly the same proportion of
timing-triggered errors (IMS 12%, DB2 13%, MV S 11%) but, in the database manager, the
timing-triggered errors had low impact.

Workload triggered fewer errorsin IMSthan in the other two systems, probably because
the workload in IMS has become very well-defined over time. System test for IMS can
anticipate most error conditions and much of the product’s workload, so unusual boundary
conditions do not arise as often. DB2, on the other hand, has a more broadly-defined
workload (ad hoc queries), whichismoredifficult to cover duringtest. Hence, asubstantially
higher fraction of its errors are detected in the field by untested workload conditions.

Bug fix errorsin IMS have much higher impact than they do in the other systems, but
that probably comesfrom the product’ sage rather than from itstesting procedures. Because

IMSislate in its product life cycle, little if any new functionality is added to the system.



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 54

The higher impact of maintenance-related APARs may just reflect the fact that most of the
activity on IMS is maintenance-related than in the other two systems.

The text of the MVS APARs often indicated that code reuse was involved in the errors
triggered by unusual workload conditions. Programmers often use the services provided
by an old module rather than write new ones with dightly different functionality. Over
time, some modules are used for things the original designer never considered. While this
increases productivity, it aso lessens the effectiveness of the original module-level testing.
The tests run on the old module by the original programmer do not stress aspects of the
module used by newer clients. The high level tests run by quality assurance do not stress
the differences between the services the module was designed to provide and the service
for which it is eventually used. Code reuse may also have caused reliability problemsin
the two DBMS products, but it was not as apparent in the APARs for these products.

The fact that unusual workload conditions accounted for such a high percentage of the
triggering events in the three products was surprising. Boundary conditions are the type
of error that one would expect testing to detect most easily. In fact, many unanticipated
boundary conditions continueto arise after the softwareisreleased. What thisdataindicates
isthat inadvertently “testing” new featuresin a production environment iSacommon cause
of outage. From thisfact, we can draw two conclusions. First, test designers should not be
focusing on new ways to uncover timing-related errors, but should focus instead on better
waysto find untested boundary conditions. Second, errors described in the APAR database

are very likely to be repeatable. If the boundary condition arises repeatedly, the system is



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 55

likely to fail in the same way repeatedly. Redundancy-based recovery strategies, such as
N-version programming [3] and process pairs [7], are unlikely to help much against this

kind of error.

Control Errorsand Recovery-Related Triggers

In both DB2 and IMS, failurestriggered by faultsin error handling or DBMS recovery
code are likely to be related to undefined state. Compare the error type distribution for all
sampled DB2 APARsto the sub-population of errorstriggered by error handling (Figures2.1
and 2.12). The distribution shifts from 20% undefined state errors to 36%. In IMS, the
shift is from 40% undefined state errors to 54% in the sub-population defined by the error-
handling trigger (compare Figures 2.2 and 2.13). The shift showsthat undefined state errors
are more likely to arise during recovery than other errors.

Unanticipated error conditions areimplicated in asignificant fraction of undefined state
errors. Sometimes unanticipated error conditions directly caused the undefined state (i.e.
the error condition itself was not handled correctly). In IMS, error conditions also played
apart in the problem of maintaining state variables. For example, when an error condition
caused the program to change state, the condition itself was handled correctly, but the state
management variables were not reset.

When the database manager goes through full recovery from disk, it must construct
some consistent state from the current contents of the database. The recovery protocol

must anticipate all possible error states that the database is left in. In general, the logging



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 56

Error Type Perct
Allocation Mgmt. 12%
Copying Overrun 5%

Pointer Mgmt. 7%
Uninitiaized Var. %

Undefined State 36%
Interface Error 7%
Memory Leak 0%
Statement Logic 7%
Synchronization 0%
Data Error 5%
Wrong Algorithm 3%
Other 3%

0 10 20 30

Percent of APARs

Bl High Impact APARS [] All APARs
58 APARSs, 21 High Impact

Figure2.12: Error Type Distribution for Error-Handling-Triggered in DB2.

Error Type Perct
Allocation Mgmt. 3%
Copying Overrun 1%

Pointer Mgmt. 8%
Uninitiaized Var. 5%
Undefined State | 54%
Interface Error 8%
Memory Leak 6%
Statement Logic 6%
Synchronization 4%
Data Error 1%

Wrong Algorithm 1%
Other 3%

0 10 20 30 40 &0
Percent of APARs

Bl High Impact APARS [] All APARs
79 APARs, 11 High Impact

Figure2.13: Error Type Distribution for Error-Handling-Triggered in IMS.



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 57

protocols that record changes to the data in the database work correctly, but error states
occur at the boundary of operating system owned resources and DBMS records of those
resources. For example, the protocol for restoring the database from the log might work
correctly, while maintaining the consistency of the operating system directories owned by

the database manager does not.

2.4.4 Failure Symptoms

Figures 2.14 and 2.15 summarize the symptoms of the failuresthat occurred when code
containing errors was executed. Remember that symptom is an attribute assigned by the
programmer fixing the broken software. The assignment is made primarily to assist others
who come across similar problems in finding the fix, i.e. the primary goal isto assign a
unigue symptom, not the symptom of the failure most relevant to an availability study. For
example, if the operating system printsan unusual error message and then takes an address
fault, the error message, not the address fault isthe “symptom” of the failure.

In spite of these problems with the symptom data, some interesting observations can
be made about it. Figure 2.14 shows that only 39 percent of overlay errors are detected as
addressing violations. One couldimaginethat addressing errorssuch as pointer management
errors aways make the system take an addressing fault and fail without propagating the
error. Even if this 39 percent figureis understated by the way symptom codes are assigned,
the low number of addressing faults suggests that the subsystem damaged by an overlay

uses the corrupted data before failing. Unfortunately, guessing whether or not propagation



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 58
Failure Symptom Perct

Endless Wait 5%

Error Message 3%

Infinite Loop 5%

Incorrect Output

14%

Address Error

39%

ABEND 33%

0 10 20 30
Percent of APARs

. High Impact APARs |:| All APARs

91 APARSs, 28 High Impact

Figure 2.14: MV S Overlay Sample Failure Symptoms.

occursis necessary since APARs usually do not say anything about the chain of propagated
errors.

As expected, overlay errors are more likely to cause addressing faults than non-overlay
errors. The most common non-overlay error types, undefined state and synchronization,
often appear in network and device management protocols and usually cause processes to
wait for eventsthat never happen. Non-overlay errorsare also morelikely to cause incorrect
output than overlay errors. Incorrect output failuresinclude jobs lost from the printer queue
or garbage characters written into console messages. None of the errors classified in the
study caused failures which corrupted user data.

IMS (Figure 2.16) and MV S have similar distributions of failure symptoms. More of

IMS's software faults result in ABENDs (abnormal program termination) than MVS's and



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS

Failure Symptom Perct
Endless Wait 11%
Error Message 17%
Infinite Loop 1%
Incorrect Output 27%
Address Error 21%
ABEND 21%

e
0 5 10 15 20 25
Percent of APARs

. High Impact APARs |:| All APARs

150 APARs, 16 High Impact

Figure 2.15: MVS Regular Sample Failure Symptoms.

Failure Symptom Perct
Endless Wait 10%
Error Message 15%
Infinite Loop 5%
Incorrect Output 24%
Address Error 17%
ABEND 20%

0 5 10 15 20 25
Percent of APARs

. High Impact APARs |:| All APARs

199 APARs, 38 High Impact

Figure 2.16: IMS Failure Symptoms.

59



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS

Failure Symptom Perct

Endless Wait 3%

Error Message 9%
Infinite Loop 0%
Incorrect Output 25%
Address Error 14%
DB2 ABEND 32%
MVSABEND %
Performance 10%

0 10 20 30

Percent of APARs
. High Impact APARs |:| All APARs

222 APARSs, 68 High Impact

Figure 2.17: DB2 Failure Symptoms.

60

IMS takes dightly fewer address faults (as a percentage of all failures) than the operating

system. Remember that IMS had more control errors and fewer addressing errors than the

other two programs, so it is not surprising that fewer of its errors are detected by hardware

addressing violations.

DB2 has the lowest percentage of errorsthat result in addressing faults and the largest

that result in ABENDSs. It has fewer Endless Wait and Infinite Loop failures than the other

programs, in part because it has a timeout mechanism that turns some kinds of deadlock

errors into ABENDs. The Performance failures in DB2 usually occur when the wrong

access path is taken to the data — a problem that cannot arisein MV S or IMS since access

to dataisless flexible than in relational database managers.



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 61

2.5 Summary

Chapter Two has gathered together data from several sources to develop a picture
of software faults and the ways they cause system unavailability and unreliability. The
bulk of the chapter summarizes and analyzes data gathered from four years of software
faults discovered in IBM systems programs at customer sites. The data comes from
defects reported in the MVS operating system, IMS database management system, and
DB2 database management system. It has been sampled from RETAIN, IBM’sfield error
database, which represents several thousand machine hoursof product useat customer sites.

EacherrorintheMVS, IMS, and DB2 surveyswas classified by error type, error trigger,
impact, and failure symptom. Together, these classifications provide several different per-
spectives on the “cause” of the softwarefault. Most importantly, the error type corresponds
to alow level programming error that causes outage. This characterization should be the
most useful in recovery system design. The error trigger describes the circumstance that
allowed the error to surface in the field and characterizes potential areas for enhancement
in system test.

In Chapter One, we highlighted the importance of addressing errors and error prop-
agation. The two studies presented in Chapter Two have illustrated several important
characteristics of addressing errors and the ways in which they propagate damage to other

modulesin the system:

1. Theranking of control errors, addressing errors, and data errors was the same across



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 62

all three products. About half of all errors were control errors, 25-30 percent were
addressing errors, and 5-10 percent were data errors. The remainder could not be
classified using the model, usually because they affected system performance but

neither corrupted data nor propagated errors.

2. Addressing-related “overlay” errors have a much higher impact on customer avail-
ability than regular errorsin MV S. These errors are more likely to damage the MV S
recovery mechanisms than other errors. IBM programmers view them as higher risk
than other errors to the customer base if left unrepaired. Also, customers viewing
the failures caused by errors are more likely to rank errorsinvolving overlay as high

impact than the average MV S error.

3. Our data shows that most overlays are small (on the order of afew bytes) and about
75% occur near the address that the software was supposed to write. “Wild pointers”

that could damage any module in memory were only about 25% of addressing errors.

These observations about the character of software errors will be used to motivate and
eval uate thetechniquesin Chapters Three, Four, and Five. Theremainder of the dissertation
looks at ways to detect addressing errors, ways to limit the propagation that they can cause,
and ways to recover quickly after such an error is detected.

The chapter al so presented information that was unrel ated to propagation and addressing
errors, but information that other researchers should find useful. For example, the error

trigger classification showed that untested boundary conditions in the software trigger a



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 63

magjority of failures. Recovery and timing-triggered failuresare few but tend to have ahigh
impact when they do occur. This information should help guide the design of toolsto help
softwaretesting. It also suggests that many of the software errors surveyed were repeatable,
in contrast to the Tandem errors reported in [29]. Also, control errors are dominated by
the undefined state error type. These errors are often related to error handling, and usually
involve omitted code rather than state transitions which are handled incorrectly. Such an
observation suggests that tools to improve a programmer system designer’s understanding
of the states the program can go into, especially after errors, will improve reliability. We
hope that these and other observations from this chapter will some day assist the designers
of system test suites, software development tools, reliability evaluation techniques, and

recovery mechanisms.



Chapter 3

Using Write-Protected Data Structures

INn POSTGRES

3.1 Introduction

Chapter Three focuses on the error detection problem, describing and evaluating tech-
niques for detecting addressing errors. Chapter Two showed that addressing errors are
an important class of software error. Addressing errors are implicated in twenty to thirty
percent of all software outages, and these errors have higher customer impact than other
errors. Also, the introduction of the dissertation explained that addressing errors were the
most dangerous source of error propagation; control and data errors usually do not affect
data belonging to parts of the system unrelated to the faulty code.

In order to detect addressing errorsin the DBMS, we have modified POSTGRES to use



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 65

the hardware that supports virtual memory to protect some data structures from propagated
errors. Several system calls were added to the Sprite operating system [60] to allow the
DBMS to guard (write protect) parts of its address space. The DBMS uses these services
to protect datain its buffer pool. To provide read-write data with protection against errors,
the DBMS must support an update model that allows correct software to modify protected
data, but prevents accidental updates by incorrect software. Different update models will
make different tradeoffs regarding software complexity, performance, and the kind of error
protection offered.

We have experimented with three models for updating guarded data structures. Expose
Page, Deferred Write, and Expose Segment. A single DBMS can use different update
modelsin different program modules, if necessary. The Expose Page model isthe simplest
one. The DBMS must recognize that it is about to update a protected record, unprotect
the page containing the record, and reprotect the page after it is updated. In the Deferred
Write model, the DBMS copies a record it intends to update into unprotected memory and
updates the copy. At the end of transaction, a system call recopies the updated record into
protected memory. Finally, the Expose Segment model lets the DBM S make a system call
to unprotect all guarded data at once. After the update, a second system call reprotectsthe
guarded data.

In al three models, guarding DBM S data allows the hardware to detect illegal attempts
to writeto protected pages. Systems could use guarding support to improve error detection

both during development and in production systems. As a debugging tool, guarding can



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 66

help find software errors earlier in the development cycle. After product release, guarding
lessens the impact of addressing-related errors by detecting errors at the time propagation
occursrather than after the damaged datais used. Because guarding detectsaclass of errors
not well-covered by data consistency checkers, it complements existing fault tolerance
techniques. For multi-process DBMS architectures, guarding can prevent one DBMS
process errors from corrupting data structures used by the other processes — improving
overall DBMS availability. In an extensible data manager, guarding is a compromise
between running application code in a separate process and running it as afull fledged part
of the DBMS. Much of the protection of the separate address space model is retained at a
cost much closer to the single-address space model.

This chapter is divided into five sections. The remainder of the first section describes
relevant features of the POSTGRES DBMS and Sprite operating system test beds on
which we have implemented guarding. The second section presents previous work related
to guarding. This chapter’s third section details the update models and describes their
implementations. The fourth section shows some performance results and evaluates the
reliability effects of guarding based on the statistics about system software errors presented

in Chapter Two. A fifth section gives some conclusions.

3.1.1 System Assumptions

The discussion that follows requires some understanding of the POSTGRES process

architecturedepictedin Figure3.1. The POSTGRES DBMS consists of several cooperating



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 67

Application Application
Process Process

Figure 3.1: POSTGRES Process Architecture. Both server processes can
addressthe shared memory region containing the buffer pool. Conversations
between server processes and applicationsuse a message passing interface.

server processes. Each DBMS server process has its own private address space, but all of
them share a single common memory region. The shared region contains a lock table,
buffer pool, and other in-memory data structures used by all of the server processes. DBMS
application programs run in separate address spaces and communicate with the DBMS
using message passing.

POSTGRES has an unconventional storage system [69], but the results of this chapter

should still be applicable to more traditional DBMS designs. The POSTGRES storage



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 68

system has a “no overwrite” policy in which data records are not updated directly. An
“update” marksthe current version of the record asinvalid and inserts a new version of the
record into the relation. Out-of-date records are removed (or archived) by a background
garbage collector process. Guarding is implemented below the level of the POSTGRES
storage system and does not take advantage of its no-overwrite property.

POSTGRES is extensible, so code implementing user-defined operators, access meth-
ods, and datatypes can be added to the DBM S. Most extension code will access the database
through routines in the core POSTGRES modules. Generally, the core POSTGRES rou-
tines, not the extension code, must implement the POSTGRES support for guarding. Some
extensions, however, such as user-defined access methods, have their own page formats.
These extensions have to know about and use guarding directly. For example, B-tree access
methods had to be modified to unprotect pages before adding or deleting keys.

The Sprite operating system, which we modified to support guarding, is a Unix-like
distributed operating system being developed at Berkeley. We chose Sprite as a test bed
because the source code was available and well-documented. A DECStation 3100 served
asahardware platformfor the guarding experiments. It uses a software-loaded, hash-based
Trandation Lookaside Buffer (TLB). The guarding implementation does not rely on any
DECStation 3100 hardware characteristics. However, the cost of updating TLB entriesis

hardware-specific and will be reflected in the cost of guarding.



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 69

3.2 Moddsfor Updating Protected Data

3.2.1 Overview of Page Guarding Strategies

The basic idea in page guarding is that the DBMS write-protects its own data in order
to detect accidental updates to that data. Clearly, any attempted update to read-only datais
illegitimate, so write-protecting such datawill prevent all errorsfrom corrupting it. When
data can be legitimately updated, the guarding implementation must alow the DBMS to
disable guarding and overwrite the protected data. POSTGRES can use guarding to protect
either its buffer pool or all of the shared memory region shown in Figure 3.1. The different
models presented in this section alow the DBMS to enable and disable write protectionin
different ways. Each model will make different tradeoffs in terms of the kinds of errors
it protects against and its performance impact. Before going into the model tradeoffs and
implementation details, we present two examples that outline the models and show how

guarding would work in practice in an extensible DBMS.

A Simple Example

The basic guarding models will all be described in the subsections that follow in terms
of this smple example. The example assumes that the DBMS has only guarded the DBM S
buffer pool.

In the example, the DBMS runs a simple Postquel query such as:

beginquote replace (emp.salary = emp.salary * 1.1) where emp.name = “Mike Stone-



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 70

braker” endquote

which gives Mike Stonebraker a ten percent raise. To execute this query in the simplest
case, the DBMS scans the employee relation examining the ‘name’ field of each record
for “Mike Stonebraker.” In POSTGRES, records are stored on the disk in database pages
and buffered in a main memory buffer pool. To examine the records on a given page,
the DBMS executor asks a buffer pool manager to determine if the page is currently
buffered. If it is not buffered, the buffer pool manager reads the page into the buffer pool,
replacing an existing page if necessary. When Mike Stonebraker’s employee record has
been located, the executor calculates the new salary value using the record and calls a
lower-level “replace” operation. The replace operation installs this new salary value into
the record. In POSTGRES, replacing a value in a record is done logically rather than
physically by creating a new version of the employee record, containing the new salary
value.

Each of the guarding models has a different effect on the implementation of the POST-
GRES replace operation. Inthefirst guarding model, Expose Page, two system calls called
UnguardPage and GuardPage are used to change write access to protected data. These
allow the DBM S to change protection at the finest granularity supported by the underlying
processor architecture. To change the salary in Mike's employee record, the page contain-
ing the record is unprotected at the beginning of the replace operation using UnguardPage
and protected again at the end of the replace operation GuardPage. The third model de-

scribed below Expose Segment looks to the DBM S much like the expose page model, but



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 71

the underlying implementation is different. Because the implementation is different, the
protection/performance tradeoffs are different also. Details will be presented later in the
chapter. In the expose segment model of guarding, ExposeData and HideData are used to
obtain and remove write access to protected data instead of UnguardPage and GuardPage.

The remaining model, Deferred Write, does not change the buffer pool protection during
the replace operation, but instead defers the protection change until the end of transaction.
In this model, the POSTGRES replace operation creates a temporary version of Mike's
updated employee record in a scratch area of the DBMS address space and links a pointer
to the temporary version into alist of deferred updates. At the end of the transaction, the
DBMS passes through the linked list installing each of the updates into protected memory
with asingle system call, InstallData. The buffer pool data structures are modified during
the replace operation, so that if the transaction rereferencesMike's employeerecord, it sees
the updated temporary version rather than the out-of-date protected version. Again, the
implementation details and advantages of this technique are described in the sections that

follow.

What Can Guarding StrategiesAchievein an Extensble DBM S?

The query in Figure 3.2 helps illustrate why guarding should be both inexpensive and
effective in an extensible database management system. The hypothetical database in
the example is a mixture of relational data and non-relational molecule data, designed for

commercia pharmaceuticalsresearch. The query usesarelational operator and amolecule-



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 72

append avail able_markers (id = nol ecule.id,
expi re_date = nol ecul e. patent _date+' 15 years’’,

etc.)
wher e

(ol ecul e. patent _date < ‘‘January 1990’ ")
AND

(nol ecul e. has_benzene_ring == TRUE)
AND

(simlarity(penicillin,nolecule.structure) > 0.90)
AND

(simlarity(root-beer, nol ecule.structure) < 0.05)

Figure 3.2: Example of Extensible DBM S Query. The figure shows a query
against a database that has been extended to handle molecule data. The
function similarityisa(hypothetical) graph matchingfunction that deter mines
how similar two molecules are and returns a similarity index between 0 and
1.

oriented extension operator called similarity. When a record is selected by the query, a
conventional relational update is used to save or update the resulting records.

The DBMS query can be divided logically into two phases. a qualification phase in
which operators determine which database data to update, and an update phase in which
the selected records are modified or created. The qualification phase passes over the data,
applying a combination of extension and relational operations. During the qualification
phase, the DBM S does not need permission to writeto the database datathat it isexamining.
During the update phase, this permission is needed, but the DBMS applies a different, and

possibly more trustworthy set of functions and/or operators. In the example, the update



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 73

operationsarefairly unsophisticated integer operationswhilethe qualificationsare extension
operations.

Guarding support allowsthe DBMS to explicitly identify its qualification phase, telling
the operating system through a set of system callsthat any operator writing to the database
at thistimeisinerror. The qualification could still have bugs; it could, for example, qualify
the wrong record. It could also corrupt a value in unprotected memory which is later, in
the update phase, used to generate a value stored in protected memory. However, these are
much more benign errors from the standpoint of error propagation than addressing errors
that “randomly” corrupt records in the buffer pool during qualification. For one thing, both
of the errors mentioned can be undone if the transaction aborts since the transaction system
logged the errors before allowing the updates. If a stray pointer corrupts the buffer pool,
on the other hand, it does so without logging the change. Also, if these errors involve
DBMS extensions, data unrelated to the extensionsis unlikely to be corrupted by the error.
Uncontained addressing errors can affect entirely unrelated data.

The remainder of this section discusses three different modelsthat the DBM S could use
to support the guarded data abstraction. Each subsection that follows describes one of the

three update models.

3.2.2 TheExpose Page Update Model

In the expose page update model, aDBMS process unguards a record beforewriting to

it and reguardsthe record after the write. Because write-protectionis enforced in hardware



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 74

at page granularity, unguarding one record also unguards all of the records on the same
page. The page granularity of guarding does not imply page granularity for transaction
locks, since transaction locks are enforced by software.

Managing protected data in the buffer pool using this model is straightforward. When
the data manager updates, inserts, or deletes a record on a buffer page, it unprotects the
page with a system call. While the page is unprotected, data in the record can be changed
or additional records can be allocated on the page. The UnguardPage system call clears a
write-protection bit in the page table entry (PTE) associated with the page containing the
data. UnguardPage also clears protection in the hardware TLB entry associated with the
page. The GuardPage system call restores the protection bits in the page table and TLB
entry.

After the DBM S has updated arecord, it does not necessarily have to reguard the record
immediately. If the DBMS delays reprotecting the data, subsequent updates to the same
record do not pay the costs of turning page protection on and off. Unfortunately, the
longer the page remains unguarded, the less protection is offered. Delaying the reguard
operation also increases the opportunity for the DBMSto “forget” to reguard the page. Our
implementation unguards one record at atime, reguarding each record before updating the
next. If two POSTGRES processes unguard the same page at the same time, the last one to
reguard the page issues the actual GuardPage call.

In the Sprite shared memory implementation, unguarding a page for one DBMS process

unguardsit for all of the others as well. Sprite uses a single software page table for each



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 75

Shared Buff

[-] Protected Page \

[ ] Unprotected Page Updated Record

Figure 3.3: Expose Page Update Model. The smallest granule of hardware
write protection containing the record of interest is unprotected before the
record isupdated. For most architectures, thisunit isa page.

shared memory segment. When UnguardPage clears the protection bits for a page, all
POSTGRES processes can write to the unprotected page. Thus, while one process updates
the page, faulty code executed by another process can corrupt it.

A GuardedRead system call hel psreducethe vulnerability of buffer pool pagesby allow-
ing them to remain protected during an 1/O operation. The DBMS uses the GuardedRead
system call in place of the normal read system call to load pages from disk into the buffer
pool. Inthe absence of an explicit GuardedRead call, POSTGRES would have to unprotect
the page before issuing the read. The page would remain unprotected for all DBMS pro-
cesses until the read completed and the issuer reprotected the page. In GuardedRead, the
operating system turns off page protection briefly while data is copied from system buffers

into the user address space, rather than leaving it off during the entire 1/0.



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 76

Expose page is best for detecting pointer errors affecting pages containing infrequently
updated records. “Hot” pages containing frequently updated records will be unprotected
much of thetime, so they will receiveless benefit from guarding than cold pages. The maor
costs associated with expose page are anincreased number of system callsand the additional
TLB operations required to change page protections. If guarding were implemented on a
processor with a virtually-addressed cache, changing page protection status from read-
write to read-only would requirethe page to be flushed from the cache. Virtually-addressed
caches store protection bits in the processor cache with the cached data. The protection
bits can only be changed by reloading the cache line from memory. Hence, acacheflushis

normally required to change the protection bits for cached data.

3.2.3 TheDeferred Write Update M odel

The second model of DBMS data structure protection is designed to leave the record
guarded until the end of transaction. When a DBMS process needs to update a record, it
copiestherecord into writablememory and updates the copy rather than updating the record
in place. After the update is complete, an InstallData system call copies the new record
valueinto the protected page. Install Datatakes as an argument an array of <source address,
destination address, length> triples, so several records can be installed with asingle system
call.

InstallData combines an UnguardPage operation and a GuardPage operation into a

single system call, so the user-level process never modifies protected memory directly.



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 77

In InstallData, the operating system changes the TLB entry for the page containing the
protected version of the record, copies the new version of the record into the page, and
reprotects the page. Unlike the expose page model, Deferred Write does not modify the
page table entry, just the entry in the TLB. As Section 3.2.2 has explained, processes can
share page table entries, so modifying the page table entry disables protection for all of
the DBM S processes that share the page. Because processes do not share TLB entries, the
protected page is not vulnerable to errorsin other POSTGRES processes during the install
operation.

The reason that InstallData does not have to modify page table entries is that only the
operating system ever has write access to the protected data. Page table entries are used
to create TLB entries; the protection bits in the page table entry determine the protection
bits in the corresponding TLB entry. Modifying protection in only the TLB entry allows
access to a page until a TLB flush occurs or the entry is replaced in the TLB. When the
page is referenced again, anew TLB entry is constructed and the page becomes protected
again. To mask protection faultsin this case, InstallData sets a copy-in-progress bit in the
process control block before copying a record into a protected page. If a protection fault
occurs due to areconstructed TLB entry, the fault handler will use the copy-in-progressbit
to detect that fault was spurious. It then unprotects the TLB entry and allows the write to
proceed. Because the operating system copies records into protected pages in atight loop,
TLB entrieswill rarely be replaced and the extra protection fault will occur too infrequently

to affect performance. The copy-in-progresshit iscleared and the TLB entry is reprotected



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 78

DBMS Process DBMS Process
Address Space Address Space

Modifiable Modifiable
= =
vﬁcord Copy 7\ Record Copy

Sharef,‘ii 3uff

[ ] Protected Page

[ ] Writable Memory Original Page

Figure 3.4: Deferred Write Update Model. A record is copied to writable
memory before it is updated. Later, it will be copied back into protected
memory using an InstallData system call.

before the DBMS process returns from the Install Data system call.

As in the Expose Page model, Deferred Write offers the DBMS programmer some
latitude in deciding when to install the new version of the record into shared memory. The
updated record could be reinstalled immediately after the update. It could also be installed
after several updates or at transaction commit time. In our implementation of the Deferred
Write model, guarded records are installed at transaction commit time.

Deferred write is designed to work with record-level locking. Records from the same
page may be updated concurrently by different DBMS server processes as is shown in
Figure 3.4. When a DBMS server process copies a record to its private memory, it locks

the record but not the page containing the record. While the latest version of the record is



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 79

in one process's private memory, that process holds a transaction-duration lock on the data.
The updateisinstalled at transaction commit time before the lock is released.

Although updates to data on a page can be deferred until the end of a transaction,
record-level locking requires undeferred updates to the page header whenever anew record
is created on a page. A counter in the page header describes the amount of free space
on a page. The DBMS must decrement this counter when a new record is added. When
record-level locking is used, concurrent transactions are allowed to create records on the
same page. Thus, changes to the free space counter must be immediately visible to all
DBMS server processes. When allocating records on the page, the DBMS can use the
InstallData system call to update the free space counter, but cannot defer the update until
the end of the transaction.

Before making an InstallData system call, the DBMS must check that the destination
page is still present in the buffer pool. In long-running transactions, the disk page from
which an updated record was taken could have been evicted from the buffer pool. If a
record must be installed in a page that is no longer in the buffer pool, the DBMS reads the
page back into memory before installing the data.

Some modifications to the POSTGRES record manager were required to support De-
ferred Write. If the DBMS asks for a record on a page, the record manager has to see if
there is already awritable copy of therecord. If the record has not been copied, the record
manager returns a pointer to the protected record. Otherwise, the copy isreturned. A hash

table tells the record manager whether or not there is currently an unprotected copy of the



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 80

record. If the DBMS decides to update a record, it first tells the record manager to make
sure the record is writable. The request to make a record writable is logically at the same
place the DBM S would lock the data. Hence, the existence of copies did not cause radical
changes to the DBMS software.

While Deferred Write has a higher impact on software architecture than Expose Page,
it provides more protection to guarded records than the Expose Page model does. Deferred
Write updates protected records during a system call, so the DBMS can never store into a
buffer pool page without issuing an Install Data system call. Addressing errorsare unlikely
to cause the DBMS to “accidentally” call InstallData. They can still damage the writable
copy of arecord before it is installed into the buffer pool. They can aso damage the
meta-data that tells where the record will be installed in the buffer pool, causing it to be
installed in the wrong place.

Combining Deferred Write with a little additional error checking reduces error risk
further. The DBMS currently checks that the update to be installed by an Install Data does
not cross record boundaries before issuing the system call. Deferred Write also allows
the DBMS to check for addressing errorsthat corrupt storage nearby the record modified.
When the modifiable copy of a record is created, the DBMS can put known bit patterns
before and after the copy. Some addressing errors which occur near the record can be
detected by looking for corruption of these known bit patterns. In a conventional system
and in Expose Page, these “nearby” addressing errors would be undetectable.

With Deferred Writemodel of guarding, corruptingtherecord directly (asin dataerrors)



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 81

or installing the update to the wrong place on the page are the most likely ways of corrupting
the protected data. At some additional cost, eventhese errorscould be detected. TheDBMS
could checksum the record and its associated meta-data when the record is modified. By
recalculating the checksum before installing the record into the buffer pool, the DBMS
would be able to detect some of these additional addressing errors.

Deferred Write has an additional advantage over both Expose Page and conventional
DBM S transaction management. When bad software corrupts data, often the damage is not
detected immediately. By the time the DBMS notices the error, it cannot tell how much
data has been affected; the faulty code that halted the system could have caused a large
cluster of undetected errors. With guarding and Deferred Write, however, the DBM Sknows
that protected data cannot be corrupted until the InstallData system call at the end of the
transaction. If atransaction detects that it has corrupted some of its data, it smply throws
away al uninstalled data. Any undetected damage to data records caused by the transaction
will be thrown away as well. When record-level locking is used, the free space counter on
a page can be modified during the transaction, but only alimited portion of the DBMS ever
changes the free space counter. Thus, alimited amount of error checking ensures that data
in the buffer pool is not damaged by the failing transaction, even if the extent of propagated
damage is unknown.

A conventional DBM S abortsthe current transaction when an error is detected and hopes
that abort processing removes the effects of undetected errors. Aborting the transaction

will remove the damage only if the erring software accurately recorded its updates in the



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 82

log. Someerrors, like those caused by corrupted pointers, corrupt data without logging the
before-image of the record into the log. The most practical way for a conventional DBMS
to get the same guarantee as the Deferred Write update model is to invalidate the entire

buffer pool after detecting an error.

Page Remapping Techniquesfor Large Objects

Deferred writeissimilar in somerespectsto the shadow paging techniqueusedin System
R[53]. Shadow paging isano-overwritetransaction management techniquein which anew
block on the disk is allocated for every page modified by a transaction. When the pageis
evicted from memory or forced to disk, it goesto the new location. The updateiscommitted
by remapping the new page into the original page’'s position in its home relation. Shadow
paging has fallen into disfavor as a recovery management technique because it prevents
relations from being allocated on disk in keyed order. Thus, scans of the relations lose the
performance advantage of sequential disk reads. While shadow paging and Deferred Write
are superficially similar, shadow paging was not used in conjunction with write protection
in System R and did not provide the error detection benefits of Deferred Write. Also, unlike
shadow paging, Deferred Write does not affect the allocation of the database pages on the
disk, hence does not hurt sequential read performance.

An in-memory variation of shadow paging could be used in conjunction with guarding
to limit copying costs for large objects. For small record sizes, the cost of copying arecord

to awritablelocation and copying it back may not be significant, but as therecord size rises



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 83

Shared Buffér Poolt

[] Protected Page \\ / / /
Buffer

[ ] Unprotected Page N

ABCD Map

Figure 3.5: Remapping to Avoid Copiesin Deferred Write. Page B contains
alargeobject. Instead of updating the object in private memory, an unused
page of the buffer pool is unprotected and the object is copied there. After
theupdateiscomplete, thenew version of pageB isprotected, the buffer map
ischanged, and the old version of page B isfreed.

so do the copy costs. When objects are large, remapping the DBMS buffer pool meta-data
can reduce copy costs.

Instead of copying alarge, possibly multi-page object to writable memory, aregion of
(shared) protected memory is unprotected and the pages containing the object are copied
there (See Figure 3.5). Because it is unprotected, the copy of the object can be updated in
place. To commit the updates to the object, the DBMS reprotects the page and changes the
buffer map, which associates disk blocks with their location in the buffer pool. The pages
that contained the original version of the object are now freed for use in further updates. For
higher performance, the original version’s pages could be unprotected in the same system

call that protectsthe new version’s pages. The freed pageswill then be already unprotected



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 84

when they are needed for the next update.

The remapping variation of Deferred Write is only cost effective when the object
updated islarge relative to the size of a database page. In normal Deferred Write, updating
a protected object requiresthe DBMS to copy the object twice. Thefirst copy occurs when
the original version of the object is copied into unprotected memory. Second, after the
object is updated, the new version is copied back into protected memory. The remapping
variation of Deferred Write incurs two costs in place of the second copy. Firgt, thereisa
small cost to change the buffer pool meta-dataafter the update. Second and moreimportant,
the entire page containing the updated object must be copied into an unprotected page before
the update occurs, rather than just the object. If the object being modified is small, the cost

of the single page-sized copy is larger than the cost of copying the object twice.

3.2.4 The Expose Segment Update M odel

The Expose Segment update model is similar to the Expose Page model, however,
protection is added to or removed from all guarded pages at once. When the DBM S makes
an ExposeData system call, al protected data becomes visible. A second system call,
HideData returns the protection to all exposed data.

Expose Segment provides less protection than the other two models since nothing is
protected from the routines which update critical data structures. The reason for using the
expose segment model isthat it ssmplifiesthe management of guarded datain some modules.

Using the expose segment model, a DBM S programmer can unprotect datafor a procedure



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 85

and its descendants in the call tree without knowing exactly which protected pages will be
written. For POSTGRES, we found the Expose Segment model to be convenient for small,
fast, and trustworthy operations that needed access to data on several pages. For example,
we used it to protect a shared memory hash table in the implementation of the lock table.

To further smplify programming in the Expose Segment model, we use a pre-processor
to place calls to ExposeData and HideData in procedures. The DBMS programmer flags
with a keyword any procedure which is to update protected data. The pre-processor adds
ExposeDataand HideDatacallsat thefirst lineand beforeall return statementsin thetargeted
procedures. The pre-processor eliminates a class of errorsin which data is never hidden
again after an ExposeData call. It also makes adding protection to new data structures very
easy.

To implement the Expose Segment update model in Sprite, we modified the operating
system routinethat handleswrite-protect faults. The ExposeDatasystem call setsa*”trusted”
bitinthe DBMS process's control block indicating that the process has permission to update
protected data, but no page table and TLB entries are changed. When the process tries to
update protected data, it takesa“false” protection fault. The operating system fault handler
distinguishes true and false protection faults by examining the trusted bit in the process
control block. On a false protection fault, the operating system clears the protection bits
from the page’'s TLB entry and the process proceeds with the update. When the data is
hidden again, the trusted bit is cleared and the mappings for any guarded pages till in the

TLB arereturned to read-only status.



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 86

The simplest approach to restoring page protection during HideData would be to flush
the TLB, but flushing and reloading the TLB is expensive. Our implementation maintains
asmall log in the process control block containing page numberswhose TLB entries have
been unprotected. The HideData system call passesthrough thelog and resetsthe protection
bitsinthe TLB entries corresponding to the logged page numbers. If thelog ever overflows,
the entire TLB must be flushed to reprotect the exposed pages.

The expose segment model of guarded update is similar to a conventional protected
subsystem. Other protected subsystems (the operating system kernel, for example) require
more complicated mechanisms since they are expected to prevent malicious as well as
accidental damage.

A dightly less safe version of Expose Segment can reducethe high system call overhead
inherent in this model. If the DBMS needs to update a single protected page, the Expose
Segment model forcesit to enter the operating system threetimes. The DBMS processfirst
makes an ExposeData system call. Second, it takes afalse protection fault when it attempts
to update the protected page. Finally, the DBMS process makes a HideData system call to
restore protection to the page. The Deferred Write model requiresonly one system call and
expose page requirestwo.

The ExposeData system call could be eliminated to improve performance. This system
call is only necessary to inform the operating system that the DBMS process is placing
itself in trusted mode; it setsthe trusted bit in the DBM S process control block. The DBMS

could put thetrusted bit in itsown address spaceif, at system initializationtime, it identified



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 87

the address of the trusted bit to the operating system. Now, instead of making a system
call to expose the segment, the DBM S process would set the trusted bit in its own address
gpace. When the operating system handles the false TLB protection fault later, it looks
for the trusted bit in the reserved area instead of the process control block. The HideData
system call is still necessary since it updates TLB entries to remove write permission on
the protected data. This variation of Expose Segment isless safe sinceit is possible for the

application to “accidentally” go into protected mode by corrupting the trusted bit.

3.3 Performance Impact of Guarded Data Structures

Because the DBMS and operating system have to do extra work during updates of
guarded records, guarding will decrease DBMS performance for update-intensive work-
loads. The extra costs involved in guarding include the additional system calls and TLB
operations required to change page protections. In the Deferred Write update model, ad-
ditional processing is required to create and keep track of record copies. This section
evaluates the performance of guarding in two ways. Section 3.4.1 presents some of the
raw costs of accessing protected datain al three guarding models. Section 3.4.2 showsthe

impact of guarding on overall DBMS performance on a debit/credit workload.



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 88
3.3.1 Performanceof GuardinginaDBMS

Table 3.1 showstheraw costsof theguarding system calls: UnguardDataand GuardData
from the Expose Page model, Install Data from the Deferred Write model, and ExposeData
and HideData from the Expose Segment model. These measurements were taken on a
DECStation3100 version of the Sprite operating system augmented with guarding support.
Each entry in the table gives the mean and standard deviation of five measurements. Each
measurement is the mean of 10,000 system calls. In InstallData, only a single byte of
protected datais modified in order to limit the effect of data copying overhead, which isnot
present in the other system calls.

The costs of ExposeData and HideData as shown in this test can largely be attributed
to Sprite system call overhead. ExposeData ssimply sets a bit in the process control block
and returns. HideData checks that no pages have been unprotected and clears the bit.
UnguardData and GuardData are dower than ExposeData since they must operate on the
DECStation 3100's Trandlation L ookaside Buffer. The measurements show that GuardData
isdightly dower than UnguardData. The system calls are identical except for the bits that
are loaded into the TLB, so if this difference is actualy significant, it is a feature of the
hardware not the software. InstallData is the slowest of these system calls, but it is much
less expensive than UnguardData and GuardData combined. Since InstallDatais logically
a combination of these two operations, we can see that there is a performance advantage to
combining the unguard and guard operations into asingle system call.

The graph in Figure 3.6 shows the cost of updating a small record on a protected page



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 89

systemcals  elapsed time £ std dev
UnguardData 62.2 us+ 0.6
GuardData 63.0 us+ 04
InstallData 745 us+ 04
ExposeData 216 us+ 04
HideData 212 us+ 04

Table 3.1: Raw Costs of Guarding System Calls. These arethe elapsed times

in microseconds of the five different system calls added to the DECStation

3100 version of Sprite to support guarding. Each entry in the table is the

mean of five measurements and a measurement isthe mean of 10,000 system

calls.
in each of the models. The X axis in the figure is the number of bytes in the record and
the Y axis is the elapsed time in microseconds. As in Table 3.1, each measurement is
taken from the elapsed time of 10,000 operations, where an operation copies a record into
guarded memory. Each data point on the graph is the mean of five measurements and the
standard deviation for these measurementsis aways less then 2% of the mean. The graph
also includes curves showing the cost of a simple bcopy into unprotected memory and the
cost of copying arecord from one address space to another using Unix pipes. Pipesare not
the fastest possible interprocess communication mechanism, however, these measurements
give a reasonable comparison between protecting data structures through guarding and
protecting them by maintaining separate address spaces for a protected data structure and
its clients.

All five curves in Figure 3.6 have the same dope, determined by the cost of copying

the bytes in the record. The basic overhead for each of the four protection models shown



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 90

differs significantly. The multi-process model has the highest overhead. Thisis probably
dominated by context switch time. Expose Segment is the next most expensive. A system
call is required to expose the protected data and to hide it again. Then, the data manager
faults to the operating system one more time when it first refersto the data. Expose Page
is less expensive than Expose Segment because it only enters the operating system twice:
once to unguard the data and once to guard it again. It is more expensive than Deferred

Write, because Deferred Write enters the operating system only once.

3.3.2 Performanceof GuardinginaDBMS

The microbenchmarks described in the previous section do not give a complete picture
of the cost of guarding. In order to measure the impact of guarding on a full system,
we compared severa different versions of POSTGRES, each with a different protection
strategy, using a workload based on the TP1 debit/credit benchmark [26]. In our version
of this benchmark, two thousand transactions were run against a small database. Each
transaction retrieves a tuple from an account relation, updates the account relation and
two other smaller relations (branch and teller), and appends a record to a fourth relation
(history). Account has 10,000 records and is 200 pages long. In this benchmark, Branch
has one record and Teller ten, so each is only one page long.

We measured guarding under both a CPU-bound and a disk-bound workload. In the
CPU-bound benchmark, POSTGRES operates on the benchmark database without forcing

its updates to disk at commit time. The benchmark database is small in order to allow the



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 91

Elapsed Time
in Microseconds

Multi-Process

Record Size in Bytes

Figure 3.6: Costs of Updating Protected Records. Thisgraph showsthe cost
of updating a protected record using the Expose Page, Deferred Write, and
Expose Segment models of guarding. They are compared to a multi-process
protection mechanism in which a data structure is protected from its client
by placingit in a separ ate address space from theclient. In the Multi-Process
model, inter process communication is through Unix pipes. The graph also
showsthe cost of unprotected access to the record through a smple bcopy.



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 92

DBMS to store the entire database in main memory. Because the database is small and
updates are not forced to disk, the CPU-bound benchmark does no 1/0 operations at all
and saturates the CPU. To make the benchmark disk-bound, we turned force-at-commit
back on. The resulting 1/0O operations bring CPU utilization down to about 25 percent.
Both benchmarks were run single-user on a DECStation 3100 implementation of the Sprite
operating system.

We compared six different versions of POSTGRES to anormal version with no guarding
support. The unprotected copy version used the Deferred Write update model but did not
protect the pages. Comparing the unprotected copy POSTGRES to normal POSTGRES
shows the overhead in Deferred Write attributable to copy management, but not to write
protection. Three POSTGRES versions each use a different one of the update models
described in the paper. The read-only queries version was actually a modified version of
the benchmark run with Expose Page guarding. Thisversion isjust a sanity-check to show
that guarding does not impose any costs when records are not updated.

Thelast POSTGRES version, full protection, protectsall of shared memory — including
the lock table, some shared memory lookup tables, and the buffer pool. The full protection
version uses the Expose Page update model to update data in the buffer pool and Expose
Segment to update all other data structures.

Tables 3.2 and 3.3 comparethe protection overhead for each of the six program versions.
Each benchmark run of two thousand transactions was repeated five timesto get an average

elapsed time. If the standard deviation of thefive elapsed timeswas greater than one percent



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 93

Protection
Update Model Overhead
Expose Page Guarding 7%
Read-only Queries 0%
Expose Segment Guarding 10%
Full Shared Memory Protection 87%
Deferred Write Guarding 11%
Copy costs only 6%

Table 3.2: Performance I mpact of Guarding a CPU-Bound Version of POST-
GRES. The CPU-Bound case was constructed by running a debit/credit
benchmark on a database that was small enough to fit in memory. With-
out guarding, the DBM S ran about 10 transactions per second.

Protection
Update Model Overhead
Expose Page Guarding 2%
Read-only Queries 0%
Expose Segment Guarding 3%
Full Shared Memory Protection 5%
Deferred Write Guarding 3%
Copy costs only 2%

Table 3.3: Performance Impact of Guarding an 10-Bound Version of POST-
GRES. ThelO-Bound case was constructed by running the same debit/credit
benchmark on the same small database, but forcing updatesto disk on com-
mit. The CPU utilization in thiscaseis 25%.



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 94

of the average, the original five runs were discarded and all five runs were repeated. The
tables present their results as the percent increase in the average elapsed time caused by the
protection mechanism.

The two tables show that the least expensive model for updating guarded buffers is
Expose Page. Expose Segment is dightly more expensive, again, probably because Expose
Segment requires both system callsand a TLB fault to access protected data while Expose
Page only requires system calls. In the disk-bound case, the costs of the different models
are roughly the same. Since guarding does not affect disk accesses, it has a large impact
only when there is high CPU utilization. As one would expect, the read-only transaction
workload showed no additional expense due to guarding.

The software overhead required to manage record copiesin Deferred writeis apparently
significant. The Deferred Write model has about the same cost as Expose Segment, even
though InstallData is the cheapest guarding system call. Comparing the unprotected copy
DBMS to the Deferred Write DBMS shows that much of the expense is related to copy
management. From profile data, we have seen that nearly al of the copy management
costs come from allocating, freeing, and searching for record copiesin the copy hash table.
Because records are small in the benchmark, physical copying does not affect performance.

The full protection version of the DBMS is much dower than the versions that only
protected the buffer pool. This version requires a guarded-memory update whenever the
process sets alock or pins a buffer in the buffer pool. Since pins and locks are acquired

more often than buffers are updated, the cost is higher.



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 95

The measurements in this section illustrate the costs of guarding in a system that uses
memory management hardware available today. While these costs are not exorbitant, they
will be too much for some high performance systems. The next subsection discusses ways
in which changes to memory management units can reduce the costs of guarding so that

even high performance systems can write protect data.

3.3.3 Reducing Guarding Costs Through Architectural Support

One of theadvantages of the current guarding implementationisthat it uses conventional
memory management hardware, making it apractical tool for existing systems. However, if
virtua memory management hardware were redesigned, the performance impact of guard-
ing could be significantly reduced. A large part of the cost of our guarding implementation
is the trap to the operating system required to change read/write access to protected data
structures. The UnguardData, GuardData, and InstallData system calls also must copy
arguments from user space to kernel space. Modifying the operating system and the virtual
memory management hardware to allow unprivileged processes to protect and unprotect
parts of their address spaces could bring the cost of guarding down by as much as forty
percent (assuming system calls are 22 microseconds and argument passing takes about 5
microseconds).

Protection violations are detected by the address trand ation mechanism in the memory
management unit of the processor. Usually, a bit indicating whether a page is writable is

stored with the virtual-to-physical address mapping for the page. When the virtual address



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 96

istrandated to a physical address, the protection bit is checked to make sure that the address
being stored into iswritable. We have been calling the hardware that manages this mapping
the Trand ation Lookas de Buffer (TLB), but implementations of the mapping hardwarevary
widely. The VAX has two levels of hardware tables mapping virtual address to physical
address[50]. In the DECStation 3100 [41], this mapping is a hardware hash table entry. In
amachinewith avirtually-addressed cache such asthe SPARC |1, theinformation is stored
with the cache line. Cheng [17] describes some of the expenses involved in managing
protection changes in such an environment.

Usually, the same (supervisor-mode) instructions are used to change the TLB’s virtual-
to-physical address mapping as are used to change the protection bits. Unprivileged pro-
cesses cannot execute these instruction since allowing unprivileged processes to change
virtual-to-physical address mappings would be a security hole. If unprivileged access were
allowed, any process could alow itself to address any part of physical memory. Modifica-
tion of protection bits can be a security hole as well in UNIX systems since code segments
are shared between processes. If amalicious user unprotected a shared code segment and
modified the code, he or she could make other processes executing that shared code take
actions unintended by the owners of those processes.

To alow unprivileged processes to guard and unguard data in their own address spaces
quickly, the processor instruction set should include a separate, unprivileged instruction
to store a protect/unprotect bit into a TLB entry. The TLB entry would have to have an

additional bit and/or mode that allowed the operating system to protect some TLB entries



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 97

from modification (e.g. code segments).

Even with hardware support, the operating system would have to cooperate with user
processes in order to implement user-level guarding operations. TLBs can be flushed at
any time by the operating system, for example, after a context switch operation. When the
operating system reinitializes a TLB entry, it will do so using the protection information
stored in the process page table. If a user process unguards a record using the new
instruction, takes a context switch, and then accesses the unguarded data, it will fault; the
operating system will have reguarded it after the context switch. Therefore, a user-level
guard/unguard operation must not only physically change the protection of the data, but
also save the new page status in a way that allows the operating system to determine that
status duringa TLB reload.

One can imagine many implementations of user-level unguard operations. For example,
in the POSTGRES guarded buffer pool experiments, most of the buffer pool was guarded
most of the time. Records were unguarded temporarily during updates, but then reguarded
immediately, and only one page per DBMS process was ever unprotected at a time. An
effective implementation for POSTGRES would be a system call with which the user
program specifies a buffer containing alist of currently unprotected pages. The user-level
unguard routine would keep the list up to date. After a protection fault on a guarded page,
the operating system could check thisbuffer for the virtual address (or virtual page number)
of atemporarily unprotected page. The protection fault will only occur if the TLB entry is

lost between the unguard operation and the modification of the unguarded record.



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 98

3.4 Rdiability Impact of Guarded Data Structures

The control/addressing/data error model presented in the introduction was designed to
break errorsinto classes differentiated by their effectson guarded data. Inorder for guarding
to detect errors, failing software must try to update protected data illegaly. If broken
software always managed to unguard data structures before corrupting them, guarding
would not detect errorseffectively. Guarding would aso have no impact if softwarefailures
simply cause the program to halt without ever overwriting any data. From the error model
and the data in Chapter Two, we can estimate how much impact guarding will have on
software reliability.

Dataerrors would corrupt guarded data or cause the program to produce invalid results
in spite of the guarding protection, but, fortunately, these errors were uncommon. Data
errors occur when the software calculates and stores the wrong data value. Guarding will
not protect against these errors; the faulty DBMS code will ssmply turn off the protection
and corrupt the data. The data in Chapter Two shows, however, that the assert statements
and other standard debugging and antibugging techniques used in current systems do an
excellent job of detecting data errors, limiting thisrisk to guarded data.

Control errors are also unaffected by guarding, but because they do not corrupt data,
not because they turn off guarding. Control errors corrupt transient program state or cause
deadlock, but do not directly overwrite anything. After a control error, the system only
needs to reinitialize transient state and begin accepting transactions again. The secondary

effects of the error sometimes involve addressing failures, however. For example, some



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 99

control errors in the MVS study had “address trap” failure symptoms, meaning that the
control error was detected by the system when the code tried to access unaddressable
memory. While guarding will not detect control errors, it will limit the possibility of error
propagation after a control error occurs.

Guarding will be most likely to detect addressing errors, such as uninitialized pointers.
The studies in Chapter Two indicate that addressing errors make up twenty to thirty percent
of recorded software errors. According to Chapter Two, however, addressing errors tend
not to be the “wild pointer” errors that randomly corrupt data arbitrarily far away from
the data that the failing module was using. When we could tell from the APAR which
data structure was corrupted, 75% of the time the data structure was very near the data
that the programmer intended to update. Guarding is unlikely to detect these addressing
errors. “Wild pointers’ represented only a quarter of the addressing-related errors; hence,
the errors most likely to be detected by guarding make up make up about 5 to 7.5 percent
of all software errors.

While guarding will not detect most software errors, reducing the number of software
outages by even five percent will be extremely helpful in many environments. Chapter Two
also showed that addressing errors have the highest impact on the customer, either because
they caused the most serious outages or were the most difficult for the system to recover
from. Moreover, even when the resulting outage is minor, addressing errors represent
some of the most difficult software errors to find and fix. By the time the damage has

been detected, the modul e containing the error is no longer executing. Anecdotal evidence



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES100

from the devel opment of POSTGRES and other systems suggests that much more than five
percent of the system development effort goesinto finding and repairing addressing-related

faults.

3.5 PreviousWork Related to Guarded Data Structures

Now that the guarding mechanismshave been described, we can comparethemto similar
mechanisms used by other systems. An aternative to protecting shared data structures
with guarding is to keep those data structures in one address space and the clients of the
data structures in another. In order to make such an architecture practical, a fast cross-
address-space procedure call mechanism like that of the Taos operating system [10] is
required. The Taos Lightweight Remote Procedure Call (LRPC) is optimized for RPC-
style communication in which only afew parameters are passed between caller and called
routine. The Service Request Block (SRB) mechanism in the MV S/XA[36] operating
systemissimilar to LRPC. An SRB isahigh priority thread of control which can be created
in aremote address space. Both LRPC and SRB use a fast path through the scheduler and
some shared memory to reduce overhead.

Guarding provides the same kinds of protection against non-malicious damage as does
an address space boundary. However, access to read-only records is faster than would
be possible in a separate address space implementation. Since database workloads often

requirethe DBMS to scan through large amounts of data before selecting some for update,



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES101

faster read performanceis a distinct advantage.

Tandem’s process pair mechanism [7] aso relies on multiple address spaces to prevent
propagation of software errors. The Tandem data manager has a primary and “hot spare”
process executing at the same time on different machines. The primary executes all trans-
actions and sends checkpoint messages to the spare. If the primary fails, the spare can
reconstruct the data manager’s state from the checkpoint messages. While errors might
propagate within the primary, they are less likely to propagate to the spare.

While process pair prevents the same kinds of errors as guarding does, it is much more
expensive. Keeping the spare up to date requires resources for sending and processing
checkpoint messages. Worse, the implementation of the checkpoint protocol isnon-trivial.
Modifications to the DBMS may affect the checkpoint protocol, making them expensive
to implement and test. Finally, the model does not help detect errors. The primary and
spare both have large, unprotected buffer pools. An undetected pointer error can damage a
buffer without making the primary turn over control to the spare. The corrupted buffer will
eventually corrupt permanent data.

The 801 System [16] uses page protection bits to provide operating system support for
DBMS locking and logging, rather than using page protection to increase fault tolerance.
A data manager running on the 801 does not set locks explicitly. Memory management
hardwaredetectsaread or awriteto an unlocked buffer and the DBM Strapsto the operating
system. The operating system then setslocks and implements physical logging of 128 byte

subpages. To support fine-grainlocking, the 801 memory management unit provides write-



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES102

protection at subpage granularity. The same hardware would support subpage granularity
guarding.

Unlike asystem using guarded data structures, the 801 treats any attempt to writeto one
of its buffers as legitimate. By moving responsibility for locking from the DBMS to the
operating system, the 801 islosing information available to the DBM S about which dataiis
updated erroneoudly. If a bad pointer causes a write to an unlocked buffer, the 801 locks
the buffer and logs it normally. Under the same circumstances, a guarded system would
immediately halt the transaction.

Implementing protected operations such as locking in the operating system is one
aternative to guarding. However, instaling the DBMS code in the operating system
makes the operating system vulnerable to errorsin the installed code. Guarding gives the
DBMS implementor more freedom to decide what code is reliable enough to have access
to protected data. More debugging support is available for user programs than for the
operating system, so implementing protected subsystems in the DBMS is more practical
than implementing them in the operating system.

Guarding provides some of the same protections as a protected subsystem mechanism
without requiring any special hardware or restricting the designer’s choice of programming
environment. Existing protected subsysterm mechanisms oftenrely on special memory man-
agement hardware [64], [82], or type-safe languages [46]. Guarding can be implemented
on conventional hardware and used with common systems programming languages. Of

course, guarding is designed to protect against accidental damage not malicious damage.



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES103

Existing protected subsystem mechanisms were designed to protect against both.

We chose to implement the virtual memory support required for guarding by modifying
the operating system. It would also be possibleto support guarding using the Mach external
pager [83]. Implementing guarding directly in the operating system should make guarding

more efficient.

3.6 Summary

This chapter describes modifications to the operating system and database manager
which are designed to limit software error propagation in the DBMS. Write-protecting the
data manager’s buffer pool allows early hardware detection of addressing-related software
errors. Guarding reduces the complexity of software failure by preventing errors from
propagating to protected data structures. Guarding techniques can also improve recovery
speed since limiting potential error propagation decreases the amount of work required at
recovery time. While any DBMS could use these techniques, they are especially important
to aextensible DBMS such as POSTGRES. With a guarded system, one person using (or
developing) new access methods or data types has smaller impact on the availability and
reliability achieved by hisor her peers.

Itisdifficult to quantify thereliability improvementsthat will result from using guarding
in commercia systems. Chapter Two showed that 25-30% of software errors in severd

existing systems are addressing-related. Only 25% of those were “wild pointers’ that



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES104

damaged parts of the system unrelated to the component with the error, though. This
implies that guarding will eliminate about 5-7% of software errors. However, some of
these software errors were among the most difficult to detect by ordinary means, so a5-7%
reduction in software errors may result in a much larger reduction in the engineering effort
required to produce areliable software system. These errorsare aso of higher than average
customer impact, so the reliability increase perceived by the customer will probably be
more than 5-7% as well.

In general, the performance impact of guarding is comparable to the impact of other
software techniques for detecting software errors, such as data structure verifiers or array
bounds checks. Guarding can beimplemented efficiently by taking advantage of processors
with software-loaded TLBs. For read-only workloads, guarding provides the DBMS with
additional protection at no extra cost. For update-intensive workloads, experiments have
shown that the additional CPU demand caused by guardingisonly afew percent when small
records are updated. Page remapping techniques could be used as a method for reducing
copy cost for large records.

In deciding whether or not to guard data structures, system designers face a tradeoff
between potential reliability and availability improvement and a small but measurable per-
formanceloss. For some systems, no reliability gain will be worth any lossin performance.
Others may be willing to accept the small performance loss in order to achieve any relia-
bility improvement. Still other systems may want the option of switching from guarded to

normal operations at different pointsin the system lifetime or for different customers.



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES105

Over time, trends in system cost will probably tilt the performance/protection tradeoff
in the favor of guarding. As processors become faster, the additional processing demands
caused by guarding will become less of a concern. The big potential risk to the long-term
usefulness of guarding techniques is that the cost of changing page protection might not
scale with processor performance. However, hardware designers have been made aware of
the need for fast protection changesin other applications such as distributed shared memory
[1], so, hopefully, they will consider thisissuein future processor architectures. Meanwhile,
the need for guarding will almost certainly increase over time. Falling memory prices are
increasing the sizes of disk cacheslikethe DBMS buffer pool. Some datain the cache will
remain unused for long periods of time. Itisessential that bad writesinto thisdata, however
infrequent, be caught at the time of the error rather than the first time the datais used. It
is also essentia for fast recovery that these gigantic caches not be reloaded from the disk
after software failures. Finally, as non-volatile RAM becomes less expensive, it will be
more likely to be more frequently used as stable storage by applications such as database
management. Non-volatile RAM will never be asresistant to failure as disk storage without

some protection from addressing errors.



106

Chapter 4

Fast Recovery inthe POSTGRESDBMS

4.1 Introduction

A fast, ssimple recovery mechanism is critical to highly available data management in
fault tolerant systems. As Chapter One pointed out, faster recovery leads directly to higher
availability. Long software restart times lengthen the outages that occur after any kind
of failure, and longer outages decrease system availability. Section 2.4.3 of Chapter Two
illustrated the reliability risk due to recovery system software. Many software outages
caused by control errors were related to recovery and error handling code. The data
indicates that recovery systems are hard to implement correctly and hard to maintain.
Testing recovery systems is also difficult since it requires test suite designers to anticipate
failure conditions that will arise in the field. This is a daunting task in a large software

system.



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 107

Traditionally, fault tolerant systems have tried to mask failuresand avoid recovery rather
than improve recovery speeds. For example, Tandem [7], Stratus[80], Auragen [13], Harp
[51], XRF [37] and HA-NFS[11] al maintain a primary and one or more backup systems
in order to avoid recovering when the primary fails. When a failure occurs, operation
switches over to the backup system rather than delay users while the primary recovers.
Unfortunately, the protocol for keeping backups up to date is expensive and its correctness
isvery difficult to verify. Also, even if the protocol works correctly, there is no guarantee
that software errorswill not propagate from the primary to the backup.

Another common approach to masking failures is to provide a multi-level software
recovery mechanism. The Integrity-S2 [40] operating system attempts to correct internal
data structures when it finds errors in them. If two failures occur within a few minutes,
then the system assumes the correction did not work and goes through a full recovery.
MV S [2] uses a multi-level recovery scheme in which different portions of the system can
fail and recover independently. Another two-tiered recovery mechanism [5] implemented
in the Sprite operating system uses a reserved area of memory to hold backup copies
of state associated with the distributed file system and distributed applications. In the
event of control errors and most addressing errors, the backup state can be used for quick
regeneration of operating system and application program state without disk operations or
communicationwith remotesites. When power outages, hardwareerrors, or softwareerrors
corrupt the reserved memory, the normal, slow recovery path is used.

The POSTGRES approach to maintaining high availability is to improve the speed of



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 108

systemrecovery after errorsaredetected. Failureisnot masked, asisthe casewith hardware,
but a fast recovery mechanism can improve availability by eliminating long outages after
failures. The approach requires little to be done during recovery that is not done during
a normal system restart, so the recovery system may be easier to debug and test than
conventional multi-level recovery mechanisms. In contrast, most database management
systems use write-ahead log (WAL ) recovery techniques (surveyed in [34]). In WAL, all of
the updates applied to the database are writtento alog. Thelog is processed during system
restart to ensure that no committed updates are lost and no aborted updates remain. After
the WAL survey was published, ARIES [55] took many steps to improve the concurrency
and restart performance of the basic write-ahead logging techniques, but increased the
complexity of the recovery system software. Even in ARIES, database recovery time is
proportional to the number of log records that must be processed during recovery. To
significantly improve recovery times, log processing must be eliminated.

The work in this dissertation takes as its starting point the 1987 POSTGRES storage
system, which uses no-overwrite techniques to combine support for historical data with
support for transaction management [69]. The details of the no-overwrite storage system
are left to Section 4.2, but, briefly, the storage system works by creating a new version of
any tuple updated by the DBMS rather than updating the tuple in place. If the DBMSfails
and the updating transaction aborts, the previous version of the tuple remains and can be
used for recovery. Falling back to the previous version does not involve log processing, so

the storage system requires little work at restart time.



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 109

While the designers of commercial database systems desire the faster recovery that is
possible without write-ahead log processing, this community has not applied the POST-
GRES storage system ideas to commercial DBMSs. The two most likely reasons for this
involve recovery from media failures and performance considerations. POSTGRES as-
sumes that the I/O subsystem handles mediarecovery, hence, it depends on either mirrored
disks or RAID (Redundant Array of Inexpensive Disks [61]) disk subsystems. Tradition-
ally, write-ahead logs have been used in media recovery for non-mirrored disks. Because
RAID storage systems are now commercially available, thisis becoming less of a problem.
A more important reason that the POSTGRES storage system ideas are not widely used
is that the original design does not perform as well as traditional storage systems when
the database must support a very high update rate. The data structures used to implement
the no-overwrite transaction support in POSTGRES made retrieving tuples from such a
database expensive. Also, POSTGRES must use a force-at-commit buffer management
policy: al buffers containing tuples updated by the transaction must be written to disk
before transaction commit. Most database management systems do not use this policy
because it causes the DBMS to do much more disk 1/0 than would be necessary with
a write-ahead logging policy. To increase the usefulness of POSTGRES' fast recovery
techniques in applications such as banking and stock trading in which both high update
rates and fast recovery are important, the performance impact of the storage system must
be reduced.

Chapter Four of thisdissertation makesfour contributionstofast recovery inthedatabase



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 110

management system. The first two increase the applicability of the POSTGRES storage
system in environmentswith high update rates and allows the DBM S in these environments
to take advantage of fast recovery. First, the chapter suggests severa changes to the way
tuples are stored in POSTGRES. Section 4.2 describes the original POSTGRES storage
system and the new optimizations. Second, Section 4.3 uses an analytic model to evaluate
the 1/0O impact of the storage system on a RAID. It shows how non-volatile RAM and
modern file systems such as the log-structured file system (LFS) [63] can eliminate the
additional 1/0 costs associated with POSTGRES' no-overwrite techniques. Together, the
techniques described in Section 4.2 and the analysis of Section 4.3 should increase the
applicability of no-overwrite transaction support to applications with high update rates.
Chapter Four also considers recovery of severa kinds of DBMS state that the original
POSTGRES storage system ignored. When the DBMS recovers from a failure, it must

reestablish four kinds of context lost during the failure:

(1) Disk Database Context: Thedatabase onthedisk must be madetransaction-consi stent.

(2) Disk Cache: After afailure,the DBM Smust rel oad frequently-accessed database pages

into main memory.

(3) Session Context: Network connections between the DBMS server and its clients are
lost during the failure. Reconnecting a client to the server means reauthenticating
the client, reinitiating the network protocol, and determining if any messages were

in trangit at the time of the failure. In some systems, human intervention is even



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 111

required to restart application programs after the DBM S server fails.

(4) Current Transaction Context: Thetransactionsexecuting at thetimeof thefailurehad
some transient state associated with them — for example, the query plan structures,
the lock table, and the temporary relations holding intermediate state. This state must

bereainitialized.

The POSTGRES storage system addresses item (1) from the list. Sections 4.4 and 4.5
describe methods of recovering disk cache and session context, items (2) and (3) from
the list, which were ignored in the original storage system. Regeneration of the current
transaction context, item (4) inthelist above, isleft asfuturework. Theissue of regenerating
transaction context is not important when the DBMS only executes short transactions. In
this case, the fastest, smplest way of recovering lost transaction context isto reexecute the
aborted transactions. Strategies for reestablishing the transaction context of long-running

transactions are outlined in the final chapter of the dissertation.

4.2 A No-Overwrite Storage System

The POSTGRES storage system differsfrom most other DBM S storage systemsin that
user data is not updated in place. Instead, POSTGRES creates a new version of the tuple
and updates the new version. When atupleislogically deleted, it isactually marked invalid
and left physically in place. Instead of write-ahead log processing, POSTGRES recovers

fromfailuresby falling back to the previousversion of thedata. If thetransaction isaborted,



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 112

the DBM S detects and ignores any changesto the database made by the transaction. Even if
the transaction commits, the updated tuple versions remain accessible to users as historical
data. Because the new version of the data is physically located in the data pages, al data
pages written by the transaction must be written to stable storage or non-volatile memory
before the transaction commits. In [34], this policy for managing data pages is called
force-at-commit.

The subsections that follow describe the POSTGRES Storage System and severa en-
hancements to it. The first four subsections describe the most important issues affecting
the performance and cost of the transaction system: (a) storage of tuple versions, (b) recla-
mation of space in data pages, (¢) the run-time detection of invalid updates, and (d) access
to historical data. The third of these subsections discusses the actual recovery mechanism.
A final subsection tells how the force-at-commit policy affects performance on severa
different kinds of 1/0 subsystems. Much of the current section summarizes design points
of the original POSTGRES Storage System design and is included here for compl eteness.
Some changes have been made to improve recovery speed, to ssimplify parts of the storage
system, and to improve performance. In other places, we describe details of the storage
system that were omitted in [69]. The differences between the original POSTGRES storage
system and the version modified for the dissertation will be identified as they arise. The

version implemented for this dissertation isreferred to as the “modified” version in the text.



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 113
4.2.1 Saving Versions Using Tuple Differences

In order for the POSTGRES no-overwrite storage system to make more efficient use of
space, consecutive versions of the same tuple are stored as a sequence of tupledifference
records rather than a sequence of full tuples. When a tuple is initialy inserted into a
relation, an anchor point record is constructed representing the full tuple. Subsequent
updates are represented as difference records containing only the fields of the new tuple
version that differ from the previous version. The difference records are chained together
so that starting at the anchor point and following the chain will allow POSTGRES to
reconstruct any version of the tuple.

The original POSTGRES storage system used a difference record management scheme
based on forward difference chains. In forward differencing, the anchor point is the
oldest available version of the tuple. The difference chain goes from the oldest available
version to the newest one, hence, queries referring to the current version of the tuple must
pass through the entire difference chain to construct the tuple (see Figure 4.1). Asrecords
are updated, the difference chain will grow and references to current data will become
increasingly expensive.

The modified POSTGRES storage system used in this dissertation improves access
to current data using backward difference chains. The anchor point in this case is the
most recent version of the tuple. When an update occurs, a link is constructed from the
newly-generated version to the current version in the difference chain. Because the current

version of the tupleisreadily available, scans and updates of the current database are fast.



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 114

TO Tl T2 T3

LineTable 1

Anchor ||V:Oi6|d1

Point
f IField2
vZ
Field2 IField3
vl
FielddField2 |Fie|d4|

Figure 4.1: Forward Difference Chain. This data page containsfour tuples, only one
of which, T3, isshown. Thelinetableentry pointsto the anchor point (in bold). The
forward difference chain connects the records representing versions v0, vl, and v2.
To construct the current version of a tuple, the DBM S starts with vO and followsthe

difference chain.

TO T1 T2 T3
Line Table
& fffffff 2 V0
An_chor | Fieldl
Point L Field2
v/ b
Field2 Field3
vl
— 2 FielddField2 Field4

Figure4.2: Backward Difference Chain. In thisfigure, T3 uses an array-style anchor
point (in bold, as above) and a backward difference chain. The difference chain is
shown as dotted arrows connecting the records associated with versions v2, vl, and
v0. The anchor point array pointsto the youngest member of the chain and to the
most up-to-datevaluesof T3'sfields. Sinceonly Field2 and Field4 have been updated,
two of these field values come from v0 and two come from v2.



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 115

Unlike the anchor point in a forward difference chain, the anchor point in a backward
difference chain can contain fields from several different tuple versions. For example, if
a transaction updates one attribute value in a four attribute tuple, as in Figure 4.2, the
most recent version of the tuple contains fields from two difference records. Therefore, the
anchor point isstructured asan array with an element for each of the tuple sattributes. Each
element points to the most recent value for the given attribute. Because of its array-style
anchor point, backward differencing uses more space than forward differencing. Forward
differencing smply used the oldest available tuple difference record as its anchor point.

It should be clear from Figures 4.1 and 4.2 that, while both forward differencing and
backward differencing are logically no-overwrite techniques, the data on stable storage is
physically overwritten after each update. Data is transferred between main memory and
disk in page-sized units. When a new difference record is added to a page, the entire page
isrewritten to stable storage. We assume that database pages are written to disk atomically
except in the case of a media failure. We assume that this as well as other media failures
is detectable. On devices (and file systems) in which page writes cannot be guaranteed
to be atomic, POSTGRES or the operating system would have to checksum each page in
software and examine the checksum every time the page is read from disk.

POSTGRES indices are described in depth in Chapter Five, but one detail regarding
them is important to this section. Records in a POSTGRES index point to the line table
entry on the data page rather than an individual record. Because the line table entry points

to the anchor point, the index can be used to find any version of the tuple. Thus, the no-



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 116

overwrite policy does not force the DBMS to update index records every time data records

are updated.

4.2.2 Garbage Collection and Archiving

Tuple difference chains reduce the amount of space taken up by historical data, but
the no-overwrite policy will eventually cause the database to run out of disk space without
an additional strategy for reclaiming storage space. The original POSTGRES storage
system allowed space to be reclaimed in three ways. First, any tuple versions created by
transactions that later aborted can be garbage collected and removed from the database at
any time. Second, historical data can be moved to acheaper storage medium such asoptical
disk, freeing up space on the faster medium. Third, historical data older than a user-defined
threshold can be destroyed. This section will, for ease of presentation, address garbage
collection and the archiving/destruction of historical dataas separate functions. The section
occasionally refers to the garbage collector and the archiver as separate entities when, in
fact, they are implemented in asingle program called the vacuum cleaner.

In its garbage collection capacity, the vacuum cleaner examines each page of each
relation in the database, reorgani zing the page to eliminate tuple versions created by aborted
transactions. A page is reorganized by first alocating a temporary page in memory, then
copying al historical and current tuple versions to the new page. The copying is necessary
because theinvalid tuple versions created by aborted transactions areinterspersed with valid

tupleversions on the page. After the new page has been constructed, the DBM S buffer pool



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 117

meta-datais modified so that the new page replaces the old one.

During garbage collection, the layout of the data page changes, but the contents of valid
tuples on the page do not change. Therefore, garbage collection does not conflict with
transactions two-phase read and write locks on the page's tuples. If it did conflict, the
garbage collector would have to lock tuples during garbage collection, reducing overall
concurrency and alowing the garbage collector to deadlock with existing transactions.
High concurrency during garbage collection isimportant since the most frequently updated
relations have both the highest concurrency requirements and consume the most space if
not vacuumed frequently.

While two-phase locks are not required, some coordination between the garbage col-
lector and transactions in the DBMS is necessary because the DBMS process can have
pointers into the old version of the page. The DBMS must detect that garbage collection
has occurred and revalidate these pointers before the old page isreallocated. When garbage
collection completes, the garbage collector stores a pointer to the new version of the pagein
the buffer header structure associated with the old page. Whenever the DBM S re-examines
atuple, it checksto seeif thereis anew version of the page. If thereisanew version, the
backend process reassembl es the tuple using pointers to the difference records in the new
page and unpins the old version of the page. When the last pin on the page is released, the
buffer containing the old version can be reallocated. The garbage collector must also hold
thelatch (semaphore) associated with the pagewhileit copiestuple versonsfromtheold to

the new page. The DBM S normally usesthislatch during updates to synchronize allocation



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 118

of space on the page, so holding the latch prevents updates during garbage collection. Until
garbage collection has completed, the DBMS does not know how much space is available
on the page so no space can be allocated for the new tuple version created by an update.

When archiving, the vacuum cleaner chooses a time value ARCH-DELAY seconds
before the current time and declares that to be the archive start time. The archiver selects
al tuple versions committed before the start time and copies them to the archive or destroys
them. To ensurethat it copiesthe correct tuples, the archiver usesthe POSTGRES historical
data(or timequery) facility tolook up archivabletuples (described in Section 4.2.4). Since
the time query only returns data that was valid at the archive start time, uncommitted
updates are never copied to the archive. The current POSTGRES implementation stages
archived tuple versions to a magnetic disk write buffer before writing them to the archive,
since access to the archive media (tape or write-once optical disk) istypically an order of
magnitude slower than access to disk.

After the datais archived, the archiver deletes historical tuple versions from the mag-
netic disk relation. It will usually also have to construct a new tuple difference record
representing the oldest available tuple version. Because consecutive tuple versions share
many attribute values, the oldest available tuple version probably incorporates attribute val -
ues from difference records that the archiver has deleted. The new tuple difference record
retains these shared attributes in the non-archived version of the relation. Details of the
archive and its cache are described in [59]. The archive indexing strategies are addressed

in[45]. Unlike the garbage collector, the archiver must use two-phase locking to guarantee



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 119

that no transactions are using historical data when it is moved to the archive.

Constructing Over flow Pagesto Support the No-Overwrite Policy

In the no-overwrite storage system, the policy for managing page overflow has a
significant impact on DBMS performance. Because of the no-overwrite policy, repeated
updates to tuples on a data page eventually fill the page. The space reclamation strategies
described above will not always prevent pages from filling, especially in a high-update-rate
environment. Since high-performance commercial database management systems can run
at rates of hundreds of transactions per second, pages fill up too rapidly. Minimum-sized
tuples in the original storage system are about 64 bytes, even when differencing is used.
Thus, approximately 127 updates fill an 8K page containing one tuple.

Theoriginal storage system simply extendsthetupledifference chainto anew pagewhen
atransaction triesto update tuples on afull page. In the high-update-rate environment, this
strategy causes performance to degrade rapidly, especialy when the DBMS uses forward
difference chains. Whenever a tuple is accessed or updated, each page in the multi-page
forward difference chain hasto be accessed. “Hot” tuplesthat receive frequent updates will
form the longest multi-page tuple chains. Therefore, the tuplesthat are used the most often
will have the greatest access cost.

Backward difference chains improve the access to multi-page tuple chains in some
important cases, but at greater storage overhead. Only the pages containing current attribute

values need to be examined if backward difference anchor point arrays are alowed to point



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 120

across page boundaries. In the case in which the same attributefield is updated repeatedly,
only two pages are accessed: the one containing the anchor point and the one containing
the most recent difference record. However, the anchor point array entries must be larger
if they can point across page boundaries. Only two bytes per pointer are required if the
chains are contained within apage, while six bytes (afour-byte page number and atwo-byte
offset) are required to point to a difference record on another page. Also, updates require
both the anchor point and difference record page to be updated. In forward differencing,
only the page containing the difference record is modified during an update.

The modified POSTGRES storage system uses an alternative strategy to limit the perfor-
manceimpact of multi-pagetupledifferencechains, astrategy based on pagereorganization.
If atransaction updates a tuple on a full page, the DBMS creates an over flow page and
moves some of the tuple difference records from the original page to the overflow page
using a technique detailed below. Managing overflow pages recoverably is more complex
than the original POSTGRES storage system strategy, but in the common case it alows
access to the current database to take place without examining more than one page per tuple.

There are two possible strategies for creating overflow pages. The simplest strategy
would be to construct a new anchor point for each tuple from the original page on the new
overflow page. If al of the current version’s attribute fields are assembled on the overflow
page, the current tuple version can always be constructed from a single page. The header
of the new page would have a pointer back to the original page in order to allow access to

historical data from the current version of the data. Unfortunately, the DBMS may have



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 121

T Ime

Origi mal ™~ owvw
FPage Historical

N ersi onNns

Old—\/ er ssi on Nenww—\/ ersi onmn
Over flovw Page Overflovw Page

Time
_—
N oww
Historical
N er st onNs

Figure4.3: Creating an Overflow Page. When theoriginal page overflows, it
issplit into two pages. Theold page containshistorical tupleversionsand the
new page containsthe current versions. Whilethe old page is written asyn-
chronoudly to stable stor age, the new pageismapped to atemporary location
on disk. Oncetheold page hasbeen written to stable storage successfully, the
new page is allowed to overwrite the original page in the database and the
temporary location can bereused.

many indicesreferringto recordson the original page. Each index would have to be updated
in order for indexed access to the datato remain fast. If there are many records on the page
and many indexes on the relation, creating an overflow page would require updates to many
other pages and again have significant performance impact.

A better strategy isto move the older versions of the tuples on the original page to the
overflow page, as shown in Figure 4.3. That way, index entries still point to the same page
and that page till contains the most recent version of thetuple. Overflow pages are chained
together so that any historical version of the data can be reached by a multi-page scan.

Creating an overflow page containing historical tuple versions in a way that prevents

information from being lost in a crash is tricky. To create an overflow page, the DBMS



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 122

creates two new pages. the new-version overflow page and the old-version overflow page.
The new-version overflow page containsthe most recent version of each tupleon theoriginal
page. The old-version contains the historical versions of tuples on the original page. Once
the old-version page has been saved in stable storage, the new-version page can be used
in place of the original. Until the old-version page has been successfully written to stable
storage, the original page contains the only stable version of the historical tuples on the
page. If the new-version page were alowed to replace the original page before the old-
version page was stable, a crash could destroy the historical tuple versions. The DBMS
logically replacesthe original page with the new-version page by modifying the buffer pool
meta-data. Buffer pool cache meta-data tells which buffer in main memory is associated
with agiven page of the database. If a pageisever writtento disk, the buffer pool meta-data
tellswhere it should be written.

Creating overflow pagesis not very expensive if a small amount of non-volatile RAM
isavailable, but, if disk is used for stable storage, overflow causes an extra disk write. In
the original storage system, overflow causes the new page to be written to stable storage (to
commit the new tuple version) and the original page to be written to stable storage (to link
the previous version to the new one). When non-volatile RAM is available, the modified
version of the POSTGRES storage system creates its new-version overflow page and old-
version overflow page, then blocks while the old-version overflow page is copied to stable
storage. After the old-version page has been copied, the DBMS replaces the original page

with the new page. When the transaction causing the overflow commits, the new-version



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 123

pageis written to stable storage. Asin the original POSTGRES storage system, two pages
on stable storage are updated.

When disk is used for stable storage, the new scheme cannot block the DBMS while
the old-version overflow page is written to stable storage. Disk latency is too long for
such a strategy to be efficient. Instead, the DBMS writes the old-version page to disk
asynchronoudly. Asabove, the tuples on the original page must remain intact until the old-
version overflow pageiswritten to disk. To alow the DBM S to commit transactions before
the write of the old-version page has been confirmed, the new-version page is mapped to
atemporary location on disk. The temporary page is chained to the origina page and the
old-version is chained to the new-version as is shown in Figure 4.3. On a commit, the
origina page and the new-version page must both be written to disk. The original page
must be written in order to preserveits pointer to the temporary location of the new-version
page. Thus, three pages are written to disk on an overflow instead of two.

In summary, the no-overwrite storage system must have some policy for creating over-
flow pages. The original storage system’s policy of alowing tuple difference chains to
span several pages forces the DBMS to examine more than one page during the update of
asingletuple. Even if the vacuum cleaner runs hourly, these chains of pages could run to
tensof pagesfor highly-updated tuplesin a high performance DBMS. The modified storage
system puts historical data on a new page instead of the newly-created data, so that access
to the current database remains fast even if the vacuum cleaner runs infrequently. This

strategy will result in an extradisk write per overflow, however, if no non-volatile memory



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 124

isavailable for stable storage.

4.2.3 Recovering the Database After Failures

The DBMS recovery system must mask any inconsistencies in the database resulting
fromaDBMSfailure. In POSTGRES, these inconsistencies take the form of tuple versions
that were created by transactions that later aborted. In a conventional system, data pages
can contain two kinds of inconsistencies. First, tuples may have been updated in place by
transactions that were aborted. Second, tuples updated by committed transactions may not
have been written to stable storage before the failure. Both kinds of storage system require
some recovery actionsto ensure that transactions starting after system restart never use this
inconsistent data.

After afallure, a conventional log-based DBMS makes the entire database consistent
before alowing users to access the data. The log in a conventional DBMS contains a
sequence of records representing updates to the database and records telling which trans-
actions have committed. At recovery time, the DBMS reads the log to find out which
transactions have committed, then examines the data pages affected by each log record
to make sure that committed updates have been applied and that aborted ones have not.
Recovery, in conventional systems, is usually 1/0 bound due to the many data pages that
have to beread. The cost will be proportional to the length of the log.

The subsection that follows describes the techniques used to detect and ignore invalid

tuple versionsin POSTGRES. Because the DBMS can detect invalid tuples on use, it does



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 125

not have to remove inconsistencies in the database at system restart time. We discuss the
cost of POSTGRES database recovery after describing the technique for detecting invalid

tuple versions.

Transaction StatusFile

When a POSTGRES transaction begins, a dot is reserved for the transaction in the
transaction status file maintained by the DBMS. A transaction identifier, or XID, is a
pointer to this transaction status file lot. The status file records the current state of both
current and past POSTGRES transactions. In the original storage system, the transaction
can bein one of three states — committed, aborted, and in-progress — while the modified
storage system only requires committed and aborted states. The in-progress state was used
for synchronization between the POSTGRES vacuum cleaner described in Section 4.2.3 and
current transactions. The modified storage system uses more conventional synchronization
techniques, so it can use one-bit rather than two-bit slotsto encode each state.

Queries of historical data require the DBMS to maintain a second file called commit
timefilein the original POSTGRES storage system. When a transaction commits, it stores
the current time in the commit time file. Time queries use this commit time to determine
when data written by the transaction became valid. Note that the commit time must be
written before the transaction is committed so that each committed transaction has a valid
commit time. The commit time file is decomposed into dots in the same way as the

transaction status file, although each dot is four bytes wide instead of one bit wide. This



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 126

allows the DBMS to use the same XID to look up a transaction’s commit time and current
state.

POSTGRES backend processes actually reserve blocks of XIDs instead of allocating
them individually. The DBMS maintains on stable storage the next available X1D, next-
XID, which indicates the first XID that can be alocated to a transaction after a system
failure. When a POSTGRES backend runs out of XIDs, it updates next-XID on stable
storage to reserve the next available block. As transactions are initiated by clients, the
backend process assigns X1Ds from its block consecutively. Because the block is owned
by a single process, the backends do not need to coordinate the allocation of a new XID;
they only need to ensure that one of them at atime is alocating new XI1D blocks. Larger
XID blocks lessen the overhead of XID alocation, but increase the number of unallocated

XIDsthat will have to be discarded during afailure.

Identifying the Updating Transaction

At run time, the POSTGRES storage system must detect and ignore updates to the
database made by transactions that were later aborted. The storage system stores X1Ds
in tuple difference records to identify the transaction that created, updated, or deleted
a given tuple version. By mapping the XIDs to dots in the transaction status file, the
DBMS can determine whether or not these transactions have committed. Because tuples
are locked using a conventional two-phase locking scheme ([25]), a transaction will block

if it encounterstuples created or written by other in-progresstransactions. Therefore, any



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 127

uncommitted tuple updates that the transaction encounters are invalid.

The modified POSTGRES storage system stores an XID in the anchor point of the
tuple and in each tuple difference record. The anchor point of a tuple stores the tuple’'s
inserter Xid, the XID of the transaction that inserted the tuple into the database. The X1D
in each tuple difference record identifies the transaction that updated or deleted the tuple
version represented by the difference record. If no transaction has attempted to update or
delete atuple version, the XID field in the difference record contains an invalid transaction
identifier.

In the original storage system, additional X1Ds were stored, but these turn out not to be
necessary. Each differencerecord kept its own minXid and maxXid. The minXid identified
the transaction that created the tuple version and the maxXid told which transaction updated
or deleted the tuple version. Clearly, the maxXid of one difference record is the same as
the minXid of the previous one, so these two fields could be merged into asingle XID field
in the modified storage system.

The modified storage system aso maintains in each anchor point a field called the
commandl D indicating the DBMS command, or query language statement, that last mod-
ified the tuple. Each query language statement is a separate command. When a command
changes atuple, the changeisnot visible until the next command. So, for example, arecord
inserted into arelation during aquery will not be visiblein the database until after the query
that inserted it completes. Each POSTGRES process maintains a command counter for

its currently executing transaction. The DBMS stores the current command counter value



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 128

in the tuple’'s commandID field when the tuple is created and modifies the commandiD
field every time the tuple is updated. A transaction ignores a given tuple version if that
transaction was the one to modify the tuple and the current command matches the tuple’'s
commandiD.

Instead of associating a single commandID with the entire tuple, the original storage
system associated a maxCommand and a minCommand with each tuple version in the same
way as maxXid and minXid. The modified storage system uses a single commandiD field
for the tuple because the command is only ever relevant to the last tuple in the difference
chain. The command field is only used when a transaction has updated a tuple aready and
is examining the tuple again. Since the current command cannot see its own updates, it
cannot have created more than one element in the tuple version chain. Therefore, the only
tuple version that could possibly have been created by the current command is the most
recent tuple version. The maxCommand and minCommand become a single field because

the tuple cannot be created and deleted in the same command.

Detecting Invalid Tuple Versions

A conventional database management system useswrite ahead log processing to remove
an aborted transaction’s updates after recovery. POSTGRES detects and ignores these
invalid updates whenever the updated tuple is used after the failure. Because the DBMS
maintains previous versions of every tuple updated (using the difference record chain

described above), ignoring an invalid update ssimply means using whichever of the previous



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 129

versons was valid at the time that the aborted transaction began its update.

Aninvalid update can be:

(A) Aninvalid insert. A transaction creates a new tuple, inserts it into the database, then
aborts due to a failure. If alater transaction examines this tuple, it must ignore all

tuple difference records associated with the transaction.

(B) Aninvalid delete. A transaction could delete an existing tuple from the database and

abort. If alater transaction examines the tuple, it must ignore the delete.

(C) Aninvalid replace. A transaction could replace a field in an existing tuple, creating
anew tuple version. If the transaction aborts, later transactions must use a previous
tuple version in the difference record chain, the one that was valid when the aborted

transaction made its update.

An invalid update may create more than one tuple version. For example, a transaction
may insert atuple into the database and then update it, creating a tuple with two difference
records in it. If the transaction then aborts, both difference records are invalid. Only
versions at the end of the tuple difference chain can be invalid since two-phase locking
prevents one transaction from updating another’s uncommitted tuple versions.

To find invalid updates, we must check for each of the three cases in the list above.
Each check requires us to consider an X1D associated with the tuple. Note that the checks
described below require only one of these three XIDs to be looked up in the transaction

statusfile. Checking for invalid tuplesisacommon operation and examining the transaction



NTnn

CHAPTER 4.

Anchor Point

Version 1

A\v4

>

Fieldl

Field2

Anchor Point

FAST RECOVERY IN THE POSTGRES DBMS

Version 1 \V/

W T2|Fieldl

Field2

130

Anchor Point

e

Version 1 \V/

>

T2

Fieldl

Field2

| Version 2\‘7

L

>

T3

Field2

Figure 4.4: Tuple Qualification. This figure shows the same tuple at three
instancesin time. In theupper left corner, thetupleisinserted by transaction
T1. T1lwritesitsXID intheinserter Xid dot in theanchor point. Ontheright,
Field2 isreplaced by transaction T2. T2 writesits XID in the XID dlot of the

first version of thetuple. Finally, transaction T3 deletesthe entiretuple.

status file is relatively expensive, so reducing the number of lookups to one per tuple gives

a performance advantage.

We only check for case (A), invalid inserts, if thereisexactly onetupledifferencerecord

in the chain. To check for case (A), we examine the inserterXid associated with the tuple

header. If that XID is associated with an aborted transactio, the tupleis invalid. If there

are several tuple difference records in the chain, we treat it like case (C), even if the same

transaction has initiated all of the updates.

To check for case (B), we examine the XD associated with the last differencerecordin

the tuple’s difference record chain. If that XID is NULL, no transaction has attempted to

delete the tuple. If the XID isvalid and maps to an ABORTED transaction status file bit,




CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 131

then atransaction attempted to del ete the tuple and aborted. Inthiscase, wefall back to the
last tuple version created by atransaction other than the aborted one.

We only check for case (C) if no transaction has attempted to delete the tuple. To see
how to detect an invalid replace operation one must remember how a replace operation is
implemented in the POSTGRES storage system. To replace afield in an existing tuple, a
transaction creates a new tuple differencerecord containing the replaced fieldsand aNULL
XID field. The transaction stores its own XID in the XID field of the current difference
record in the tuple (effectively “deleting” this difference record) and links the new version
to the front of the difference record chain. Thus, a later transaction checks if the replace
transaction has committed by examining the XID of the second difference record in the
chain. ThisXI1D ismappedtothe COMMITTED/ABORTED state of thereplacetransaction
using the transaction statusfile. If the transaction has committed, the last difference record
describesthe current tuple version. If thistransaction has aborted, the last differencerecord
created by an earlier transaction isthe valid one.

If thelast transaction to update or del ete the tupl e has aborted, we have to search through
the tuple difference chain to locate the last valid version. The DBMS searches through the
chain until it finds a difference record with an XID field different from the XID of the
aborted transaction. If noneisfound and if the inserterXidisaso equal to theinvalid XID,
the entire difference chain was inserted by a single aborted transaction and isinvalid. If
anew XID vaueis found, the difference record following the one containing that XID is

the last valid version. Obvioudly, if theinserterXidisthefirst XID not equal to the aborted



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 132

transaction’s X1D, theinitial tuple version isthe valid one.

Recovery Costsin the POSTGRES Storage System

Three factors contribute to the costs of recovery in POSTGRES. First, the system must
be reinitialized after a failure. While no log processing is required, the DBMS must do
somework to initialize the storage system. Second, the DBM S must check for invalid tuple
versonsonuse. Third, overflow pagesoccasionally result in an extral/O to find the current
version of atuple. These costs are addressed one at atime in the paragraphs that follow.

At restart, the modified POSTGRES storage system simply allocates a new XD block
for each backend process and reinitializes its in-memory data structures. New XID blocks
must be allocated after a failure because the DBMS cannot tell which XIDs from the
old blocks had been alocated at the time of the failure. Because of efficiency concerns,
transactions do not stably record the fact that an individual X1D has been alocated (only
XID blocks). The original storage system aso needed to scan the tail of the transaction
status file, converting the state of each in-progress transaction to aborted in order to show
that the transactions in-progress at the time of the failure have aborted.

Although tuple validation is required for every tuple examined by a transaction, vali-
dation is not very expensive. Profiles of the debit/credit benchmark used in Chapter Three
showed that validation consumed about 1.5% of the DBMS CPU time; 1.3% came from
mapping the XD to atransaction status file dot.

The profile does not include the cost of reading transaction status file blocks from the



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 133

disk. If the transaction statusfile is too large to store in memory, additional disk reads will
be required to validate tuples. Notice from the previous subsection that at most one XI1D
per tuple is ever looked up in the transaction status file, but one disk read per tuple scanned
would still make the storage system prohibitively expensive.

Fortunately, the vacuum cleaner can be used to compact the transaction status file,
keeping the file small enough to be cached in main memory. To implement compaction,
the vacuum cleaner must record the XID of the oldest in-progress transaction at the time
the vacuum cleaner beginsits sweep of the database. After the sweep is over, the database
contains no invalid tuple versions with updater XI1Ds smaller than this oldest in-progress
transaction’s X1D. Now, if this oldest-unresolved XID isrecorded, it can be used to validate
tuple versions. The transaction status file need not be consulted for XI1Ds smaller than the
oldest-unresolved XID; these transactions have definitely committed. The status file could
even be truncated at the oldest-unresolved XID in order to save disk space.

Because transaction status can be represented with asingle bit, relatively small amounts
of memory are required for the status file cache. A DBMS that executes 128 transactions
per second consumes only 512 KBytes of status file in nine hours. Thus, even at high
transaction rates, the garbage collector can easily ensure that the status file lookups never
go to disk by running every few hours. Extremely long running transactions, however,
can prevent the status file from being compacted and affect the performance of the entire
system.

Finally, when the DBM S fails during the creation of an overflow page, the DBM S must



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 134

read two pagesin order to find the most recent version of the tuples on the page. Figure 4.3
showed how POSTGRES created temporary pagesto prevent historical tuple versionsfrom
being destroyed. If the temporary page exists, it must be read into memory the first time
the page is accessed after afailure, requiring two 1/Osto find the tuples on the page instead
of one.

POSTGRES requires much less 1/O to recover its data than a conventiona write-ahead
logging system. The conventional system must read each page referred to by alog record
during recovery. Many of thedata pagesread in during recovery will be replaced in memory
before the data on them is used by new transactions. Thus, these 1/0s would never have
happened if the system had not failed. POSTGRES only recovers a page when the data on
the page has been accessed by a current transaction. At that point, the page must be read
into memory anyway. In the normal case, the current and previous version of atuplereside
on the same page. Even if the current version of thetupleisinvalid, no extral/Oisrequired

to access the data.

4.2.4 Validating Tuples During Historical Queries

When users query historical data, POSTGRES examines transaction commit times to
ensure that tuples were valid during the time period of interest. To determine the commit
time of atuple version, the DBM S maps difference record X1Dsto commit times using the
commit time file. If the current version of the tuple is in the time period of interest, the

DBMS must also check that the version was not written by an aborted transaction, using



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 135

the transaction status file as described above. Status file lookups are necessary because it
is possible for an aborted transaction to have a valid commit time. A failure might have
occurred between the time that the DBMS updated the commit time file and the time it
updated the status file, effectively aborting the transaction. Historical queries must use
two-phase locking in order to prevent the archiver from removing tuples from magnetic
disk while the query isin progress.

In order to improve the performance of POSTGRES time queries, the original storage
system copied the commit time into tuples during garbage collection. Thus, the commit
timefile did not need to be searched for queries of data older than the last garbage collector
run. POSTGRES aso maintains a cache of commit timesto allow time queries to proceed
without constantly accessing the disk to read transaction commit times. However, this
cache must be 32 times as large as the status cache since POSTGRES represents commit
time using four byte quantities. If not enough memory is available for the cache, then time

gueries will have to access the commit time file on disk during validation.

4.3 Performance Impact of Force-at-Commit Policy

Commercial database management systems do not use a force-at-commit policy for
managing data pages because this policy has poor performance on conventional disk-based
stable storage. If severa data pages are forced to different locations on the disk, commit

is delayed while the disk arm seeks to each location. At commit time, a write-ahead



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 136

logging storage system only writes log records synchronoudly; data pages can be written
asynchronously when they are g ected from the DBM S disk cache. By placing the log on a
separate device from the rest of the database, the conventional DBM S does not have to pay
for any disk seeks at commit time.

Modern system architectures and file organizations have a large impact on the perfor-
mance of POSTGRES' force-at-commit policy. Thissection comparesthel/O performance
of POSTGRES and a conventional DBMS that uses a write-ahead log. To separate the ex-
pense of the POSTGRES historical data feature from the expense of fast recovery, we will
also consider two versions of POSTGRES: one with and one without the historical data
feature. The analysis considers. (@) conventional disk subsystems, (b) non-volatile RAM
(NVRAM) stable storage, (¢) RAID parallel disk subsystems [61], and (d) Log-Structured
FileSystems(LFS) [63]. Thisanalysisisbased ontheanalysisin[69] which did not consider
RAID, LFS, archiving costs, or theimpact of large disk caches. The analysisin this section
shows that on a system with a sufficient amount of non-volatile RAM and a log-structured
file system, POSTGRES (with history disabled) performsabout the same as a conventional
system, despite the force-at-commit policy. With history enabled, POSTGRES does at | east

thirty percent more 1/0 than a conventional DBMS.

4.3.1 Benchmark

For the comparison, we use an analytic model based on the TP1 debit/credit benchmark

[26]. A transaction in the TP1 benchmark randomly accesses two “hot” relations (Branch



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 137

and Teller), and one “cold” relation (Account). Each of these is first read then written.
Finally, the transaction appendsto a History relation, and writes any necessary log records.
In the subsection that follows, we describe first the parts of TP1 transaction execution
that the conventiona system and both versions of POSTGRES execute in the same way.
Then, we describe the differences between the three DBMS versions when executing this
benchmark.

Assumethat there isenough main memory availableto cache al of thetwo hot relations,
but not all of the cold one. Thus, in steady state, the DBMS must read one Account page
from the disk and write one (different) Account page to the disk on every transaction.
History relation tuples contain 50 bytes of data and a tuple header. In POSTGRES, the
header is 60 bytes so 74 history tuples can fit on a single 8K page. Therefore, a History
block must be written to disk every 74 transactions, on average. A conventiona system
will maintain less information in its tuple header. If the header is 10 bytes, then a history
pageisfilled every 136 transactions.

In the POSTGRES storage system, the four data blocks updated by TP1 and the transac-
tion statusfile block must be forced to stable storage after every transaction. The version of
POSTGRES in which history is disabled never creates overflow pages. Instead, it garbage
collects historical data on a given page whenever the page fills. For the analysis, we will
also assume that the version of POSTGRES with history disabled does not record commit
times. The commit timesareonly required by historical queries. Sincethe history-disabled

version of POSTGRES is not preserving historical data, there is no reason for the DBMS



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 138

to maintain commit times.

In a conventional file system, a TP1 transaction constructs log records containing the
before- and after- image of the updated tuples. At commit time, theselog records areforced
to stable storage in asingle write. We assume that the log records required to describe 20
TP1 transactions fill alog page. This corresponds to about 400 bytes of log record per
transaction.

Conventional systemstypically do not keep the write-ahead |og on the same disk asthe
database in order to avoid disk seeks at commit time. Since the DBMS aways appends
to the log, storing it on a separate device from the database means that the disk head is
aways near thetail of the log and log writes are sequential 1/0s. To make the comparison
fair, POSTGRES is also alowed one disk to use for sequential writes. Unfortunately,
POSTGRES does not have a data structure like the log with a strictly sequential access
pattern. If transactionscommitinroughly the same order that they areinitiated, however, the
transaction status file and transaction commit timefile will be accessed nearly sequentially.
For the analysis, we assume that the version of POSTGRES that has disabled historical
gueries stores the transaction status file on a separate device. The version of POSTGRES
with history support will store the commit time file on the separate device.

To smplify the presentation, we will call one sequential 1/0O two sevenths, 0.29, of a
random 1/0O. The number is taken from a Fujitsu Eagle drive that has an average seek time
of 30ms, average rotational latency of 8ms, and transfer speed of 4ms per 8K page. Thus,

the average sequential 1/0 takes 12ms and the average random one takes 42ms.



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 139

Historical Data and Archiving Costs

The version of POSTGRES that preserves historical data pays additional coststo main-
tainthisdata. The system must create overflow pages as described in Section 4.2.2 to store
the historical tuple versions until they are archived. The system must maintain a commit
time file so users can query the historical data as described in Section 4.2.4. Finally, the
historical data must eventually be copied to an archive devicein order to leave room on the
disk for datathat is generated by new transactions.

To record the historical data, overflow pages must be created every time a page fills.
Therate at which overflow pages are generated depends on how much free space isreserved
on each page for updates. If each database page contains a single tuple, 127 updatesto a
TP1 Account, Branch, or Teller tuple can occur before the page fills. If thirty percent of
the page isreserved for historical data, 51 tuples can be stored on each page and a page is
filled every 38 updates. For the analysis, we assume that 30 percent of a page is left free
when the page is initialized. TP1 replaces three tuples per transaction and a page is filled
on average every 38 updates, so the DBMS must write to an overflow page every 3/38, or
0.08, transactions, on average.

In some environments, the cost of migrating data from the magnetic disk onto the
archive device could be ignored. In these environments, there is a dow period, perhaps
at night, when historical data can be moved from magnetic disk to the archive device.
For this analysis, however, we assume that there is no dow period or the dow period

comes infrequently enough that storage will need to be reclaimed during operation. Thisis



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 140

guite reasonable when a page fills every 38 updates and the DBMS has a sustained, high
transactionrate. |1f theDBMSrunsat 128 transactions per second, it createsin an hour about
36,864 overflow pages and historical data consumes 288 MBytes of disk space. Therefore,
the analysis assumes that the cost of a transaction must include the cost of archiving the
historical data generated by the transaction.

While we must account for archiving costs, the analysis only considers the cost of
archiving overflow pages, not the cost of examining and archiving historical tuples on
current pages of the database. Overflow pages and the commit time file grow as afunction
of thetransactionrate, soitisrelatively easy to determine how much of their coststo account
to each transaction. The vacuum cleaner also examines all of the non-overflow pages for
historical data, but this cost depends on the size of the database and the rate at which the
vacuum cleaner runs. It is independent of the transaction rate. In order to simplify the
analysis, we will assume that the vacuum cleaner runs infrequently enough relative to the
transaction rate that archiving costs will be dominated by the commit timefile and overflow
page cost.

As stated in section 4.2.2, archived data is not written directly to the archive devicein
POSTGRES. Instead, the pages are accumulated in awrite buffer on magnetic disk. When
the buffer fills, it isreread from disk and the data is finally written to the archive. Thus, to

preserve the historical tuple versions on asingle overflow page, the DBMS must:

(@) Create the overflow page and writeit to the disk in the current database,

(b) During vacuum cleaning, read the page from disk to find the archivable data on the



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 141

page.

(c) The vacuum cleaner writes the page to the archive write buffer.

(d) The vacuum cleaner deletes the tuples from the overflow page in the current database

and rewritesit.

(e) The vacuum cleaner rereads the write buffer from the disk and pushesit to the archive.

The operations must be done in this order to prevent the archived data from being lost in a
failure.

We showed above that each overflow page generated causes several I/Oswhen all of the
archiving costs are taken into consideration. Each overflow pageresultsin one random read
(b), one sequential read (e), and three random writes (a,c,d) in the current implementation
of POSTGRES. Thus, the total historical data cost is 3*0.08 or 0.24 random writes per
transaction and 0.08*1.29 or 0.1 random reads per transaction, plus one update to the
commit time file per transaction.

This section ignores some additional costs related to the archive device manager de-
scribed in Section 4.2.2. We assume that the archive device itself is not a bottleneck.
Currently, the optical disk archive used by POSTGRES runs at 1/40 of the speed of a
magnetic disk. POSTGRES does enough disk 1/0O that the archive deviceisnot abottleneck
at present. Also, the 1987 POSTGRES storage system design assumes that new indices
are also constructed for the data once it is moved to the archive. The cost of creating and

maintaining these indicesisignored in the analysis.



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 142

4.3.2 Conventional Disk Subsystem

We see the following costs in a conventional disk subsystem:

The conventional DBMS and both versions of POSTGRES each do one random read to

get the page containing the transaction’s account record.

The conventional DBM Swrites one account page to disk to makeroom in its cache for the
new account page. Every 136 transactions, it fills a history relation block that must
eventually be written to disk. The cost of these History relation updates is 1/136,

rounded to 0.007.

Each version of POSTGRES writes the four pages that were updated by the transaction:
account, teller, branch, and history. The force-at-commit policy requires these pages

to be written to stable storage at transaction commit.

The conventional DBM S writes the page containing itslog records to disk sequentialy at

acost of 0.29 random 1/Os.

The history-disabled version of POSTGRES writes the transaction status file sequentially

at acost of 0.29 random 1/Os.

The history-enabled version of POSTGRES writes the transaction status file and the
transaction commit time file. Together, these cost 1.29 random 1/Os since one of
these fileswill be written sequentialy. As shown in the previous section, it al'so does

0.37 random reads and 0.24 random writes per transaction on average for overflow



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 143

Conventional Disk System Read Write Totd
POSTGRES (history-enabled) 1+.37 4+.24+129 6.9
POSTGRES (history-disabled) 1 4+ .29 5.29
Write-Ahead Log 1 1+.007+.29 23

Table4.1: Summary of I/O Trafficin a Conventional Disk Subsystem. POST-
GRES was not designed to be run without non-volatileRAM to use as stable
storage. The conventional system is able to make much more effective use of
the cache because of itswrite-ahead log.

pages.

These |/Os are summarized in Table 4.1.

The analysis shows that, in a conventional disk storage system, the POSTGRES no-
overwrite policy ismuch moreexpensivethan write-ahead logging, whether historical datais
retained or not. There are two important reasons why the conventional system outperforms
POSTGRES in this environment. First, the conventional system can take better advantage
of caching than POSTGRES to mask disk writesto the branch, teller, and history relations.
The conventional system usesthelog to make updatesto theserelationsrecoverable so dirty
blocks from these three relations do not need to be written to disk so frequently. Second,
the history-enabled version of POSTGRES records additional information that conventional
systems do not: commit times and overflow pages. This result is different from the one in
[69] because the benchmark used in that analysis never rereferenced pages once they were

written. Hence, the conventional system could not use the disk cache to absorb writes.



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 144
4.3.3 Group Commit

Most high performance DBM Ss use a mechanism called group commit to reduce the
cost of transaction commit. In group commit, the DBM S batches several transactions and
commits them at the same time. Group commit improves performance of a conventional
DBMS because the log records from all transactions in the group can be written to disk
together in a single 1/0 operation. Instead of having one log write per transaction, there
is 1/G where G is the commit group size. Group commit does not decrease the number
of random 1/Os done by the conventional system on a benchmark like TP1, because the
transactions usually update account records on different pages.

POSTGRES receives some benefit from group commit also. Many transactions can
share the same write to the status file and commit time file. All of the transactions in the
group will usually append to the same History relation page, as well. Some of the updates
to branch and teller will fall on the same pages. In a POSTGRES TP1 database with 1,000
branchesand 10,000 tellers, the Branch relation has 17 pages and the Teller rel ation has 169.
Thisfigure considersthe overhead of POSTGRES page headers, tuple headers, and assumes
an average of 20 percent of each non-overflow page contains free space or historical data.
Assuming that each TP1 transaction chooses a record to update at random, the expected
number of pages can be calculated for any group size. At group size 20, about 5% of the
Teller page writesfall onto dirty pages as do 60% of the Branch writes. Thus, transactions,
on average, write .95 and .40 percent of a Teller or Branch page, respectively, for atotal of

1.35 random 1/Os. At group size 20, POSTGRES will write the History relation once per



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS

Group Commit, Group Size20 Read Write

POSTGRES (history-enabled) 1.37 2.4+0.014+.24+0.05 4.07
POSTGRES (history-disabled) 1 2.4+ 0.014
Write-Ahead Log 1 1+ 0.007 + 0.014

Table 4.2: Group Commit in a Conventional Disk Subsystem. POSTGRES
benefitsmorethan the conventional system from group commit, since some of
themany random |/Osareeliminated. Thefour POST GRESfor ce-at-commit
I/Osfor the TP1relationsbecome 2.4 1/Osbecause some pagesin therelations
are rereferenced by consecutive transactionsin the group. The table shows

thel/O traffic when thegroup sizeis 20.

145

group or 0.05 times per transaction. The total number of random 1/Osfor the four relations

is2.4. The transaction status file and log are written sequentially once per group for a cost

of 0.05* 2/7 or 0.014. The history-enabled version of POSTGRES writes the commit time

file once per group at a cost of 0.05 random I/Os per transaction.

4.3.4 Non-Volatile RAM

The original POSTGRES storage system was designed to use non-volatile RAM to

reduce the number of random 1/Os required at commit time. POSTGRES would use

NVRAM, presumably in combination with guarding, as stable storage so data could be

stored recoverably without writesto disk. NVRAM changes the costs of the three systems

to the following:

Again, each DBMS does one random read to get the page containing the transaction’s

account record. The conventional DBMS must write a dirty account page to disk



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 146

every transaction in order to make room in the cache for the new page. POSTGRES
will have to do the same, athough it is making room in NVRAM for the account

record to be written at commit time.

POSTGRES will be able to store the tail of the History relation in NVRAM. As before,
the conventional system fills a history relation block every 136 transactions at a cost
of 0.007 random 1/Os per transaction. In POSTGRES, History relation blocks are
filled every 74 transactions at a cost of 0.014 random 1/Os per transaction because
POSTGRES has larger tuple headers. POSTGRES will use NVRAM to mask writes

to the history relation until a page has filled.

When enough NVRAM can be made available, POSTGRES can buffer TP1's two hot
relations in NVRAM also. The branch and teller relations together take about 1.5
MBytes, in POSTGRES. Let P be the fraction of the two hot relations that can be

stored in NVRAM.

When NVRAM isavailable, the conventional DBMS only writes |og records to disk when
alog page hasfilled. We assumed that this would take 20 transactions, so thelogging

cost is0.05 sequential or 0.015 random 1/Os per transaction.

If NVRAM were available, POSTGRES would certainly keep the tails of the status file
and the commit time file there. Every 64K transactions, a status file block fills and
must be written to disk. In the historical-query version of POSTGRES, a commit

time file block fills every 2K transactions. These numbers are small enough that we



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 147
will omit them from the analysis.

The history-enabled version of POSTGRES still must write overflow pages to disk every

38 transactions.

Table 4.3 summarizes disk activity required for each storage system when NVRAM is
available for stable storage. The POSTGRES costs are parameterized by P, the fraction of
the hot relations that can be buffered in NVRAM. In POSTGRES, a TP1 database with
1,000 branchesand 10,000 tellers could be buffered in about 1.45 MBytesof NVRAM. This
figure considers the overhead of POSTGRES page headers, tuple headers, and assumes an
average of 20 percent of each non-overflow page contains free space or historical data.
POSTGRES and the conventional system have comparable speeds if enough NVRAM
is available for POSTGRES to cache the hot relations. The conventional system cannot
take much advantage of NVRAM,; the only improvement it sees due to NVRAM is fewer
log writes. POSTGRES can use NVRAM to absorb disk writes in the same way the
conventional system used the volatile RAM cache. The NVRAM also masks the cost of

maintaining a commit time file for the history-enabled version of POSTGRES.

4.3.5 RAID Disk Subsystems

Next, we consider the cost of running POSTGRES on a RAID disk subsystems[61].
RAIDsareparallel disk subsystemsthat use parity to provide mediarecovery at lower costs
than standard techniques such asdisk mirroring. A RAID isdividedinto stripesof N-1 data

blocks and one parity block, each on a different disk. If one disk fails, each block on the



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 148

Non-Volatile RAM Read Write Total (P=1)
POSTGRES (history-enabled) 1.37 1.014 + 2*(1-P)+ 0.24 2.62
POSTGRES (history-disabled) 1 1.014 + 2*(1-P) 201
Write-Ahead Log 1 1.007 + 0.015 2.02

Table 4.3: Summary of 1/0 traffic When NVRAM is Available. The number
of random 1/Osrequired by POSTGRES dependson theamount of NVRAM
available. If all of the branch and teller relationscan be cached, POSTGRES
with the history feature enabled isabout thirty percent dower than the other
two systems. POSTGRES with history disabled is dlightly faster than the
conventional system in thisenvironment because it does not havetowritelog
pages.

failed disk can be reconstructed using the parity block and the N-2 other data blocks from
its stripe.  Unfortunately, maintaining parity blocks worsens random write performance
significantly. When a data block is randomly written, the I/0O subsystem must (a) read the
parity block, (b) reread the data block from disk so its original value can be determined (c)
compute a new parity block from the old parity block, old data block, and new data block,
and (d) write the parity block out again. Thus, each random write causes two additional
random reads and a random write. The additional reads can be eliminated for random
I/Os if the I/0O subsystem has enough physical memory available for caching parity blocks
and the original values of the data blocks. Since the DBMS is already delaying writes as
long as possible, such caching is unlikely to be very effective, especially when NVRAM is
available.

Because of parity blocks, RAID quadruples the number of random I/Os required by

every transaction in either storage system. Therefore, RAID increases the amount of 1/0



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 149

RAID + NVRAM P=10 P=0.875 P=05
POSTGRES (history-enabled) 6.39 739 10.39
POSTGRES (history-disabled)  5.06 506 9.06
Write-Ahead Log 5.021 5.021 5.021

Conventional disk + NVRAM P=1.0 P=0.875 P=05
POSTGRES (history-enabled) 2.62 287 3.62
POSTGRES (history-disabled)  2.01 226 301
Write-Ahead Log 2.02 202 202

Table 4.4: Comparison of Random I/Osin RAID and a Conventional Disk
Subsystem. Reading and writing RAID parity blocks increases the penalty
for insufficient NVRAM to buffer random writes in POSTGRES. P is the
fraction of the branch and teller relationsthat can be buffered in NVRAM.
The upper part of the table shows the affect of limited NVRAM when the
database resides on a RAID. The lower table shows the effect of NVRAM
when a conventional disk subsystem isused. The P=1.0 column in the lower
table is the same as the right column of Table 4.3. The middle and right
columnsare 8*(1-P) and 2* (1-P) plustheleft column for the upper and lower
tables, respectively.

that takes place when insufficient NVRAM is available to buffer the hot relations. The
2* (1-P) random writes from Table 4.3 become 8* (1-P) random I/Oswhen parity blocks are

considered. This becomes one extra write per transaction on average when P is 0.875 and

four extrawrites per transaction when Pis 0.5.

4.3.6 RAID and the Log-Structured File System

Finally, the Log-Structured File System (LFS) described in[63] can be used to eliminate
the random writes required by the DBMS and to reduce the cost of maintaining parity on

a RAID. LFS organizes the disk as a collection of half-megabyte segments. One of these



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 150

segments is the current segment, or tail of thelog. When an updated file block is forced to
disk in LFS, the file system appends the block to the current segment rather than seeking
to the block’s original location on disk and writing it there. The file system meta-datais
updated in memory and logged to the current segment also, so future reads can find the
newer version of the block. Eventually, LFS garbage collects old segments, throwing away
out-of-date blocks. The blocks that are not out-of-date (“live” blocks) are coalesced into a
new segment and rewritten.

LFS improves DBMS performance on a RAID because it turns random writes into
sequential writes. When enough NVRAM is available to alow the system to buffer alarge
amount of data, the write traffic for many transactions can be batched together into alarge
sequential write. If the dataiswritten to disk in full stripes, the stripe’s parity block can be
computed from the N-1 other blocksin the stripe. This eliminatesthe cost of reading parity
blocks and amortizes the cost of writing a parity block over N-1 blocks of user data.

While LFS turns random writesinto sequential writes, garbage collection increases the
number of blocks that must be read and written by the TP1 transaction. Garbage collection
cost depends on how much live data is contained in the garbage collected segment. If F
is the fraction of live data on a garbage collected segment, the TP1 transaction must read
one block and rewrite F blocks for every block of free space it reclaims. Therefore, each
random writefrom Table 4.3 becomesroughly (2+F) sequential 1/Os, or 2/7* (2+F) random
I/Oswhen LFS is used. Table 4.5 shows the bottom line: when LFS is used and enough

NVRAM isavailable, the POSTGRES storage system isasfast or faster than aconventional



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 151

LFS/RAID/NVRAM P=1.0 P=0.875 P=05
POSTGRES (history-enabled) 2.12 2.27 2.72
POSTGRES (history-disabled) 1.61 1.86 2.61
Write-Ahead Log 1.62 1.62 1.62

Conventional disk + NVRAM P=1.0 P=0.875 P=05
POSTGRES (history-enabled)  2.62 2.87 3.62
POSTGRES (history-disabled) 2.01 2.26 3.01
Write-Ahead Log 2.02 2.02 2.02

Table 4.5: Comparison of 1/0Osin LFS RAID and a non-LFS Conventional
Disk Subsystem. LFS sequentializes 1/0O and eliminates the I/Os associated
with calculating parity block changesfor the blocksupdated by a TP1 trans-
action. Asin theprevioustables, Pisthefraction of the branch and teller re-
lationsthat can bebuffered in NVRAM. Ten percent of each segment gar bage
collected by LFSisassumed to be livedata. Again, POSTGRES can outper-
form a conventional DBM S in this environment because it writes fewer log
pages and pays little penalty for non-sequential write behavior.

storage system. LFS reduces the cost of constructing parity blocks and eliminates the disk
seeking that force-at-commit causes in non-LFSfile systems.

Not addressed here is the fact that LFS randomizes the layout of pages on disk, so
sequential reads during queries are effectively impossible. This problem is discussed in
[65] and database reorganization strategies to minimizethis effect isa subject of continuing
research. Measurements presented in [65] comparing sequential Account file reads after
four hours of TP1 transactionson LFS and a conventional file system show the LFS read to

be about 1/3 slower than the conventional file system read.



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 152

43.7 Summary

Insummary, largeamountsof NVRAM are crucial tothe performance of POSTGRESfor
update-intensive applications such as TP1. A WAL-based system is able to buffer updated
pagesin volatile memory and use the write-ahead | og to guarantee the durability of updates.
POSTGRES can only buffer updated pages in NVRAM. Therefore, the performance of
POSTGRES is comparable to that of a WAL-based DBMS if the heavily-updated parts of
the DBMS can be cached in NVRAM. When POSTGRES is used with aRAID, the penalty
for insufficient NVRAM increases by about four times; four random 1/Os are required for
every random I/O required on aconventional disk system. Using alog-structuredfile system
changesthe way in which RAID parity blocks are cal cul ated, hence eliminates this penalty.
Thus, even on a RAID 1/0 device, POSTGRES performs well when enough Non-volatile
RAID isavailable. Thissection aso indicatesthat, whileaDBMS can usethefast recovery
features of POSTGRES without losing performance, the historical data feature reduces
performance by about 30 percent in a high-update-rate environment.

The analysis in this section aso drives home the importance of techniques like page
guarding to both conventional systemsandto POSTGRES. Using NVRAM as stable storage
only makes sense if data stored there is safe from errors. Because of the increasing
importance of software errors, systems can only assume that datain NVRAM is safe from
errorsif precautions such as guarding are taken.

Finally, we have assumed in this section that the archive device itself is not abottleneck.

Current POSTGRES measurements [59] show that data can be archived to optical disk at



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 153

about afortieth the rate that it can be stored on magnetic disk. Given the current archiver
implementation, archive data is not generated quickly enough for the archive to limit
performance. However, POSTGRES archives al information that a conventional DBMS
would storein itslog. Performance of a conventional high performance DBMS is usually
limited by log device speeds. Hence, it is conceivablethat aredesign of the storage system

would make archiving a bottleneck.

4.4 Guarding the Disk Cache

Large main memory disk caches help DBMS performance significantly, but make the
outage that occurs after a software failure more noticeable to customers. After a software
failure, the disk cache (DBMS buffer pool) is usually discarded because the extent of the
damage caused by the error is unknown. Rather than risk propagating corrupted data into
the permanent database, the DBMS reinitializes the disk cache using the clean versions
of the cached pages on disk. The recovery cost of demand-paging the database into main
memory is.

disk-seek-time * effective-cache-size/ page-size.
Ignoring the effect of disk arm contention with currently executing transaction, recovering
the disk cache takes about 4 minutesif the disk seek time is 30ms, the effective cache size
is 64Mbyte and the page size is 8 KBytes.

Chapter Two, however, showed that the most common types of errors are not the ones

most likely to damage data in the buffer pool. Most errors are control errors which do



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 154

not affect the guarded buffer pool. If the buffer pool is guarded to prevent corruption by
addressing errors, the DBM S can reuse the old buffer pool after afailure. Reliability isonly
affected if errors have propagated to buffer pool pages, but not to pages stored on disk (or
in stable memory). This section describes the situations under which additional reliability
risk does occur. We must consider four separate cases.

First, an error could corrupt the values that are being inserted into the database. For
example, adataerror could cause ten dollars to be deducted from a bank account instead of
onedollar. If the transaction is alowed to commit, these errorswill become unrecoverable
whether the buffer pool is guarded or not. Because of transaction durability, all updated
tuples become permanent at transaction commit time. In a conventiona system, the cor-
rupted values are written to the log; in POSTGRES, the corrupted values are written into
data pages and forced to stable storage. Thus, recovering from a guarded buffer pool does
not increase reliability risk dueto thisfirst class of errors.

Second, an error could corrupt data on the same page as a tuple updated by the DBMS.
InPOSTGRES, thiscorrupted page will bewrittento stable storage at the end of transaction.
Inaconventional DBMS, the corrupted page will remaininthebuffer pool until itisreplaced
or until the next checkpoint. If the DBMS fails before the page would have been written
to stable storage in a conventional system, recovering the buffer pool from disk would
clear the damaged page, hence guarding reduces reliability in this case. In POSTGRES,
the damaged page is written to disk at transaction commit, so reloading the buffer pool

provides no benefit. Presumably, the DBM S would reload any pages that were unprotected



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 155

at the time of the failure. This class of errors argues strongly for the deferred write model
of guarding, which is unlikely to affect unmodified records on a page containing modified
Ones.

Third, an error could corrupt a page that is not updated by any transactions at all.
The data from Chapter Two shows that it is unusual for “random” pages in memory to be
damaged by errors. When they do occur, such errorsare also the ones that are most likely
to be detected by guarding.

The fourth error case to consider is corruption of the buffer map. Buffers are identified
by a mapping between <relation ID, blockNumber> and the buffer. Even if the page is nhot
physically corrupted by an error, corrupting the mapping will effectively corrupt the data.
By saving <relation ID, blocknumber> pair in the header of each data page, this kind of
error can be detected on use.

In summary, recovering without reloading the buffer pool will improve availability at
some risk to DBMS reliability. Given the available data on software errors and the lack of
available techniques for measuring softwarereliability, it is hard to quantify theincrease in
risk. Case two, corrupting data near updated tuples, and case three, random corruption of
the buffer pool are the only ways the recoverable cache can decrease reliability. The exact
increase in risk depends on how effective guarding is at preventing errors and how long
errorsremain undetected after they occur. The datain Chapter Two isnot conclusive, but it
indicates that the risk to guarded data in the buffer pool is small, especialy if the deferred

write model of guardingis used.



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 156

4.5 Recovering Session Context

In order for a DBMS client program to submit queries to the POSTGRES backend (or
server) process, it must establish a communication session with severa kinds of state that
can be lost in afailure. Reestablishing sessions between clients and the server is slow for
four reasons. First, recovery is client-driven. The clients must detect through timeouts
that the DBMS server has failed before any recovery actions can begin. Second, restoring
Sessions requires messages to be exchanged between client and server processes, hence
transmission delays are incorporated into the recovery time. Third, when the server has
many clients, al of them try to reconnect at the same time and contend for server resources.
Finally, if a client is awaiting confirmation of a transaction commit, it must query the
database to determine whether or not the commit occurred before the system crash. If the
transaction did not commit, the client must resubmit it. When atransaction is short enough
(e.g. debit/credit workload), the entire transaction can be contained in a single message so
every client needsto find out if itslast transaction committed before submitting a new one.

Thissection describestechniquesdevel opedinthe course of thisdissertationfor reducing
the impact of these problems. In the modified version of POSTGRES, recovery is server-
driven. It allowssessionsto be created and stored so clients do not have to run the reconnect
protocol beforenew queriesare submitted to the DBM S after afailure. The session recovery
mechanism a so integrates the POSTGRES storage system and the communi cation protocol
in order to determine quickly whether or not aclients' last transaction succeeded. Finadly,

the recovery mechanism takes advantage of guarded memory to limit the number of clients



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 157

that need to communicate with the server during recovery from software errors.

45.1 Communication Architecture of POSTGRES

The original version of POSTGRES had a backend-per-client software architecture; one
backend process was created for each DBMSS client requesting service from the DBMS. In
the original version of POSTGRES, the DBMS was considered available again when the
DBMS server wasready to accept new connectionsfrom clients. Littlework had been done
to help clients determine how to reestablish state lost in the failure.

Partly in order to support fast recovery, the architecture was changed so that all clients
connect to and share a pool of DBMS backend processes. When a message arrives from
one of the clients, it is queued in shared memory. Every time a backend process becomes
idle, it chooses a session with pending work and does the work. Once a client’s session is
assigned to a given backend process, the backend continues working with the client until
the end of a transaction. This simplifies the implementation substantially since backend
processes are not multi-threaded and POSTGRES has a great deal of per-transaction state.
In order to smplify the protocols described bel ow, we assume that a client does not submit
more than one transaction in a single message.

Tosimplify thedescription of therecovery mechanismthat follows, webreak client/server
communication into five phases based on the status of the client’s outstanding transaction:
unsubmitted, submitted, queued, executing, and committed/unconfirmed. These phases are

summarized in Figure 4.5. When a client has no outstanding transaction, the communi-



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 158

cation protocol is in the unsubmitted phase. The second phase, submitted, takes place
while the message initiating the transaction is in transit between the client and the server.
The queued phase fills the time between the arrival of the message and the assignment of
the transaction to a backend process for execution. The executing phase is next and may
involve additional message traffic between the client and server. After the DBMS commits
the transaction, the protocol begins the committed/unconfirmed phase which lasts until
the client receives confirmation of the commit from the server. Because all executing trans-
actions are aborted anyway after a failure, unconfirmed aborts are effectively the same as
executing transactions. When transactionsabort, the executing phase simply continues until
the abort confirmation arrives at the client. After the commit/abort status of the transaction
is confirmed, the unsubmitted phase begins again.

Before sending transactionsto the DBM S server, the client application must authenticate
itself and initialize a sesson. The original version of POSTGRES used a communication
protocol implemented using operating-system-supplied virtual circuits (TCP/IP [19]). For
the work described in the current Section, POSTGRES was modified to use a reliable
datagram protocol built on top of the unreliable datagrams provided by the operating
system (UDP [19]). Reimplementing parts of the network protocol at user level gave
POSTGRES control over the system state used in interprocess communication. Because
this state is managed by POSTGRES instead of the operating system, it can be saved at
session establishment time and restored after afailure. Asin TCP/IP connections, reliable

datagram sessions are established in a three-message exchange between the client and the



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 159

Client Prepares Transaction Awaiting Service  Executing at Confirmation Client Prepares

Next Transaction in Transit a DBMS DBMS Server in Transit Next Transaction

| | | | | »>

Unsubmitted Submitted Queued Executing Committed/ Unsubmitted
Phase Phase Phase Phase Unconfirmed Phase
Phase

Figure4.5: Phases of the Client/Server Communication Protocol. The unsub-
mitted phase ends when the client sends a message containing a transaction
to the DBMS server. The submitted phase ends when the server accepts the
messages and queues its contents for service. The queued phase ends when
a server process is availableto execute the transaction. The executing phase
ends when the server commits the transaction. The committed/unconfirmed
phase endswhen theclient receives confirmation of thetransaction’scommit.
The executing phase may contain other client/server communication if the
transaction requires more than one message and this phase leads directly to
the next unsubmitted phaseif the transaction isaborted.

server in which sequence numbers are established and the client is authenticated. The
dissertation considers only server recovery, hence, the section that follows contains no

provisionsfor saving and restoring state present only at the client.

45.2 Recovery Mechanism for POSTGRES Sessions

To reestablish communication with a client after a failure, the server must restore four

kinds of session state:

(1) Authentication information: When a client has been authenticated, the server gener-
ates an authentication token. The client must send the token with every subsequent

message to prove it has been authenticated.



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 160

(2) Peer address: The client and server must each record the other’s network address.

(3) DBM S context: In addition to the communication-related context, clients have some
database-related context that is maintained with the session. For example, the client

states the name of the database it is operating on when it establishes a session.

(4) Sequencenumbers. A sequence number isrecorded for the next incoming and outgo-

ing network packet in order to detect lost and duplicated packets.

Thefirst threeitemsare generated at the beginning of the session and not modified again until
the session is closed. Sequence numbers change every time a message is sent or received
and the server’s sequence numbers must agree with the sequence numbers maintained at
the client. Saving the sequence numbers of a session that is actively being used is two
expensive to be practical, however, an established, but unused, session can be described by
asmall structure containing the first three kinds of state plus the initial sequence numbers
for the session.

Inorder to have sessionsthat areready to useat recovery time, POSTGRES allowsclients
to create backup sessions and save the server side of the backup session on stable storage.
After a failure, the client and server can begin to use the backup sessions immediately
without going through the normal session establishment protocol. When a client initially
connects to the server, it establishes several sessions simultaneously, using a single three-
way message exchange. Each of these sessions has a unique authentication token, but

al share the same peer address and DBMS context. One of the sessions established is



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 161

designated the active session and used for the initial communication between client and
server. The other sessions are linked into an ordered list and saved on stable storage.
Backup sessions are dways activated in the order assigned them when they were created.
After afailure, a backup session can be activated in one of two ways. First, either the
client or the server can activate a sesson simply by sending a message using that session.
The client can also ask the server to activate a backup session automatically if the primary
session hasfailed. To request an automatic activation, the client appends a backup session’s
session ID and authentication token to every request it sends to the server. If the primary
session has been lost in a failure, the DBMS acts as if it received the message using the
backup session. Eventually, new sessions can be established to replace the ones destroyed
duringthefailure, but the database isavailable while the backup sessions are being replaced.
Theautomatic activation mechanism isdesigned to hel p avoid additional communication
when a client submits a new transaction after a server failure. Without such a mechanism,
the server would reject the first message each client sent after afailure and force the client
to resend the message using one of the backup sessions. This mechanism just piggybacks
the information that would be resent onto the first message, making the message eight bytes
longer but avoiding aretransmission after afailure. Notethat only the message that initiates
atransaction can specify a backup session. Once the transaction begins, the client must do
extra work to handle transaction aborts as described below anyway, so the extra message

traffic cannot be saved.



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 162
45.3 Restarting Transactions L ost During Failure

Because all communication between client and server is associated with a transaction,
the recovery action required to restore data that was in transit at the time of the failureis
fairly straightforward. If a given client sesson was in the submitted or queued phase, the
outstanding transaction must be resubmitted. If the transaction was executing at the time
of the failure, it has been aborted. An aborted transaction can be resubmitted unless the
transaction is complex enough that higher level abort recovery procedures are required.
For this section, we will assume that if an aborted transaction cannot be resubmitted then
fast recovery is impossible. If the transaction was in the unsubmitted, then the client
simply continues normally. If the client was in the committed/unconfirmed phase, it can
continue without resubmitting the transaction as soon as it confirms that the transaction has
committed. Thus, to recover the data in-transit at the time of the failure, the client must
only determine whether or not to resubmit the last transaction.

To determine which phase the communication protocol wasin at the time of thefailure,
POSTGRES uses the transaction identifiers (X1Ds) discussed in Section 4.2. In addition
to the four items of session state described above, each POSTGRES session is allocated
an XID. Theinitial XID is sent to the client as part of the session establishment protocol.
Every time the server confirms a transaction commit, a new XID is allocated and sent to
the client in the confirmation message. The client saves the current X1D of the session to
be used in recovery if the server ever fails.

After afailure, the server sends arecover message to each client, telling the client that



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 163

afailure has taken place. After receiving a recover message, the client assumes that the
last transaction was either lost or aborted and resubmitsit using a new session. The client
also sends the both the XID and the session ID used by the transaction thefirst time it was
submitted. These two itemswill be used to determine if the transaction was committed but
unconfirmed when the server failed.

After receiving the resubmitted transaction, the DBMS server looks up the XID sub-
mitted by the client in the transaction statusfile. If the status file shows that the transaction
has committed, the transaction was committed but unconfirmed at the time of the failure.
The server resends a confirmation message in this case and does not reexecute the transac-
tion. If the lookup returns “aborted,” the transaction was in one of the other states when
the server failed. The DBMS then assigns the transaction a new XID, the one associated
with the current session, and executes it. The transaction cannot reuse the old XI1D since
uncommitted tuple versions with that X1D may have been created before the failure.

If the server fails again before completing the resubmitted transaction, the client will
resubmit the transaction again using the next avail able backup session. Asbefore, theclient
must send the XI1D used when the transaction was originally submitted and the session
ID of the initial session over which the transaction was submitted. Since the sessions are
ordered, the server will realize that it has received the second resubmission of atransaction
(the original session ID and the current session ID will differ by two). Thistime, the server
must check two X1Ds when it receives the resubmission. Either the origina submission

of the transaction or the first resubmission may have resulted in transaction commit. The



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 164

XID for the session used in the first resubmission is determined from the backup session
structure stored on stable storage. Again, if either of them committed, a confirmation is
sent to the client. If neither did, the transaction isreexecuted using the X1D associated with
the current session.

If the server fails more than two times without completing a transaction, the same
procedure is followed until the client runs out of backup sessions. Each time the server
fails, the client resubmits the transaction using a new backup session. Because sessions are
ordered and the client sent the session ID of the first session used to submit the transaction,
we can find al XIDs that might have been associated with the transaction. The DBMS
checks the XID for each session between the initial one and the current one, sending a
confirmation message if one of them iscommitted. The session structures on stable storage
are used to find the XID associated with each of the intermediate sessions. Once the
transaction is executed and the client receives a confirmation of the commit, it will send a
new transaction (not a recovery message). When the server receives the new transaction,
the old sessions can be garbage collected from stable storage.

Using these techniques, the server still must send a recover message to every client
at recovery time, and every client that has an outstanding transaction must resubmit that
transaction. If guarded memory is available, however, the server can recover with reduced
message traffic after software failures. Guarded memory buffers are used to store the
messages containing queued transactions. By also maintaining a guarded memory list of

clients that have acknowledged their commit confirmation message, the server can avoid



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 165

sending messages to most clients in the unsubmitted state as well. At recovery time,
the server sends recover messages to some clients in the resubmit state and all clients
in the executing and committed/unconfirmed state. Only clients in the executing and
committed/unconfirmed state ever resubmit transactions. Fewer messages from the server
and fewer clients requesting recovery actions will help the system scale to larger numbers

of clients.

46 Summary

Fast recovery techniques such as those discussed in this chapter are an important com-
ponent of the fault tolerant system. The error detection mechanisms normally used in fault
tolerant systems and the new error detection mechanism presented in Chapter Three halt
the system when an error is detected. This makes the system more reliable, prevents it
from producing incorrect results, but also makes the system less available to its users. In
addition to detecting its errors, the system must minimize the length of time that it takes
before beginning to accept new transactions. Also, the mechanisms used to limit downtime
must be simple enough that they do not reduce reliability as they increase availability.

Because processing the write-ahead log consumes the bulk of the recovery timein a
conventional system, thekey fast recovery featurein POSTGRES isthe 1987 storage system
design, which allows systems to restart without log processing. This chapter builds on the

original storage system design by providing enhancements that improve storage system



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 166

performance on transaction processing workloads. The enhancements include backward
differencing of tupleversions, shorter tuple difference chains, ashortened transaction status
file, and a faster strategy for system restart. We also provide more details to data page
garbage collection than were considered in the original design.

This chapter does athorough analysis of the impact of the POSTGRES force-at-commit
buffer management policy on TP1 performance. The analysis shows that the optimized
version of the POSTGRES storage system does the same amount of 1/0O as a conven-
tional storage system when a sufficient amount of non-volatile RAM is available and the
POSTGRES historical data feature is disabled. For TP1, about 1.5 MBytes of NVRAM
is required for performance comparable to a WAL DBMS. When a RAID disk subsys-
tem is used, POSTGRES till performs as well as a conventional system as long as the
log-structured file system (LFS) is used. When the POSTGRES historical data feature is
enabled, the analysis shows that POSTGRES does about thirty percent more /0.

Finally, this chapter extends POSTGRES fast recovery support by with mechanisms
for recovering the state required for communication between clients and the DBM S server.
Saving client/server connections in stable storage allows the client to begin submitting
transactionsto the server immediately after the server recovers from afailure, without first
going through a connection reestablishment protocol. The chapter also discusses the effects
of using the guarded memory facility introduced in Chapter Three to reduce the need to
reload the disk cache after afailure.

Technology trendsare making thefast recovery benefitsof POSTGRES morepractical in



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 167

many environments, particularly high end data processing systems. Increasing CPU speeds
are reducing the already small performance impact of POSTGRES garbage collection and
run-time checks. Hopefully, the performanceimpact of guarded memory will bereduced in
faster processors aswell. The costs related to force-at-commit can be controlled if enough
NVRAM are made available to the DBMS. NVRAM prices are dropping and are currently
about four to six times the cost of volatile RAM [4]. As cost effective, high performance
systems become easier to build with new generations of hardware, customers will be more

willing to trade limited amounts of transaction performance for high availability.



168

Chapter 5

Supporting Indicesin the POSTGRES

Storage System

5.1 Introduction

Both theoriginal version of POSTGRES and the extended one presented in Chapter Four
addressed ways that no-overwrite strategies in the management of heap (unkeyed) relations
could improve DBMS availability. Chapter Five considers the effects of no-overwrite
recovery strategies on DBMS index data structures, an issue omitted from the origina
POSTGRES storage system. In this chapter as in the previous one, the goal is to support
fast DBMS recovery and reduce down time after failures. By recovering without relying on
awrite-ahead |l og, the database becomes availableimmediately after the DBM Sisrestarted.

If the failure causes inconsistencies in the index data structures, these are detected and



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 169

repaired as they are encountered. From an availability standpoint, this is a better strategy
than checking for and repairing all inconsistencies at DBMS restart time.

Most database management systems treat indices and heap relations in different ways
because indices have higher concurrency requirements than heap relations and have more
complex structure. For example, a high performance DBMS often uses two-phase locking
only on the heap relationsand short-termockson B-treeindex pages. 1ntwo-phaselocking,
dataupdated by atransaction remainslocked until the transaction commits. Non-two-phase
locking improves concurrency in indices because many unrelated index keys are accessed
using the same internal pages of the index. If one transaction modifies a shared internal
page, two-phase locks would prevent other transactions from using the page until the first
transaction committed. Non-two-phase locking complicates recovery, however, because
one transaction, A, can insert a key using a shared page modified by another transaction,
B. If A commits, it must also commit the shared page in order to commit the inserted key.
If B aborts, it must not undo any modifications to the shared page or it might also remove
access to the key inserted by transaction A.

The POSTGRES storage system techniques described in Chapter Four will not provide
recovery when these non-two-phase locks are used. The POSTGRES storage system
associates a transaction identifier (XID) with any update to the database. When the data
is examined, the X1D is mapped to a status bit to determine whether or not the transaction
has committed. Because XIDs are allocated to transactions, one transaction cannot commit

changes that depend on updates made by other transactions.



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 170

A second problem for index management in the POSTGRES storage system is that
inserting a single key into an index sometimes requires several pages to be updated. For
example, in a B-tree index, adding a key to a leaf page can cause the leaf page to split,
which inturn causes the leaf s parent to be updated. The page split modifies the contents of
several pagesand changestheinter-page pointersthat maintainindex structure. Failing after
some but not all of the updated pages have been written to stable storage leaves the index
structurally inconsistent. In a conventional DBMS which uses a write-ahead log (WAL)
protocol for recovery, the atomicity of index updates is guaranteed by log processing at
recovery time (e.g. [56]). In these systems, the log records describing structural changes
to the index are written to stable storage before the updated index pages. During recovery,
the structural changes are redone and the inconsistent pointers are repaired before new
transactions are allowed to update the index. Because POSTGRES has no log, it requires
other solutions.

In[54], the DBM S maintains consistency of B-treeindices by adding extrasynchronous
disk writesand by controlling pagewriteorder. For example, if anew index page P iscreated
inapage split, P must beforced to stable storage synchronously beforeany page of theindex
that contains a pointer to P. POSTGRES index management assumes that synchronous
writesto asinglefileare unordered for two reasons. First, using several synchronouswrites
per page split would significantly worsen page split performance. Controlling write order
in a single multi-page synchronous write is not allowed in UNIX-based operating systems

and would worsen the performanceof disk scheduling algorithmseveniif it wereallowed. A



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 171

second and more important reason not to depend on write ordering for index management
is that it will not work for some common kinds of indices. Section 5.3.6 describes an
example from the B""™-trees used in POSTGRES. No write order exists that will leave this
data structure consistent during the entire page split. * In file systems that support efficient
transactional updatesto files, such as the version of the log-structured file system described
in [65], solutions based on control of write order will performwell and will be smpler than
the techniques described in this chapter.

This chapter presents two general techniques for maintaining index consistency with-
out using write-ahead logging. In both techniques, the DBMS detects on first use any
inconsistencies in the index caused by interrupted updates. When an inconsistency in the
index is discovered, consistency is restored by reexecuting incomplete page split or merge
operations. Although we have implemented them only for B""™-trees, the same techniques
can be used for R-trees[33], extensible hash indices [27], and other B-tree variants such as
B*-trees[18].

One of the two techniques uses a no-overwrite strategy which is smilar to shadow
paging [53]. The before-image of a page to be split is left intact on stable storage until
the two half-pages resulting from the split have been written out. Although recovery
mechanisms based on shadow paging have been abandoned in commercial systems because

of the performance problems experienced by System R [31], they are a practical mechanism

When the chapter refers to “conventional” B-trees, it assumes that write-ahead logging is used for
recovery, not ordered writes. Commercial systems sometimes use the ordered write model despite its
problems. Customers also sometimes use non-recoverable indices, preferring to rebuild the indices from
scratch when the indices are corrupted to suffering the performance penalties of the ordered-write model.



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 172

for managing indices. Shadow paging makes sequentially-ordered pages in the file non-
sequential on the disk. While non-sequential ordering ruins the performance of clustered
relation scans, it isnot an issue for index files. The shadowing technique, however, requires
the index to store pointersto the locations of before-images of its pages. These additional
pointers cause the shadow page B-tree to use more disk space than a conventional B-tree.

The second technique, pagereorgani zation, eliminatesthat space overhead, but performs
poorly when the same index page splits many times during the same transaction. The page
reorganization scheme ensures that keys moved from one page to another in a split are
always available on either the source or destination page. A hybrid between the two
algorithms could preserve the best features of each at a cost of greater software complexity.
The hybrid would use different algorithmsfor splitting pages near the root and near the | eaf
of the B-tree. Using the shadowing technique at the leaf nodes where page splits are most
common would maintain high performance during page splits. Using page reorganization
near the root would reduce space overhead.

The index management techniques used in POSTGRES can even improve the perfor-
mance and reliability of a conventional write-ahead log storage system. In these systems,
B-tree index implementations record structural changes to the index in the log. The keys
involved in page splits and merges must be physically copied into thelog in order to guaran-
tee the structural integrity of the index. Using POSTGRES indices would allow the system
to log the keys inserted and deleted from the index, but not the keys involved in struc-

tural changes. Combining POSTGRES index management with conventional write-ahead



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 173

logging would have both performance and software fault tolerance benefits.

This remainder of this chapter is divided into five parts. The first one lists some
assumptions used throughout the chapter. The second section describes the new index
management techniques. A third section discusses the implications of the techniques for
a conventional storage system based on write-ahead logging. The fourth section evaluates

the performance impact of these techniques and the fifth section gives conclusions.

5.2 Assumptions

An index allows the DBMS to improve access to tuples in a base relation. Entriesin
the index are <V, T'I D> pairs where V is a key value and the TID (tuple identifier) is a
pointer (page number, offset) to atupleinthe baserelation. The index implementation must
support an insert operation that adds entries to the index, a delete operation that removes
entries, and a lookup operation that returns the TID associated with a given key. B-trees
often allow a GetNext and GetPrev operation which returnsthe <V, T'1 D> pair following
or preceding the last key looked up. In POSTGRES, these operations are implemented as
options to the normal lookup operation.

The agorithms described in this chapter require each key managed by the index to be
unigue. Since indices are sometimes built using attributes that can have duplicate values,
the DBMS must convert each user-visible key value V' into apair <V, OI D> before it is

entered into the index. The OID is the unique object identifier associated with the object



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 174

referred to by the index entry. Because the OIDs are unique, the keys inserted into the
index are unique. This conversion adds four bytes to the size of every key. Note that the
Lehman-Yao concurrency control algorithms used in most B-tree implementations make
the same assumption. Therefore, these four bytes of overhead are not an overhead we
associate with the shadow or page reorganization B-trees in the analysis of this chapter.

In POSTGRES, all pages that are modified by a transaction must be written to stable
storage before the transaction commits. For the purposes of this paper, when the DBMS
syncs its pages, all modified pages are written to disk. They are written to disk in an
order chosen by the operating system, not the DBMS. When a crash occurs during a sync
operation, any subset of the synced pages may have been written to disk. We assume that
single-page disk writes are atomic. The sync system call is assumed either to block the
DBMS or to notify the DBMS when all the page writes have been completed. The sync
operation correspondsto the limited control over page write order that the UNIX operating
system givesitsusers. UNIX allowsgroupsof pagesto bewritten to disk together, but does
not alow the application to control the write order of the pages within agroup. Also, itis
possiblefor one transaction to be updating datain apage at the time that another transaction
IS syncing the page.

To make the index recoverable without log processing, the DBMS must ensure that
currently valid keys are visible and invalid keys are invisible to index lookup operations.
The POSTGRES storage system can detect and ignore records pointed to by invalid keys,

so recovery only needs to ensure that valid keys are not lost.



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 175

In POSTGRES indices, there are two possible sources of inconsistencies. inter-page
and intra-page inconsistencies. Inter-page inconsistencies occur when a pointer to page
B is stored in page A. A failure could occur after A has been written to stable storage
but before B has been. An intra-page inconsistency happens if a page is written to stable
storage whilethe DBMSis adding akey to the page or deleting akey from it. Concurrency
control prevents two processes from modifying a page at the same time. However, for
performance reasons, POSTGRES does not reacquire a lock on the page when it forces
the page to stable storage. If one process is modifying the page while another commits,
the page will be inconsistent on stable storage. After a crash, the DBMS must detect the

inconsistency and repair it.

5.3 Support for POSTGRES Indices

This section describes two algorithms for implementing indices in the POSTGRES
storage system. We will describe both in terms of B'™-trees, but R-trees [33] can be
managed using the same algorithms. Techniques analogous to those discussed for B'"-
trees can be used with extensible hashing [27]. The application of our techniquesto hashing
isdiscussed briefly in [75].

This section describes the basic B-tree data structure, then the modifications to that
data structure required for the POSTGRES shadow and page reorganization algorithms.

Separate sections highlight the parts of the algorithms required to support B'™-trees, delete



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 176

\U

Line Table

Key Key Key Key
ChildPtr | ChildPtr | ChildPtr | ChildPtr

Figure5.1: Conventional B-tree Page.

operations, and short term locking.

5.3.1 Traditional B-tree Data Structure

In atraditional B-tree [9], each page of the tree contains an array of <key,data> pairs
and a header that describes space allocation on the page (see Figure 5.1). The order of the
keys on the page isrecorded by alinetable. Each entry of the line table contains an offset
to the beginning of a <key,data> pair in the page. If anew key is added to a page, the line
table entries are reordered, not the <key,data> elements stored on the page. On an internal
page, the data element associated with a key is a pointer to a child page. On aleaf page,
the data element associated with akey isatupleidentifier (TID) — a pointer to adata page
and aline table entry on that page.

Comer [18] describes B-tree data structures in some detail, but several details of the

insert and del ete operations are important enough for our algorithmsto summarize here. In



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 177

the smplest B-tree, a split occurs when the amount of free space in a page goes below a
threshold. To split a page, one new page is alocated. Half of the <key,data> pairs from
the old page are inserted into the new one and deleted from the old. A <key,data> pair
representing the new page is added to the split page’'s parent. When the last key isremoved
from a page, the page isfreed.

Some variations of the B-tree data structure use a merge operation to rebalance two
neighbor pages if inserts or deletes cause one page to have many more keys than its
neighbor. Merge moves keys from the heavy page to the light one and adjusts the key value
on the parent page to reflect the change. Simple variations on the basic POSTGRES page
split algorithms will support page merges. These variations are described in Section 5.3.5

after the basic algorithms have been presented.

5.3.2 Sync Tokensand Synchronous Writes

The POSTGRES index management algorithms need to be able to determine whether
two B-tree pages linked by pointers were written out during the same sync operation. To
record this information, POSTGRES maintains a global sync counter that counts sync
operationsin which the B-tree underwent structural changes. After every sync operationin
which anindex split occurred, the DBM S incrementsthe global sync counter. A maximum
sync counter guaranteed to be larger than the global sync counter is maintained on stable
storage. If the current global sync counter approaches the maximum, anew maximum must

be chosen and written to stable storage. After a crash, the maximum sync counter is used



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 178

to reinitialize the global sync counter.

A sync token is the value of the global sync counter at one point in time. Sync tokens
are saved on index pages to detect inter-page inconsistencies. The value of the maximum
sync counter at the time of the most recent system crashiscalled thelast crash sync token.
If the DBMS shuts down cleanly, the global sync counter and last crash sync token are

written to stable storage.

5.3.3 Technique One: Shadow Page I ndices

In POSTGRES shadow B-trees, every key on an interna page contains a pointer to
the current and previous version of the child page associated with the key. Instead
of an array of <key,childPtr> pairs on the page, the shadow B-tree page is an array of
<key,childPtr ,prevPtr> triples (see Figure 5.2). The previous page associated with akey is
a page containing the key value which is guaranteed to be on stable storage. The current
page pointed to by childPtr is the most up-to-date version of the page, which may be stored
in volatile memory. If the system crashes and the current page is lost in the crash, the

previous page will be used to construct a new current page in a manner described bel ow.

Page Split Algorithm for Shadow B-trees

When splitting apage P in the shadow B-tree, two new pages are alocated — call them
P, and P,. Half of the keysfrom P are copied to F, and half to £,. During the split, the

keyson P are neither modified nor overwritten. When P, and F, areinitialized, the value



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 179

Ancestor
Key |||\
Previous Current
Key Key

Figure 5.2: Shadowing Page Strategy. Keys on internal pages of the tree
contain a prevPtr and a childPtr. The childPtr pointsto the most up-to-date
version of the page (current). Because current might be on volatile storage,
prevPtr pointsto the most recent version of the page that has definitely been
written to stable storage.

of the global sync counter isrecorded in asyncToken field in each page's header.

After the split, P’sparent page, A, must be updated. Page A initially containsakey K1
which pointsto P. Thetraditional B-tree split algorithm callsfor anew key, K2, containing
a pointer to F,, to be added to A. In the shadow paging algorithm, A is updated in the

following manner:

(1) The new key K2 is alocated on A. K2's childPtr field contains the page number of

page F;.

(2a) If P’ssync token isdifferent from the current global sync counter, P must have been
written to stable storage already. In this case, the prevPtrsfor both K2 and K1 are set
to point to P, and P is added to an in-memory to-be-freed list. After the next sync

operation, P will be added to the index freelist (see Figure 5.3).



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 180

A - childPtr
KeylKey2 — prevPtr
Keyl
Key2 Keyl Key2|

Figure 5.3: Shadowing Page Split. Page P has split. After using the syncToken to
verify that P ison stable storage, the original prevPtr value for Keyl on page A is
discarded. P becomesthe previous pagefor both Keyl and the new Key2.

7777777 - childPtr
——> prevPtr

2

Figure 5.4: Two Page Splits During the Same Transaction. First P split then P, split
in thesame transaction. F,,,P,,, and P all share the same previous version since any
key on any oneof these pagesthat existed beforethefailureisrecorded stably on page

P.



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 181

(2b) If P’s sync token is the same as the current global sync counter, the prevPtr for K1
must be reused since P isnot yet on stable storage. K1's prevPtr isassigned to K2's,
and P isfreed immediately. Thissituation only occursif two splits occur at the same

key between sync operations (see Figure 5.4).

(3) K2 isinserted into page A’slinetable.

(4) K1 ismodified so that its childPtr field contains the page number of P, instead of P.

If adding K2 to the page A causes A to split, the same algorithm is followed unless A
is the B-tree root page. If the root page splits, a new root page is created containing two
<key,data> pairs pointing to the two halves of the old root. The first page of theindex isa
meta-data page containing a pointer to the current root of thetree. Like internal page keys,
the root pointer must contain a previous and current page pointer.

In order to prevent an intra-page inconsistency, we must be careful when adding K2 to
the line table. The line table entries are intra-page pointers, offsets within the page, which
point to key values. Thelinetableisordered, so thelinetable entry following K1'soffset is
selected to hold K2's offset. The linetableis extended by first copying the last entry in the
line table one element beyond the line table, then incrementing the nK eysfield of the page
header. Next, al of the line table entries between K1's and the last one are copied one entry
to the right of their current position. Finaly, K2's offset is saved in the entry after K1's.

Adding elements to the line table in this manner limits the kind of intra-page inconsis-

tency that can occur. Even if one transaction forces a B-tree page to stable storage while



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 182

another is adding a line table entry, we guarantee that the only possible intra-page incon-
sistency isaduplicate entry in the line table. The subsections below explain how these are

detected and removed.

Detecting Inconsistenciesin the Index

Section 5.2 pointed out that, in POSTGRES B-trees, only two kinds of inconsistencies
could potentially arise after afailure: inter-page and intra-page inconsistencies. Intra-page
inconsistencies occur when aduplicate line remainsin the page as described in the previous
subsection. A crash during a B-tree update can cause an inter-page inconsistency only if
the parent, A, iswritten to stable storage before the crash, but not the child. In that case, A
points to an uninitialized page or a page that has been reused. If A was not written, then
the new child page is inaccessible, but the parent-child link is consistent. Reclamation of
pages that become inaccessible in a crash is discussed in a subsection below.

The key whose insert originally caused an interrupted page splits may or may not have
been lost in the failure, but, because of the POSTGRES force-at-commit policy, that key
will not make the index inconsistent. If the key is present, it is certainly uncommitted.
The transaction that caused the interrupted page split must have been aborted by the crash.
POSTGRES transactions force all writesto disk at commit time, so the split could not have
been interrupted if the transaction had committed. If an uncommitted key ison aleaf page,
it points to an invalid heap record (or no heap record) and POSTGRES will ignore it as

explained in Chapter Four. The committed keys in the subtree rooted at any B-tree internal



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 183

page are the same whether the split occurs or not. Thus, the failure effectively causes one
or more spontaneous page splits, but does not affect the committed contents of the index.

POSTGRES detects both inter-page and intra-page inconsistencies in the index during
the course of normal index operations. When descending from A to P during akey lookup,
insert, or delete, the DBM S determinesfrom A the minimum and maximum key valuesthat
should be on P before stepping from A to P. At P, the minimum and maximum key values
actually present on the page are compared to the expected key range. If the key ranges are
the same, the parent-child link is consistent and the search can continue. If the key ranges
differ or if the page is zeroed, the DBMS has detected an inter-page inconsistency.

The DBMS detects an intra-page inconsistencies by checking whether or not adjacent
entriesin the line table contain the same offset value. Intra-page inconsistencies only need
to be detected and repaired when a key is added to or deleted from a page. The duplicate

entry will not cause key lookups to fail, so it can be ignored during key lookups.

Repairing Inconsistenciesin the Index

As soon as a broken inter-page pointer link is discovered, the DBMS completes the
work lost in the interrupted page split operation. The prevPtr shows the page that existed
before the split. To reinitialize the out-of-date child page, the DBMS uses the keys on the
parent page to determine the range of keys that were on the missing page. These keys are
copied directly to the child page from the page pointed to by prevPtr. The sync token on

the child page is initialized to the current global sync counter. After the child page has



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 184

been reinitialized, the B-tree search can continue using the new child page. Notethat it is
possible that both halves of the page split were lost in the crash. If that is the case, the loss
of each is detected and repaired independently.

If the root page is split and the new version of the root is lost, the prevChild page is
copied directly to the child page. If no root page existed before the failure (i.e. al keys
inserted into thetreewerelost), the root has no prevChild page and isinitialized to an empty
page.

The DBMS repairs an intra-page inconsistency by deleting the duplicate entry. The
DBMS copieslinetable entriesleft until the duplicateisthelast entry inthelinetable, then,

decrements nKeys in the page header.

Free Space M anagement

During normal operation, a linked list of pointers to the pages freed from an index
is kept on an in-memory freelist associated with that index. Because the fredlist is in
volatile storage, it does not survive system failures and must eventually be regenerated. As
discussed in Chapter Four, POSTGRES heap relations require agarbage collector as part of
the storage system’s archiving feature [69]. Addingindex freelist regeneration to itscurrent
archiving tasks does not make garbage collection much more expensive. While the fredlist
is being regenerated, new pages can always be allocated by extending the index file aslong
as the file system does not run out of disk space. We assume that crashes are infrequent

enough and disk space is plentiful enough that the index file can be extended while the



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 185

freelist isbeing regenerated.

The volatile memory freelist is only lost if the system fails. When the DBMS is shut
down cleanly, the index freelist is written to disk. Index meta-data records the number of
entries in the freelist and a pointer to the list on disk. When the DBMS is restarted, the
freelist from disk is used to initialize a new in-memory freelist. Before any of the pages
from the freelist are used in new page splits, the meta-data pointer to the freelist on disk is
invalidated. The list has to be invalidated on disk since all pages on the disk freelist will
become free again after a failure. If pages are taken from the in-memory freelist in the
mean time and allocated to page splits, these pages could be reallocated when the DBMS
restarts.

The freelist in POSTGRES indices also must record information about the contents
of the free page in order to ensure that broken parent-child pointer links in the shadow
B-tree will be detected. To show what information is necessary, we first review how the
fredlist isused in a shadow B-tree page split. First, two new pages, P, and P;, are allocated
from the free list. Next, half the keys from the original page P are copied to each of the
newly-allocated pages. Then, areferenceto P is added to ato-be-freed temporary freelist,
whose contents are added to the true freelist only after the page split has been committed.
Finally, P’s parent A isupdated so it contains pointersto £, and F,. Remember that when
the DBMS later descends from A to P, during the search for a B-tree key, the DBMS
compares the range of keys on P, to the range of keys that A indicated would be on that

page. If the child page contains a different key range, an inter-page inconsistency has been



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 186

detected; page A was been written to stable storage before afailure, but not 7, .

This technique for detecting inter-page inconsistencies restricts the way the DBMS can
allocate pages from the freelist to hold the new child pages P, and F,. At the time of the
page split, the page alocated to P, from the freelist contains whatever keys were on that
page at the time it was deallocated. Inter-page inconsistencies will not be detected unless
the keys contained on the freelist page allocated to P, in the page split are not legal contents
of page P,. If thefreelist page and P, contain the same key range, the DBM Swill be unable
to determine if P, was written out to stable storage before the system failed. In order for
the inter-page inconsistency to be detected, the freelist must record the key ranges of the
pages in the list. When a page P is deallocated during a page split, the first and last key
value on P must be recorded in the freelist along with the usual pointer to the deallocated
page. Thisallowsthe DBMS to check that the pageis not reallocated to hold the same key

range.

5.3.4 Technique Two: Page Reorganization I ndices

The B-tree modifications described above add four bytes to each key on an internal page
(for aprevPtr). If keysare small, the extrafour byteswill reduce B-treefanout and increase
the height of the tree. Increasing the height of the tree increases the average cost of data
access.

The page reorganization al gorithm reduces thisloss of fanout by eliminating the prevPtr

from the <key,data> pairs in a B-tree page. In this algorithm, however, splitting page P



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 187

does not reclaim space on the page immediately. During the split, the DBMS copies half
thekeyson P to anew page and reorganizes P according to the algorithm described below
(see Figure 5.5). After reorganization, P’s original keys are intact on the page, so space
has been made available on the new peer but not the original page P. If the DBMS ever
fails after P iswritten to stable storage but before P’s new peer is, no keys are lost. The
reorganized page P can till be used for recovery. Once a sync operation successfully
writes both the reorganized P and its new peer to stable storage, the space on page P
containing the duplicated keys is reclaimed. If the DBMS must add keys to the original
page P before the next sync operation, it initiates an extra sync operation and blocks until
the sync completes. Once the sync operation is done, the space containing the duplicate
keyson P can be reclaimed and the DBMS can add a new key to the page.

The page reorgani zation algorithm adds the fields prevNK eys and newPage to the page
header. If the prevNKeysfield on a page is non-zero, the page till contains backup keysto
be used in recovery. If prevNKeysis zero, the page is safe for update. Below, we describe
asplit of page P into P, and P,. P, isthereorganized page. P, isthe pagethat will contain
the new key that caused the split. Note that £, may be either the left or the right child after
the split. The newPage pointer in the reorganized page (F,) pointsto £,; newPagein P, is
null.

A split of page P proceeds as follows:

(1) Two new pages are alocated. F, is allocated in memory only; it is not backed up on

thedisk. P, isallocated normally.



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 188

Before After
Ll hi
Header cmm Header P27
P s h 4 P Ka i I
K1 s aj K3 iR
K2 'S K2 i S
K4 K1
Header I I
P
b v
K4 3
K3

Figure 5.5: Page Split For Page Reor ganization B-trees. After the split, the
reorganized page P, is mapped on top of the old page P on disk. KeysK3
and K4 are saved in the free space region of P,. If all of the split pages are
successfully written to stable storage, the area containing K3, K4 and the
corresponding line table entries becomes free space. If not, the duplicate
copies of the keyswill be used in recovery.



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 189

(2) Half of P’s keys are copied to P, and half to P, just as in a normal split. The
prevNKeysfield on P, isinitialized to zero. On P,, it isinitialized with the number

of keyson the original page P.

(3) The keys from P, are now copied to the free space area of P,. These keys are not
allocated on the page, just copied into the page's free space region. A line table for
the keys is set up just beyond the line table for P,. P, is guaranteed to have space
enough for P,’s keys and line table because all of thisinformation was stored on the

original page P.

(4) The sync tokensof P, and P, areinitialized using the global sync counter.

(5) P, isremapped (in the in-memory buffer pool meta-data) to P’s location on disk.

(6) The new key whose insertion caused the split is added to F,. P’s parent page is now

updated to reflect the split.

Detecting and Repairing Inconsistencies

POSTGRES usesthe sametechniquefor detecting inter-pageinconsistenciesin the page
reorganization B-trees as it did in the shadow page B-trees. When the DBMS is searching
for akey, it steps from parent page to child page. At each step, the DBMS checks that the
key range on the child is consistent with the key range indicated by the parent. Intra-page
inconsistencies are detected and repaired in the same way in both types of B-trees.

Repairing inter-pageinconsistenciesisdightly more complex in the page reorganization



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 190

B-tree, however. In the shadow B-trees, inter-page inconsistencies could occur only if the
parent page was written to stable storage before either of the new child pages created in
the page split. In the page reorganization B-trees, the children are not symmetric so five

different kinds of inconsi stencies can occur:

(&) only P, iswrittento disk (replacing P),

(b) only P, and P, arewritten (P, isinaccessible from the parent),

(c) only the parent and P, are written,

(d) only the parent and P, are written,

(e) only the parent is written.

If only P, iswritten, thetreeis not inconsistent (but page P, islost). Notethat each of these
inconsistencies will be detected by the same kind of range check used in the shadow B-tree.
Aswas the case in shadow B-trees, the inconsistencies are repaired as soon as they are
detected. In cases (a) and (b), the tree becomes consistent by regenerating P (assigning
prevNKeys to nKeys reallocates the duplicate keys). In case (C), P, is regenerated by
copying the duplicate keyssaved on P,. Incase (d), P, isregenerated by removing the keys
that are represented on F,. In case (e), the split isrepeated to generate both P, and P,.
Every time a key is added to or deleted from a page, the DBMS must check whether
or not the free space on the page needs to be reclaimed. If the prevNKeys field is zero,
there are no extrakeys stored in free space. Otherwise, the sync token on the page must be

checked. There are three cases:



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 191

(2) If the sync token is the same as the global sync counter, no sync operation has occurred
since the page was initialized, so the duplicate keys on the page are till required for
recovery. The DBMS must block for async operation before the key can be added to

the page.

(2) If the sync token is greater than or equal to the last crash sync token but different
from the global sync counter, the new key can be added normally. A sync operation
has definitely committed P, and F,, and the keys on P, will no longer be needed for

recovery.

(3) If the page sync token is less than the last crash sync token, we cannot immediately
tell if the split was committed successfully. The DBMS has crashed since this page
was written. If the page's sibling from the last split waslost in the crash, the backup

keys on this page are till needed for recovery.

In the last case, the newPage pointer is used to find the sibling. 1f the sibling exists and
has the same sync token as the current page (or a larger one), the sibling does not need
to be recovered; the parent and both halves of page P made it to stable storage after the
split. If the sibling is zero or has an older sync token, the sibling is out of date and must be
recovered. After anew key isinserted, the prevNKeys field should be zeroed so we do not

check for inconsistencies again until the next page split.



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 192
5.3.5 Delete, Merge, and Rebalance Operations

In aconventional storage system, deleting arecord from the database forcesthe DBMS
to delete al index keysthat refer to that record from the database as well. If the transaction
that deleted the record aborts, the DBM S must reinsert the record and all of the index keys
that referred to it. As Chapter Four explained, POSTGRES is not a conventional system.
When arecord is logically deleted, it remains physically in place but is marked invalid.
When the DBMS encounters an index key that points to a logically-deleted record, it is
ignored. Eventually, avacuum cleaner process deletesthe record and its related index keys.

This strategy means that the index recovery algorithms used by POSTGRES do not
need to consider the problem of reinserting index keys after afailure. The vacuum cleaner
only physically deletes index keys when the transaction that logically deleted them has
definitely committed. If the DBMS halts without completing a given index key delete
operation, the vacuum cleaner will eventually encounter the key again after DBMS restart
and delete it. Therefore, the only recovery-related problem that needs to be considered in
delete operationsis ensuring that no structural inconsistenciesin the index occur as aresult
of failed delete operations.

For the ssmplest kinds of B-trees, deletes have less potential for causing inconsistencies
than inserts. Delete operations remove inter-page pointers from pages rather than store
them on pages. Thus, deletes never leave pointers to alocated but uninitialized pages as
occurred in page splits. In the smplest B-trees, a page is ready to deallocate when the last

key on that pageisdeleted. When apage P isempty, Pskey on the parent pageis deleted.



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 193

A - childPtr
KeylKey2Key3 — prevPtr

Old Old New New
Heavy || Light || Heavy | Light

Keyl Key?2)
Key2 Key3| Keyl]

KEy

Figure 5.6: A merge operation on a balanced shadow B-tree. Some keys,
including Key2, have been moved from the heavy page to the light page in
order to even the sizes of the two pages. On the ancestor page, A, a dummy
key hasbeen added to represent the keysmoved from heavy to light.

As was the case with prevPages in the shadow algorithm, P cannot actually be deallocated
until the parent has been written to stable storage in the next sync operation. Delaying P’s
deallocation ensures that it will not be reallocated while pointers to the page till exist in
valid parts of the index on stable storage. Intra-page (line table) inconsistencies resulting
from interrupted deletes look exactly like interrupted inserts (duplicate entries remain in
the line table), and are handled in the same way.

In general, the merge operations required by balanced B-trees (B*-trees) can be handled
by the recovery algorithms in the same way as page splits. Page reorganization can treat
merge operations exactly like splits. When the merge operation moves keys from the heavy
page to the light page to balance the two, it leaves the two peers in exactly the same state

as two page reorganization peers. the heavy pageistreated as the original peer in the split,



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 194

and the light page is treated as the “new” peer created by the split. The “new” peer in this
caseinitially contains afew keys, but the recovery mechanism will not need to be aware of
this.

For shadowing, merge operations must be done a little more carefully since the new
light page effectively has two prevPages, the origina light page and the original heavy
page. The merge proceeds as usual, keys are moved from the heavy page to the light page,
however, instead of modifying the key for the light page on the ancestor, we add a new key.
The new key representsthose keys moved from the heavy to thelight page during the merge
operation. Itschild page isthe new version of thelight page; its prevPage isthe old version
of the heavy page. After the new pages are written to stable storage, this dummy key and
the light key can be merged in order to reclaim space on the ancestor page. See Figure 5.6
for an example.

The first five subsections of section 5.3 described shadow and page reorganization
algorithms for managing basic B-tree operations without a write-ahead log. However,
POSTGRES and many commercial systems use a slightly more complex variation on the
basic B-tree called a B""™-tree. These data structures have additional pointers between
pages to achieve better performance. Section 5.3.6 explains how these structures work
and shows the changes required to support them without a write-ahead log. Section 5.3.7
discusses conventional index concurrency control algorithms and the ways in which they

can be modified to support the POSTGRES index recovery techniques.



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 195

- Root-to-leaf

Peer

v

T

s =
o la g 15

Figure5.7: Normal B'"™-Tree. L eaf nodes/; are connected to one another by
peer pointers. Thepath from parent to childisreferred to astheroot-to-leaf-
path.

5.3.6 Secondary Pathsto Leaf Pages: B'"¢-tree

In B'""™-treeindices, the performance of indexed scansisimproved with adoubly-linked
peer pointer chain between leaf pages with consecutive keys (see Figure 5.7). The peer
pointersallow scans to move from leaf pageto leaf page without reading additional internal
pages. Key inserts still traverse the path from root to leaf. When a page is split, the left
neighbor (or right and left, in the shadow page agorithm) of the page must be re-linked so
that the peer pointer path is consistent.

B'"k-trees have more complicated failure modes than simple B-trees. There are two
pathsto any given leaf page; akey ontheleaf page may bereached by either the peer pointer
or the root-to-leaf path. Techniques like those described above could be used to correct
inter-page inconsistencies in either path, but, in the worst-case failure mode, the two paths

could become inconsistent with one another. For example, in Figure 5.8, the root-to-leaf



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 196

Figure 5.8: Worst-Case Inconsistent B'"K-Tree. Page P has split and A, P,,
and P, were written to stable storage before the system crashed. P’s peers,
K and L, werenot. Thus, thetree hasa peer pointer path consistent with the
tree before the split and a root-to-leaf path consistent with thetree after the

split.
path contains the post-split version of agiven page (in bold), whilethe old peer pointer path
contains the pre-split version of the page.

Even this worst-case failure does not actually corrupt the index unless a key is added
to or deleted from one of the duplicate pages created by the failure. The transaction whose
incomplete split created the duplicate paths did not commit (otherwise both paths would

have been successfully written to disk). Until the first insert/delete after the failure, the

duplicate pages contain the same set of valid keys.

Detecting Inconsistenciesin the Index

During a B'"¢-tree scan, the peer pointer path is checked for inter-page inconsistencies.

Unfortunately, the key ranges used to detect inconsistencies in the root-to-leaf path cannot



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 197

be used for the peer pointer path. On the peer pointer path, a page does not know its peer’s
key range and cannot record it accurately unless each page is updated when keys are added
to its peer.

To detect inconsistent peer pointer paths, we use two additional sync token fields which
must be included in the page header — one associated with each peer pointer. If P1 and P2
are peer pages, P1's pointer to P2 and P2’'s pointer to P1 must have the same sync token
associated with them. When the peer pointers are reconciled during the split, the sync
tokensfor the peer pointers on the neighbor pages must be reset also.

Comparing two peers sync tokens during path traversal will detect any inconsistency in
the path. If alink isbroken by acrash during update, the sync tokens on adjacent pageswill
not agree. Aninconsistent link is repaired by following the root-to-leaf path to the correct
peer. If the root-to-leaf path is broken, it is repaired using one of the repair algorithms
described above.

Even sync tokens do not detect the existence of two completely separate pointer paths
asoccursin Figure 5.8. In this case, the peer pointer path isinternally consistent (and the
sync tokens match), but the peer pointer path is not consistent with the root-to-leaf path.
Whenever a key is inserted into a page P, we must ensure that P is linked into the most
recent peer pointer path.

When inserting a key into page P, the DBMSfirst checksthat P’ssync token is greater
than the last crash sync token. If so, we know the page is part of a consistent peer pointer

path. The path only becomes inconsistent during a system failure. Otherwise, the DBMS



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 198

must follow the peer pointer path in both directions from the leaf page targeted for insert.
The search stops when a page with adifferent sync token isdiscovered (page sync token not
peer pointer sync token). If the peer pointer path is consistent until this point, the leaf page
inserted into is reachable along the peer pointer path. Once thisisdone, we reinitialize the
sync token on the page. Thiswill prevent the DBM S for rechecking the path on subsequent
insertions. Because we are inserting a key into the page, the page will be written to stable
storage anyway. Thus, the reinitialized sync token will reach stable storage at the end of
transaction without causing any extral/O.

In the worst case, searching this path is the most expensive part of this algorithm. If
many page splits occur at the same time, the resulting pages have the same sync token.
An insert into one of these pages, will cause each of them to be read. Even in this case,
insert performanceis affected only for thefirst key inserted into each page in the path after
afailure; key lookup is not affected at all, even after failures. Insert performance after a
crash could be improved in this worst case with asmall LRU cache of sync tokens. When
async token is verified (by searching the peer pointer path during an insert and finding no
inconsistencies), the token should be added to the cache. On an insert, the cacheis checked
before verifying the peer path. A cache of size one would handle the worst-case, which
occurs when alarge index is created in a single transaction. In this case, each page in the

index has the same sync token.



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 199

5.3.7 Dynamic Hashing for POSTGRES

In hash indices, a hash function applied to the index key determines the address of the
page (bucket) containing a<key, T'1 D> pair. Dynamic hashing algorithms alow the hash
table to grow as keys are added to it. Linear hashing [52] maps the value produced by the
hash function directly to a bucket address. Extendible hashing [27] uses the hash value
to find a directory entry. The directory entry contains a pointer, which is used to find the
bucket address.

As a hash table grows, additional bits of the hash value are considered when mapping
key to hash bucket. If abucket overflows before it can be split, a second bucket is chained
from thefirst using a pointer link. A bucket is split by using the extrabit of the hash value
to rehash keysinto either the old bucket (new bit is zero) or anew one (new bitisone). See
[66] or [23] for surveys of dynamic hashing algorithms.

The POSTGRES index management schemes are more applicable to extendible hashing
than to linear hashing. The shadowing algorithm can take advantage of the extra level of
indirection provided by the directory in extendible hashing. A direct hashing algorithm
like linear hashing could not use the shadow algorithm, but could use page reorganization.
Inconsistent directory pointers could be detected by storing the bit mask and the number of
bits considered in the bucket header (rather than key ranges as in B-trees). Inconsistencies
in pointers between overflow pages can be detected with split tokens in the same way as
peer pointers arein B'"™-trees,

Although we do not yet have an extendible hash index implementation, we can estimate



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 200

theimpact of the shadowing agorithm on hash index read performance. Extendible hashing
requires one 1/0O to lookup a key value if the directory entry isin memory and two if the
directory entry must be fetched from disk. The shadowing scheme doubles the size of
the directory (with a prev pointer), so either doubles the amount of memory used for the
directory or increases average access cost (as parts of the directory must be demand paged

into memory).

5.4 Concurrency Control

The POSTGRES B'"™-tree implementation uses a concurrency control algorithm based
on the one designed by Lehman and Yao [48]. In Lehman-Yao, readers and writers must
descend the tree from root to leaf to find the page containing a given key. Writers ascend
again as splits or deletes propagate up from the leaf. When descending, locks are not
coupled; readers always release one lock before acquiring the next. When ascending, locks
are coupled; thelock onachild pageisreleased only after thelock on the correct parent page
isacquired. As pointed out in [47], this algorithm is deadlock-free, since lock coupling is
only used when traversing the treein onedirection. Lock coupling in both directionsallows
deadlock when a reader holding alock on ancestor, A, triesto acquire alock on child page
P at the same time awriter holding alock on P (during a page split) triesto lock A.

Complexity arises in Lehman-Yao from the fact that a reader descending from A to P

may find that P has split during the period when the reader was not holding any locks. When



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 201

descending, the reader saves a pointer to a child page P, releases the lock on the parent,
and acquiresthe lock on P. It ispossible for the reader to be descheduled by the operating
system right before it acquires the lock on P. Other processes could split P before the
reader is rescheduled. Inthe original Lehman-Yao scheme, the page split operation could
move the key sought by the reader from P to aneighbor page. Pages are never deallocated
in Lehman-Yao B-treesand a page split always movesthe higher-valued keysto anew page,
leaving the lower-valued ones in place. Thus, if the reader finds that the key it is searching
for isno longer in P, the reader moves horizontally in the tree (again, without coupling)
until it findsthe key. In the unlikely event that there have been many page splits during the
descent, the reader may traverse many pages.

POSTGRES B-trees, especially the shadow B-trees, must account for page deallocation.
Because POSTGRES pages can be deallocated after a split, the DBMS must ensure that,
when a page is deallocated, no descheduled reader will reawaken and try to examine the
dedllocated page. Our agorithm calls on the reader to pin the buffer containing the child
page in memory before releasing the parent lock. The alocator knows not to reallocate
pagesin bufferswith apin count greater than one. The reader may unpin the buffer as soon
as the child’ s lock is released. This solution does not add synchronization overhead since
the buffer must be pinned in memory before use anyway. Lanin and Shasha [47] discuss
two more complex techniques for solving this problem in the case of pages recycled after
the last key is deleted.

Also unlike Lehman-Yao, the reader processin POSTGRES shadow B-trees must find



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 202

out which pages were produced in the split of the child page P. Lehman-Yao guarantees
that P itself is one of the pages that results from the split. The reader process can start its
horizontal movement from the original page P and be guaranteed to find any key that was
on P at the time of the split. For POSTGRES page reorganization B-trees, thisis still true.
For shadow B-trees, the page P was replaced with two new pages. To allow the reader to
find these pages, we add a page replacement pointer to the B-tree page header. The page
replacement pointer on the original page is set to point to the new left page. Whenever a
process visits a page with a non-null page replacement pointer, it traverses the link to the
new left child. This is analogous to the horizontal movement described above, required
when the key of interest was on the high half of asplit page. Notethat the page replacement
pointer is only of interest when the page is pinned in memory by a current reader. It does
not ever need to be written to disk and does not need to survive failures.

The original Lehman-Yao locking algorithm also assumed that peer pointers were
unidirectional; each page only had a pointer to its right peer. This restriction means
that rightward scans are faster than leftward scans. In order to eliminate the restriction,
we introduce a new locking protocol to ensure that peer pointers are adjusted correctly.
The POSTGRES protocol relies on a new type of lock called a split lock that allows us
to distinguish page splits from reads and writes. Split locks conflict only with split locks.
Only the process holding asplit lock can split apage or add keysto apage. Other processes,
however, may adjust peer pointers on the page without holding the split lock.

The protocol will be described in detail below, but the description will be easier to



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 203

follow if it is clear how bidirectional peer pointers can give rise to deadlock. When a
DBMS process splits a page, it first acquires alock on the page to ensure that, during the
split, no other processes add keys, delete keys, or concurrently attempt to split the page.
When the split is complete, the process must adjust the peer pointers so that the new pages
resulting from the split are accessible from the original page’'s neighbors. To adjust the
neighbor page’s peer pointers, each neighbor page must be locked. This situation is a case
of lock coupling. The DBMS processisholding alock on the page being split and acquiring
alock on its neighbor. If two adjacent pages are split concurrently, a deadlock can occur
as each process holds its own page and tries to acquire the neighbor. In the unidirectional
pointer case, processes never lock couple in opposite directions so deadlock never occurs.
Deadlock is possible in the bidirectional case because two processes are lock coupling in
opposite directions.

POSTGRES uses normal (write) locks on pages in combination with the new split locks
in order to avoid deadlock when two processes lock couple in opposite directions. When a
DBMS processinsertsa key into apage, it first acquires awrite lock on the page to prevent
other processes from inserting keys at the same time. If the process finds that a page must
be split, it releases the writelock, acquiresa split lock, and reacquiresthe writelock. Then,
if the split is still necessary (someone else could have gotten the write lock and split the
page after the process rel eased the write lock), the process splitsthe page. Finaly, thewrite
lock on the original page is released and peer pointers on neighboring pages are updated.

Updating a neighboring peer pointers requires a write lock on the neighbor page, but not



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 204

a split lock on the neighbor page. The split lock on the original page is released once the
neighbor’s peer pointers have been updated.

Deadlocks are impossible since processes acquire the split lock before the write lock,
and acquire only one such pair in the tree at atime. Because split locks and write locks do
not conflict, processes can hold asplit lock on one page and acquire a (write) lock on apeer
without causing deadl ock.

Concurrent access can makeinter-page links temporarily inconsistent, so our algorithm
must distinguish between true inconsistencies and false inconsistencies that arise during
concurrent updates. When a link token inconsistency is discovered, the two inconsi stent
tokensare compared to thelast crash sync token. If one or both of theinconsistent tokensis
more recent than thelast crash sync token, then the inconsi stency was atransi ent one caused
by concurrent access. If both are older than the last crash sync token, the inconsistency

could not have been caused by a concurrent update.

5.5 Using Shadow Indicesin Logical L ogging

Thus far, we have discussed our index management techniques in terms of the POST-
GRES storage system, however, the same technigques can be used to support logical logging
in a conventional WAL -based storage system. Conventional index management schemes,
such asthe one used by ARIES/IM [56], require all modificationsto the index to be written

into the log. If atupleis updated, the DBMS logs all keysinserted into indices as aresult



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 205

of the update. If an index insert results in a page split, all keys moved from one page to
another in the split must be logged as inserts into the destination page. Deletes from the
original pageinasplit arelogged smply as changesto thelinetable (i.e. an abbreviatedlog
record is constructed that tells which key range was moved from the page in the split). As
stated in the introduction to this chapter, conventional systems use the logged information
to restore the index to consistency after afailure.

A logical logging scheme does not save index changes in the log. When a tuple is
updated, changes to the tuple are logged but not the keys inserted into or deleted from the
index. Instead, the logged tuple attributes serve as implicit log records for the indices on
those attributes. During recovery, theindex keys affected by an update can be derived from
the logged attribute values. If thelogged changeis undone or redone, the DBM S deletes or
inserts keysinto the indices as necessary. The DBM S must detect and ignore reinsertion or
redeletion of the same <key,data> pair.

The difference between the logical log and the conventional log is that the logical log
contains only the keys inserted into or deleted from the index. It does not log keys that
move around within the index due to page split and merge operations. While the logical
log alows the system to determine which keys have been inserted into or deleted from the
index, it does not maintain the structural integrity of the index. Some other technique, such
as the ones described in this chapter, must be used to maintain index consistency during
page splits. A conventional system using the POSTGRES index consistency techniques

would not need to sync theindex after every transaction. Inthe POSTGRES storage system,



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 206

the DBMS had to sync the index after every transaction in order to make the keys inserted
or deleted by that transaction permanent. Syncing the logical log makesinserts and deletes
to the index permanent when logical logging isused. Log processing will restore any keys
lost during the failure.

Logical logging has some performance and disk space advantages over conventional
index management. The conventional log islonger than the logical 1og, since conventional
logs store many <key,data> pairs after a split or amerge. Because the conventional system
must log all keys moved from the original page to the new peer page, each page split adds
at least half a page to the log (8KBytes and 4KBytes are typical page sizes). The longer
log means more data needs to be written to disk on commit, and more log pages need to be
read from the disk during recovery. The conventional log log takes up more space on disk
aswell.

Moreimportantly, logical logging hassomefault tol erance advantagesover conventional
B-tree management. Little special case codeis required for recovery. The same insert and
delete operations used for normal execution are also used for recovery. Specialized recovery
code includes only the code to repeat the incomplete page split after an inconsistency
is detected. Also, because logical logging stores a high level representation of index
operations, systems using it are less likely to propagate damage caused by software errors
into the log. If, for example, an internal index page is corrupted by a software error,
conventional physical logging techniques can copy the corrupted keysinto the log. During

recovery, the corrupted keys will be restored to the index. Logical logging never copies



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 207

information from the index into the log. If software corrupts an index, the index can be
recovered using a backup version (or checkpoint) and the log.

When comparing System R to ARIES, Mohan and Levine [56] suggest four reasons
why the write-ahead logging techniques used by ARIES are superior to the shadow-based
logging approach used in System R[31]. These four objections do not apply to logical
logging using shadow B-trees:

(1) Deadlocks During Undo: The usual response to a deadlock is to abort one of the
deadlocked transactions. Since abort requires an undo, the potential for deadlocks during
undo means only one aborting transaction can be active at atime. Thelock coupling strategy
described in Section 5.4 prevents processes from deadlocking during index operations.
Therefore, concurrent aborts can execute concurrent shadow B-tree operations.

(2) Concurrency Overhead During Recovery: If several processes are used for recov-
ery in System R, concurrency overhead isincurred during logical undo and redo operations.
ARIES requiresno concurrency control for theindex during recovery because recovery op-
erations can be applied to each pageindependently. Parallel recovery of shadow B-treeswill
have to use concurrency control just as System R did, but the locksinvolved are short-term
locks, not two-phaselocks. Recent simulationresultsindicatethat when shorttermlocksare
used concurrency control overhead will not limit recovery performance. In[68], the concur-
rency control scheme from [48] was simulated on aDBM S running a100% insert workload
with enough main memory buffering for 75% of the B-tree. The simulations showed that

the workload was 1/0-bound even at high degrees of multi-programming. If concurrency



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 208

overhead had significantly affected performance, the smulation workload could not have
been 1/0 bound, especially with such a large amount of buffer space available.

(3) 1/0 Overhead During Recovery: System R and shadow B-trees require more 1/0O
operations during recovery than ARIES because logical undo operations must traverse the
path from the root to leaf for every operation undone or redone. ARIES page-oriented
recovery can usually undo or redo an operation with asingle read and write of aleaf page.
The additional 1/0 required by the shadowing scheme, however, issmall. The root and the
upper pages of the B-tree index must be loaded into memory as thefirst few operationsare
processed. Unless memory is scarce, these pages will remain in memory during the rest
of log processing. Page-oriented recovery may not require these pages to be brought in
during recovery, but the pages will have to be brought in before any useful work is done
with the index after recovery. Also, operational logging will actually reduce the number of
disk reads required to process the log since the log itself is much more compact.

(4) B-tree Consistency After Failures: DBMS failures can leave indices inconsistent
unless the file system uses shadow paging. Mohan and Levine's objections to maintaining
index consistency with shadow pages are based on the poor performance of shadow paging
in System R.

Because System R used shadow paging in the file system, it had to use the technique
to support recovery on both indices and data files. For data files, shadow paging reduced
the performance of sequential scans dramatically. Shadow paging makes sequentially-

ordered pages in the file non-sequential on the disk. The techniques also force an extra



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 209

lookup (through the page map) for direct access to file pages. The consistency maintenance
techniques described in this paper allow either no shadowing at all (page reorganization
algorithm), or shadowing limited to index files only. In indices, the sequential order of
the pages on the disk is unimportant for performance. As shown in the next section, our
shadowing-based a gorithm does have an impact on performance, but not as pronounced as
the impact of shadow paging on System R’s datafiles.

In summary, eveninaDBMS that relies on conventiona write-ahead logging instead of
the POSTGRES storage system, the index recovery techniques from Chapter Five can be
helpful. Using our index recovery techniques in conjunction with logical logging reduces
the amount of information stored in the log, giving both performance and fault tolerance
advantages over more conventiona index management. While a similar logical logging
scheme caused performance problemsin System R, the POSTGRES techniques have been

designed to avoid these problems.

5.6 Performance M easurements

The index management techniques described in this chapter increase the cost of indexed
access to the data in the database in several ways. First, shadow B-trees have larger space
requirements than conventional B-trees. The prevPirs stored in the shadow B-tree keys
make the keys bigger so fewer keys fit on a page. Thus, shadow B-trees will eventually

become higher than conventional B-trees with the same number of keys. Higher B-trees



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 210

mean more pageswill haveto be accessed to get to theindexed data. Inorder toillustratethis
cost, Section 5.6.1 presents acomparison of shadow and normal B-tree heights. Second, the
DBMSmust check for inter-pageinconsi stencies asit descends from pageto pageinthetree
(the key-range checks are described in Subsection 5.3.3). To quantify the cost of checking
for inter-page inconsistencies, we have implemented both techniques and measured the
implementations. Section 5.6.2 presents these measurements. Third, several special cases
cause POSTGRES B-treesto do an extradisk read or write either during recovery or duringa

page split. Section 5.6.3 enumeratesthese cases and estimatestheir impact on performance.

5.6.1 Modelling The Effect of Increased Tree Heights

One performance concern regarding POSTGRES B'"™-tree indicesis that the additional
space overhead they incur will increase the height of the tree, thus driving up access costs.
In order to quantify this cost, we calculated the index capacity at fixed heights for normal,
page reorganization, and shadow B'™-trees. As expected, normal trees add levels the most
dowly, and shadow trees add levels the most quickly. Page reorganization trees grow at
nearly the same rate as normal trees, so we have omitted them from the analysisthat follows
for the sake of brevity.

Figure 5.9 illustrates the differencesin height between normal B-trees and POSTGRES
shadow page B-trees for different tree sizes. The curves in Figure 5.9 labelled “Normal
4-Byte” and “Shadow 4-Byte” show the heights of normal and shadow B'"™-trees storing

four-byte keys. The curves labelled “Normal 20-Byte” and “ Shadow 20-Byte” show the



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 211

storage capacity vs. height tradeoffs for trees with twenty-byte keys. Note that the X axis
in Figure 5.9 is logarithmic. The shaded regions highlight the tree sizes at which shadow
trees have greater height than normal trees. For all regions of the X axis which do not
have values in the shaded areas, shadow and normal trees have the same height. The trees
modelled have 8-KByte pages. Normal B'"™-trees have 6-byte internal page keys while
shadow B'"k-trees have 10-byteinternal page keys because of the 4-byte prevPtr. The page
header in anormal treeis 16-byteswhile the shadow tree header is 36 bytes because of sync
tokens and the replacement pointer.

The growth rate used in the calculationsis pessmistic for the shadowing strategy, since
tree height is calculated assuming that keys are inserted in worst case order (ascending
values). Ascending order leaves the maximum amount of unused free space in the index
and forces the tree to grow at the fastest rate. If the trees grew more dowly, the curves
would have the same relationship to one another (the shaded regions would have the same
ared), but the steps would occur at larger tree sizes. We used a page size of 8 KBytesinthe
anaysis, since thisisthe default in POSTGRES.

The figure shows that prevPtr overhead in shadow trees has lower impact as key size
increases. At height three, the differencein capacity between the trees storing twenty-byte
keys is much smaller than the difference between those storing four-byte keys. The space
consumed by prevPtrsininternal pagescausesareductioninfanout, which eventually causes
greater tree height at smaller capacities. The reduction in fanout caused by shadowing isa

function of theratio of overhead to key size. Larger keys have proportionally less overhead,



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 212

Normal 4-Byte

Shadow 4-Byte

> Normal 20-Byte
Shadow 20-Byte

o Number

| Of Keys

let02 1e+t03  1et04 le+t05  1et+06 let+07

Figure5.9: Height of Tree for Different Size B-trees.



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 213

hence, show a proportionally smaller reduction in fanout.

In practice, the space overhead for shadow index prevPtrs will usually not affect tree
height, even whenkey sizeissmall. Small treeshavefew levelsof internal pages, so prevPtr
overhead is negligible. The heights of B -trees with several levels will coincide for most
tree sizes, so the height impact of shadowing will still beminimal. 1f an intermediate-height
shadow tree becomes stable at one of the non-coincident values, running a reorganization
utility will redistribute free space and reduce the height of the index to the same level asa
normal tree. Significant height differencesthat could not be masked through reorganization
would arise only if keyswere small and if the tree had many levels. However, even with the
worst-case insertion order, a B""™-tree of either type storing four-byte keys would exceed

the 2 GByte maximum size of aUNIX file before it reached five levels.

5.6.2 Measurements of the POSTGRES B'"-tree |mplementation

To measure the performance of the shadow and page reorganization index implemen-
tations, we ran two tests against each type of index. The first test built indices of three
different sizes using four-byte keys. Asinthe calculations of the previous subsection, these
measurements give worst case performance; keys were added in ascending order in order
to give the largest number of page splits and greatest tree height. The second test retrieved
8,000 random keys from each index created in the insertion test. Keys were uniformly
distributed throughout the range represented in the index. Measurements were made on a

Decstation 5000/200 running Ultrix 4.0 and POSTGRES.



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 214

Operation Size of Index in Keys
B-tree Type | 10,000 | 20,000 | 40,000
Inserts
Normal 12.065s | 24.269s | 51.307 s

(2.000) | (2.000) | (1.000)
Page Reorg | 12.584 s | 25.191 s | 53.718 s
(1.043) | (1.038) | (1.047)
Shadow 12.318s | 24.924s | 52.282s
(2.021) | (2.027) | (1.019)

8,000 Lookups
Normal 9.122s | 12.492s | 19.536 s
(1.000) | (2.000) | (1.000)
PageReorg | 9.441s | 12.879s | 20.259 s
(2.035) | (1.031) | (1.037)
Shadow 9.368s | 12.892s | 20.200 s
(1.027) | (1.032) | (1.034)

Table5.1: Insert/Lookup Performance Comparison.



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 215

The times shown in Table 5.1 are the mean elapsed times of ten repetitions of each test.
The standard deviation of each set of measurements was | ess than 2.5% of the mean. Each
entry in the table includes, in parentheses, a normalized time for that test. The normalized
time is calculated by dividing the elapsed time for the test by the elapsed time of the
conventional B-tree. For example, a shadow B-tree with a normalized read time of 1.02
is two percent slower than a conventional B-tree on the same workload. Only time spent
in the B'™-tree access method, and in the routines that it calls, is reported in the table.
Thisincludesthe cost of reading and writing index pages from and to the operating system
cache, but does not include the cost of committing transactions. Commit cost will depend
on the logging scheme chosen.

Theresults show that the shadow algorithm iswithin three percent of the cost of ordinary
B'"k-treesfor insertions. The higher cost isdue to the added expense of verifying inter-page
links in traversing the tree. For reads, the shadow tree percentages are about three and a
half percent worse than ordinary B"™-trees. These measurements only show the CPU costs
of the algorithm; they do not account for extra I/O that would be necessary if the shadow
tree is higher than the normal B-tree. In each of the cases shown here, the heights of the
shadow B-tree and normalized B-tree are the same. For the ranges at which the shadow
treeis higher than the normal tree, each shadow |ookup would pay an additional I/O.

Costsfor the pagereorganization algorithm aresimilar. Readsare between threeand four
percent more expensive than for the normal tree. Page reorganization insertions, however,

are more expensive, between three and five percent higher than the cost for insertions into



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 216

an ordinary B'"™-tree. Extrawork must be done to order data on old pages during splitsin
page reorganization. As noted elsewhere in this chapter, page reorganization is best suited
to environments with low insertion rates.

The overall cost of using either index management strategy islikely to be very small for
many workloads, since the DBMS spendslittle of itstime in theindex access methods. For
example, in the Wisconsin benchmark [12], POSTGRES spends only 3.6 percent of itstime
in the indexed access methods. The debit/credit benchmark used int Chapter Three spends
only 16 percent of itstimein theindex access methods. Even 4.7 percent of this, our worst

performance degradation, is smaller than the measurement error in the benchmark.

5.6.3 Estimating Additional 1/0 Costs During Recovery

The POSTGRES index management techniques have several workload-dependent 1/0
costs that were not measured in the dissertation. In the normal case, a POSTGRES B-tree
page split and a conventional B-tree page split each requirethree pagesto be written to disk:
the parent and each child. A page reorganization B-tree, however, will force a synchronous
page write if the same index page splits twice during the same transaction. If keys are four
bytes long and pages are 8 KBytes, inserting 292 keys in the worst-case order during a
single transaction could cause this additional synchronous write.

The other workload-related I/0O cost occurs the first time keys are inserted into some
page reorganization B-tree or B'"-tree pages after a failure. In both trees, inserting a

key into a page P sometimes requires the DBMS to read additional pages to determine



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 217

whether the page split that created P was committed. For example, when a page split
occurs in a page reorganization B-tree, the duplicate keys on the reorganized page cannot
be overwritten unless the peer page has definitely been written to stable storage. The first
time a key isinserted into the page after the split has been committed, the page is marked
(prevNKeysis cleared) so later key insertions do not have to consider the state of the peer.
When no failure has occurred since the split, comparing the sync token on the page to the
global sync counter provides this information without examining the peer. If the first key
insertion to a reorganized page occurs after a failure, however, the peer must be read and
examined to ensure that it has the same token as the reorganized page (or a larger token).
When thefirst key insertion to a B'"™-tree page occurs after afailure, the DBMS must check
that the page islinked into the peer pointer path as explained in Section 5.3.6. Again, extra
work must be done if no key has been inserted into a page since the split that created the
page.

Without workload measurements, it isdifficult to determine exactly how much additional
I/0O will occur in each of these situations in practice. If we assume that key values are
drawn from a uniform distribution, however, we can estimate the number of pages that are
untouched at the time of acrash. To estimate the number of pagesfor which extral/Oswere
required, we simulated the construction of 8,000 B-trees each with a randomly-selected
size averaging 40,000 random-valued 4-Byte keys (+ 500). These are two-level treeswith
about 128 pages. On average 0.05 pages were untouched since the last page split. Hence,

the additional 1/0O was rarely required. Simulating 1,000 B-trees with 1,000,00 4 byte



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 218

keys each, we found an average of 17 untouched pages that would have to be recovered.
However, one of these pages would only be encountered every 1,000 key insertions, so the

extrarecovery work would still have a limited effect on performance.

5.7 Summary

The POSTGRES DBM Srelies on ano-overwrite storage system to avoid log processing
during recovery. By avoiding log processing, POSTGRES recovers from failures quickly
and eliminates a great deal of the complex recovery code found in most data managers.
Unfortunately, concurrency requirements and inter-page pointers make the POSTGRES
storage system techniques difficult to apply to index data structures such as B -trees.

In this chapter, we have presented two techniques for managing indices without using
either write-ahead log processing or the usual no-overwrite techniques of the POSTGRES
storage system. The first technique is based on shadow paging; the second on page
reorganization during splits. Both algorithms use redundant information in index pages to
detect inconsistencies caused by system failures as they are encountered. Inconsistencies
areremoved by repeating theinterrupted page split or merge operations. Thetwo techniques
will also be useful in WA L-based data managers that want to avoid physical logging during
page splits.

M easurements of a prototypeimplementation suggest that the algorithmswill have little

overall effect on data manager performance. Performance measurements show that key



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 219

insertsand lookupswill only bethreeto five percent d ower when thetreeisentirely inmain
memory. Estimates of the effect of the algorithm on tree height show that key lookupsin
shadow-page B'"¢-treeswill read one more page from the disk than lookupsin conventional
B'"-trees under some workloads.

The height estimates and performance measurementsal so indicate that ahybrid between
the two algorithms could reduce costs while preserving the best features of each algorithm.
Using shadow paging near the leaf pages would eliminate the cost of page reorganization
splits in the part of the tree in which splits are most common. Using page reorgani zation
nearer the root would reduce space overhead caused by prevPtrs in internal pages and

significantly increase fanout.



220

Chapter 6

Conclusions

The days when users simply accepted that computer systems could go down for hoursor
even minutes are rapidly drawing to a close. In the future, fault tolerance will no longer be
aspecialty servicerequired only by military systems, hospital's, banks and stock exchanges.
Trendsinthe prices of non-volatile RAM (NVRAM) and hardwarereliability have reduced
the costs of the hardware components of fault tolerant systems. The advances in operator
interfacesand maintenance of fault tolerant systemswill probably enter mainstream systems
soon as well. This will lead to widely-available, reasonably-priced conventional systems
that mask most hardware errors and power outages. The tools used to administer these
systems will prevent eliminate operator and maintenance errors.

However, in order for modern systems to remain reliable and available for long periods
of time, they must run reliable system software. More careful software engineering will

help somewhat, but software will always be complex enough that software failures will



CHAPTER 6. CONCLUSIONS 221

occur. In the face of these failures, the fault tolerant system must be able to halt rather
than produce incorrect results. Once halted, the system must recover quickly, hopefully
without interrupting people using the system. Regeneration of lost program state must be
fast both to mask failures from users of the system and to eliminate the temptation for
system designersto build complex, unreliable recovery systems.

This dissertation has examined the software fault tolerance problem from the standpoint
of database management systems. It has addressed three problems faced by the designers
of fault tolerant software. First, it presented and analyzed data from software errors
uncovered in commercial systems in order to help characterize software errors. Second,
it described and evaluated a technique for detecting addressing errors and controlling the
error propagation that they cause. Finally, it extended the POSTGRES fast recovery feature
to improve every day performance in high-update-rate environments and to handle fast
recovery of communication state and index data structures.

Using datafrom commercia systems programs, Chapter Two assessed some of the root
causes of software outage. We proposed a model of errors based on different kinds of error
propagation: control, addressing, and data errors. Studies of the MV S operating system,
IMS database manager, and DB2 database manager showed that the distribution of these
three kinds of errors was similar over the three systems. Control errors were about half
of all errors, addressing errors 25-30%, data errors 10-15%, and the rest miscellaneous.
Chapter Two showed that programs|ost their point of control largely due to forgotten error

conditionsor unanticipated program events. Addressing errorsoften had to dowith memory



CHAPTER 6. CONCLUSIONS 222

management, not necessarily with bad pointers. Addressing errorshad higher than average
customer impact, probably because error propagation made them difficult to diagnose and
correct. The data presented in Chapter Two showed that most addressing errorswere small
and affected working data structures rather than data structures far away from the point
of control. Finally, repeatable errors were relatively common. This fact combined with
the difficulty of designing primary/backup communication protocols bodesiill for the most
common redundancy-based software fault tolerance techniques.

Chapter Three evaluated several models of page guarding, a technique that uses con-
ventional virtual memory hardware to limit propagation of addressing errors. The models
differedin the manner in which the DBM S specified legitimate updates to the data, offering
different protection/cost tradeoffs. An implementation on the DECStation3100 showed
seven to eleven percent impact for protecting the buffer pool in an update-intensive main-
memory database, but only two to three percent impact for the same database when disk
I/Oswere considered. While Chapter Two indicated that the kinds of “wild pointer” errors
that would be most easily detected by guarding were uncommon, these errorsare among the
hardest to find and fix using conventional debugging techniques. More important than their
error detection ability, the guarding techniques help eliminate the set of errors that affect
data cached in main memory differently than data written to disk. In the guarded version
of POSTGRES, the primary reliability difference between data on disk and data cached in
main memory is that the data structures used to manage the two resources are different,

hence, are subject to different software errors.



CHAPTER 6. CONCLUSIONS 223

Chapters Four and Five attacked the system availability problem by extending the
POSTGRES DBMS fast recovery features in several ways. In the original POSTGRES
storage system design, the DBMS was optimized for fast restart rather than fast commit
in order to improve system availability. Chapter Four described enhancements to the
POSTGRES storage system that reduce its cost in a high-update-rate environment. These
enhancementsinclude backward differencing and anew strategy for handling overflow pages
that together make access to the current database fast even when the database contains a
great deal of historical data. Performance analysisin Chapter Four suggests that with these
enhancements, POSTGRES does the same amount of 1/0O as a conventional DBMS if (1)
a sufficient amount of non-volatile RAM is available and (2) the log-structured file system
(LFS) is used, and (3) the POSTGRES historical data feature is disabled. If historical
data is enabled, the analysis shows that POSTGRES does about thirty percent more 1/O.
Chapter Four al so showed how changes to the use of the transaction statusfile can eliminate
all examination of thisfile during system restart. Because the database remains unavailable
until clients are actually connected to the DBMS, Chapter Four added to POSTGRES
techniques for quickly recovering communication between clients and the DBMS server.
Chapter Five extended the POSTGRES storage system to handle index data structures
without a write-ahead log. It described two index management techniques, one based on
shadow pages and one based on page reorgani zation.

Overdl, the POSTGRES fault tolerance strategy has been to anticipate technology

shifts — faster processors, non-volatile RAM — and assume that new hardware can be



CHAPTER 6. CONCLUSIONS 224

used to mask the performance impact of smpler recovery strategies and additional error
detection. Non-volatile RAM makesthe POSTGRES storage system possible by softening
the performance impact of force-at-commit buffer management. Faster processors mean
that additional processing costs associated with guarding and POSTGRES on-demand
database recovery will belittle noticed by customers. Faster processors will aso mean that
using the same routines for recovery and for normal processing will have limited effects
on performance. This has important reliability implications in, for example, the index
management code, since the code used at recovery timeis continually tested during normal

processing instead of just at recovery time.

6.1 FutureWork

6.1.1 Providing Availability for Long-Running Queries

The recovery model discussed in this dissertation considered the DBM Sto be available
if new transactions could be initiated against the data. It did not consider the cost of
discarding work done by uncommitted transactions. 1nahigh-update-rate, short-transaction
environment, the current POSTGRES model works well. Forcing the clients to simply
resubmit failed transactions is a worthwhile complexity/availability tradeoff.

When the DBMS is used for long-running complex queries, however, restarting the
guery after afailure may be unacceptable. Complex queries can run for minutes or hours,

evenin ahigh performancesystem. If the DBM Sfailsfrequently relativeto query execution



CHAPTER 6. CONCLUSIONS 225

time, users may not be able to make any progress on their work even though the database
is“available’ in that users can submit new queries at amoment’s notice.

To providehigh availability for long-running queries, POSTGRES would haveto check-
point intermediate state such as the current state of the query plan and temporary relations.
Current commercial systems use savepoints to limit the rollback of long-running trans-
actions, but savepoints only record updates made by the long running transaction. The
complex query checkpoint mechanism would record intermediate state of read-only trans-
actions and record some DBMS data structures in addition to database changes. Such a
mechanism would require atunable parameter to set the frequency with which checkpoints
are taken. An additional open question in the design of such a system is determining how

to restore the two-phase locks associated with the query.

6.1.2 Fast Recovery inaMain Memory Database M anager

An important disadvantage of the POSTGRES Storage System is its reliance on a
force-at-commit strategy for managing buffers. RAID, LFS, and NVRAM minimize this
disadvantage, but till the cost of using magnetic disk as stable storage is a significant
cost in today’s systems. Obvioudy, database management systems designed to reside in
main memory, rather than disk, would eliminate concerns related to force-at-commit [20].
POSTGRES can use NVRAM to lessen its commit costs, but it is still designed for a disk
database. For example, care is taken that previous and current tuple versions reside on

the same disk page to reduce the I/Os required during recovery and on index scans. As



CHAPTER 6. CONCLUSIONS 226

NVRAM prices approach those of conventional main memory, the idea of maintaining
a main memory large enough to safely store an entire database becomes more and more
practical.

Such a system could maintain high reliability and availability using variations on the
page guarding and POSTGRES fast recovery techniques. The database itself would be
organized probably as a single append-only log to facilitate page guarding; only the tail of
the log would ever be unguarded. Indexing strategies might be changed since structures
such as B-Trees were designed for speedy access to data on disk. The garbage collection
strategieswould be closer to those of thelog-structuredfile system than to the ones described
in this dissertation. The storage system would be unlike a conventional write-ahead log
in that the log contains actual data values, not just undo/redo information for recovery. A
fast main memory database management system would require some kind of checkpointing

mechanism in order to provide mediarecovery.

6.1.3 Automatic Code and Error Check Generation

Much of thecontrol error probleminIMSand DB2 had to dowith programmers* missing
acase” — not considering an error condition or timing condition that might arise. Software
engineering tools that track where error conditions are handled would be helpful. Thisis
especially true during program maintenance. The change team that repairs a software error
discovered in the field may not always understand how the change affects the rest of the

program control flow. Regression testing alone does not seem to show whether al error



CHAPTER 6. CONCLUSIONS 227

conditions that were handled previoudly are still handled after abug fix. In older programs
such as IMS, a significant fraction of software errors come from program maintenance.
Software engineering tools that helped show how small modifications to the code affect
program control flow would be helpful.

DB2 had a small number of false error detections that occurred when the program
changed, but the assert statements designed to detect bad internal state did not. Software
engineers would help alleviate this problem by designing toolsto (a) generate assert state-
ments, or (b) flag assert statements that are affected when code is changed. Solution (a)
requires less work for programmers, but, on the surface, seems more error prone. Pro-
grammers are supposed to think about assert statements. If assert statements are generated

automatically, incorrect data structures can generate incorrect assert statements.

6.1.4 High Level Languages

Throughout this dissertation, we have assumed that the current generation of low-level
systems languages will remain popular among system designers. While these languages
will probably never go away, it is conceivable that fault tolerant system designers will
switch over to languages with more debugging and anti-bugging features than the ones
used to construct POSTGRES and the systems studied in Chapter Two. One important
area of future work is to examine the error characteristics of languages such as C++ [22],
Hermes[71], and Modula-3 [35] with higher degrees of type safety than current languages.

Many of the addressing-related errorscatal ogued in Chapter Two involved errorsin memory



CHAPTER 6. CONCLUSIONS 228

management, unsafe pointer operations, and errors in type coercion (union type problems)
that these languages are designed to prevent. To our knowledge, no detailed error studies
of systems programs written in these languages exist. It would be interesting to find
out whether such languages have additional classes of errors not found in conventional
programming languages.

The programming language Ada[38] has abuilt-in exception handling facility. We have
seen that many errorsin systems programs result from mishandled error conditions. Since
many large Adaprogramsexist now, astudy of error reportsin thislanguage —especially in
users exception handling code—would beinteresting. Such astudy would also be useful to

designers of software engineering tools that help programmerswrite code to handle errors.



229

Bibliography

[1] A. Appel and K. Li. Virtual memory primitivesfor user programs. Proceedings of the
4th International Conference on Architectural Support for Programming Languages

and Operating Systems, April 1991.

[2] M. Audander, D. Larkin, and A. Scherr. Evolution of mvs. IBM Journal of Research

and Development, 25(5), September 1981.

[3] A. Avizienis. The n-version approach to fault tolerant software. 1EEE Transactions

on Software Engineering, SE-11, December 1985.

[4] Mary Baker, Satoshi Asami, Etienne Deprit, John Ousterhout, and Margo Seltzer. Non-
volatile memory for fagt, reliable file systems. Proceedings of the 5th International
Conference on Architectural Support for Programming Languages and Operating

Systems, October 1992.

[5] Mary Baker and Mark Sullivan. Therecovery box: Using fast recovery to providehigh
availability inthe unix environment. Proceedings of the Summer USENI X Conference,

June 1992.



BIBLIOGRAPHY 230

[6] J.Bannerjee, W.Kim, H. Kim, and H. Korth. Semanticsand implementation of scheme
evolution in object-oriented databases. Proceedingsof the S GMOD Conference, pages

311-322, December 1987.

[7] J. Bartlett. A nonstop kernel. Proceedings of the 8th Symposium on Operating System

Principles, 1981.

[8] V. R. Basili and B. T. Perricone. Software errors and complexity: An empirical

investigation. Communications of the ACM, 27(1), 1984.

[9] R. Bayer and C. McCreight. Organization and maintenance of large ordered indexes.

Acta Informatica, 1(3):173-189, 1972.

[10] B. Bershad, T. Anderson, L. Lazowska, and H. Levy. Lightweight remote procedure
call. Proceedings of the 12th Symposium on Operating System Principles, pages

102-122, December 1987.

[11] A. Bhide, E. Elnozahy, and S. Morgan. Implicit replication in a network file server.

| EEE Wbrkshop on Management of Replicated Data, November 1990.

[12] D. Bitton, D. DeWitt, and C. Turbyfill. Benchmarking database systems, a systematic

approach. Proceedings of the \ery Large Data Bases Conference, November 1983.

[13] A. Borg, W. Blau, W. Graetsch, F. Herrman, and W. Oberle. Fault tolerance under

unix. ACM Transactions on Computer Systems, 7, February 1989.



BIBLIOGRAPHY 231

[14] M. Carey, D. DeWitt, D. Frank, G. Graefe, M. Muralikrishna, and E. Shekita. The
architecture of the exodus extensible doms. PROC |EEE International Workhop on

Object-Oriented Systems, September 1986.

[15] X. Castilloand D. P. Siewiorek. Workload, performanceand reliability of digital com-
puting systems. Digest 11th International Symposium on Fault-Tolerant Computing,

1981.

[16] A. Chang and M. Mergen. 801 storage: Architecture and programming. ACM

Transactions on Computer Systems, 6(1):28-50, February 1988.

[17] R. Cheng. Virtual address cache in unix. Proceedings of the Summer USENIX

Conference, 1987.

[18] D. Comer. The ubiquitous b-tree. ACM Computing Surveys, 11(4), 1979.

[19] D. Comer. Internetworking with TCP/IP. Prentice Hall, Englewood Cliffs, New

Jersey, 1988.

[20] D. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stonebraker, and D. Wood. Implemen-
tation technigues for main memory database systems. Proceedings of the SGMOD

Conference, June 1984.

[21] B. Efron and R. Tibshirani. Bootstrap methods for standard errors, confidence in-
tervals, and othermeasures of statistical accuracy. Satistical Science, 1(1):54-77,

1986.



BIBLIOGRAPHY 232

[22] M.EllisandB. Barnestroup. The Annotated C++ Reference Manual. Addison-Wesley,

1990.

[23] R. J. Enbody and H. C. Du. Dynamic hashing schemes. ACM Computing Surveys,

20(2):85-113, June 1988.

[24] A.Endres. An anaysisof errorsand their causesin system programs. |EEE Transac-

tions on Software Engineering, 1(2), 1975.

[25] K.P. Eswaran, JN. Gray, R.A. Lorie, and I.L. Traiger. The notions of consistency and
predicate locks in a database system. Communications of the ACM, 19(11):624-633,

November 1976.

[26] Anon et. d. A measure of transaction processing power. Technical Report 85.1,

Tandem Corporation, January 1985.

[27] R. Fagin, J. Nieverrgelt, N. Pippenger, and H. Strong. Extensible hashing — a
fastaccess method for dynamic hashing. ACM Transactions on Database Systems,

4(3):315-334, September 1979.

[28] R. Glass. Persistent software errors. |EEE Transactions on Software Engineering,

SE-7, March 1981.

[29] J. Gray. Why do computersfail and what can be done about it? Proc. 5th Symposium

on Reliability in Distributed Software and Database Systems, 1986.



BIBLIOGRAPHY 233

[30] J. Gray. A census of tandem system availability between 1985 and 1990. |IEEE

Transactions on Reliability, 39(4), October 1990.

[31] J. Gray, P McJones, M. Blasgen, B. Lindsay, R. Lorie, T. Price, F. Putzolu, and
|. Traiger. The recovery manager of the system r database manager. ACM Computing

Surveys, 13(2), June 1981.

[32] R.Gupta. A freshlook at optimizing array bounds checking. PROC of ACM SGPLAN
Notices Conference on Programming Language Design and Implementation, pages

272-282, June 1990.

[33] A. Guttman. R-trees. A dynamic index structure for spatial searching. Proceedings

of the SGMOD Conference, pages 47-57, 1984.

[34] T.Haerder and A. Reuter. Principlesof transaction-oriented recovery. ACM Computing

Surveys, 15(4), 1983.

[35] S. Harbison. Modula-3. Prentice Hall, Englewood Cliffs, New Jersey, 1992.

[36] IBM. MVSExtended Architecture Overview, publication number gc28-1348 edition.

[37] IBM Corporation. MSVS Extended Recovery Facility (XRF): Technical Reference,

1987.

[38] J.D.Ichbiah, J. C. Heliard, O. Roubine, J. G. P. Barnes, B. Krieg-Bruckner, and B. A.

Wichmann. Preliminary ada reference manual. S GPLAN Notices, 14(6), June 1979.



BIBLIOGRAPHY 234

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

R. lyer and D. Rossetti. Effect of system workload on operating system reliability:
A study on ibm 3081. IEEE Transactions on Software Engineering, SE-11(12),

December 1985.

D. Jewett. Integrity-s2 — a fault-tolerant unix platform, field failures in operating
systems. Digest 21st International Symposium on Fault-Tolerant Computing, June

1991.

Gerry Kane. R2000 RISC Architecture. Prentice Hall, Englewood Cliffs, New Jersey,

1987.

W. Kim. Highly availablesystems for database applications. ACM Computing Surveys,

16(1), March 1984.

J. C. Knight, N. G. Levenson, and L. D. St.Jean. A large scale experiment in n-version
programming. Digest 15th International Symposium on Fault-Tolerant Computing,

1985.

D. Knuth. The errors of tex. Software: Practice & Experience, 19(7), July 1989.

C. Kolovson. Indexing Techniquesfor Multi-Dimensional Spatial Data and Historical
Data in Database Management Systems. PhD thesis, University of California, Berke-

ley, EECS Department, Computer Science Division, 1990. UCB/ERL TR M90/105.

B. Lampson and D. Redell. Experiencs with processes and monitorsin mesa. Com-

munications of the ACM, 23(2):105-117, February 1980.



BIBLIOGRAPHY 235

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

V. Lanin and D. Shasha. A symmetric concurrent b-tree algorithm. Proceedings Fall

Joint Computer Conference, pages 380389, 1986.

P. Lehman and S. Yao. Efficient locking for concurrent operations on b-trees. ACM

Transactions on Database Systems, 6(4), December 1981.

Y. Levendel. Defects and reliability analysis of large software systems. Field ex-
perience. Digest 19th International Symposium on Fault-Tolerant Computing, June

19809.

H. Levy and P. Lipman. Virtual memory management in the vax/vms operating system.

|EEE Computer, March 1982.

B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira, and M. Williams. Replica-
tion in the harp file system. Proceedings of the 13th Symposium on Operating System

Principles, October 1991.

Witold Litwin. Linear hashing: A new tool for file and table addressing. Proceedings

of the \ery Large Data Bases Conference, 1980.

R. Lorie. Physical integrity in a large segmented database. ACM Transactions on

Database Systems, 2(1):91-104, March 1977.

D. Menasces and O. Landes. Dynamic crash recovery of balanced trees. Proceedings
on Reliability in Distributed Software and Database Systems, pages 131-137, July

1981.



BIBLIOGRAPHY 236

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. Aries. A transaction
recovery method supporting fine-granularity locking and partial rollbacksusing write-

ahead logging. ACM Transactions on Database Systems, 17(1), March 1992.

C. Mohanand F. Levine. Ariesim: An efficient and high concurrency index manage-

ment method using write ahead logging. Technical Report RJ 6846, IBM, 1989.

D. Morgan and D. Taylor. A survey of methods for achieving reliable software. IEEE

Computer, 10(2), February 1977.

S. Mourad and D. Andrews. On the reliability of the ibm mvs/xa operating system.

| EEE Transactions on Software Engineering, SE-13(10):1135-1139, October 1987.

M. Olson. Extending the postgres database system to manage tertiary storage. Mas-
ter'sthesis, University of California, Berkeley, EECS Department, Computer Science

Division, May 1992.

J. Ousterhout, A. Cherenson, F. Douglis, M. Nelson, and B. Welch. The Sprite network

operating system. |EEE Computer, 21(2):23-36, February 1988.

D. Patterson, G. Gibson, and R. Katz. A Case for Redundant Arrays of Inexpensive

Disks (RAID). Proceedings of the SGMOD Conference, June 1988.

B. Randell. System structure for software fault tolerance. |EEE Transactions on

Software Engineering, SE-1(2), June 1975.



BIBLIOGRAPHY 237

[63] M. Rosenblum and J. Ousterhout. The design and implementation of alog-structured
file system. Proceedings of the 13th Symposium on Operating System Principles,

pages 1-15, October 1991.

[64] M. Schroeder and J. Saltzer. A hardware architecture for implementing protection

rings. Communications of the ACM, 15(3):157-170, March 1972.

[65] M. Seltzer. File System Performance and Transaction Support. PhD thesis, University

of California, Berkeley, EECS Department, Computer Science Division, 1992.

[66] M. Seltzer and O. Yigit. A new hashing package for unix. Proceedings of the Winter

USENIX Conference, January 1991.

[67] T. Shimeall and N. Leveson. An empirical comparison of software fault tolerance and
fault elimination. 1EEE Transactions on Software Engineering, SE-17(2), February

1991.

[68] V. Srinivasan and M. Carey. Performance of b-tree concurrency control algorithms.

Proceedings of the SGMOD Conference, pages 416425, June 1991.

[69] M. Stonebraker. The postgres storage system. Proceedings of the \Very Large Data

Bases Conference, pages 289-300, September 1987.

[70] M. Stonebraker and L. Rowe. The design of postgres. Proceedings of the SGMOD

Conference, June 1986.



BIBLIOGRAPHY 238

[71]

[72]

[73]

[74]

[75]

[76]

[77]

Robert E. Strom, David F. Bacon, Arthur Goldberg, Andy Lowry, Daniel Yellin, and
Shaula Alexander Yemini. Hermes: A Language for Distributed Computing. Series

in Innovative Technology. Prentice Hall, Inc., 1991. ISBN 0-13-389537-8.

M. Sullivan. Software errors reported in 4.1 and 4.2 bsd unix. Unpublished notes

from asurvey of the BSD error report database, 1990.

M. Sullivanand R. Chillarege. Softwaredefectsand their impact on system availability
— astudy of field failuresin operating systems. Digest 21t I nternational Symposium

on Fault-Tolerant Computing, June 1991.

M. Sullivan and R. Chillarege. A comparison of software defects in database man-
agement systems and operating systems. Digest 22nd International Symposium on

Fault-Tolerant Computing, July 1992.

M. Sullivan and M. Olson. An index implementation supporting fast recovery for
the postgres storage system. Technical Report M91-98, University of California,

Berkeley, 1991.

D. Taylor, D. Morgan, and J. Black. Redundancy in data structures. Improving
software fault tolerance. |EEE Transactions on Software Engineering, SE-6, May

1980.

T. Thayer, M. Lipow, and E. Nelson. Software Reliability. TRW and North-Holland

Publishing Company, 1978.



BIBLIOGRAPHY 239

[78] K. Tsoand A. Avizienis. Community error recovery in n-version software: A design
study with experimentation. Digest 17th International Symposium on Fault-Tolerant

Computing, 1987.

[79] P.Velardi and R. lyer. A study of software failuresand recovery in the mvs operating

system. |EEE Transactions on Computers, C-33(6):564-568, June 1984.

[80] S.Webber andJ. Beirne. Thestratusarchitecture. Digest 21st International Symposium

on Fault-Tolerant Computing, June 1991.

[81] W. Wulf. Reliable hardware/software architecture. |EEE Transactions on Software

Engineering, SE-1(2), June 1975.

[82] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack.
Hydra The kernel of a multiprocessor operating system. Communications of the

ACM, 17(6):337—345, June 1974.

[83] M. Young, A. Tevanian, R. Rashid, D. Golub, J. Eppinger, J. Chew, W. Bolosky,
D. Black, and R. Baron. The duality of memory and communicationin theimplemen-
tation of a multiprocessor operating system. Proceedings of the 11th Symposium on

Operating System Principles, pages 6376, December 1987.



