
System Support for Software Fault Tolerance in

Highly Available Database Management Systems

Copyright c
1992

by

Mark Paul Sullivan

System Support for Software Fault Tolerance in Highly Available

Database Management Systems

by

Mark Paul Sullivan

Abstract

Today, software errors are the leading cause of outages in fault tolerant systems. System

availability can be improved despite software errors by fast error detection and recovery

techniques that minimize total downtime after an outage. This dissertation analyzes software

errors in three commercial systems and describes the implementation and evaluation of

several techniques for early error detection and fast recovery in a database management

system (DBMS).

The software error study examines errors reported by customers in three IBM systems

programs: the MVS operating system and the IMS DBMS and DB2 DBMS. The study

classifies errors by the type of coding mistake and the circumstances in the customer’s

environment that caused the error to arise. It observes a higher availability impact from

addressing errors, such as uninitialized pointers, than software errors as a whole. It also

details the frequencies and types of addressing errors and characterizes the damage they do.

The error detection work evaluates the use of hardware write protection both to detect

addressing-related errors quickly and to limit the damage that can occur after a software

error. System calls added to the operating system allow the DBMS to guard (write-protect)

2

some of its internal data structures. Guarding DBMS data provides quick detection of

corrupted pointers and similar software errors. Data structures can be guarded as long as

correct software is given a means to temporarily unprotect the data structures before updates.

The dissertation analyzes the effects of three different update models on performance,

software complexity, and error protection.

To improve DBMS recovery time, previous work on the POSTGRES DBMS has sug-

gested using a storage system based on no-overwrite techniques instead of write-ahead log

processing. The dissertation describes modifications to the storage system that improve

its performance in environments with high update rates. Analysis shows that, with these

modifications and some non-volatile RAM, the I/O requirements of POSTGRES running a

TP1 benchmark will be the same as those of a conventional system, despite the POSTGRES

force-at-commit buffer management policy. The dissertation also presents an extension to

POSTGRES to support the fast recovery of communication links between the DBMS and

its clients.

Finally, the dissertation adds to the fast recovery capabilities of POSTGRES with two

techniques for maintaining B-tree index consistency without log processing. One technique

is similar to shadow paging, but improves performance by integrating shadow meta-data

with index meta-data. The other technique uses a two-phase page reorganization scheme

to reduce the space overhead caused by shadow paging. Measurements of a prototype

implementation and estimates of the effect of the algorithms on large trees show that they

will have limited impact on data manager performance.

i

ii

Acknowledgements

go here

iii

Contents

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 Software Failures and Data Availability : : : : : : : : : : : : : : : : : : 1
1.2 A Model of Software Errors Incorporating Error Propagation : : : : : : : 5
1.3 Existing Approaches to Software Fault Tolerance : : : : : : : : : : : : : 8
1.4 Organization of This Dissertation : 11

2 A Survey of Software Errors in Systems Programs 15
2.1 Introduction : 15
2.2 Previous Work : 18
2.3 Gathering Software Error Data : 20

2.3.1 Sampling from RETAIN : 24
2.3.2 Characterizing Software Defects : : : : : : : : : : : : : : : : : : 25

2.4 Results : 31
2.4.1 Error Type Distributions : 32
2.4.2 Comparing Products by Impact : : : : : : : : : : : : : : : : : : 48
2.4.3 Error Triggering Events : 50
2.4.4 Failure Symptoms : 57

2.5 Summary : 61

3 Using Write-Protected Data Structures in POSTGRES 64
3.1 Introduction : 64

3.1.1 System Assumptions : 66
3.2 Models for Updating Protected Data : 69

3.2.1 Overview of Page Guarding Strategies : : : : : : : : : : : : : : : 69
3.2.2 The Expose Page Update Model : : : : : : : : : : : : : : : : : : 73
3.2.3 The Deferred Write Update Model : : : : : : : : : : : : : : : : 76

CONTENTS iv

3.2.4 The Expose Segment Update Model : : : : : : : : : : : : : : : : 84
3.3 Performance Impact of Guarded Data Structures : : : : : : : : : : : : : : 87

3.3.1 Performance of Guarding in a DBMS : : : : : : : : : : : : : : : 88
3.3.2 Performance of Guarding in a DBMS : : : : : : : : : : : : : : : 90
3.3.3 Reducing Guarding Costs Through Architectural Support : : : : : 95

3.4 Reliability Impact of Guarded Data Structures : : : : : : : : : : : : : : : 98
3.5 Previous Work Related to Guarded Data Structures : : : : : : : : : : : : 100
3.6 Summary : 103

4 Fast Recovery in the POSTGRES DBMS 106
4.1 Introduction : 106
4.2 A No-Overwrite Storage System : 111

4.2.1 Saving Versions Using Tuple Differences : : : : : : : : : : : : : 113
4.2.2 Garbage Collection and Archiving : : : : : : : : : : : : : : : : : 116
4.2.3 Recovering the Database After Failures : : : : : : : : : : : : : : 124
4.2.4 Validating Tuples During Historical Queries : : : : : : : : : : : : 134

4.3 Performance Impact of Force-at-Commit Policy : : : : : : : : : : : : : : 135
4.3.1 Benchmark : 136
4.3.2 Conventional Disk Subsystem : : : : : : : : : : : : : : : : : : : 142
4.3.3 Group Commit : 144
4.3.4 Non-Volatile RAM : 145
4.3.5 RAID Disk Subsystems : 147
4.3.6 RAID and the Log-Structured File System : : : : : : : : : : : : 149
4.3.7 Summary : 152

4.4 Guarding the Disk Cache : 153
4.5 Recovering Session Context : 156

4.5.1 Communication Architecture of POSTGRES : : : : : : : : : : : 157
4.5.2 Recovery Mechanism for POSTGRES Sessions : : : : : : : : : : 159
4.5.3 Restarting Transactions Lost During Failure : : : : : : : : : : : : 162

4.6 Summary : 165

5 Supporting Indices in the POSTGRES Storage System 168
5.1 Introduction : 168
5.2 Assumptions : 173
5.3 Support for POSTGRES Indices : 175

5.3.1 Traditional B-tree Data Structure : : : : : : : : : : : : : : : : : 176
5.3.2 Sync Tokens and Synchronous Writes : : : : : : : : : : : : : : : 177
5.3.3 Technique One: Shadow Page Indices : : : : : : : : : : : : : : : 178
5.3.4 Technique Two: Page Reorganization Indices : : : : : : : : : : : 186
5.3.5 Delete, Merge, and Rebalance Operations : : : : : : : : : : : : : 192
5.3.6 Secondary Paths to Leaf Pages: Blink-tree : : : : : : : : : : : : : 195
5.3.7 Dynamic Hashing for POSTGRES : : : : : : : : : : : : : : : : 199

CONTENTS v

5.4 Concurrency Control : 200
5.5 Using Shadow Indices in Logical Logging : : : : : : : : : : : : : : : : : 204
5.6 Performance Measurements : 209

5.6.1 Modelling The Effect of Increased Tree Heights : : : : : : : : : : 210
5.6.2 Measurements of the POSTGRES Blink-tree Implementation : : : 213
5.6.3 Estimating Additional I/O Costs During Recovery : : : : : : : : 216

5.7 Summary : 218

6 Conclusions 220
6.1 Future Work : 224

6.1.1 Providing Availability for Long-Running Queries : : : : : : : : : 224
6.1.2 Fast Recovery in a Main Memory Database Manager : : : : : : : 225
6.1.3 Automatic Code and Error Check Generation : : : : : : : : : : : 226
6.1.4 High Level Languages : 227

Bibliography 229

vi

List of Figures

1.1 Causes of Outages in Tandem Systems : : : : : : : : : : : : : : : : : : 3

2.1 DB2 Error Type Distribution : 33
2.2 IMS Error Type Distribution : 33
2.3 MVS Regular Sample Error Type Distribution : : : : : : : : : : : : : : : 34
2.4 Control/Addressing/Data Error Breakdown DB2, IMS, and MVS Systems 35
2.5 Summary of Addressing Error Percentages in Previous Work : : : : : : : 37
2.6 Distribution of the Most Common Control Errors : : : : : : : : : : : : : 40
2.7 Distribution of the Most Common Addressing Errors : : : : : : : : : : : 43
2.8 MVS Overlay Sample Error Type Distribution : : : : : : : : : : : : : : : 44
2.9 DB2 Error Trigger Distribution : 51
2.10 IMS Error Trigger Distribution : 51
2.11 MVS Error Trigger Distribution : 52
2.12 Error Type Distribution for Error-Handling-Triggered in DB2 : : : : : : : 56
2.13 Error Type Distribution for Error-Handling-Triggered in IMS : : : : : : : 56
2.14 MVS Overlay Sample Failure Symptoms : : : : : : : : : : : : : : : : : 58
2.15 MVS Regular Sample Failure Symptoms : : : : : : : : : : : : : : : : : 59
2.16 IMS Failure Symptoms : 59
2.17 DB2 Failure Symptoms : 60

3.1 POSTGRES Process Architecture : 67
3.2 Example of Extensible DBMS Query : : : : : : : : : : : : : : : : : : : 72
3.3 Expose Page Update Model : 75
3.4 Deferred Write Update Model : 78
3.5 Remapping to Avoid Copies in Deferred Write : : : : : : : : : : : : : : 83
3.6 Costs of Updating Protected Records : : : : : : : : : : : : : : : : : : : 91

4.1 Forward Difference Chain : 114
4.2 Backward Difference Chain : 114
4.3 Creating an Overflow Page : 121

LIST OF FIGURES vii

4.4 Tuple Qualification : 130
4.5 Phases of the Client/Server Communication Protocol : : : : : : : : : : : 159

5.1 Conventional B-tree Page : 176
5.2 Shadowing Page Strategy : 179
5.3 Shadowing Page Split : 180
5.4 Two Page Splits During the Same Transaction : : : : : : : : : : : : : : : 180
5.5 Page Split For Page Reorganization B-trees : : : : : : : : : : : : : : : : 188
5.6 A merge operation on a balanced shadow B-tree : : : : : : : : : : : : : : 193
5.7 Normal Blink-Tree : 195
5.8 Worst-Case Inconsistent Blink-Tree : 196
5.9 Height of Tree for Different Size B-trees : : : : : : : : : : : : : : : : : : 212

viii

List of Tables

2.1 Average Size of an Overlay : 47
2.2 Distance From Intended Write Address : : : : : : : : : : : : : : : : : : 48
2.3 Operating System and DBMS Error Impacts : : : : : : : : : : : : : : : : 50

3.1 Raw Costs of Guarding System Calls : : : : : : : : : : : : : : : : : : : 89
3.2 Performance Impact of Guarding a CPU-Bound Version of POSTGRES : 93
3.3 Performance Impact of Guarding an IO-Bound Version of POSTGRES : : 93

4.1 Summary of I/O Traffic in a Conventional Disk Subsystem : : : : : : : : 143
4.2 Group Commit in a Conventional Disk Subsystem : : : : : : : : : : : : : 145
4.3 Summary of I/O traffic When NVRAM is Available : : : : : : : : : : : : 148
4.4 Comparison of Random I/Os in RAID and a Conventional Disk Subsystem 149
4.5 Comparison of I/Os in LFS RAID and a non-LFS Conventional Disk Sub-

system : 151

5.1 Insert/Lookup Performance Comparison : : : : : : : : : : : : : : : : : : 214

1

Chapter 1

Introduction

1.1 Software Failures and Data Availability

Commercial computer users expect their systems to be both highly reliable and highly

available. Given a system’s service specification, the system is reliable if does not deviate

from the specification when it performs its services. The system is available if it is prepared

to perform the services when legitimate users requests them. A fault tolerant system is one

that is designed to provide high availability and reliability in spite of failures in hardware

or software components of the system. Once a fault tolerant system is in production, it

maintains high reliability through error detection, halting an operation rather than providing

an incorrect result. Fault tolerant systems achieve high availability by recovering transient

state quickly after an error is detected, minimizing down time to increase overall availability.

Traditionally, fault tolerant systems have focused on detecting and masking hardware

CHAPTER 1. INTRODUCTION 2

(material) faults through hardware redundancy [42]. In today’s fault tolerant systems,

however, software failures, rather than hardware failures, are the largest cause of system

outage [30]. Figure 1.1 compares outage distributions in three years of a five year study

of Tandem Corporation’s highly available systems. In the figure, outages are classified by

the nature of the failure that caused the outage. Software outages are caused by failures

of the operating system, database management system, or application software. Hardware

outages are caused by double failures of hardware components, including microcode. Errors

made by the people who manage and maintain the system are separated into operator

and maintenance errors, since the system’s owners controlled day-to-day operations while

Tandem was responsible for routine maintenance. Environment failures include fires, floods,

and power outages of greater than one hour.

Tandem’s studies found that outages shifted over time from a fairly even mix across all

sources to a distribution dominated by software failures. From 1985 to 1989, software went

from causing 33% of outages to 62%. By 1989, the second and third largest contributors,

operations and hardware, were at fault only 15% and 7% of the time, respectively.

For Tandem, the trend is not due to worsening software quality, but to success in

curtailing outages caused by hardware and maintenance failures. Overall, Tandem’s systems

have gradually become more reliable; the mean time between system failures has risen from

8 years to 21 years. The reliability of the hardware components from which the systems are

built has increased. Hardware redundancy techniques have gone a long way in detecting

and masking faults when those hardware components do wear out. The increasingly

CHAPTER 1. INTRODUCTION 3

1989
1987

Failures

50

40

30

20

10

0

Percent of

60

1985

70

Hardware Maint.
Environ.OperatorSoftware

Figure 1.1: Causes of Outages in Tandem Systems. The chart represents the
results of three years of a five year study. Outages are classified by the nature
of the component that failed. The graph shows a dramatic shift to software
as the primary cause of system outage. The bars for a given year do not sum
to 100% because the causes of some outages could not be identified.

CHAPTER 1. INTRODUCTION 4

reliable hardware also needs less maintenance. When maintenance is required, many of the

maintenance tasks have been automated in order to limit the errors that the maintenance

engineers can make. The rate of operator errors has remained constant, but it should soon

improve for some of the same reasons that maintenance error rates improved. Operator

interfaces are becoming less complex, hence, operators are less likely to make mistakes.

Over time, more of the tasks currently done by operators will be automated as well, which

removes the opportunity for operator errors. Thus, while progress in these areas has had

a noticeable impact, the growing dominance of software outages is making continued

advances in non-software fault tolerance less and less important.

A second study from Tandem indicates another software-related limit to system fault

tolerance [29]. Even when software does not cause the original outage, it often determines

the duration of the outage. Once an outage of any sort occurs, the system must reestablish

software state lost at the time of the failure. While the system is reinitializing, it is

unavailable to its users. A thorough approach to improving system availability must also

address software restart time.

This dissertation focuses on part of the software fault tolerance problem: improving the

reliability and availability of the database management system (DBMS). The integrity and

availability of data managed by a DBMS is usually an important feature of the environments

in which fault tolerant systems are used. In Tandem’s outage study, the DBMS accounted

for about a third of the software failures (the remainder being divided between operating

system, communication software, and other applications). While we focus on the DBMS,

CHAPTER 1. INTRODUCTION 5

much of the work is applicable to other systems programs.

Before presenting the approach to software fault tolerance taken in the dissertation, this

chapter introduces a model of errors and describes some existing software fault tolerance

techniques. The model and some of the terms defined in the first section below will be

used throughout the dissertation. A review of the software fault tolerance literature is in the

section following the description of the error model. The final section below outlines the

remainder of the dissertation.

1.2 A Model of Software Errors Incorporating Error Prop-

agation

The software error model used in this dissertation highlights one of the significant

differences between hardware and software failure modes, error propagation. Using

redundancy, hardware components can detect their own errors and often recover without

disturbing the system. Software errors, on the other hand, sometimes cause damage that

is not detected immediately. The damaged system can initiate a sequence of additional

software errors as it executes, eventually causing the system to corrupt permanent data or

fail. Error propagation complicates software failure modes, making the code difficult to

reason about, test, and debug. Reproducing propagation-related failures during debugging

is difficult since error propagation can be timing dependent.

To explore software fault tolerance techniques in the DBMS, we propose a model that

CHAPTER 1. INTRODUCTION 6

distinguishes between software errors based on the ways in which they propagate damage to

other parts of the system. The model breaks software errors into three classes: control errors,

addressing errors, and data errors. Control errors include programmer mistakes such as

deadlock in which the point of control (the program counter) is lost or the program makes

an illegal state transition. The only corruption that occurs is to the variables representing

the current state of the program. Control errors can propagate only when the broken module

communicates with other parts of the system. Addressing errors corrupt values that the

faulty routine did not intend to operate on. An uninitialized pointer would be an addressing

error, for example. Propagation from addressing errors is the most difficult to control since,

from the standpoint of the module whose data has been corrupted, the error is “random”;

it happens at a time when the module designers do not expect to communicate with the

faulty module. Data errors corrupt the values computed by the faulty routine. A data

error causes the program to miscalculate or misreport a result. Like control errors, data

errors can propagate only to modules related to the routine with the error. Unlike many

addressing errors, the source of the corruption in a data or control error can be tracked

during debugging by examining the code that is known to use the corrupted data.

In future database management systems, the impact of the cross-module error propaga-

tion caused by addressing errors may increase because of two trends in DBMS design: data

manager extensibility and main memory resident databases. Extensible DBMSs include

extended relational systems [70], object-oriented systems [6], and DBMS toolkits [14]. An

extensible DBMS lets users or database administrators add access methods, operators, and

CHAPTER 1. INTRODUCTION 7

data types to manage complex objects. Moving functionality from DBMS clients to the

DBMS itself improves application performance but could worsen system failure behavior.

Extensibility allows different object managers with varying degrees of trustworthiness to

run together in the data manager. Every time one user on the system tries to use a new

object manager or combine existing ones in a different way, there is a risk of uncovering

latent errors. Because of addressing errors, this risk is not confined to the person using the

new feature; it affects the reliability and availability achieved by all concurrent users of the

database.

System designers have realized for some time that DBMS performance would improve

dramatically if the database resided entirely in main memory instead of residing primarily

on disk (e.g. [20]). Years ago, main memory capacity was the factor limiting the appeal of

main memory DBMSs. In high-end systems today, however, main memories large enough

to hold many databases are available, and memory prices are dropping. Commercial

systems still do not use main memory DBMSs, probably because system designers believe

that data stored main memory is more likely to be corrupted by errors than data stored

on disk. Corruption due to hardware and power failures can be eliminated if existing

redundancy techniques based on those discussed in [42] are applied to large main memories.

Operator and maintenance errors could harm data on disk as easily as data in memory. This

leaves software errors as the largest remaining reliability difference between disk-resident

databases memory-resident ones. In a main memory DBMS, the danger of error propagation

makes addressing errors one of the most important differences in the risk to data in main

CHAPTER 1. INTRODUCTION 8

memory and on disk.

1.3 Existing Approaches to Software Fault Tolerance

Current strategies for reducing the impact of software errors on systems fall into two

classes: fault prevention and fault tolerance. System designers would obviously prefer not to

have software errors at all than to invent techniques for tolerating them. Some software errors

are prevented through modular design, exhaustive testing, and formal software verification.

A survey of error prevention techniques is presented in [57]. Although most software

designs incorporate one or more of these techniques, the complexity and size of concurrent

systems programs such as the operating system and database management system make

error prevention alone insufficient for achieving high system reliability and availability.

Since fault prevention alone is not effective, software fault tolerance techniques are

used to detect and mask errors when they occur in the system. Like hardware fault

tolerance, software fault tolerance is usually based on redundancy. Because software errors

are usually design errors, rather than material failures, redundancy-based techniques have

limited effectiveness in software. Redundant hardware components can be expected to

fail independently, but software design errors often do not cause failure independently in

each redundant components. Most redundant software schemes only mask software errors

triggered by hardware transients and unusual events, such as interrupts, that might arrive at

the redundant components at different times.

CHAPTER 1. INTRODUCTION 9

Systems that tolerate software faults usually employ either spatial redundancy, tem-

poral redundancy, or a hybrid of the two. Spatial redundancy uses concurrent instances

of the program running on separate processors in the hope that an error that strikes in one

instance will not occur in any of the others. In temporal redundancy, the system tries to

clean up any system state damaged by the error and retry the failed operation. Wulf [81]

makes the distinction between spatial and temporal redundancy in a paper on reliability in

the Hydra system.

N-version programming [3] is a famous spatial redundancy technique designed as a

software analog of the triple modular redundancy (TMR) techniques commonly used for

hardware fault tolerance. In N-Version programming, there are several versions of a

program each of which is designed and implemented by a different team of programmers.

The N versions run simultaneously, comparing results and voting to resolve conflicts. In

theory, the independent programs will fail independently. In practice, multiple version

failures are caused by errors in common tools, errors in program specification, errors in

the voting mechanism, and commonalities introduced during bug fixes [78]. Furthermore,

experimental work [43][67] has indicated that even independent programmers often make

the same mistakes. Not surprisingly, different programmers find the same tasks difficult

to code correctly. For example, different programmers often forget to check for the same

boundary conditions.

Most database management systems rely on temporal redundancy to recover from

software errors. Most of recovery techniques surveyed in Haerder and Reuter [34] restore

CHAPTER 1. INTRODUCTION 10

the database to a transaction-consistent state in the hopes that the error does not occur. The

database management system’s clients then reinitiate any work aborted as a result of the

failure. In [62], Randell describes a temporal redundancy method called recovery blocks.

At the end of a block of code, an acceptance test is run. If the test fails, the operation is

retried using an “alternate” routine. Ideally, this is a reimplementation of the routine that is

simpler, but perhaps less efficient, than the original routine. Recovery blocks require fewer

hardware resources than N-version programs, but may be ineffective for the same reasons

as N-version programs.

Process pairing [7] is a hybrid between spatial and temporal redundancy in which

an identical version of the program runs as a backup to the primary one. The primary

and backup run as separate processes on different processors. In addition to masking

unrepeatable software errors, process pairs reduce the availability impact of hardware

errors since the primary and backup run on different processors. If a hardware error causes

the processor running the primary process to fail, the backup process will take over the

clients of the primary. Because only one team of programmers is required, a process

pair is considerably cheaper than an N-version program. Auragen [13] used a similar

scheme. Another spatial/temporal redundancy hybrid method uses redundant data in the

same address space to reconstruct data structures damaged by errors [76]. When an error is

detected during an operation on the data structure, the structure is rebuilt using the redundant

data and the operation is retried.

A system can only tolerate software errors if these errors are detected in the first

CHAPTER 1. INTRODUCTION 11

place. The most common approach to error detection in systems programs is to lace the

program with additional code that checks for errors. Sometimes these include data structure

consistency checkers that pass over program data and examine it for internal consistency.

By detecting errors quickly, even systems without redundant components limit the chance

that minor errors will propagate into worse ones.

Unfortunately, checking for errors is expensive. No published figures are available

regarding the cost of error checking in the DBMS, but run time checks for array bounds

overruns in Fortran programs can double program execution time [32]. Furthermore,

the checkers themselves can have software errors. Error checking is not usually done

systematically. The checking code has to be maintained as the software it checks is

maintained. Implementing and testing error checkers increases development cost.

1.4 Organization of This Dissertation

The dissertation makes three contributions towards the goal of improving software fault

tolerance in database management systems. First, it assembles and analyzes a body of

information about software errors that will be useful to software availability and reliability

researchers. Second, it describes the implementation and evaluation of a mechanism for

detecting addressing errors that can be used in conjunction with existing ad-hoc consistency

checkers. Finally, it extends the DBMS fast recovery techniques of the POSTGRES storage

system [69] in order to improve availability.

CHAPTER 1. INTRODUCTION 12

Chapter Two examines error data collected after software failures at IBM customer

sites in order to improve system designers’ understandings of the ways in which software

causes outage. The chapter presents the results of two software error studies in the MVS

operating system and the IMS and DB2 database management systems and compares these

results to those of earlier software error studies. Chapter Two shows that 40-55% of the

errors reported in these three systems were control errors, while addressing and data errors

were 25-30% and 10-15%, respectively (others could not be classified according to the

model). In addition to the control/addressing/data error breakdown, Chapter Two provides

finer grain classes that include more detail about exactly how the programmer made the

error. The MVS study gives some specific information about the error propagation caused

by addressing errors. For example, these errors are more likely than other software errors

to have high impact on the availability experienced by customers. Addressing errors in

MVS tend to be small and often corrupt data very near the data structure that the software

intended to operate on. This and other data presented in Chapter Two can be used to provide

a larger picture of software failures in high-end commercial systems that, we hope, will be

useful to others studying fault tolerance and software testing outside of the context of the

dissertation.

Chapter Three focuses on the use of hardware write protection both to detect addressing-

related errors quickly and to limit the damage that can occur after a software error. System

calls added to the Sprite operating system allow the DBMS to guard (write-protect) some

of its internal data structures. Guarding DBMS data provides quick detection of corrupted

CHAPTER 1. INTRODUCTION 13

pointers and array bounds overruns, a common source of software error propagation. Data

structures can be guarded as long as correct software is given a means to temporarily

unprotect the data structures before updates. The dissertation analyzes the effects of

three different update models on performance, software complexity, and error protection.

Measurements of a DBMS that uses guarding to protect its buffer pool show two to eleven

percent performance degradation in a debit/credit benchmark run against a main-memory

database. Guarding has a two to three percent impact on a conventional disk database, and

read-only data structures can be guarded without any affect on DBMS performance.

To lessen the availability impact of errors once they are detected, the DBMS must restart

quickly after such errors are detected. Chapter Four develops an approach to fast recovery

centered on the POSTGRES storage system [69]. The original POSTGRES storage system

was designed to restore consistency of the disk database quickly, but did not consider

fast restoration of non-disk state such as network connections to clients. Chapter Four

describes extensions to POSTGRES required for fast reconnection of the DBMS and its

client processes. The chapter also describes a set of optimizations that reduce the impact

of the storage system on everyday performance, making fast recovery more practical for

databases with high transaction rates. Finally, Chapter Four presents an analysis of the I/O

impact of the POSTGRES storage system on a TP2 debit/credit workload. This analysis

shows that the optimized storage system does the same amount of I/O as a conventional

DBMS when a sufficient amount of non-volatile RAM is available.

Chapter Five also widens the applicability of the POSTGRES fast recovery techniques

CHAPTER 1. INTRODUCTION 14

by extending the POSTGRES storage system to handle index data structures. While the

POSTGRES storage system recovery strategies are effective for restoring the consistency

of heap (unkeyed) relation without log processing, different strategies must be taken for

maintaining the consistency of more complex disk data structures such as indices. The

two algorithms described in Chapter Five allow POSTGRES to recover B-tree, R-tree,

and hash indices without a write-ahead log. One algorithm is similar to shadow paging,

but improves performance by integrating shadow meta-data with index meta-data. The

other algorithm uses a two-phase page reorganization scheme to reduce the space overhead

caused by shadow paging. Although designed for the POSTGRES storage system, these

algorithms would also be useful in a conventional storage system as support for logical

logging. Using these techniques, POSTGRES B-tree lookup operations are slower than a

conventional system’s by 3-5% under most workloads. In a few cases, POSTGRES lookups

also require an extra disk I/O. On the other hand, the system can begin running transactions

immediately on recovery without first restoring the consistency of the database.

The sixth chapter concludes and describes some avenues for future research. Because

the dissertation has four very distinct sections, the literature review for each chapter will be

included in the chapter. Together, these chapters attack three problems of interest to fault

tolerant system designers: they describe the character of software errors, improve error

detection, and widen the applicability of some existing fast recovery techniques.

15

Chapter 2

A Survey of Software Errors in Systems

Programs

2.1 Introduction

Any technique for improving system reliability and availability has underlying it a

model of system failure. A given technique is successful only if real systems fail in ways

covered by the model. The introduction described a model of system failure based on

three kinds of software errors that propagate errors in different ways. This model guided

our approach to maintaining high availability in POSTGRES and motivated some of the

techniques described in Chapters Three, Four, and Five. In this chapter, we present an

analysis of errors discovered in three commercial systems programs. The analysis helps to

clarify the control/addressing/data error model, hence, the reliability and availability impact

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 16

of the techniques described in the dissertation.

The chapter describes two studies of software errors identified in the MVS operating

system and the IMS and DB2 database management systems. The data available for the

studies comes from an internal IBM database of error reports. Each report was filed by a

customer service representative when the software failed at a customer site in the field. The

IBM programmers who repair a fault amend the error report with further details about the

fix. The studies only considered errors for which fixes were eventually found.

We classified the IBM error data in several different ways, each considering the cause

of an error from a slightly different perspective. Chapter Two concentrates on two of

these classifications: error type and error trigger. The error type provides insight into the

programming mistakes that cause software failures at customer sites. A better understanding

of programming mistakes will help programmers, recovery system designers, and software

tool designers to improve code quality. The error trigger illustrates the circumstances

under which latent errors arise at customer sites. Since software testing is supposed to

uncover these latent errors before the code is shipped to customers, the trigger data should

help show how testing strategies can be improved. The chapter also includes statistics on

failure symptoms, that characterize the way the system failed when it executed the faulty

code.

Because both the original data and the classification process are prone to error, studying

several different programs was important. Each program provides a fairly independent error

sample; the programmers and the people who wrote bug reports were different for each

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 17

one. MVS is not an ideal source of error data, since it is an operating system not a database

management system. However, many of the resource management issues in DBMSs and

OSs are the same. DBMS and OS programs also have similar size, are written in similar

systems programming languages, and have the same kinds of concurrency, availability, and

performance requirements. Given the available data, MVS seemed a good choice for an

additional source of error information.

A second reason that MVS was chosen as a source of error data is that MVS maintenance

programmers noted the existence of addressing errors in a standard way. In MVS, the

damage caused by an addressing-related error is called an overlay by IBM field service

personnel. Searching for error reports that use this term allowed us to collect a large

sample of error reports that discuss addressing-related errors. These error reports could

be compared to MVS error reports as a whole. Because the error detection mechanism

described in Chapter Three only affects addressing errors, it was important to gather as

much additional information as possible about the character of addressing errors.

The chapter is organized as follows. Section Two summarizes several related software

error studies. Section Three describes the data used in the IBM studies and the classification

systems used to characterize the data. Section Four presents the results of the studies,

and Section Five summarizes the implications of these results for our system availability

techniques. For additional details about the studies themselves, see [73], which compares

addressing errors to errors overall in MVS, and [74], which focuses on control errors and

discusses differences between operating system and database management system errors.

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 18

2.2 Previous Work

We would have liked to use a survey of data collected and analyzed by other researchers

to evaluate the effectiveness of the POSTGRES error detection techniques, rather than

gather our own data. Unfortunately, error studies are often difficult to adapt to purposes

other than the ones that the original researchers had in mind. Several early error studies tried

to show the importance of clear software specifications for improved code quality. Endres

[24] studied software errors found during internal testing of the DOS/VS operating system.

His classification was oriented towards differentiating between high-level design faults

and low-level programming faults. Glass [28] provides another high-level, specification-

oriented picture of software errors discovered during the development process. Neither

study gave much detail about what kind of coding errors caused the programs to fail, so

neither is of much help to us.

Another important reason why existing surveys of software errors are not ideal for

studying system availability is that they focus only on errors discovered during the system

test and code development phases of program life cycles. The errors that actually affect

availability are the ones discovered at customer sites, after development and testing are

complete. Another early error study, [77], provides some of the same level of error analysis

that our study provides, but on errors discovered during the testing and validation phases.

Basili and Perricone study the relationship between software errors and complexity in

Fortran programs [8]. Their study finds a predominance of errors in interfaces between

modules, but the study also focuses on development and test phases. In [44], Knuth

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 19

describes both design and coding errors uncovered in his TeX text processing program.

The presentation includes some efforts at fault categorization, but is largely a collection

of anecdotes. It is less applicable than the other studies since the program was written by

one person, rather than a team of programmers, and it is a very different application from

database manager. Like the other studies, it covers mostly program development and early

test phases.

A few researchers have examined failures in system software at customer sites, but they

provide little detail about the types of software errors that led to the failure. One example is

Levendel’s study of the software that manages the ESS5 telephone switch [49]. The study

does not break errors into classes, but instead uses error data to estimate the effectiveness

of some standard reliability metrics. These metrics use trends in bug-fix rates to guess how

many more errors remain in a given piece of code. Managers can use this information to

make decisions about release dates, but it is not the kind of information that can be used to

evaluate potential error detection or recovery strategies.

Several studies used data from error logs to track failures at customer sites [58][39][15].

Error log records are generated automatically by the system after a program fails. Because

the log entries are generated automatically, they give extremely high-level representations

of the error. For example, the log entry might be a code indicating that the program tried to

store into an invalid address. The error log does not include the semantic information about

the error needed to determine what the programmer did wrong.

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 20

2.3 Gathering Software Error Data

The data available for our studies came from an IBM internal field service database

called REmote Technical Assistance Information Network (RETAIN). RETAIN serves

as a central database for hardware problems, software problems, bug fixes, and release

information. When an IBM system fails, IBM service personnel use RETAIN to determine

if the same failure has occurred at another site. If so, information stored in RETAIN

identifies a tape containing a fix for the problem. If the problem has never occurred before,

people must be assigned to track down and repair the fault that caused the failure. It is quite

possible for the same fault to occur at multiple sites. Although IBM fixes errors as soon

as possible when they are detected, customers often delay installing the fixes until their

systems have to be taken down for other reasons, such as maintenance. In these cases, the

customer prefers to risk the occurrence of a known bug rather than suffer periodic additional

outages to install fixes.

When a new software error has arisen in an IBM product, a customer service person

files an Authorized Program Analysis Report (APAR) describing the fault in RETAIN.

Every APAR identifies a few standard attributes associated with the faulty software, such

as the type of machine running the software, the software release number, a symptom code

describing the failure, and a severity rating. The service person filing the APAR also adds a

text description of the fault if any information is available. After the error is repaired, one

of the programmers responsible for the repair writes a description of the fix and amends the

initial problem description and severity rating.

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 21

An APAR does not contain standardized fields identifying the “cause” of a fault. Seman-

tic information about the fault and the circumstances under which it arises is only contained

in the APAR text. The text is oriented toward future RETAIN searches by IBM service

personnel after the fault occurs at a different site. Often it contains more information about

the effects of the fault than about the fault itself.

IBM saves an APAR for each distinct fault that occurs in its software products, but the

APAR does not include an accurate count of the frequency with which that error occurs.

Problem Reports, or PMRs, are filed for each customer outage whether it is caused by

a unique fault or not. Since PMRs include a field for the APAR associated with a given

software problem, they could be used, in theory, to determine the frequency of observed

faults. PMRs, however, are not retained by IBM for more than a few months. Also, the

accuracy of some PMR-APAR associations is questionable. If an untraceable software error

occurs, IBM service and the customer site will often agree to reboot the newest version of

the software and hope for the best. If the fault was transient, the error will seem to go away

even if the new software does not contain a fix. Earlier studies, such as [29], suggest that

transient software faults are fairly frequent.

Some software errors are worse, from the customer’s perspective, than others, so it

would be a mistake for the error studies to give all APARs in RETAIN equal weight.

APARS describing errors with little or no impact on availability were discarded in our

studies. These included suggestions for user interface changes and errors which affected

the presentation but not the content of program results (e.g. garbage characters are printed

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 22

to the terminal after the prompt). Errors with especially high impact were singled out to be

examined in more detail. RETAIN does not identify high impact errors directly, but several

standard APAR attributes can be used to estimate the impact of the error described.

Severity Code is supposed to indicate how badly inconvenienced the customer was by the

outage. It is also used do indicate the priority of the bug to the people who assign

maintenance programmers to fix it. Severity one APARs have the worst affect on

availability. The customer has stated that work at his or her site cannot progress until

the fault is fixed. Severity two errors have customer impact, but have lower priority to

the maintenance teams because the customer has found a circumvention or temporary

solution to the fault. Severity three and four APARS correspond to lesser damage

and can range from annoyance to look and feel or interface problems.

HIPER The HIghly PERvasive error flag is assigned by the change team that fixes the faulty

code. HIPER software errors are those considered likely to affect many customer

sites – not just the one that first discovered the error. Flagging an error as HIPER

provides a message to branch offices to encourage their customers to upgrade with

this fix.

IPL errors destroy the operating system’s recovery mechanism and require it to initiate

an Initial Program Load (IPL) or “reboot.” An IPL is clearly a high impact event

since it can cause an outage of at least 15 minutes. This metric is probably the most

objective of the impact measurements since there is little room for data inaccuracy.

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 23

While labeling an error HIPER or severity one is a judgement call, the occurrence of

IPL is difficult to mistake. Note that IPL is an effective impact estimator for MVS,

but in the DBMS error study there were no errors that cause the operating system to

IPL. DB2/IMS errors in which the DBMS failed and had to restart should be counted

as high impact, but this information was not always included in the APAR.

Using these impact estimators, RETAIN’s APARs can be broken into three groups. Low

impact APARs with severity ratings of three and four were discarded from the study.

Severity two APARs were serious enough to be considered in the study, but not labeled as

high impact. Errors flagged as HIPER, IPL, or severity one are considered high impact

errors. When error distributions are presented later in the chapter, high impact errors will

be singled out and presented separately.

The MVS study uses error data from the MVS Operating System for the period 1986-

1989, representing several thousand machine years of execution. It only includes errors

in the operating system and some of the low-level software products that are bundled with

it. The IMS and DB2 APARs were drawn from those recorded against those two database

management systems in the years 1987-1990. The second study took errors from a later

period because it was conducted a year later and because DB2 was not mature enough in

1986 to have a large APAR base.

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 24

2.3.1 Sampling from RETAIN

If it were possible to classify APARs using software, each of the APARs in RETAIN

associated with MVS, IMS and DB2 could be classified in order to find the complete

distribution of errors for those products. RETAIN provides some help in this regard. It

allows users to identify subsets of APARs using simple keyword searches on the keyed fields

(e.g. HIPER, severity). Keyword searches allow us to report customer impact statistics

based on the entire population of APARs associated with each product.

The error type and triggering event, unfortunately, are too complex to identify without

reading the APAR text and extracting fault information from the change team’s problem

description. Classifying the thousands of available APARs to get this information would be

beyond the resources available for this study. Therefore, we sampled from the population

of available APARs in order to restrict the number of APARS to be read.

For the MVS study, we constructed two sets of APARs – the regular sample and the

overlay sample. To gather the regular sample we drew 150 APARs from the population of

all severity one or two APARs from 1986-1989 filed against MVS. To derive the overlay

sample, we could not just take the subset of MVS APARs that involved overlay errors since

the MVS sample itself was so small. Instead, we searched the text parts of the APAR

for strings containing words such as “overlay” and “overlaid.” From this restricted set of

APARs, we drew APARs that were potential overlays. IBM software engineers use the term

overlay to mean “stored on top of” data currently in memory, so occasionally the overlay

is legitimate behavior unrelated to the error described. Further reading allowed us to weed

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 25

out APARs in which the overlay was not caused by broken software, leaving 91 overlay

APARs. For the DBMS study, we randomly sampled 201 of IMS’s severity one and two

APARs and 222 of DB2’s.

The MVS regular sample is not taken in the straightforward way because of a sampling

error in the initial phases of the first study. We had first planned to examine only severity

one APARs. Later, we realized that severity two errors had a high enough customer impact

that it would be a mistake to ignore them in the study. To overcome this problem, we

pulled a second independent random sample from the population of severity two APARs.

We then combined the results from the severity one and two samples in the proportion they

are represented in the population. We used boot-strapping [21] to combine the samples

rather than a simple weighted average. Boot-strapping is a common statistical technique

that does not build in any assumptions about the distribution of the parent population as

would a weighted average.

2.3.2 Characterizing Software Defects

The error studies approach the “cause” of an error from both the standpoint of a

programmer/recovery-manager and from the standpoint of a system test designer. Error

type is the low level programming mistake that led to the software failure. The error

trigger classification was meant to give insight into the software testing process. Both IBM

and its customers test software thoroughly before the customer relies heavily enough on

the software for its failures to have an impact. When an error arises at a customer site,

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 26

some aspect of the customer’s execution environment must have caused the defective code

to be executed, even though the same code was never executed during system test. The

error trigger classification distinguishes the different kinds of events that cause errors that

remained dormant during testing to surface at the customer site. Better understanding of

these triggering events should improve the testing process.

To identify error type and error trigger classes, we made several passes through the

sample looking for commonalities in the errors. Once some general categories were

chosen, we read each APAR more carefully, placing it into one of the possible categories

for error type and one category of error trigger. Each of the APARs in the samples

was associated with only one error type and error trigger even though the same APAR

occasionally mentioned several related faults in the software. After classifying the APARs

we found several categories with one or two APARs in them, which we merged into larger,

more general classes. Several of the one and two APAR categories were grouped together

into an “Other” category when they could not reasonably be grouped together with APARS

of a more meaningful error type.

Error Types

A few programming errors caused most of the errors in the programs we studied. These

were the error types defined during the study of MVS:

Allocation Management : One module deallocates a region of memory while the region

is still in use. After the region is reallocated, the original module continues to use it

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 27

in its original capacity. The few errors in which the memory region allocated was too

small for the data to be stored in it were counted as allocation management errors as

well.

Copying Overrun : The program copies bytes past the end of a buffer.

Data Error : An arithmetic miscalculation or other error in the code makes it produce or

read the wrong data.

Pointer Management : A variable containing the address of data was corrupted. For

example, a linked list is terminated by setting the last chain pointer to NIL when it

should have been set to the head element in the list.

Statement Logic : Statements were executed in the wrong order or were omitted. For

example, a routine returns too early under some circumstances. Forgetting to check

a routine’s return code is also a statement logic error.

Synchronization : An error occurred in locking code or synchronization between threads

of control.

Type Mismatch : A field is added to a message format or a structure, but not all of the

code using the structure is modified to reflect the change. Type mismatch errors also

occur when the meaning of a bit in a bit field is redefined.

Undefined State : The system goes into a state that the designers had not anticipated. For

example, the program may have no code to handle an end-of-session message which

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 28

arrives before the session is completely initialized.

Uninitialized Variable : A variable containing either a pointer or data is used before it is

initialized.

Other : Several error categories which had few members were combined into a single

category called Other.

Unknown : The error report described the effects of the error, but not adequately enough

for us to classify it.

During the DBMS study, we added three error types to the set used to classify MVS. The

additional error types represent a refinement to the classification system based on the data in

the second study. Errors from each of these classes were present in MVS, but uncommon,

so they fell into the Other class in the original MVS study.

Interface Error : A module’s interface is defined incorrectly or used incorrectly by a

client.

Memory Leak : The program does not deallocate memory it has allocated.

Wrong Algorithm : The program works, but uses the wrong algorithm to do the task at

hand. Usually these were performance-related problems.

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 29

Error Triggering Events

This classification describes the circumstances which allowed a latent error to surface in

the customer environment. For every error in the sample, we assigned one of the following

trigger events:

Workload : Often software failures occur under limit conditions. Users can submit

requests with unusual parameters (e.g., please process zero records). The hardware

configuration may be unique (e.g., system is run with a faster disk than was available

during testing). Workload or system configuration could be unique. (e.g., too little

memory for network message buffering).

Bug Fixes : An error was introduced when an earlier error was fixed. The fix could be

in error in a way that is triggered only in the customer environment, or the fix could

uncover other latent bugs in related parts of the code.

Client Code : A few errors occurred when errors were propagated from application code

running in protected mode. In order for these to appear in the APARs that we sampled,

the code for recovering from the propagated error would have had to contain a fault.

Recovery or Exception Handling : Recovery code is notoriously difficult to debug and

difficult to test completely. The DBMS data distinguishes full DBMS recovery (using

the log) from cleanup after transient errors (exception handling).

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 30

Timing : Timing triggers are an important special case of workload triggers in which

an unanticipated sequence of events directly causes an error. An error that only

occurs when the program is interrupted at an inopportune moment would be a timing-

triggered error.

Unknown : The triggering event could not be determined from the available data.

Failure Symptom Codes

When an APAR is opened, a symptom code is recorded describing one of the external

effects of the fault. This field is often used by customer service personnel to search for an

existing fix when an error is first discovered. They focus on symptoms because symptoms

are usually the best information available about a fault when it first occurs.

The symptom code of an APAR was not assigned as part of our APAR studies; we simply

used and analyzed data already present in RETAIN. Also, a single failure may have many

symptoms. Maintenance programmers decide which is the most interesting one to record

in the APAR symptom code field. “Interesting” failure symptoms for the maintenance

programmer may not be interesting for fault tolerance research. For example, the unusual

error message that the system printed to the screen before it went into an infinite loop might

be recorded as the failure symptom, rather than the infinite loop itself.

Failure symptoms fall into these classes:

ABEND : An abnormal program termination occurred. The currently running application

program failed and must be restarted.

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 31

Address Error : The system fails after trying to use a bad address.

Endless Wait : Processes wait for an event that will never occur.

Incorrect Output : The system produces incorrect output without detecting the failure.

Infinite Loop : The system goes into an infinite loop.

Error Message : The system cannot perform the requested function but prints an error

message on the screen and performs local recovery rather than ABENDing

2.4 Results

We describe the results of the two IBM studies together in the following section,

comparing MVS, IMS, and DB2 wherever possible. The results section is divided into four

subsections, based on the different APAR categorization schemes defined in Section 2.3.

The largest of these four subsections discusses error type, the categorization based on types

of programmer mistakes. The error type subsection gives breakdowns of control,addressing,

and data errors in order to provide a better understanding of the error propagation model

given in Chapter One. It also gives finer-grain description of programmer errors based on

the error types defined in Subsection 2.3.2. The next subsection, which describes error

triggering events, will be of most interest to system test suite designers. However, it is

also of interest in recovery system design because it indicates the frequency of repeatable

software errors. The third subsection compares the number of high impact errors in the

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 32

DB2, IMS, MVS overall, and MVS overlay-only APAR samples. The fourth subsection

gives the failure symptoms that describe the system behavior after the error occurred.

2.4.1 Error Type Distributions

Figures 2.1 and 2.2 summarize the error type distributions for each database management

system. Figure 2.3 shows a breakdown of error types from the regular sample in the MVS

study. Each figure shows two distributions: one for availability-related APARs as a whole,

and one for high impact APARs. The high impact distribution is superimposed on the

overall distribution since the high impact APARs are a subset of the overall APAR sample.

Each bar in the figure represents one of the error types defined in Section 2.3.2. The length

of the bar shows the number of errors represented in the APAR sample which were caused

by that type of error.

In both DBMS products, undefined state, a control error, was the largest error type.

In IMS, undefined state errors accounted for 40% of the whole and 29% of the high

impact errors. The next largest class was pointer management, an addressing error, which

accounted for 11% of the APARs sampled. In DB2, undefined state accounted for 20%

of APARs and 18% of the high impact ones. DB2’s next highest class overall was again

pointer management errors with 10%. Undefined state was an important source of errors in

MVS, but it did not dominate the error type distribution as much as in IMS and DB2 (17%

of the whole and 25% of the high impact errors). The pointer management class in MVS

was 12% of errors, about the same as it was in the two DBMSs.

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 33

0 10 20 30 40

Number of Apars

 Other

 Wrong Algorithm

 Data Error

 Synchronization

 Statement Logic

 Memory Leak

 Interface Error

 Undefined State

 Uninitialized Var

 Pointer Mgmt.

 Copying Overrun

 Allocation Mgmt.

High Impact APARs All APARs

222 APARs, 68 High Impact

 Error Type Freq (Perct)

 12 (5.4%)

 20 (9.0%)

 19 (8.6%)

 20 (9.0%)

 16 (7.2%)

 8 (3.6%)

 15 (6.8%)

 45 (20.3%)

 14 (6.3%)

 23 (10.4%)

 12 (5.4%)

 18 (8.1%)

Figure 2.1: DB2 Error Type Distribution.

0 20 40 60 80

Number of Apars

 Other

 Wrong Algorithm

 Data Error

 Synchronization

 Statement Logic

 Memory Leak

 Interface Error

 Undefined State

 Uninitialized Var.

 Pointer Mgmt.

 Copying Overrun

 Allocation Mgmt.

High Impact APARs All APARs

201 APARs, 38 High Impact

 Error Type Freq (Perct)

 8 (4.0%)

 4 (2.0%)

 10 (5.0%)

 9 (4.5%)

 17 (8.5%)

 7 (3.5%)

 15 (7.5%)

 80 (39.8%)

 12 (6.0%)

 22 (10.9%)

 7 (3.5%)

 10 (5.0%)

Figure 2.2: IMS Error Type Distribution.

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 34

0 5 10 15

Percent of APARs

 PTF Compilation

 Other

 Unknown

 Data Error

 Statement Logic

 Synchronization

 Undefined State

 Type Mismatch

 Uninitialized Var.

 Pointer Mgmt.

 Copying Overrun

 Allocation Mgmt.

High Impact APARs All APARs

150 APARs, 16 High Impact

 Error Type Perct

 8%

 10%

 9%

 6%

 7%

 14%

 17%

 1%

 8%

 12%

 2%

 7%

Figure 2.3: MVS Regular Sample Error Type Distribution.

The remainder of this subsection explores the error type data in greater detail. First, we

combine error types into the broader classes of control, addressing, and data error used in

the model in Chapter One. Next, we describe the programming mistakes that led to control

errors and to addressing errors. The subsections focus on undefined state errors since they

dominate the control error distribution and on the kinds of error propagation that result from

addressing errors.

Control/Addressing/Data Error Model

Figure 2.4 groups the errors in the three products into the categories of control-related

errors, addressing-related errors, data-related errors and unclassified errors. To produce

Figure 2.4, error type categories defined in Section 2.3.2 were combined into the cate-

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 35

Total Faults

DB2
IMS
MVS

Data
UnclassifiedAddressing

Control

50

40

30

20

10

0

Percent of

60

Figure 2.4: Control/Addressing/Data Error Breakdown DB2, IMS, and MVS
Systems.

gories of the control/addressing/data model. Errors in the unclassified group were largely

performance-related problems (e.g. Wrong Algorithm) and errors in the “unknown” and

“other” categories. The MVS study has the largest fraction of unclassified APARs in part

because it was the first study and our error types were less well-defined during that study.

The Y-axis in this chart shows the percentage of errors from each product’s sample that fall

into each class, not the absolute number of APARs. MVS, in this chart, is the MVS regular

sample.

In all three products, control errors make up the most significant fraction of errors and

addressing errors, the second most significant. Control errors are more common than the

other two, composing 40% to 55% of the total for each product. A much larger fraction

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 36

of the IMS errors are control-related than errors in the other two products. In part, this

is because IMS was late in the product life cycle during the time covered by the study.

Few new features are added to IMS any more, so most of the changes to the code occur

during maintenance. From the data, it seems that maintenance programmers have difficulty

understanding all of the implications of a given change to the control flow of the program.

DB2 has more data errors than the other two products. Many of these errors were mistakes

in calculating the cost of a prospective query plan during the planning stage of query

execution.

Because this data comes from errors discovered once the software had been released to

customers, there are two possible causes for the error distributions in Figure 2.4. Possibly,

the distributions represent the frequency with which each kind of programming mistake

occurs. Programmers may simply be more likely to make control errors than data errors.

A more likely explanation of the figure, however, is that some errors, such as data errors,

are detected relatively easily during program development and test by standard debugging

techniques. Hence, the distribution in the figure is skewed towards the errors that are hardest

to detect during normal development and test. As will be shown below, control errors often

occur during error handling. If the error condition is difficult to generate during system

test, the error handling code might not be fully tested. Incomplete testing may prevent

some addressing errors from being uncovered early, as well. Addressing errors sometimes

cause corruption of storage that is near a data structure managed by faulty code. The

order in which data structures are allocated may determine which one is damaged by the

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 37

Unpubl II
Unpubl IDOS/VS MVS II

MVS I MVS III

Addressing

Percent of

60

50

40

30

20

10

0

Total Faults

Figure 2.5: Summary of Addressing Error Percentages in Previous Work.

error. Because testing cannot cover all allocation orders, the error may never occur during

development and test.

In Chapter One, we suggested that addressing-related errors were the most dangerous

error class in terms of error propagation. An addressing error can corrupt data unre-

lated to the module in which the error occurs, hence can be difficult to find and remove.

Addressing-related errors, including copy overruns, allocation management, pointer man-

agement problems and uninitialized pointers, make up 25 to 30 percent of the APARs filed

against IMS, MVS, and DB2. This is consistent with several other studies of software errors

in operating systems summarized in Figure 2.5. The published studies in the figure are from

DOS/VS [24] and MVS (one from [79] and two from [58]). The Unpublished I study was

a survey of errors reported in the 4.1/4.2 releases of BSD UNIX [72]. The Unpublished II

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 38

operating system error study was conducted internally at a company that would not allow

the release of its name. Control and data errors are not pictured because the studies in the

figure did not categorize errors in a way that mapped to the control/addressing/data error

model. Each study identified some errors as addressing-related, however, which allows

some comparison between these studies and our own.

The BSD study showed many fewer addressing-related errors than the other studies.

Most of the errors in the BSD study were synchronization or configuration problems related

to device drivers and network protocols. The error report information available did not

distinguish between errors discovered in test phase and production-use phase and many

of the device driver problems would probably have been discovered during testing in a

commercial enterprise with a large, in-house quality assurance group. If we could consider

only post-test-phase software errors in BSD, the fraction of addressing errors might be

closer to that seen in the other studies.

Together, the available information on programmer mistakes suggests that at least twenty

to thirty percent of the faults that cause systems to fail involve addressing errors. Thirty

percent may not be an upper bound since these studies usually only report addressing errors

when they are the primary cause of a software failure. Even in the APAR data, an error

report describing a control or data error will occasionally mention that the system failed with

an address trap, indicating that secondary addressing errors occurred but were considered

too unimportant to describe in the APAR.

The next four subsections describe control and addressing errors in more detail. The

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 39

first subsection lists the major causes of control errors. The second details the dominant

control error, undefined state. The third subsection gives the distribution of addressing error

types along with some examples, and the fourth describes some additional information on

addressing errors gathered in the MVS overlay study.

Characterizing Control Errors

Figure 2.6 shows the distributions of the most common of the control-related error

types for each of the IBM products studied. Each bar in the figure represents one of the

error types defined in Section 2.3.2. The MVS bars represent error type distributions in

the MVS regular sample, not the overlay sample. The MVS sample has no memory leak

errors because memory leak was not selected as an error type until the DBMS error study.

There were memory leak errors in MVS, but so few that we did not identify it as a separate

error type during the study. Memory leak counts as a control error because these errors

eventually cause the system to be reinitialized in order to allow reallocation the memory

lost in the leak.

For each of the products, undefined state is the most common control error. Synchronization-

related errors are fairly common in DB2 and MVS. The DB2 synchronization errors usually

occur when DB2 is used interactively, and they are often related to cleanup after errors.

Clean up after the user cancels a command from the keyboard caused some synchronization

problems in DB2, also. MVS synchronization errors were usually related to communica-

tion protocols, although some of the highest impact ones were errors in interrupt handlers.

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 40

Control Faults

80

70

60

Percent of

0

10

20

30

40

50

MVS
IMS
DB2

Undefined
State

Statement
Logic

Memory
Leak

Synch-
ronization

Figure 2.6: Distribution of the Most Common Control Errors.

Because the majority of control errors in the DBMS are caused by undefined state, the next

subsection describes these errors in some detail.

DBMS Undefined State Errors

An undefined state error occurs when an event in the program execution environment

arises which the program has not anticipated. The program either has no code to handle

the event or misinterprets the event and makes a faulty state transition as a response. The

MVS study showed that undefined state errors were common, but did not provide details

about what caused them. In general, the undefined state errors involved concurrency. For

example, a process takes a page fault, then an interrupt for an I/O completion, and never

completely initializes the page table of the faulted page.

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 41

In the DBMS study, we kept more systematic notes about how undefined states arose in

the program. This turned out to be important since undefined state was even more common

in the two DBMS products than they were in the operating system. These errors represent

20% of all DB2 errors sampled from RETAIN and 40% of all IMS errors. In both systems,

undefined state errors had a slightly lower impact than the average error.

For IMS, about a third of the undefined state errors occurred when the program lost track

of its current state. In IMS, current state for network connections, database recovery, and

log management is represented by a collection of flags. Sometimes the program changes

state without updating the flags correctly, or checks the wrong combination of flags to

determine the current state. Many of these APARs had to do with error handling. An error

would occur causing the program to change state, but flags representing the current state

would not be reset. The program made the wrong response to subsequent events because it

was mistaken about its current state.

Another third of the IMS undefined state errors were “missing case” problems in which

a programmer forgot about a state or an external event that could arise during execution.

Some of these were classic boundary conditions. For example, the programmer writes a

routine comparing one element to each of the elements in a list and does not consider that

the list could have zero elements. Many others arose after unanticipated error conditions.

For example, a higher level and a lower level routine each expect the other to handle

authorization failures. When the higher level routine sees an authorization failure, it fails

since it expects the error to have been handled at a lower level.

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 42

Most of the remaining undefined state errors in IMS came from incomplete protocol

specifications or implementations. The protocol might not be complete because it does not

consider some states that arise. For example, after an error condition, some kinds of log

records do not make sense. A log record specifying changes to sessions does not make

sense if there is no longer a current session. Sometimes the implementation omitted states

that were defined in the protocol. A bug fix occasionally prevented a portion of the protocol

implementation from being executed.

In DB2, the same kinds of behavior were observed but in somewhat different proportions.

The missing case problems were much more common in DB2 than in IMS. Nearly half of

the undefined state errors were due to unhandled error conditions or forgotten states arising

from boundary conditions. Additional DB2 undefined state problems resulted when data

structure consistency checkers were called at the wrong time. Sometimes the error checks

detected inconsistencies that were not going to cause the software to fail. About fifteen

percent of undefined state errors in DB2 were false alarms due to data structure consistency

checkers.

As one would expect, about two thirds of the undefined state errors in each database

manager happened because the programmer omitted logic from the program rather than

because the programmer did something incorrectly. Therefore, undefined state problems

generally arose not from mishandled events but from forgotten events.

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 43

MiscCopy Overrun
Ptr MgmtAlloc Mgmt

Address Faults

Percent of

0

10

20

30

40

50

MVS
IMS
DB2

Figure 2.7: Distribution of the Most Common Addressing Errors.

Characterizing Addressing Errors

Figure 2.7 shows the distributions of the most common of the addressing-related error

types for each of the IBM products studied. The figure shows pointer management, allo-

cation management, and copy overrun errors for the IMS sample, the DB2 sample, and the

MVS regular sample. As in the control error figures, the length of the bar tells the percent

of all control errors that fall into the type associated with the bar. The miscellaneous errors

in this case were largely uninitialized pointer errors (in particular, the large number of

miscellaneous addressing errors in MVS were often uninitialized pointer errors).

Among these three common types of addressing-related faults, pointer management

problems were the largest classification, accounting for 35-40% of the addressing faults. A

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 44

0 5 10 15 20

Percent of APARs

 Unknown

 Uninitialized Var.

 Undefined State

 Type Mismatch

 Synchronization

 Pointer Mgmt.

 Copying Overrun

 Allocation Mgmt.

High Impact APARs All APARs

91 APARs, 28 High Impact

 Error Type Perct

 13%

 5%

 4%

 12%

 8%

 13%

 20%

 19%

Figure 2.8: MVS Overlay Sample Error Type Distribution.

fairly common type of pointer management error was mis-termination of a linked list data

structure. Another common pointer error arose when two different kinds of pointers could

be stored in the same location (i.e. as in PASCAL or C union types). The programmer

would mistake a pointer of one type for a pointer of another type. A third common pointer

management subclass were “register reuse” errors. The language in which IMS, DB2, and

MVS are written allowed programmers to explicitly control register use, if necessary. This

explicit control allowed for mistakes in which two variables were assigned to the same

register, allowing the second value stored to overwrite the first. If this was a pointer value,

an overlay often followed.

Using the MVS Overlay Sample to Understand Addressing Errors

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 45

Because MVS error reports gave additional textual clues about addressing-related errors,

the MVS overlay error sample was constructed containing 91 overlay-only error reports.

The overlay sample shows that some overlay errors eventually follow after non-overlay

error types have occurred. For example, a synchronization error sometimes allowed unsyn-

chronized access to pointer data structures. The APAR describing the synchronization error,

then, mentioned that MVS used the corrupted pointers at the time of the failure. Figure 2.8

gives the breakdown of error types for this sample. Each bar in the figure represents an error

type defined in Section 2.3.2. As in the previous figures, the high impact APAR distribution

is super-imposed over the overall error distribution.

Since most of the MVS operating system’s tasks involve managing a system of control

blocks and buffers connected by pointers, one might expect that these pointers would

account for most of the overlay errors in MVS. In fact, pointer management errors and

uninitialized pointers were important, but accounted for only 18% of the overlay APARs

studied and 27% of the high impact overlay APARs.

Together, copying overruns (miscopying data into buffers) and allocation management

errors (deallocating storage incorrectly) accounted for 39% of the total overlay APARs and

34% of the high impact ones. Although allocation management and copying overrun have

about the same number of APARs filed against them, copying overruns have lower impact.

Many of these errors appeared in the terminal I/O handling code or in code for displaying

messages on the console. Copying overruns were often caused by overflows or underflows

of the counter used to determine how many bytes to copy. Many other copying overruns

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 46

were “off-by-one” errors. In network-management code and terminal I/O handlers, buffers

are processed slightly and passed from one routine to another. If the offset to the beginning

of valid data or the count of valid bytes is corrupted, copying overruns occur. Most copying

overruns involved only a few bytes. The few overruns which had high impact, however,

caused massive corruption of memory.

One would expect some overlays to be caused by unsynchronized access to storage.

In the APARs we studied, however, more overlay errors came from memory allocation

mistakes than from mistakes in acquiring and releasing locks. Even when the complexity of

the programming task involves synchronization, the error itself involved garbage collection.

For example, a process can request a software interrupt and then free a region of memory

before the interrupt is scheduled. If the interrupt tries to use this freed memory, an overlay

occurs. In this case, synchronization is correct since the interrupt is not scheduled while

the original process is using the memory region. Garbage collection is not correct, since

the region is freed before the operating system has finished with it. When unsynchronized

access to memory did occur, usually too few levels of interrupts had been masked. In these

cases, unmasked interrupts allowed concurrent access to linked list data structures.

The few overlay errors that occurred after the system went into an undefined state were

fairly severe. For the most part, these errors occurred in page fault handling. When the

page fault handler became confused about a process state, the process eventually corrupted

so much of the system that no recovery was possible. The errors were often extremely

complex. The reports usually listed a long chain of separate events and propagations that

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 47

Overlay Size Percent of Overlay APARS
Less than 100 bytes 48.4
100 to 256 bytes 25.3
One or more pages 4.4
Unknown size 22.0

Table 2.1: Average Size of an Overlay.

had to occur before the failure happened.

The overlay sample allowed us to collect two additional pieces of information about how

addressing errors propagate: the overlay’s size and its distance from the correct destination

address. Table 2.1 shows the average size of an overlay in bytes. Note that most overlays

are small: nearly half are less than 100 bytes. Table 2.2 gives a rough “distance” between

the overlaid data and the area that should have been written. For example, a copying overrun

error corrupts data immediately following the buffer that the operating system is supposed

to be using, hence, has distance “Following data structure.” An example of the distance type

“Within data structure” is a type mismatch error in which the operating system overlays a

field of the same structure it intends to update.

Summarizing the size and distance tables, we find that most of the overlays are small

with a vast majority of them close to their intended destination. Only about a fifth were

definitely “wild stores” that overwrote distant, unrelated areas of storage (one quarter of the

APARs involved wild stores if we disregard the Unknown cases).

This subsection has described an APAR categorization based on error type. The error

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 48

Overlay Distance Percent of Overlay APARS
Following data struct 30.8
Anywhere in storage 18.7
Within data struct 26.4
Unknown 24.2

Table 2.2: Distance From Intended Write Address.

type category has been used to show what kinds of programmer mistakes cause the system

to fail at customer sites. The other important APAR categorization schemes based on error

trigger and failure symptoms are described in sections 2.4.3 and 2.4.4, respectively. Before

beginning the trigger and symptom subsections, we compare the customer impact of the

APARs filed against MVS, IMS, and DB2. Estimating the impacts of the MVS errors is

especially important because it allows us to compare the impact of the overlay and regular

sample.

2.4.2 Comparing Products by Impact

Table 2.3 compares the fraction of APARS that have high impact in MVS, IMS, and

DB2. The rows show the differences between the products in Severity one errors (errors

identified by the customer as high impact), HIPER errors (error identified by maintenance

programmers as highly pervasive) and high impact errors overall. For the MVS overlay and

regular samples, the table lists the fraction of errors that cause the system to IPL (reboot).

Comparing the high impact error percentages in the MVS overlay and MVS regular

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 49

sample shows that overlay errors have higher availability impact than non-overlay errors.

Table 2.3 lists 30.8 percent of the overlay errors as high impact. When overlay and non-

overlay errors are considered together in the regular sample, the high impact APAR total

drops to 18 percent. Overlay errors were three times more likely to be flagged as HIPER or

IPL than MVS errors overall.

The high impact of overlay-related errors is almost certainly because of error propaga-

tion. The potential for error propagation is one factor field service personnel consider when

they flag APARS as HIPER. The higher HIPER rate in overlay errors was one reason for

the higher impact of overlay APARs. Also, propagated errors lessen the effectiveness of

system recovery mechanisms, hence, force the system to IPL after an error.

The table also indicates that DB2 has higher impact errors than MVS and IMS by all

three impact metrics. DB2 is still fairly early in its product life cycle, and software defect

rates have been shown to go down over time. Perhaps the impact of DB2’s APARs will go

down over time as well.

Several other reasons for the high HIPER and Severity ratings in DB2 have been

suggested to us by the product developers. Different people assign HIPER and severity

ratings for IMS, MVS and DB2. The service people assigned to DB2 may be more willing to

take the customer’s side than the service people in the older products. Also, MVS and IMS

customers know exactly what these products should do; if the applications that use these

products continue to work well, the customer is satisfied. System test can anticipate the

workload for these products fairly well. On the other hand, DB2 customers are writing many

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 50

Percent of APARs
Impact Metric MVS Regular MVS Overlay IMS DB2
IPL (reboot) 6.3 19.8 NA NA
HIPER 5.2 18.7 12.5 21.0
Severity 1 12.6 17.6 9.5 16.0
Overall 18.0 30.8 19.0 30.0

Table 2.3: Operating System and DBMS Error Impacts. The same APAR
could fall into each high impact category: IPL, HIPER, and Severity 1. Thus,
the Overall high impact errors figure is less than the sum of the figures in the
other three rows.

new applications. System test probably has a harder time anticipating the way these new

applications will use the DBMS. The fact that high impact DB2 errors are often triggered

by unusual workloads and boundary conditions supports this suggestion.

2.4.3 Error Triggering Events

This section characterizes the events that make latent faults surface in code that has

passed through system test. Most software faults that affect availability at customer sites

have remained latent in the code for some time. Often, the program has been executed

successfully for months at many other sites before it fails for one customer. The trigger is

meant to capture the condition that causes defective code to be executed. By determining

triggering events for the APARs examined in the two studies, we hoped to help quality

assurance engineers retarget future testing efforts as well as focus efforts in building recovery

systems.

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 51

0 20 40 60 80 100

Number of Apars

 Unknown

 Client Code

 Bug Fixes

 Database Recovery

 Exception Handling

 Timing

 Workload

High Impact APARs All APARs

222 APARs, 68 High Impact

 Error Trigger Event Freq (Perct)

 2 (0.9%)

 4 (1.8%)

 23 (10.4%)

 36 (16.2%)

 22 (9.9%)

 28 (12.6%)

 107 (48.2%)

Figure 2.9: DB2 Error Trigger Distribution.

0 10 20 30 40

Number of Apars

 Unknown

 Client Code

 Bug Fixes

 DB Recovery

 Exception Handling

 Timing

 Workload

High Impact APARs All APARs

201 APARs, 38 High Impact

 Error Trigger Event Freq (Perct)

 3 (1.5%)

 1 (0.5%)

 45 (22.4%)

 45 (22.4%)

 34 (16.9%)

 25 (12.4%)

 48 (23.9%)

Figure 2.10: IMS Error Trigger Distribution.

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 52

0 10 20 30

Percent of APARs

 No-Trigger

 Unknown

 ClientCode

 Bug Fixes

 Recovery

 Timing

 Workload

High Impact APARs All APARs

150 APARs, 16 High Impact

 Error Trigger Event Perct

 12%

 13%

 2%

 16%

 13%

 11%

 34%

Figure 2.11: MVS Error Trigger Distribution.

Figures 2.9, 2.10, and 2.11 summarize the triggering events found in DB2, IMS, and

MVS. The bars in this case are the error trigger events defined in Section 2.3.2. Again,

the bar length shows the number of APARs from the sample associated with the event

represented by the bar. As in the figures for error types, the high impact distributions are

super-imposed on top of the overall trigger event distributions.

Conventional wisdom says that software failures at customer sites are usually timing-

related. Because it is impossible to test all possible interleavings of events before the

software is released, failures are assumed to involve untested interleavings of events that

occur after months or years of use in the field. Our data does not support this hypothesis.

Timing directly triggers a relatively small percentage of errors in each of the APAR samples

we examined. The dominant trigger for most errors is unusual workload conditions. Most

failures recorded in our APAR samples occurred when customers used new features, new

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 53

hardware configurations, or used old features in a new way.

In IMS, most high impact errors were triggered by bug fixes (45%) and error handling

(both full DBMS recovery 24% and low level exception handling 5%). In DB2, workload

(35%) and error handling (24% full recovery and 7% exception handling for a total of 31%)

were the most common high impact triggers. MVS had few high impact errors. The ones

we saw were divided fairly evenly between recovery, unusual workload conditions and

unusual timing. When high and low impact errors are combined, workload is the dominant

trigger type for DB2 and MVS. Considering both high and low impact IMS triggers, many

triggering events such as workload, DBMS recovery, exception-handling, and bug fixes are

more common than timing. Overall, all three systems had roughly the same proportion of

timing-triggered errors (IMS 12%, DB2 13%, MVS 11%) but, in the database manager, the

timing-triggered errors had low impact.

Workload triggered fewer errors in IMS than in the other two systems, probably because

the workload in IMS has become very well-defined over time. System test for IMS can

anticipate most error conditions and much of the product’s workload, so unusual boundary

conditions do not arise as often. DB2, on the other hand, has a more broadly-defined

workload (ad hoc queries),which is more difficult to cover during test. Hence, a substantially

higher fraction of its errors are detected in the field by untested workload conditions.

Bug fix errors in IMS have much higher impact than they do in the other systems, but

that probably comes from the product’s age rather than from its testing procedures. Because

IMS is late in its product life cycle, little if any new functionality is added to the system.

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 54

The higher impact of maintenance-related APARs may just reflect the fact that most of the

activity on IMS is maintenance-related than in the other two systems.

The text of the MVS APARs often indicated that code reuse was involved in the errors

triggered by unusual workload conditions. Programmers often use the services provided

by an old module rather than write new ones with slightly different functionality. Over

time, some modules are used for things the original designer never considered. While this

increases productivity, it also lessens the effectiveness of the original module-level testing.

The tests run on the old module by the original programmer do not stress aspects of the

module used by newer clients. The high level tests run by quality assurance do not stress

the differences between the services the module was designed to provide and the service

for which it is eventually used. Code reuse may also have caused reliability problems in

the two DBMS products, but it was not as apparent in the APARs for these products.

The fact that unusual workload conditions accounted for such a high percentage of the

triggering events in the three products was surprising. Boundary conditions are the type

of error that one would expect testing to detect most easily. In fact, many unanticipated

boundary conditions continue to arise after the software is released. What this data indicates

is that inadvertently “testing” new features in a production environment is a common cause

of outage. From this fact, we can draw two conclusions. First, test designers should not be

focusing on new ways to uncover timing-related errors, but should focus instead on better

ways to find untested boundary conditions. Second, errors described in the APAR database

are very likely to be repeatable. If the boundary condition arises repeatedly, the system is

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 55

likely to fail in the same way repeatedly. Redundancy-based recovery strategies, such as

N-version programming [3] and process pairs [7], are unlikely to help much against this

kind of error.

Control Errors and Recovery-Related Triggers

In both DB2 and IMS, failures triggered by faults in error handling or DBMS recovery

code are likely to be related to undefined state. Compare the error type distribution for all

sampled DB2 APARs to the sub-population of errors triggered by error handling (Figures 2.1

and 2.12). The distribution shifts from 20% undefined state errors to 36%. In IMS, the

shift is from 40% undefined state errors to 54% in the sub-population defined by the error-

handling trigger (compare Figures 2.2 and 2.13). The shift shows that undefined state errors

are more likely to arise during recovery than other errors.

Unanticipated error conditions are implicated in a significant fraction of undefined state

errors. Sometimes unanticipated error conditions directly caused the undefined state (i.e.

the error condition itself was not handled correctly). In IMS, error conditions also played

a part in the problem of maintaining state variables. For example, when an error condition

caused the program to change state, the condition itself was handled correctly, but the state

management variables were not reset.

When the database manager goes through full recovery from disk, it must construct

some consistent state from the current contents of the database. The recovery protocol

must anticipate all possible error states that the database is left in. In general, the logging

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 56

0 10 20 30

Percent of APARs

 Other

 Wrong Algorithm

 Data Error

 Synchronization

 Statement Logic

 Memory Leak

 Interface Error

 Undefined State

 Uninitialized Var.

 Pointer Mgmt.

 Copying Overrun

 Allocation Mgmt.

High Impact APARs All APARs

58 APARs, 21 High Impact

 Error Type Perct

 3%

 3%

 5%

 0%

 7%

 0%

 7%

 36%

 7%

 7%

 5%

 12%

Figure 2.12: Error Type Distribution for Error-Handling-Triggered in DB2.

0 10 20 30 40 50

Percent of APARs

 Other

 Wrong Algorithm

 Data Error

 Synchronization

 Statement Logic

 Memory Leak

 Interface Error

 Undefined State

 Uninitialized Var.

 Pointer Mgmt.

 Copying Overrun

 Allocation Mgmt.

High Impact APARs All APARs

79 APARs, 11 High Impact

 Error Type Perct

 3%

 1%

 1%

 4%

 6%

 6%

 8%

 54%

 5%

 8%

 1%

 3%

Figure 2.13: Error Type Distribution for Error-Handling-Triggered in IMS.

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 57

protocols that record changes to the data in the database work correctly, but error states

occur at the boundary of operating system owned resources and DBMS records of those

resources. For example, the protocol for restoring the database from the log might work

correctly, while maintaining the consistency of the operating system directories owned by

the database manager does not.

2.4.4 Failure Symptoms

Figures 2.14 and 2.15 summarize the symptoms of the failures that occurred when code

containing errors was executed. Remember that symptom is an attribute assigned by the

programmer fixing the broken software. The assignment is made primarily to assist others

who come across similar problems in finding the fix, i.e. the primary goal is to assign a

unique symptom, not the symptom of the failure most relevant to an availability study. For

example, if the operating system prints an unusual error message and then takes an address

fault, the error message, not the address fault is the “symptom” of the failure.

In spite of these problems with the symptom data, some interesting observations can

be made about it. Figure 2.14 shows that only 39 percent of overlay errors are detected as

addressing violations. One could imagine that addressing errors such as pointer management

errors always make the system take an addressing fault and fail without propagating the

error. Even if this 39 percent figure is understated by the way symptom codes are assigned,

the low number of addressing faults suggests that the subsystem damaged by an overlay

uses the corrupted data before failing. Unfortunately, guessing whether or not propagation

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 58

0 10 20 30

Percent of APARs

 ABEND

 Address Error

 Incorrect Output

 Infinite Loop

 Error Message

 Endless Wait

High Impact APARs All APARs

91 APARs, 28 High Impact

 Failure Symptom Perct

 33%

 39%

 14%

 5%

 3%

 5%

Figure 2.14: MVS Overlay Sample Failure Symptoms.

occurs is necessary since APARs usually do not say anything about the chain of propagated

errors.

As expected, overlay errors are more likely to cause addressing faults than non-overlay

errors. The most common non-overlay error types, undefined state and synchronization,

often appear in network and device management protocols and usually cause processes to

wait for events that never happen. Non-overlay errors are also more likely to cause incorrect

output than overlay errors. Incorrect output failures include jobs lost from the printer queue

or garbage characters written into console messages. None of the errors classified in the

study caused failures which corrupted user data.

IMS (Figure 2.16) and MVS have similar distributions of failure symptoms. More of

IMS’s software faults result in ABENDs (abnormal program termination) than MVS’s and

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 59

0 5 10 15 20 25

Percent of APARs

 ABEND

 Address Error

 Incorrect Output

 Infinite Loop

 Error Message

 Endless Wait

High Impact APARs All APARs

150 APARs, 16 High Impact

 Failure Symptom Perct

 21%

 21%

 27%

 1%

 17%

 11%

Figure 2.15: MVS Regular Sample Failure Symptoms.

0 5 10 15 20 25

Percent of APARs

 ABEND

 Address Error

 Incorrect Output

 Infinite Loop

 Error Message

 Endless Wait

High Impact APARs All APARs

199 APARs, 38 High Impact

 Failure Symptom Perct

 29%

 17%

 24%

 5%

 15%

 10%

Figure 2.16: IMS Failure Symptoms.

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 60

0 10 20 30

Percent of APARs

 Performance

 MVS ABEND

 DB2 ABEND

 Address Error

 Incorrect Output

 Infinite Loop

 Error Message

 Endless Wait

High Impact APARs All APARs

222 APARs, 68 High Impact

 Failure Symptom Perct

 10%

 7%

 32%

 14%

 25%

 0%

 9%

 3%

Figure 2.17: DB2 Failure Symptoms.

IMS takes slightly fewer address faults (as a percentage of all failures) than the operating

system. Remember that IMS had more control errors and fewer addressing errors than the

other two programs, so it is not surprising that fewer of its errors are detected by hardware

addressing violations.

DB2 has the lowest percentage of errors that result in addressing faults and the largest

that result in ABENDs. It has fewer Endless Wait and Infinite Loop failures than the other

programs, in part because it has a timeout mechanism that turns some kinds of deadlock

errors into ABENDs. The Performance failures in DB2 usually occur when the wrong

access path is taken to the data – a problem that cannot arise in MVS or IMS since access

to data is less flexible than in relational database managers.

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 61

2.5 Summary

Chapter Two has gathered together data from several sources to develop a picture

of software faults and the ways they cause system unavailability and unreliability. The

bulk of the chapter summarizes and analyzes data gathered from four years of software

faults discovered in IBM systems programs at customer sites. The data comes from

defects reported in the MVS operating system, IMS database management system, and

DB2 database management system. It has been sampled from RETAIN, IBM’s field error

database, which represents several thousand machine hours of product use at customer sites.

Each error in the MVS, IMS, and DB2 surveys was classified by error type, error trigger,

impact, and failure symptom. Together, these classifications provide several different per-

spectives on the “cause” of the software fault. Most importantly, the error type corresponds

to a low level programming error that causes outage. This characterization should be the

most useful in recovery system design. The error trigger describes the circumstance that

allowed the error to surface in the field and characterizes potential areas for enhancement

in system test.

In Chapter One, we highlighted the importance of addressing errors and error prop-

agation. The two studies presented in Chapter Two have illustrated several important

characteristics of addressing errors and the ways in which they propagate damage to other

modules in the system:

1. The ranking of control errors, addressing errors, and data errors was the same across

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 62

all three products. About half of all errors were control errors, 25-30 percent were

addressing errors, and 5-10 percent were data errors. The remainder could not be

classified using the model, usually because they affected system performance but

neither corrupted data nor propagated errors.

2. Addressing-related “overlay” errors have a much higher impact on customer avail-

ability than regular errors in MVS. These errors are more likely to damage the MVS

recovery mechanisms than other errors. IBM programmers view them as higher risk

than other errors to the customer base if left unrepaired. Also, customers viewing

the failures caused by errors are more likely to rank errors involving overlay as high

impact than the average MVS error.

3. Our data shows that most overlays are small (on the order of a few bytes) and about

75% occur near the address that the software was supposed to write. “Wild pointers”

that could damage any module in memory were only about 25% of addressing errors.

These observations about the character of software errors will be used to motivate and

evaluate the techniques in Chapters Three, Four, and Five. The remainder of the dissertation

looks at ways to detect addressing errors, ways to limit the propagation that they can cause,

and ways to recover quickly after such an error is detected.

The chapter also presented information that was unrelated to propagation and addressing

errors, but information that other researchers should find useful. For example, the error

trigger classification showed that untested boundary conditions in the software trigger a

CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 63

majority of failures. Recovery and timing-triggered failures are few but tend to have a high

impact when they do occur. This information should help guide the design of tools to help

software testing. It also suggests that many of the software errors surveyed were repeatable,

in contrast to the Tandem errors reported in [29]. Also, control errors are dominated by

the undefined state error type. These errors are often related to error handling, and usually

involve omitted code rather than state transitions which are handled incorrectly. Such an

observation suggests that tools to improve a programmer system designer’s understanding

of the states the program can go into, especially after errors, will improve reliability. We

hope that these and other observations from this chapter will some day assist the designers

of system test suites, software development tools, reliability evaluation techniques, and

recovery mechanisms.

64

Chapter 3

Using Write-Protected Data Structures

in POSTGRES

3.1 Introduction

Chapter Three focuses on the error detection problem, describing and evaluating tech-

niques for detecting addressing errors. Chapter Two showed that addressing errors are

an important class of software error. Addressing errors are implicated in twenty to thirty

percent of all software outages, and these errors have higher customer impact than other

errors. Also, the introduction of the dissertation explained that addressing errors were the

most dangerous source of error propagation; control and data errors usually do not affect

data belonging to parts of the system unrelated to the faulty code.

In order to detect addressing errors in the DBMS, we have modified POSTGRES to use

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 65

the hardware that supports virtual memory to protect some data structures from propagated

errors. Several system calls were added to the Sprite operating system [60] to allow the

DBMS to guard (write protect) parts of its address space. The DBMS uses these services

to protect data in its buffer pool. To provide read-write data with protection against errors,

the DBMS must support an update model that allows correct software to modify protected

data, but prevents accidental updates by incorrect software. Different update models will

make different tradeoffs regarding software complexity, performance, and the kind of error

protection offered.

We have experimented with three models for updating guarded data structures: Expose

Page, Deferred Write, and Expose Segment. A single DBMS can use different update

models in different program modules, if necessary. The Expose Page model is the simplest

one. The DBMS must recognize that it is about to update a protected record, unprotect

the page containing the record, and reprotect the page after it is updated. In the Deferred

Write model, the DBMS copies a record it intends to update into unprotected memory and

updates the copy. At the end of transaction, a system call recopies the updated record into

protected memory. Finally, the Expose Segment model lets the DBMS make a system call

to unprotect all guarded data at once. After the update, a second system call reprotects the

guarded data.

In all three models, guarding DBMS data allows the hardware to detect illegal attempts

to write to protected pages. Systems could use guarding support to improve error detection

both during development and in production systems. As a debugging tool, guarding can

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 66

help find software errors earlier in the development cycle. After product release, guarding

lessens the impact of addressing-related errors by detecting errors at the time propagation

occurs rather than after the damaged data is used. Because guarding detects a class of errors

not well-covered by data consistency checkers, it complements existing fault tolerance

techniques. For multi-process DBMS architectures, guarding can prevent one DBMS

process’ errors from corrupting data structures used by the other processes — improving

overall DBMS availability. In an extensible data manager, guarding is a compromise

between running application code in a separate process and running it as a full fledged part

of the DBMS. Much of the protection of the separate address space model is retained at a

cost much closer to the single-address space model.

This chapter is divided into five sections. The remainder of the first section describes

relevant features of the POSTGRES DBMS and Sprite operating system test beds on

which we have implemented guarding. The second section presents previous work related

to guarding. This chapter’s third section details the update models and describes their

implementations. The fourth section shows some performance results and evaluates the

reliability effects of guarding based on the statistics about system software errors presented

in Chapter Two. A fifth section gives some conclusions.

3.1.1 System Assumptions

The discussion that follows requires some understanding of the POSTGRES process

architecture depicted in Figure 3.1. The POSTGRES DBMS consists of several cooperating

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 67

Shared Memory Region

ProcessProcess

Application
ProcessProcess

Application

Log Tail

Buffer Pool

Shared
Caches

Lock
Table

Buffer Pool
Meta-Data

ServerServer

Figure 3.1: POSTGRES Process Architecture. Both server processes can
address the shared memory region containing the buffer pool. Conversations
between server processes and applications use a message passing interface.

server processes. Each DBMS server process has its own private address space, but all of

them share a single common memory region. The shared region contains a lock table,

buffer pool, and other in-memory data structures used by all of the server processes. DBMS

application programs run in separate address spaces and communicate with the DBMS

using message passing.

POSTGRES has an unconventional storage system [69], but the results of this chapter

should still be applicable to more traditional DBMS designs. The POSTGRES storage

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 68

system has a “no overwrite” policy in which data records are not updated directly. An

“update” marks the current version of the record as invalid and inserts a new version of the

record into the relation. Out-of-date records are removed (or archived) by a background

garbage collector process. Guarding is implemented below the level of the POSTGRES

storage system and does not take advantage of its no-overwrite property.

POSTGRES is extensible, so code implementing user-defined operators, access meth-

ods, and data types can be added to the DBMS. Most extension code will access the database

through routines in the core POSTGRES modules. Generally, the core POSTGRES rou-

tines, not the extension code, must implement the POSTGRES support for guarding. Some

extensions, however, such as user-defined access methods, have their own page formats.

These extensions have to know about and use guarding directly. For example, B-tree access

methods had to be modified to unprotect pages before adding or deleting keys.

The Sprite operating system, which we modified to support guarding, is a Unix-like

distributed operating system being developed at Berkeley. We chose Sprite as a test bed

because the source code was available and well-documented. A DECStation 3100 served

as a hardware platform for the guarding experiments. It uses a software-loaded, hash-based

Translation Lookaside Buffer (TLB). The guarding implementation does not rely on any

DECStation 3100 hardware characteristics. However, the cost of updating TLB entries is

hardware-specific and will be reflected in the cost of guarding.

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 69

3.2 Models for Updating Protected Data

3.2.1 Overview of Page Guarding Strategies

The basic idea in page guarding is that the DBMS write-protects its own data in order

to detect accidental updates to that data. Clearly, any attempted update to read-only data is

illegitimate, so write-protecting such data will prevent all errors from corrupting it. When

data can be legitimately updated, the guarding implementation must allow the DBMS to

disable guarding and overwrite the protected data. POSTGRES can use guarding to protect

either its buffer pool or all of the shared memory region shown in Figure 3.1. The different

models presented in this section allow the DBMS to enable and disable write protection in

different ways. Each model will make different tradeoffs in terms of the kinds of errors

it protects against and its performance impact. Before going into the model tradeoffs and

implementation details, we present two examples that outline the models and show how

guarding would work in practice in an extensible DBMS.

A Simple Example

The basic guarding models will all be described in the subsections that follow in terms

of this simple example. The example assumes that the DBMS has only guarded the DBMS

buffer pool.

In the example, the DBMS runs a simple Postquel query such as:

beginquote replace (emp.salary = emp.salary * 1.1) where emp.name = “Mike Stone-

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 70

braker” endquote

which gives Mike Stonebraker a ten percent raise. To execute this query in the simplest

case, the DBMS scans the employee relation examining the ‘name’ field of each record

for “Mike Stonebraker.” In POSTGRES, records are stored on the disk in database pages

and buffered in a main memory buffer pool. To examine the records on a given page,

the DBMS executor asks a buffer pool manager to determine if the page is currently

buffered. If it is not buffered, the buffer pool manager reads the page into the buffer pool,

replacing an existing page if necessary. When Mike Stonebraker’s employee record has

been located, the executor calculates the new salary value using the record and calls a

lower-level “replace” operation. The replace operation installs this new salary value into

the record. In POSTGRES, replacing a value in a record is done logically rather than

physically by creating a new version of the employee record, containing the new salary

value.

Each of the guarding models has a different effect on the implementation of the POST-

GRES replace operation. In the first guarding model, Expose Page, two system calls called

UnguardPage and GuardPage are used to change write access to protected data. These

allow the DBMS to change protection at the finest granularity supported by the underlying

processor architecture. To change the salary in Mike’s employee record, the page contain-

ing the record is unprotected at the beginning of the replace operation using UnguardPage

and protected again at the end of the replace operation GuardPage. The third model de-

scribed below Expose Segment looks to the DBMS much like the expose page model, but

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 71

the underlying implementation is different. Because the implementation is different, the

protection/performance tradeoffs are different also. Details will be presented later in the

chapter. In the expose segment model of guarding, ExposeData and HideData are used to

obtain and remove write access to protected data instead of UnguardPage and GuardPage.

The remaining model, Deferred Write, does not change the buffer pool protection during

the replace operation, but instead defers the protection change until the end of transaction.

In this model, the POSTGRES replace operation creates a temporary version of Mike’s

updated employee record in a scratch area of the DBMS address space and links a pointer

to the temporary version into a list of deferred updates. At the end of the transaction, the

DBMS passes through the linked list installing each of the updates into protected memory

with a single system call, InstallData. The buffer pool data structures are modified during

the replace operation, so that if the transaction rereferences Mike’s employee record, it sees

the updated temporary version rather than the out-of-date protected version. Again, the

implementation details and advantages of this technique are described in the sections that

follow.

What Can Guarding Strategies Achieve in an Extensible DBMS?

The query in Figure 3.2 helps illustrate why guarding should be both inexpensive and

effective in an extensible database management system. The hypothetical database in

the example is a mixture of relational data and non-relational molecule data, designed for

commercial pharmaceuticals research. The query uses a relational operator and a molecule-

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 72

append available_markers (id = molecule.id,
expire_date = molecule.patent_date+‘‘15 years’’,
etc.)

where
(molecule.patent_date < ‘‘January 1990’’)

AND
(molecule.has_benzene_ring == TRUE)

AND
(similarity(penicillin,molecule.structure) > 0.90)

AND
(similarity(root-beer,molecule.structure) < 0.05)
...

Figure 3.2: Example of Extensible DBMS Query. The figure shows a query
against a database that has been extended to handle molecule data. The
function similarity is a (hypothetical) graph matching function that determines
how similar two molecules are and returns a similarity index between 0 and
1.

oriented extension operator called similarity. When a record is selected by the query, a

conventional relational update is used to save or update the resulting records.

The DBMS query can be divided logically into two phases: a qualification phase in

which operators determine which database data to update, and an update phase in which

the selected records are modified or created. The qualification phase passes over the data,

applying a combination of extension and relational operations. During the qualification

phase, the DBMS does not need permission to write to the database data that it is examining.

During the update phase, this permission is needed, but the DBMS applies a different, and

possibly more trustworthy set of functions and/or operators. In the example, the update

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 73

operations are fairly unsophisticated integer operations while the qualifications are extension

operations.

Guarding support allows the DBMS to explicitly identify its qualification phase, telling

the operating system through a set of system calls that any operator writing to the database

at this time is in error. The qualification could still have bugs; it could, for example, qualify

the wrong record. It could also corrupt a value in unprotected memory which is later, in

the update phase, used to generate a value stored in protected memory. However, these are

much more benign errors from the standpoint of error propagation than addressing errors

that “randomly” corrupt records in the buffer pool during qualification. For one thing, both

of the errors mentioned can be undone if the transaction aborts since the transaction system

logged the errors before allowing the updates. If a stray pointer corrupts the buffer pool,

on the other hand, it does so without logging the change. Also, if these errors involve

DBMS extensions, data unrelated to the extensions is unlikely to be corrupted by the error.

Uncontained addressing errors can affect entirely unrelated data.

The remainder of this section discusses three different models that the DBMS could use

to support the guarded data abstraction. Each subsection that follows describes one of the

three update models.

3.2.2 The Expose Page Update Model

In the expose page update model, a DBMS process unguards a record before writing to

it and reguards the record after the write. Because write-protection is enforced in hardware

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 74

at page granularity, unguarding one record also unguards all of the records on the same

page. The page granularity of guarding does not imply page granularity for transaction

locks, since transaction locks are enforced by software.

Managing protected data in the buffer pool using this model is straightforward. When

the data manager updates, inserts, or deletes a record on a buffer page, it unprotects the

page with a system call. While the page is unprotected, data in the record can be changed

or additional records can be allocated on the page. The UnguardPage system call clears a

write-protection bit in the page table entry (PTE) associated with the page containing the

data. UnguardPage also clears protection in the hardware TLB entry associated with the

page. The GuardPage system call restores the protection bits in the page table and TLB

entry.

After the DBMS has updated a record, it does not necessarily have to reguard the record

immediately. If the DBMS delays reprotecting the data, subsequent updates to the same

record do not pay the costs of turning page protection on and off. Unfortunately, the

longer the page remains unguarded, the less protection is offered. Delaying the reguard

operation also increases the opportunity for the DBMS to “forget” to reguard the page. Our

implementation unguards one record at a time, reguarding each record before updating the

next. If two POSTGRES processes unguard the same page at the same time, the last one to

reguard the page issues the actual GuardPage call.

In the Sprite shared memory implementation, unguarding a page for one DBMS process

unguards it for all of the others as well. Sprite uses a single software page table for each

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 75

Unprotected Page

Protected Page

Updated Record

Shared Buffer Pool

Figure 3.3: Expose Page Update Model. The smallest granule of hardware
write protection containing the record of interest is unprotected before the
record is updated. For most architectures, this unit is a page.

shared memory segment. When UnguardPage clears the protection bits for a page, all

POSTGRES processes can write to the unprotected page. Thus, while one process updates

the page, faulty code executed by another process can corrupt it.

A GuardedRead system call helps reduce the vulnerability of buffer pool pages by allow-

ing them to remain protected during an I/O operation. The DBMS uses the GuardedRead

system call in place of the normal read system call to load pages from disk into the buffer

pool. In the absence of an explicit GuardedRead call, POSTGRES would have to unprotect

the page before issuing the read. The page would remain unprotected for all DBMS pro-

cesses until the read completed and the issuer reprotected the page. In GuardedRead, the

operating system turns off page protection briefly while data is copied from system buffers

into the user address space, rather than leaving it off during the entire I/O.

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 76

Expose page is best for detecting pointer errors affecting pages containing infrequently

updated records. “Hot” pages containing frequently updated records will be unprotected

much of the time, so they will receive less benefit from guarding than cold pages. The major

costs associated with expose page are an increased number of system calls and the additional

TLB operations required to change page protections. If guarding were implemented on a

processor with a virtually-addressed cache, changing page protection status from read-

write to read-only would require the page to be flushed from the cache. Virtually-addressed

caches store protection bits in the processor cache with the cached data. The protection

bits can only be changed by reloading the cache line from memory. Hence, a cache flush is

normally required to change the protection bits for cached data.

3.2.3 The Deferred Write Update Model

The second model of DBMS data structure protection is designed to leave the record

guarded until the end of transaction. When a DBMS process needs to update a record, it

copies the record into writable memory and updates the copy rather than updating the record

in place. After the update is complete, an InstallData system call copies the new record

value into the protected page. InstallData takes as an argument an array of <source address,

destination address, length> triples, so several records can be installed with a single system

call.

InstallData combines an UnguardPage operation and a GuardPage operation into a

single system call, so the user-level process never modifies protected memory directly.

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 77

In InstallData, the operating system changes the TLB entry for the page containing the

protected version of the record, copies the new version of the record into the page, and

reprotects the page. Unlike the expose page model, Deferred Write does not modify the

page table entry, just the entry in the TLB. As Section 3.2.2 has explained, processes can

share page table entries, so modifying the page table entry disables protection for all of

the DBMS processes that share the page. Because processes do not share TLB entries, the

protected page is not vulnerable to errors in other POSTGRES processes during the install

operation.

The reason that InstallData does not have to modify page table entries is that only the

operating system ever has write access to the protected data. Page table entries are used

to create TLB entries; the protection bits in the page table entry determine the protection

bits in the corresponding TLB entry. Modifying protection in only the TLB entry allows

access to a page until a TLB flush occurs or the entry is replaced in the TLB. When the

page is referenced again, a new TLB entry is constructed and the page becomes protected

again. To mask protection faults in this case, InstallData sets a copy-in-progress bit in the

process control block before copying a record into a protected page. If a protection fault

occurs due to a reconstructed TLB entry, the fault handler will use the copy-in-progress bit

to detect that fault was spurious. It then unprotects the TLB entry and allows the write to

proceed. Because the operating system copies records into protected pages in a tight loop,

TLB entries will rarely be replaced and the extra protection fault will occur too infrequently

to affect performance. The copy-in-progress bit is cleared and the TLB entry is reprotected

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 78

Shared Buffer Pool

Address SpaceAddress Space

Original Page

Modifiable

Record Copy

Modifiable

Protected Page

Record Copy

Writable Memory

DBMS Process DBMS Process

Figure 3.4: Deferred Write Update Model. A record is copied to writable
memory before it is updated. Later, it will be copied back into protected
memory using an InstallData system call.

before the DBMS process returns from the InstallData system call.

As in the Expose Page model, Deferred Write offers the DBMS programmer some

latitude in deciding when to install the new version of the record into shared memory. The

updated record could be reinstalled immediately after the update. It could also be installed

after several updates or at transaction commit time. In our implementation of the Deferred

Write model, guarded records are installed at transaction commit time.

Deferred write is designed to work with record-level locking. Records from the same

page may be updated concurrently by different DBMS server processes as is shown in

Figure 3.4. When a DBMS server process copies a record to its private memory, it locks

the record but not the page containing the record. While the latest version of the record is

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 79

in one process’s private memory, that process holds a transaction-duration lock on the data.

The update is installed at transaction commit time before the lock is released.

Although updates to data on a page can be deferred until the end of a transaction,

record-level locking requires undeferred updates to the page header whenever a new record

is created on a page. A counter in the page header describes the amount of free space

on a page. The DBMS must decrement this counter when a new record is added. When

record-level locking is used, concurrent transactions are allowed to create records on the

same page. Thus, changes to the free space counter must be immediately visible to all

DBMS server processes. When allocating records on the page, the DBMS can use the

InstallData system call to update the free space counter, but cannot defer the update until

the end of the transaction.

Before making an InstallData system call, the DBMS must check that the destination

page is still present in the buffer pool. In long-running transactions, the disk page from

which an updated record was taken could have been evicted from the buffer pool. If a

record must be installed in a page that is no longer in the buffer pool, the DBMS reads the

page back into memory before installing the data.

Some modifications to the POSTGRES record manager were required to support De-

ferred Write. If the DBMS asks for a record on a page, the record manager has to see if

there is already a writable copy of the record. If the record has not been copied, the record

manager returns a pointer to the protected record. Otherwise, the copy is returned. A hash

table tells the record manager whether or not there is currently an unprotected copy of the

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 80

record. If the DBMS decides to update a record, it first tells the record manager to make

sure the record is writable. The request to make a record writable is logically at the same

place the DBMS would lock the data. Hence, the existence of copies did not cause radical

changes to the DBMS software.

While Deferred Write has a higher impact on software architecture than Expose Page,

it provides more protection to guarded records than the Expose Page model does. Deferred

Write updates protected records during a system call, so the DBMS can never store into a

buffer pool page without issuing an InstallData system call. Addressing errors are unlikely

to cause the DBMS to “accidentally” call InstallData. They can still damage the writable

copy of a record before it is installed into the buffer pool. They can also damage the

meta-data that tells where the record will be installed in the buffer pool, causing it to be

installed in the wrong place.

Combining Deferred Write with a little additional error checking reduces error risk

further. The DBMS currently checks that the update to be installed by an InstallData does

not cross record boundaries before issuing the system call. Deferred Write also allows

the DBMS to check for addressing errors that corrupt storage nearby the record modified.

When the modifiable copy of a record is created, the DBMS can put known bit patterns

before and after the copy. Some addressing errors which occur near the record can be

detected by looking for corruption of these known bit patterns. In a conventional system

and in Expose Page, these “nearby” addressing errors would be undetectable.

With Deferred Write model of guarding, corrupting the record directly (as in data errors)

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 81

or installing the update to the wrong place on the page are the most likely ways of corrupting

the protected data. At some additional cost, even these errors could be detected. The DBMS

could checksum the record and its associated meta-data when the record is modified. By

recalculating the checksum before installing the record into the buffer pool, the DBMS

would be able to detect some of these additional addressing errors.

Deferred Write has an additional advantage over both Expose Page and conventional

DBMS transaction management. When bad software corrupts data, often the damage is not

detected immediately. By the time the DBMS notices the error, it cannot tell how much

data has been affected; the faulty code that halted the system could have caused a large

cluster of undetected errors. With guarding and Deferred Write, however, the DBMS knows

that protected data cannot be corrupted until the InstallData system call at the end of the

transaction. If a transaction detects that it has corrupted some of its data, it simply throws

away all uninstalled data. Any undetected damage to data records caused by the transaction

will be thrown away as well. When record-level locking is used, the free space counter on

a page can be modified during the transaction, but only a limited portion of the DBMS ever

changes the free space counter. Thus, a limited amount of error checking ensures that data

in the buffer pool is not damaged by the failing transaction, even if the extent of propagated

damage is unknown.

A conventional DBMS aborts the current transaction when an error is detected and hopes

that abort processing removes the effects of undetected errors. Aborting the transaction

will remove the damage only if the erring software accurately recorded its updates in the

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 82

log. Some errors, like those caused by corrupted pointers, corrupt data without logging the

before-image of the record into the log. The most practical way for a conventional DBMS

to get the same guarantee as the Deferred Write update model is to invalidate the entire

buffer pool after detecting an error.

Page Remapping Techniques for Large Objects

Deferred write is similar in some respects to the shadow paging technique used in System

R [53]. Shadow paging is a no-overwrite transaction management technique in which a new

block on the disk is allocated for every page modified by a transaction. When the page is

evicted from memory or forced to disk, it goes to the new location. The update is committed

by remapping the new page into the original page’s position in its home relation. Shadow

paging has fallen into disfavor as a recovery management technique because it prevents

relations from being allocated on disk in keyed order. Thus, scans of the relations lose the

performance advantage of sequential disk reads. While shadow paging and Deferred Write

are superficially similar, shadow paging was not used in conjunction with write protection

in System R and did not provide the error detection benefits of Deferred Write. Also, unlike

shadow paging, Deferred Write does not affect the allocation of the database pages on the

disk, hence does not hurt sequential read performance.

An in-memory variation of shadow paging could be used in conjunction with guarding

to limit copying costs for large objects. For small record sizes, the cost of copying a record

to a writable location and copying it back may not be significant, but as the record size rises

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 83

DCBA

Object

Large

Object

Large

Unprotected Page

Protected Page

Shared Buffer Pool

Buffer
Map

Figure 3.5: Remapping to Avoid Copies in Deferred Write. Page B contains
a large object. Instead of updating the object in private memory, an unused
page of the buffer pool is unprotected and the object is copied there. After
the update is complete, the new version of page B is protected, the buffer map
is changed, and the old version of page B is freed.

so do the copy costs. When objects are large, remapping the DBMS buffer pool meta-data

can reduce copy costs.

Instead of copying a large, possibly multi-page object to writable memory, a region of

(shared) protected memory is unprotected and the pages containing the object are copied

there (See Figure 3.5). Because it is unprotected, the copy of the object can be updated in

place. To commit the updates to the object, the DBMS reprotects the page and changes the

buffer map, which associates disk blocks with their location in the buffer pool. The pages

that contained the original version of the object are now freed for use in further updates. For

higher performance, the original version’s pages could be unprotected in the same system

call that protects the new version’s pages. The freed pages will then be already unprotected

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 84

when they are needed for the next update.

The remapping variation of Deferred Write is only cost effective when the object

updated is large relative to the size of a database page. In normal Deferred Write, updating

a protected object requires the DBMS to copy the object twice. The first copy occurs when

the original version of the object is copied into unprotected memory. Second, after the

object is updated, the new version is copied back into protected memory. The remapping

variation of Deferred Write incurs two costs in place of the second copy. First, there is a

small cost to change the buffer pool meta-data after the update. Second and more important,

the entire page containing the updated object must be copied into an unprotected page before

the update occurs, rather than just the object. If the object being modified is small, the cost

of the single page-sized copy is larger than the cost of copying the object twice.

3.2.4 The Expose Segment Update Model

The Expose Segment update model is similar to the Expose Page model, however,

protection is added to or removed from all guarded pages at once. When the DBMS makes

an ExposeData system call, all protected data becomes visible. A second system call,

HideData returns the protection to all exposed data.

Expose Segment provides less protection than the other two models since nothing is

protected from the routines which update critical data structures. The reason for using the

expose segment model is that it simplifies the management of guarded data in some modules.

Using the expose segment model, a DBMS programmer can unprotect data for a procedure

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 85

and its descendants in the call tree without knowing exactly which protected pages will be

written. For POSTGRES, we found the Expose Segment model to be convenient for small,

fast, and trustworthy operations that needed access to data on several pages. For example,

we used it to protect a shared memory hash table in the implementation of the lock table.

To further simplify programming in the Expose Segment model, we use a pre-processor

to place calls to ExposeData and HideData in procedures. The DBMS programmer flags

with a keyword any procedure which is to update protected data. The pre-processor adds

ExposeData and HideData calls at the first line and before all return statements in the targeted

procedures. The pre-processor eliminates a class of errors in which data is never hidden

again after an ExposeData call. It also makes adding protection to new data structures very

easy.

To implement the Expose Segment update model in Sprite, we modified the operating

system routine that handles write-protect faults. The ExposeData system call sets a “trusted”

bit in the DBMS process’s control block indicating that the process has permission to update

protected data, but no page table and TLB entries are changed. When the process tries to

update protected data, it takes a “false” protection fault. The operating system fault handler

distinguishes true and false protection faults by examining the trusted bit in the process

control block. On a false protection fault, the operating system clears the protection bits

from the page’s TLB entry and the process proceeds with the update. When the data is

hidden again, the trusted bit is cleared and the mappings for any guarded pages still in the

TLB are returned to read-only status.

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 86

The simplest approach to restoring page protection during HideData would be to flush

the TLB, but flushing and reloading the TLB is expensive. Our implementation maintains

a small log in the process control block containing page numbers whose TLB entries have

been unprotected. The HideData system call passes through the log and resets the protection

bits in the TLB entries corresponding to the logged page numbers. If the log ever overflows,

the entire TLB must be flushed to reprotect the exposed pages.

The expose segment model of guarded update is similar to a conventional protected

subsystem. Other protected subsystems (the operating system kernel, for example) require

more complicated mechanisms since they are expected to prevent malicious as well as

accidental damage.

A slightly less safe version of Expose Segment can reduce the high system call overhead

inherent in this model. If the DBMS needs to update a single protected page, the Expose

Segment model forces it to enter the operating system three times. The DBMS process first

makes an ExposeData system call. Second, it takes a false protection fault when it attempts

to update the protected page. Finally, the DBMS process makes a HideData system call to

restore protection to the page. The Deferred Write model requires only one system call and

expose page requires two.

The ExposeData system call could be eliminated to improve performance. This system

call is only necessary to inform the operating system that the DBMS process is placing

itself in trusted mode; it sets the trusted bit in the DBMS process control block. The DBMS

could put the trusted bit in its own address space if, at system initialization time, it identified

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 87

the address of the trusted bit to the operating system. Now, instead of making a system

call to expose the segment, the DBMS process would set the trusted bit in its own address

space. When the operating system handles the false TLB protection fault later, it looks

for the trusted bit in the reserved area instead of the process control block. The HideData

system call is still necessary since it updates TLB entries to remove write permission on

the protected data. This variation of Expose Segment is less safe since it is possible for the

application to “accidentally” go into protected mode by corrupting the trusted bit.

3.3 Performance Impact of Guarded Data Structures

Because the DBMS and operating system have to do extra work during updates of

guarded records, guarding will decrease DBMS performance for update-intensive work-

loads. The extra costs involved in guarding include the additional system calls and TLB

operations required to change page protections. In the Deferred Write update model, ad-

ditional processing is required to create and keep track of record copies. This section

evaluates the performance of guarding in two ways. Section 3.4.1 presents some of the

raw costs of accessing protected data in all three guarding models. Section 3.4.2 shows the

impact of guarding on overall DBMS performance on a debit/credit workload.

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 88

3.3.1 Performance of Guarding in a DBMS

Table 3.1 shows the raw costs of the guarding system calls: UnguardData and GuardData

from the Expose Page model, InstallData from the Deferred Write model, and ExposeData

and HideData from the Expose Segment model. These measurements were taken on a

DECStation3100 version of the Sprite operating system augmented with guarding support.

Each entry in the table gives the mean and standard deviation of five measurements. Each

measurement is the mean of 10,000 system calls. In InstallData, only a single byte of

protected data is modified in order to limit the effect of data copying overhead, which is not

present in the other system calls.

The costs of ExposeData and HideData as shown in this test can largely be attributed

to Sprite system call overhead. ExposeData simply sets a bit in the process control block

and returns. HideData checks that no pages have been unprotected and clears the bit.

UnguardData and GuardData are slower than ExposeData since they must operate on the

DECStation 3100’s Translation Lookaside Buffer. The measurements show that GuardData

is slightly slower than UnguardData. The system calls are identical except for the bits that

are loaded into the TLB, so if this difference is actually significant, it is a feature of the

hardware not the software. InstallData is the slowest of these system calls, but it is much

less expensive than UnguardData and GuardData combined. Since InstallData is logically

a combination of these two operations, we can see that there is a performance advantage to

combining the unguard and guard operations into a single system call.

The graph in Figure 3.6 shows the cost of updating a small record on a protected page

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 89

system calls elapsed time� std dev
UnguardData 62.2 �s � 0.6
GuardData 63.0 �s � 0.4
InstallData 74.5 �s � 0.4
ExposeData 21.6 �s � 0.4
HideData 21.2 �s � 0.4

Table 3.1: Raw Costs of Guarding System Calls. These are the elapsed times
in microseconds of the five different system calls added to the DECStation
3100 version of Sprite to support guarding. Each entry in the table is the
mean of five measurements and a measurement is the mean of 10,000 system
calls.

in each of the models. The X axis in the figure is the number of bytes in the record and

the Y axis is the elapsed time in microseconds. As in Table 3.1, each measurement is

taken from the elapsed time of 10,000 operations, where an operation copies a record into

guarded memory. Each data point on the graph is the mean of five measurements and the

standard deviation for these measurements is always less then 2% of the mean. The graph

also includes curves showing the cost of a simple bcopy into unprotected memory and the

cost of copying a record from one address space to another using Unix pipes. Pipes are not

the fastest possible interprocess communication mechanism, however, these measurements

give a reasonable comparison between protecting data structures through guarding and

protecting them by maintaining separate address spaces for a protected data structure and

its clients.

All five curves in Figure 3.6 have the same slope, determined by the cost of copying

the bytes in the record. The basic overhead for each of the four protection models shown

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 90

differs significantly. The multi-process model has the highest overhead. This is probably

dominated by context switch time. Expose Segment is the next most expensive. A system

call is required to expose the protected data and to hide it again. Then, the data manager

faults to the operating system one more time when it first refers to the data. Expose Page

is less expensive than Expose Segment because it only enters the operating system twice:

once to unguard the data and once to guard it again. It is more expensive than Deferred

Write, because Deferred Write enters the operating system only once.

3.3.2 Performance of Guarding in a DBMS

The microbenchmarks described in the previous section do not give a complete picture

of the cost of guarding. In order to measure the impact of guarding on a full system,

we compared several different versions of POSTGRES, each with a different protection

strategy, using a workload based on the TP1 debit/credit benchmark [26]. In our version

of this benchmark, two thousand transactions were run against a small database. Each

transaction retrieves a tuple from an account relation, updates the account relation and

two other smaller relations (branch and teller), and appends a record to a fourth relation

(history). Account has 10,000 records and is 200 pages long. In this benchmark, Branch

has one record and Teller ten, so each is only one page long.

We measured guarding under both a CPU-bound and a disk-bound workload. In the

CPU-bound benchmark, POSTGRES operates on the benchmark database without forcing

its updates to disk at commit time. The benchmark database is small in order to allow the

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 91

in Microseconds

100.0050.000.00

550.00

500.00

450.00

400.00

350.00

300.00

250.00

200.00

150.00

100.00

50.00

0.00
Record Size in Bytes

Elapsed Time

Bcopy

Deferred Write

Expose Page

Expose Segment

Multi-Process

Figure 3.6: Costs of Updating Protected Records. This graph shows the cost
of updating a protected record using the Expose Page, Deferred Write, and
Expose Segment models of guarding. They are compared to a multi-process
protection mechanism in which a data structure is protected from its client
by placing it in a separate address space from the client. In the Multi-Process
model, interprocess communication is through Unix pipes. The graph also
shows the cost of unprotected access to the record through a simple bcopy.

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 92

DBMS to store the entire database in main memory. Because the database is small and

updates are not forced to disk, the CPU-bound benchmark does no I/O operations at all

and saturates the CPU. To make the benchmark disk-bound, we turned force-at-commit

back on. The resulting I/O operations bring CPU utilization down to about 25 percent.

Both benchmarks were run single-user on a DECStation 3100 implementation of the Sprite

operating system.

We compared six different versions of POSTGRES to a normal version with no guarding

support. The unprotected copy version used the Deferred Write update model but did not

protect the pages. Comparing the unprotected copy POSTGRES to normal POSTGRES

shows the overhead in Deferred Write attributable to copy management, but not to write

protection. Three POSTGRES versions each use a different one of the update models

described in the paper. The read-only queries version was actually a modified version of

the benchmark run with Expose Page guarding. This version is just a sanity-check to show

that guarding does not impose any costs when records are not updated.

The last POSTGRES version, full protection, protects all of shared memory — including

the lock table, some shared memory lookup tables, and the buffer pool. The full protection

version uses the Expose Page update model to update data in the buffer pool and Expose

Segment to update all other data structures.

Tables 3.2 and 3.3 compare the protection overhead for each of the six program versions.

Each benchmark run of two thousand transactions was repeated five times to get an average

elapsed time. If the standard deviation of the five elapsed times was greater than one percent

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 93

Protection
Update Model Overhead
Expose Page Guarding 7%
Read-only Queries 0%
Expose Segment Guarding 10%
Full Shared Memory Protection 87%
Deferred Write Guarding 11%
Copy costs only 6%

Table 3.2: Performance Impact of Guarding a CPU-Bound Version of POST-
GRES. The CPU-Bound case was constructed by running a debit/credit
benchmark on a database that was small enough to fit in memory. With-
out guarding, the DBMS ran about 10 transactions per second.

Protection
Update Model Overhead
Expose Page Guarding 2%
Read-only Queries 0%
Expose Segment Guarding 3%
Full Shared Memory Protection 5%
Deferred Write Guarding 3%
Copy costs only 2%

Table 3.3: Performance Impact of Guarding an IO-Bound Version of POST-
GRES. The IO-Bound case was constructed by running the same debit/credit
benchmark on the same small database, but forcing updates to disk on com-
mit. The CPU utilization in this case is 25%.

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 94

of the average, the original five runs were discarded and all five runs were repeated. The

tables present their results as the percent increase in the average elapsed time caused by the

protection mechanism.

The two tables show that the least expensive model for updating guarded buffers is

Expose Page. Expose Segment is slightly more expensive, again, probably because Expose

Segment requires both system calls and a TLB fault to access protected data while Expose

Page only requires system calls. In the disk-bound case, the costs of the different models

are roughly the same. Since guarding does not affect disk accesses, it has a large impact

only when there is high CPU utilization. As one would expect, the read-only transaction

workload showed no additional expense due to guarding.

The software overhead required to manage record copies in Deferred write is apparently

significant. The Deferred Write model has about the same cost as Expose Segment, even

though InstallData is the cheapest guarding system call. Comparing the unprotected copy

DBMS to the Deferred Write DBMS shows that much of the expense is related to copy

management. From profile data, we have seen that nearly all of the copy management

costs come from allocating, freeing, and searching for record copies in the copy hash table.

Because records are small in the benchmark, physical copying does not affect performance.

The full protection version of the DBMS is much slower than the versions that only

protected the buffer pool. This version requires a guarded-memory update whenever the

process sets a lock or pins a buffer in the buffer pool. Since pins and locks are acquired

more often than buffers are updated, the cost is higher.

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 95

The measurements in this section illustrate the costs of guarding in a system that uses

memory management hardware available today. While these costs are not exorbitant, they

will be too much for some high performance systems. The next subsection discusses ways

in which changes to memory management units can reduce the costs of guarding so that

even high performance systems can write protect data.

3.3.3 Reducing Guarding Costs Through Architectural Support

One of the advantages of the current guarding implementation is that it uses conventional

memory management hardware, making it a practical tool for existing systems. However, if

virtual memory management hardware were redesigned, the performance impact of guard-

ing could be significantly reduced. A large part of the cost of our guarding implementation

is the trap to the operating system required to change read/write access to protected data

structures. The UnguardData, GuardData, and InstallData system calls also must copy

arguments from user space to kernel space. Modifying the operating system and the virtual

memory management hardware to allow unprivileged processes to protect and unprotect

parts of their address spaces could bring the cost of guarding down by as much as forty

percent (assuming system calls are 22 microseconds and argument passing takes about 5

microseconds).

Protection violations are detected by the address translation mechanism in the memory

management unit of the processor. Usually, a bit indicating whether a page is writable is

stored with the virtual-to-physical address mapping for the page. When the virtual address

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 96

is translated to a physical address, the protection bit is checked to make sure that the address

being stored into is writable. We have been calling the hardware that manages this mapping

the Translation Lookaside Buffer (TLB), but implementations of the mapping hardware vary

widely. The VAX has two levels of hardware tables mapping virtual address to physical

address [50]. In the DECStation 3100 [41], this mapping is a hardware hash table entry. In

a machine with a virtually-addressed cache such as the SPARC II, the information is stored

with the cache line. Cheng [17] describes some of the expenses involved in managing

protection changes in such an environment.

Usually, the same (supervisor-mode) instructions are used to change the TLB’s virtual-

to-physical address mapping as are used to change the protection bits. Unprivileged pro-

cesses cannot execute these instruction since allowing unprivileged processes to change

virtual-to-physical address mappings would be a security hole. If unprivileged access were

allowed, any process could allow itself to address any part of physical memory. Modifica-

tion of protection bits can be a security hole as well in UNIX systems since code segments

are shared between processes. If a malicious user unprotected a shared code segment and

modified the code, he or she could make other processes executing that shared code take

actions unintended by the owners of those processes.

To allow unprivileged processes to guard and unguard data in their own address spaces

quickly, the processor instruction set should include a separate, unprivileged instruction

to store a protect/unprotect bit into a TLB entry. The TLB entry would have to have an

additional bit and/or mode that allowed the operating system to protect some TLB entries

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 97

from modification (e.g. code segments).

Even with hardware support, the operating system would have to cooperate with user

processes in order to implement user-level guarding operations. TLBs can be flushed at

any time by the operating system, for example, after a context switch operation. When the

operating system reinitializes a TLB entry, it will do so using the protection information

stored in the process page table. If a user process unguards a record using the new

instruction, takes a context switch, and then accesses the unguarded data, it will fault; the

operating system will have reguarded it after the context switch. Therefore, a user-level

guard/unguard operation must not only physically change the protection of the data, but

also save the new page status in a way that allows the operating system to determine that

status during a TLB reload.

One can imagine many implementations of user-level unguard operations. For example,

in the POSTGRES guarded buffer pool experiments, most of the buffer pool was guarded

most of the time. Records were unguarded temporarily during updates, but then reguarded

immediately, and only one page per DBMS process was ever unprotected at a time. An

effective implementation for POSTGRES would be a system call with which the user

program specifies a buffer containing a list of currently unprotected pages. The user-level

unguard routine would keep the list up to date. After a protection fault on a guarded page,

the operating system could check this buffer for the virtual address (or virtual page number)

of a temporarily unprotected page. The protection fault will only occur if the TLB entry is

lost between the unguard operation and the modification of the unguarded record.

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 98

3.4 Reliability Impact of Guarded Data Structures

The control/addressing/data error model presented in the introduction was designed to

break errors into classes differentiatedby their effects on guarded data. In order for guarding

to detect errors, failing software must try to update protected data illegally. If broken

software always managed to unguard data structures before corrupting them, guarding

would not detect errors effectively. Guarding would also have no impact if software failures

simply cause the program to halt without ever overwriting any data. From the error model

and the data in Chapter Two, we can estimate how much impact guarding will have on

software reliability.

Data errors would corrupt guarded data or cause the program to produce invalid results

in spite of the guarding protection, but, fortunately, these errors were uncommon. Data

errors occur when the software calculates and stores the wrong data value. Guarding will

not protect against these errors; the faulty DBMS code will simply turn off the protection

and corrupt the data. The data in Chapter Two shows, however, that the assert statements

and other standard debugging and antibugging techniques used in current systems do an

excellent job of detecting data errors, limiting this risk to guarded data.

Control errors are also unaffected by guarding, but because they do not corrupt data,

not because they turn off guarding. Control errors corrupt transient program state or cause

deadlock, but do not directly overwrite anything. After a control error, the system only

needs to reinitialize transient state and begin accepting transactions again. The secondary

effects of the error sometimes involve addressing failures, however. For example, some

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 99

control errors in the MVS study had “address trap” failure symptoms, meaning that the

control error was detected by the system when the code tried to access unaddressable

memory. While guarding will not detect control errors, it will limit the possibility of error

propagation after a control error occurs.

Guarding will be most likely to detect addressing errors, such as uninitialized pointers.

The studies in Chapter Two indicate that addressing errors make up twenty to thirty percent

of recorded software errors. According to Chapter Two, however, addressing errors tend

not to be the “wild pointer” errors that randomly corrupt data arbitrarily far away from

the data that the failing module was using. When we could tell from the APAR which

data structure was corrupted, 75% of the time the data structure was very near the data

that the programmer intended to update. Guarding is unlikely to detect these addressing

errors. “Wild pointers” represented only a quarter of the addressing-related errors; hence,

the errors most likely to be detected by guarding make up make up about 5 to 7.5 percent

of all software errors.

While guarding will not detect most software errors, reducing the number of software

outages by even five percent will be extremely helpful in many environments. Chapter Two

also showed that addressing errors have the highest impact on the customer, either because

they caused the most serious outages or were the most difficult for the system to recover

from. Moreover, even when the resulting outage is minor, addressing errors represent

some of the most difficult software errors to find and fix. By the time the damage has

been detected, the module containing the error is no longer executing. Anecdotal evidence

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES100

from the development of POSTGRES and other systems suggests that much more than five

percent of the system development effort goes into finding and repairing addressing-related

faults.

3.5 Previous Work Related to Guarded Data Structures

Now that the guarding mechanisms have been described, we can compare them to similar

mechanisms used by other systems. An alternative to protecting shared data structures

with guarding is to keep those data structures in one address space and the clients of the

data structures in another. In order to make such an architecture practical, a fast cross-

address-space procedure call mechanism like that of the Taos operating system [10] is

required. The Taos Lightweight Remote Procedure Call (LRPC) is optimized for RPC-

style communication in which only a few parameters are passed between caller and called

routine. The Service Request Block (SRB) mechanism in the MVS/XA[36] operating

system is similar to LRPC. An SRB is a high priority thread of control which can be created

in a remote address space. Both LRPC and SRB use a fast path through the scheduler and

some shared memory to reduce overhead.

Guarding provides the same kinds of protection against non-malicious damage as does

an address space boundary. However, access to read-only records is faster than would

be possible in a separate address space implementation. Since database workloads often

require the DBMS to scan through large amounts of data before selecting some for update,

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES101

faster read performance is a distinct advantage.

Tandem’s process pair mechanism [7] also relies on multiple address spaces to prevent

propagation of software errors. The Tandem data manager has a primary and “hot spare”

process executing at the same time on different machines. The primary executes all trans-

actions and sends checkpoint messages to the spare. If the primary fails, the spare can

reconstruct the data manager’s state from the checkpoint messages. While errors might

propagate within the primary, they are less likely to propagate to the spare.

While process pair prevents the same kinds of errors as guarding does, it is much more

expensive. Keeping the spare up to date requires resources for sending and processing

checkpoint messages. Worse, the implementation of the checkpoint protocol is non-trivial.

Modifications to the DBMS may affect the checkpoint protocol, making them expensive

to implement and test. Finally, the model does not help detect errors. The primary and

spare both have large, unprotected buffer pools. An undetected pointer error can damage a

buffer without making the primary turn over control to the spare. The corrupted buffer will

eventually corrupt permanent data.

The 801 System [16] uses page protection bits to provide operating system support for

DBMS locking and logging, rather than using page protection to increase fault tolerance.

A data manager running on the 801 does not set locks explicitly. Memory management

hardware detects a read or a write to an unlocked buffer and the DBMS traps to the operating

system. The operating system then sets locks and implements physical logging of 128 byte

subpages. To support fine-grain locking, the 801 memory management unit provides write-

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES102

protection at subpage granularity. The same hardware would support subpage granularity

guarding.

Unlike a system using guarded data structures, the 801 treats any attempt to write to one

of its buffers as legitimate. By moving responsibility for locking from the DBMS to the

operating system, the 801 is losing information available to the DBMS about which data is

updated erroneously. If a bad pointer causes a write to an unlocked buffer, the 801 locks

the buffer and logs it normally. Under the same circumstances, a guarded system would

immediately halt the transaction.

Implementing protected operations such as locking in the operating system is one

alternative to guarding. However, installing the DBMS code in the operating system

makes the operating system vulnerable to errors in the installed code. Guarding gives the

DBMS implementor more freedom to decide what code is reliable enough to have access

to protected data. More debugging support is available for user programs than for the

operating system, so implementing protected subsystems in the DBMS is more practical

than implementing them in the operating system.

Guarding provides some of the same protections as a protected subsystem mechanism

without requiring any special hardware or restricting the designer’s choice of programming

environment. Existing protected subsystem mechanisms often rely on special memory man-

agement hardware [64], [82], or type-safe languages [46]. Guarding can be implemented

on conventional hardware and used with common systems programming languages. Of

course, guarding is designed to protect against accidental damage not malicious damage.

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES103

Existing protected subsystem mechanisms were designed to protect against both.

We chose to implement the virtual memory support required for guarding by modifying

the operating system. It would also be possible to support guarding using the Mach external

pager [83]. Implementing guarding directly in the operating system should make guarding

more efficient.

3.6 Summary

This chapter describes modifications to the operating system and database manager

which are designed to limit software error propagation in the DBMS. Write-protecting the

data manager’s buffer pool allows early hardware detection of addressing-related software

errors. Guarding reduces the complexity of software failure by preventing errors from

propagating to protected data structures. Guarding techniques can also improve recovery

speed since limiting potential error propagation decreases the amount of work required at

recovery time. While any DBMS could use these techniques, they are especially important

to a extensible DBMS such as POSTGRES. With a guarded system, one person using (or

developing) new access methods or data types has smaller impact on the availability and

reliability achieved by his or her peers.

It is difficult to quantify the reliability improvements that will result from using guarding

in commercial systems. Chapter Two showed that 25-30% of software errors in several

existing systems are addressing-related. Only 25% of those were “wild pointers” that

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES104

damaged parts of the system unrelated to the component with the error, though. This

implies that guarding will eliminate about 5-7% of software errors. However, some of

these software errors were among the most difficult to detect by ordinary means, so a 5-7%

reduction in software errors may result in a much larger reduction in the engineering effort

required to produce a reliable software system. These errors are also of higher than average

customer impact, so the reliability increase perceived by the customer will probably be

more than 5-7% as well.

In general, the performance impact of guarding is comparable to the impact of other

software techniques for detecting software errors, such as data structure verifiers or array

bounds checks. Guarding can be implemented efficiently by taking advantage of processors

with software-loaded TLBs. For read-only workloads, guarding provides the DBMS with

additional protection at no extra cost. For update-intensive workloads, experiments have

shown that the additional CPU demand caused by guarding is only a few percent when small

records are updated. Page remapping techniques could be used as a method for reducing

copy cost for large records.

In deciding whether or not to guard data structures, system designers face a tradeoff

between potential reliability and availability improvement and a small but measurable per-

formance loss. For some systems, no reliability gain will be worth any loss in performance.

Others may be willing to accept the small performance loss in order to achieve any relia-

bility improvement. Still other systems may want the option of switching from guarded to

normal operations at different points in the system lifetime or for different customers.

CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES105

Over time, trends in system cost will probably tilt the performance/protection tradeoff

in the favor of guarding. As processors become faster, the additional processing demands

caused by guarding will become less of a concern. The big potential risk to the long-term

usefulness of guarding techniques is that the cost of changing page protection might not

scale with processor performance. However, hardware designers have been made aware of

the need for fast protection changes in other applications such as distributed shared memory

[1], so, hopefully, they will consider this issue in future processor architectures. Meanwhile,

the need for guarding will almost certainly increase over time. Falling memory prices are

increasing the sizes of disk caches like the DBMS buffer pool. Some data in the cache will

remain unused for long periods of time. It is essential that bad writes into this data, however

infrequent, be caught at the time of the error rather than the first time the data is used. It

is also essential for fast recovery that these gigantic caches not be reloaded from the disk

after software failures. Finally, as non-volatile RAM becomes less expensive, it will be

more likely to be more frequently used as stable storage by applications such as database

management. Non-volatile RAM will never be as resistant to failure as disk storage without

some protection from addressing errors.

106

Chapter 4

Fast Recovery in the POSTGRES DBMS

4.1 Introduction

A fast, simple recovery mechanism is critical to highly available data management in

fault tolerant systems. As Chapter One pointed out, faster recovery leads directly to higher

availability. Long software restart times lengthen the outages that occur after any kind

of failure, and longer outages decrease system availability. Section 2.4.3 of Chapter Two

illustrated the reliability risk due to recovery system software. Many software outages

caused by control errors were related to recovery and error handling code. The data

indicates that recovery systems are hard to implement correctly and hard to maintain.

Testing recovery systems is also difficult since it requires test suite designers to anticipate

failure conditions that will arise in the field. This is a daunting task in a large software

system.

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 107

Traditionally, fault tolerant systems have tried to mask failures and avoid recovery rather

than improve recovery speeds. For example, Tandem [7], Stratus [80], Auragen [13], Harp

[51], XRF [37] and HA-NFS [11] all maintain a primary and one or more backup systems

in order to avoid recovering when the primary fails. When a failure occurs, operation

switches over to the backup system rather than delay users while the primary recovers.

Unfortunately, the protocol for keeping backups up to date is expensive and its correctness

is very difficult to verify. Also, even if the protocol works correctly, there is no guarantee

that software errors will not propagate from the primary to the backup.

Another common approach to masking failures is to provide a multi-level software

recovery mechanism. The Integrity-S2 [40] operating system attempts to correct internal

data structures when it finds errors in them. If two failures occur within a few minutes,

then the system assumes the correction did not work and goes through a full recovery.

MVS [2] uses a multi-level recovery scheme in which different portions of the system can

fail and recover independently. Another two-tiered recovery mechanism [5] implemented

in the Sprite operating system uses a reserved area of memory to hold backup copies

of state associated with the distributed file system and distributed applications. In the

event of control errors and most addressing errors, the backup state can be used for quick

regeneration of operating system and application program state without disk operations or

communication with remote sites. When power outages, hardware errors, or software errors

corrupt the reserved memory, the normal, slow recovery path is used.

The POSTGRES approach to maintaining high availability is to improve the speed of

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 108

system recovery after errors are detected. Failure is not masked, as is the case with hardware,

but a fast recovery mechanism can improve availability by eliminating long outages after

failures. The approach requires little to be done during recovery that is not done during

a normal system restart, so the recovery system may be easier to debug and test than

conventional multi-level recovery mechanisms. In contrast, most database management

systems use write-ahead log (WAL) recovery techniques (surveyed in [34]). In WAL, all of

the updates applied to the database are written to a log. The log is processed during system

restart to ensure that no committed updates are lost and no aborted updates remain. After

the WAL survey was published, ARIES [55] took many steps to improve the concurrency

and restart performance of the basic write-ahead logging techniques, but increased the

complexity of the recovery system software. Even in ARIES, database recovery time is

proportional to the number of log records that must be processed during recovery. To

significantly improve recovery times, log processing must be eliminated.

The work in this dissertation takes as its starting point the 1987 POSTGRES storage

system, which uses no-overwrite techniques to combine support for historical data with

support for transaction management [69]. The details of the no-overwrite storage system

are left to Section 4.2, but, briefly, the storage system works by creating a new version of

any tuple updated by the DBMS rather than updating the tuple in place. If the DBMS fails

and the updating transaction aborts, the previous version of the tuple remains and can be

used for recovery. Falling back to the previous version does not involve log processing, so

the storage system requires little work at restart time.

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 109

While the designers of commercial database systems desire the faster recovery that is

possible without write-ahead log processing, this community has not applied the POST-

GRES storage system ideas to commercial DBMSs. The two most likely reasons for this

involve recovery from media failures and performance considerations. POSTGRES as-

sumes that the I/O subsystem handles media recovery, hence, it depends on either mirrored

disks or RAID (Redundant Array of Inexpensive Disks [61]) disk subsystems. Tradition-

ally, write-ahead logs have been used in media recovery for non-mirrored disks. Because

RAID storage systems are now commercially available, this is becoming less of a problem.

A more important reason that the POSTGRES storage system ideas are not widely used

is that the original design does not perform as well as traditional storage systems when

the database must support a very high update rate. The data structures used to implement

the no-overwrite transaction support in POSTGRES made retrieving tuples from such a

database expensive. Also, POSTGRES must use a force-at-commit buffer management

policy: all buffers containing tuples updated by the transaction must be written to disk

before transaction commit. Most database management systems do not use this policy

because it causes the DBMS to do much more disk I/O than would be necessary with

a write-ahead logging policy. To increase the usefulness of POSTGRES’ fast recovery

techniques in applications such as banking and stock trading in which both high update

rates and fast recovery are important, the performance impact of the storage system must

be reduced.

Chapter Four of this dissertation makes four contributions to fast recovery in the database

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 110

management system. The first two increase the applicability of the POSTGRES storage

system in environments with high update rates and allows the DBMS in these environments

to take advantage of fast recovery. First, the chapter suggests several changes to the way

tuples are stored in POSTGRES. Section 4.2 describes the original POSTGRES storage

system and the new optimizations. Second, Section 4.3 uses an analytic model to evaluate

the I/O impact of the storage system on a RAID. It shows how non-volatile RAM and

modern file systems such as the log-structured file system (LFS) [63] can eliminate the

additional I/O costs associated with POSTGRES’ no-overwrite techniques. Together, the

techniques described in Section 4.2 and the analysis of Section 4.3 should increase the

applicability of no-overwrite transaction support to applications with high update rates.

Chapter Four also considers recovery of several kinds of DBMS state that the original

POSTGRES storage system ignored. When the DBMS recovers from a failure, it must

reestablish four kinds of context lost during the failure:

(1) Disk Database Context: The database on the disk must be made transaction-consistent.

(2) Disk Cache: After a failure, the DBMS must reload frequently-accessed database pages

into main memory.

(3) Session Context: Network connections between the DBMS server and its clients are

lost during the failure. Reconnecting a client to the server means reauthenticating

the client, reinitiating the network protocol, and determining if any messages were

in transit at the time of the failure. In some systems, human intervention is even

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 111

required to restart application programs after the DBMS server fails.

(4) Current Transaction Context: The transactions executing at the time of the failure had

some transient state associated with them — for example, the query plan structures,

the lock table, and the temporary relations holding intermediate state. This state must

be reinitialized.

The POSTGRES storage system addresses item (1) from the list. Sections 4.4 and 4.5

describe methods of recovering disk cache and session context, items (2) and (3) from

the list, which were ignored in the original storage system. Regeneration of the current

transaction context, item (4) in the list above, is left as future work. The issue of regenerating

transaction context is not important when the DBMS only executes short transactions. In

this case, the fastest, simplest way of recovering lost transaction context is to reexecute the

aborted transactions. Strategies for reestablishing the transaction context of long-running

transactions are outlined in the final chapter of the dissertation.

4.2 A No-Overwrite Storage System

The POSTGRES storage system differs from most other DBMS storage systems in that

user data is not updated in place. Instead, POSTGRES creates a new version of the tuple

and updates the new version. When a tuple is logically deleted, it is actually marked invalid

and left physically in place. Instead of write-ahead log processing, POSTGRES recovers

from failures by falling back to the previous version of the data. If the transaction is aborted,

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 112

the DBMS detects and ignores any changes to the database made by the transaction. Even if

the transaction commits, the updated tuple versions remain accessible to users as historical

data. Because the new version of the data is physically located in the data pages, all data

pages written by the transaction must be written to stable storage or non-volatile memory

before the transaction commits. In [34], this policy for managing data pages is called

force-at-commit.

The subsections that follow describe the POSTGRES Storage System and several en-

hancements to it. The first four subsections describe the most important issues affecting

the performance and cost of the transaction system: (a) storage of tuple versions, (b) recla-

mation of space in data pages, (c) the run-time detection of invalid updates, and (d) access

to historical data. The third of these subsections discusses the actual recovery mechanism.

A final subsection tells how the force-at-commit policy affects performance on several

different kinds of I/O subsystems. Much of the current section summarizes design points

of the original POSTGRES Storage System design and is included here for completeness.

Some changes have been made to improve recovery speed, to simplify parts of the storage

system, and to improve performance. In other places, we describe details of the storage

system that were omitted in [69]. The differences between the original POSTGRES storage

system and the version modified for the dissertation will be identified as they arise. The

version implemented for this dissertation is referred to as the “modified” version in the text.

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 113

4.2.1 Saving Versions Using Tuple Differences

In order for the POSTGRES no-overwrite storage system to make more efficient use of

space, consecutive versions of the same tuple are stored as a sequence of tuple difference

records rather than a sequence of full tuples. When a tuple is initially inserted into a

relation, an anchor point record is constructed representing the full tuple. Subsequent

updates are represented as difference records containing only the fields of the new tuple

version that differ from the previous version. The difference records are chained together

so that starting at the anchor point and following the chain will allow POSTGRES to

reconstruct any version of the tuple.

The original POSTGRES storage system used a difference record management scheme

based on forward difference chains. In forward differencing, the anchor point is the

oldest available version of the tuple. The difference chain goes from the oldest available

version to the newest one, hence, queries referring to the current version of the tuple must

pass through the entire difference chain to construct the tuple (see Figure 4.1). As records

are updated, the difference chain will grow and references to current data will become

increasingly expensive.

The modified POSTGRES storage system used in this dissertation improves access

to current data using backward difference chains. The anchor point in this case is the

most recent version of the tuple. When an update occurs, a link is constructed from the

newly-generated version to the current version in the difference chain. Because the current

version of the tuple is readily available, scans and updates of the current database are fast.

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 114

T3T2T1T0

Point
Anchor

Line Table

Field1

Field2

Field3

Field4Field2

v0

v1

v2

Field2

Field4

Figure 4.1: Forward Difference Chain. This data page contains four tuples, only one
of which, T3, is shown. The line table entry points to the anchor point (in bold). The
forward difference chain connects the records representing versions v0, v1, and v2.
To construct the current version of a tuple, the DBMS starts with v0 and follows the
difference chain.

v2

v1

v0

Field2 Field4

Field3

Field2

Field1

Line Table

Anchor
Point

T0 T1 T2 T3

Field2

Field4

Figure 4.2: Backward Difference Chain. In this figure, T3 uses an array-style anchor
point (in bold, as above) and a backward difference chain. The difference chain is
shown as dotted arrows connecting the records associated with versions v2, v1, and
v0. The anchor point array points to the youngest member of the chain and to the
most up-to-date values of T3’s fields. Since only Field2 and Field4 have been updated,
two of these field values come from v0 and two come from v2.

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 115

Unlike the anchor point in a forward difference chain, the anchor point in a backward

difference chain can contain fields from several different tuple versions. For example, if

a transaction updates one attribute value in a four attribute tuple, as in Figure 4.2, the

most recent version of the tuple contains fields from two difference records. Therefore, the

anchor point is structured as an array with an element for each of the tuple’s attributes. Each

element points to the most recent value for the given attribute. Because of its array-style

anchor point, backward differencing uses more space than forward differencing. Forward

differencing simply used the oldest available tuple difference record as its anchor point.

It should be clear from Figures 4.1 and 4.2 that, while both forward differencing and

backward differencing are logically no-overwrite techniques, the data on stable storage is

physically overwritten after each update. Data is transferred between main memory and

disk in page-sized units. When a new difference record is added to a page, the entire page

is rewritten to stable storage. We assume that database pages are written to disk atomically

except in the case of a media failure. We assume that this as well as other media failures

is detectable. On devices (and file systems) in which page writes cannot be guaranteed

to be atomic, POSTGRES or the operating system would have to checksum each page in

software and examine the checksum every time the page is read from disk.

POSTGRES indices are described in depth in Chapter Five, but one detail regarding

them is important to this section. Records in a POSTGRES index point to the line table

entry on the data page rather than an individual record. Because the line table entry points

to the anchor point, the index can be used to find any version of the tuple. Thus, the no-

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 116

overwrite policy does not force the DBMS to update index records every time data records

are updated.

4.2.2 Garbage Collection and Archiving

Tuple difference chains reduce the amount of space taken up by historical data, but

the no-overwrite policy will eventually cause the database to run out of disk space without

an additional strategy for reclaiming storage space. The original POSTGRES storage

system allowed space to be reclaimed in three ways. First, any tuple versions created by

transactions that later aborted can be garbage collected and removed from the database at

any time. Second, historical data can be moved to a cheaper storage medium such as optical

disk, freeing up space on the faster medium. Third, historical data older than a user-defined

threshold can be destroyed. This section will, for ease of presentation, address garbage

collection and the archiving/destruction of historical data as separate functions. The section

occasionally refers to the garbage collector and the archiver as separate entities when, in

fact, they are implemented in a single program called the vacuum cleaner.

In its garbage collection capacity, the vacuum cleaner examines each page of each

relation in the database, reorganizing the page to eliminate tuple versions created by aborted

transactions. A page is reorganized by first allocating a temporary page in memory, then

copying all historical and current tuple versions to the new page. The copying is necessary

because the invalid tuple versions created by aborted transactions are interspersed with valid

tuple versions on the page. After the new page has been constructed, the DBMS buffer pool

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 117

meta-data is modified so that the new page replaces the old one.

During garbage collection, the layout of the data page changes, but the contents of valid

tuples on the page do not change. Therefore, garbage collection does not conflict with

transactions’ two-phase read and write locks on the page’s tuples. If it did conflict, the

garbage collector would have to lock tuples during garbage collection, reducing overall

concurrency and allowing the garbage collector to deadlock with existing transactions.

High concurrency during garbage collection is important since the most frequently updated

relations have both the highest concurrency requirements and consume the most space if

not vacuumed frequently.

While two-phase locks are not required, some coordination between the garbage col-

lector and transactions in the DBMS is necessary because the DBMS process can have

pointers into the old version of the page. The DBMS must detect that garbage collection

has occurred and revalidate these pointers before the old page is reallocated. When garbage

collection completes, the garbage collector stores a pointer to the new version of the page in

the buffer header structure associated with the old page. Whenever the DBMS re-examines

a tuple, it checks to see if there is a new version of the page. If there is a new version, the

backend process reassembles the tuple using pointers to the difference records in the new

page and unpins the old version of the page. When the last pin on the page is released, the

buffer containing the old version can be reallocated. The garbage collector must also hold

the latch (semaphore) associated with the page while it copies tuple versions from the old to

the new page. The DBMS normally uses this latch during updates to synchronize allocation

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 118

of space on the page, so holding the latch prevents updates during garbage collection. Until

garbage collection has completed, the DBMS does not know how much space is available

on the page so no space can be allocated for the new tuple version created by an update.

When archiving, the vacuum cleaner chooses a time value ARCH-DELAY seconds

before the current time and declares that to be the archive start time. The archiver selects

all tuple versions committed before the start time and copies them to the archive or destroys

them. To ensure that it copies the correct tuples, the archiver uses the POSTGRES historical

data (or time query) facility to look up archivable tuples (described in Section 4.2.4). Since

the time query only returns data that was valid at the archive start time, uncommitted

updates are never copied to the archive. The current POSTGRES implementation stages

archived tuple versions to a magnetic disk write buffer before writing them to the archive,

since access to the archive media (tape or write-once optical disk) is typically an order of

magnitude slower than access to disk.

After the data is archived, the archiver deletes historical tuple versions from the mag-

netic disk relation. It will usually also have to construct a new tuple difference record

representing the oldest available tuple version. Because consecutive tuple versions share

many attribute values, the oldest available tuple version probably incorporates attribute val-

ues from difference records that the archiver has deleted. The new tuple difference record

retains these shared attributes in the non-archived version of the relation. Details of the

archive and its cache are described in [59]. The archive indexing strategies are addressed

in [45]. Unlike the garbage collector, the archiver must use two-phase locking to guarantee

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 119

that no transactions are using historical data when it is moved to the archive.

Constructing Overflow Pages to Support the No-Overwrite Policy

In the no-overwrite storage system, the policy for managing page overflow has a

significant impact on DBMS performance. Because of the no-overwrite policy, repeated

updates to tuples on a data page eventually fill the page. The space reclamation strategies

described above will not always prevent pages from filling, especially in a high-update-rate

environment. Since high-performance commercial database management systems can run

at rates of hundreds of transactions per second, pages fill up too rapidly. Minimum-sized

tuples in the original storage system are about 64 bytes, even when differencing is used.

Thus, approximately 127 updates fill an 8K page containing one tuple.

The original storage system simply extends the tuple difference chain to a new page when

a transaction tries to update tuples on a full page. In the high-update-rate environment, this

strategy causes performance to degrade rapidly, especially when the DBMS uses forward

difference chains. Whenever a tuple is accessed or updated, each page in the multi-page

forward difference chain has to be accessed. “Hot” tuples that receive frequent updates will

form the longest multi-page tuple chains. Therefore, the tuples that are used the most often

will have the greatest access cost.

Backward difference chains improve the access to multi-page tuple chains in some

important cases, but at greater storage overhead. Only the pages containing current attribute

values need to be examined if backward difference anchor point arrays are allowed to point

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 120

across page boundaries. In the case in which the same attribute field is updated repeatedly,

only two pages are accessed: the one containing the anchor point and the one containing

the most recent difference record. However, the anchor point array entries must be larger

if they can point across page boundaries. Only two bytes per pointer are required if the

chains are contained within a page, while six bytes (a four-byte page number and a two-byte

offset) are required to point to a difference record on another page. Also, updates require

both the anchor point and difference record page to be updated. In forward differencing,

only the page containing the difference record is modified during an update.

The modified POSTGRES storage system uses an alternative strategy to limit the perfor-

mance impact of multi-page tuple difference chains, a strategy based on page reorganization.

If a transaction updates a tuple on a full page, the DBMS creates an overflow page and

moves some of the tuple difference records from the original page to the overflow page

using a technique detailed below. Managing overflow pages recoverably is more complex

than the original POSTGRES storage system strategy, but in the common case it allows

access to the current database to take place without examining more than one page per tuple.

There are two possible strategies for creating overflow pages. The simplest strategy

would be to construct a new anchor point for each tuple from the original page on the new

overflow page. If all of the current version’s attribute fields are assembled on the overflow

page, the current tuple version can always be constructed from a single page. The header

of the new page would have a pointer back to the original page in order to allow access to

historical data from the current version of the data. Unfortunately, the DBMS may have

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 121

Historical
Versions

Time
Now

New-VersionOld-Version

Now
Time

Overflow Page Overflow Page

Versions
Historical

Original
Page

Figure 4.3: Creating an Overflow Page. When the original page overflows, it
is split into two pages. The old page contains historical tuple versions and the
new page contains the current versions. While the old page is written asyn-
chronously to stable storage, the new page is mapped to a temporary location
on disk. Once the old page has been written to stable storage successfully, the
new page is allowed to overwrite the original page in the database and the
temporary location can be reused.

many indices referring to records on the original page. Each index would have to be updated

in order for indexed access to the data to remain fast. If there are many records on the page

and many indexes on the relation, creating an overflow page would require updates to many

other pages and again have significant performance impact.

A better strategy is to move the older versions of the tuples on the original page to the

overflow page, as shown in Figure 4.3. That way, index entries still point to the same page

and that page still contains the most recent version of the tuple. Overflow pages are chained

together so that any historical version of the data can be reached by a multi-page scan.

Creating an overflow page containing historical tuple versions in a way that prevents

information from being lost in a crash is tricky. To create an overflow page, the DBMS

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 122

creates two new pages: the new-version overflow page and the old-version overflow page.

The new-version overflow page contains the most recent version of each tuple on the original

page. The old-version contains the historical versions of tuples on the original page. Once

the old-version page has been saved in stable storage, the new-version page can be used

in place of the original. Until the old-version page has been successfully written to stable

storage, the original page contains the only stable version of the historical tuples on the

page. If the new-version page were allowed to replace the original page before the old-

version page was stable, a crash could destroy the historical tuple versions. The DBMS

logically replaces the original page with the new-version page by modifying the buffer pool

meta-data. Buffer pool cache meta-data tells which buffer in main memory is associated

with a given page of the database. If a page is ever written to disk, the buffer pool meta-data

tells where it should be written.

Creating overflow pages is not very expensive if a small amount of non-volatile RAM

is available, but, if disk is used for stable storage, overflow causes an extra disk write. In

the original storage system, overflow causes the new page to be written to stable storage (to

commit the new tuple version) and the original page to be written to stable storage (to link

the previous version to the new one). When non-volatile RAM is available, the modified

version of the POSTGRES storage system creates its new-version overflow page and old-

version overflow page, then blocks while the old-version overflow page is copied to stable

storage. After the old-version page has been copied, the DBMS replaces the original page

with the new page. When the transaction causing the overflow commits, the new-version

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 123

page is written to stable storage. As in the original POSTGRES storage system, two pages

on stable storage are updated.

When disk is used for stable storage, the new scheme cannot block the DBMS while

the old-version overflow page is written to stable storage. Disk latency is too long for

such a strategy to be efficient. Instead, the DBMS writes the old-version page to disk

asynchronously. As above, the tuples on the original page must remain intact until the old-

version overflow page is written to disk. To allow the DBMS to commit transactions before

the write of the old-version page has been confirmed, the new-version page is mapped to

a temporary location on disk. The temporary page is chained to the original page and the

old-version is chained to the new-version as is shown in Figure 4.3. On a commit, the

original page and the new-version page must both be written to disk. The original page

must be written in order to preserve its pointer to the temporary location of the new-version

page. Thus, three pages are written to disk on an overflow instead of two.

In summary, the no-overwrite storage system must have some policy for creating over-

flow pages. The original storage system’s policy of allowing tuple difference chains to

span several pages forces the DBMS to examine more than one page during the update of

a single tuple. Even if the vacuum cleaner runs hourly, these chains of pages could run to

tens of pages for highly-updated tuples in a high performance DBMS. The modified storage

system puts historical data on a new page instead of the newly-created data, so that access

to the current database remains fast even if the vacuum cleaner runs infrequently. This

strategy will result in an extra disk write per overflow, however, if no non-volatile memory

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 124

is available for stable storage.

4.2.3 Recovering the Database After Failures

The DBMS recovery system must mask any inconsistencies in the database resulting

from a DBMS failure. In POSTGRES, these inconsistencies take the form of tuple versions

that were created by transactions that later aborted. In a conventional system, data pages

can contain two kinds of inconsistencies. First, tuples may have been updated in place by

transactions that were aborted. Second, tuples updated by committed transactions may not

have been written to stable storage before the failure. Both kinds of storage system require

some recovery actions to ensure that transactions starting after system restart never use this

inconsistent data.

After a failure, a conventional log-based DBMS makes the entire database consistent

before allowing users to access the data. The log in a conventional DBMS contains a

sequence of records representing updates to the database and records telling which trans-

actions have committed. At recovery time, the DBMS reads the log to find out which

transactions have committed, then examines the data pages affected by each log record

to make sure that committed updates have been applied and that aborted ones have not.

Recovery, in conventional systems, is usually I/O bound due to the many data pages that

have to be read. The cost will be proportional to the length of the log.

The subsection that follows describes the techniques used to detect and ignore invalid

tuple versions in POSTGRES. Because the DBMS can detect invalid tuples on use, it does

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 125

not have to remove inconsistencies in the database at system restart time. We discuss the

cost of POSTGRES database recovery after describing the technique for detecting invalid

tuple versions.

Transaction Status File

When a POSTGRES transaction begins, a slot is reserved for the transaction in the

transaction status file maintained by the DBMS. A transaction identifier, or XID, is a

pointer to this transaction status file slot. The status file records the current state of both

current and past POSTGRES transactions. In the original storage system, the transaction

can be in one of three states — committed, aborted, and in-progress — while the modified

storage system only requires committed and aborted states. The in-progress state was used

for synchronization between the POSTGRES vacuum cleaner described in Section 4.2.3 and

current transactions. The modified storage system uses more conventional synchronization

techniques, so it can use one-bit rather than two-bit slots to encode each state.

Queries of historical data require the DBMS to maintain a second file called commit

time file in the original POSTGRES storage system. When a transaction commits, it stores

the current time in the commit time file. Time queries use this commit time to determine

when data written by the transaction became valid. Note that the commit time must be

written before the transaction is committed so that each committed transaction has a valid

commit time. The commit time file is decomposed into slots in the same way as the

transaction status file, although each slot is four bytes wide instead of one bit wide. This

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 126

allows the DBMS to use the same XID to look up a transaction’s commit time and current

state.

POSTGRES backend processes actually reserve blocks of XIDs instead of allocating

them individually. The DBMS maintains on stable storage the next available XID, next-

XID, which indicates the first XID that can be allocated to a transaction after a system

failure. When a POSTGRES backend runs out of XIDs, it updates next-XID on stable

storage to reserve the next available block. As transactions are initiated by clients, the

backend process assigns XIDs from its block consecutively. Because the block is owned

by a single process, the backends do not need to coordinate the allocation of a new XID;

they only need to ensure that one of them at a time is allocating new XID blocks. Larger

XID blocks lessen the overhead of XID allocation, but increase the number of unallocated

XIDs that will have to be discarded during a failure.

Identifying the Updating Transaction

At run time, the POSTGRES storage system must detect and ignore updates to the

database made by transactions that were later aborted. The storage system stores XIDs

in tuple difference records to identify the transaction that created, updated, or deleted

a given tuple version. By mapping the XIDs to slots in the transaction status file, the

DBMS can determine whether or not these transactions have committed. Because tuples

are locked using a conventional two-phase locking scheme ([25]), a transaction will block

if it encounters tuples created or written by other in-progress transactions. Therefore, any

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 127

uncommitted tuple updates that the transaction encounters are invalid.

The modified POSTGRES storage system stores an XID in the anchor point of the

tuple and in each tuple difference record. The anchor point of a tuple stores the tuple’s

inserterXid, the XID of the transaction that inserted the tuple into the database. The XID

in each tuple difference record identifies the transaction that updated or deleted the tuple

version represented by the difference record. If no transaction has attempted to update or

delete a tuple version, the XID field in the difference record contains an invalid transaction

identifier.

In the original storage system, additional XIDs were stored, but these turn out not to be

necessary. Each difference record kept its own minXid and maxXid. The minXid identified

the transaction that created the tuple version and the maxXid told which transaction updated

or deleted the tuple version. Clearly, the maxXid of one difference record is the same as

the minXid of the previous one, so these two fields could be merged into a single XID field

in the modified storage system.

The modified storage system also maintains in each anchor point a field called the

commandID indicating the DBMS command, or query language statement, that last mod-

ified the tuple. Each query language statement is a separate command. When a command

changes a tuple, the change is not visible until the next command. So, for example, a record

inserted into a relation during a query will not be visible in the database until after the query

that inserted it completes. Each POSTGRES process maintains a command counter for

its currently executing transaction. The DBMS stores the current command counter value

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 128

in the tuple’s commandID field when the tuple is created and modifies the commandID

field every time the tuple is updated. A transaction ignores a given tuple version if that

transaction was the one to modify the tuple and the current command matches the tuple’s

commandID.

Instead of associating a single commandID with the entire tuple, the original storage

system associated a maxCommand and a minCommand with each tuple version in the same

way as maxXid and minXid. The modified storage system uses a single commandID field

for the tuple because the command is only ever relevant to the last tuple in the difference

chain. The command field is only used when a transaction has updated a tuple already and

is examining the tuple again. Since the current command cannot see its own updates, it

cannot have created more than one element in the tuple version chain. Therefore, the only

tuple version that could possibly have been created by the current command is the most

recent tuple version. The maxCommand and minCommand become a single field because

the tuple cannot be created and deleted in the same command.

Detecting Invalid Tuple Versions

A conventional database management system uses write ahead log processing to remove

an aborted transaction’s updates after recovery. POSTGRES detects and ignores these

invalid updates whenever the updated tuple is used after the failure. Because the DBMS

maintains previous versions of every tuple updated (using the difference record chain

described above), ignoring an invalid update simply means using whichever of the previous

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 129

versions was valid at the time that the aborted transaction began its update.

An invalid update can be:

(A) An invalid insert. A transaction creates a new tuple, inserts it into the database, then

aborts due to a failure. If a later transaction examines this tuple, it must ignore all

tuple difference records associated with the transaction.

(B) An invalid delete. A transaction could delete an existing tuple from the database and

abort. If a later transaction examines the tuple, it must ignore the delete.

(C) An invalid replace. A transaction could replace a field in an existing tuple, creating

a new tuple version. If the transaction aborts, later transactions must use a previous

tuple version in the difference record chain, the one that was valid when the aborted

transaction made its update.

An invalid update may create more than one tuple version. For example, a transaction

may insert a tuple into the database and then update it, creating a tuple with two difference

records in it. If the transaction then aborts, both difference records are invalid. Only

versions at the end of the tuple difference chain can be invalid since two-phase locking

prevents one transaction from updating another’s uncommitted tuple versions.

To find invalid updates, we must check for each of the three cases in the list above.

Each check requires us to consider an XID associated with the tuple. Note that the checks

described below require only one of these three XIDs to be looked up in the transaction

status file. Checking for invalid tuples is a common operation and examining the transaction

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 130

T3

Field1

Field2

Field2T2
Version 2

Version 1

T1

Anchor Point

Field1

Field2

Field2Field2Field1 T2
Version 2

Version 1

T1

Anchor Point

Version 1

T1

Anchor Point

Figure 4.4: Tuple Qualification. This figure shows the same tuple at three
instances in time. In the upper left corner, the tuple is inserted by transaction
T1. T1 writes its XID in the inserterXid slot in the anchor point. On the right,
Field2 is replaced by transaction T2. T2 writes its XID in the XID slot of the
first version of the tuple. Finally, transaction T3 deletes the entire tuple.

status file is relatively expensive, so reducing the number of lookups to one per tuple gives

a performance advantage.

We only check for case (A), invalid inserts, if there is exactly one tuple difference record

in the chain. To check for case (A), we examine the inserterXid associated with the tuple

header. If that XID is associated with an aborted transactio, the tuple is invalid. If there

are several tuple difference records in the chain, we treat it like case (C), even if the same

transaction has initiated all of the updates.

To check for case (B), we examine the XID associated with the last difference record in

the tuple’s difference record chain. If that XID is NULL, no transaction has attempted to

delete the tuple. If the XID is valid and maps to an ABORTED transaction status file bit,

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 131

then a transaction attempted to delete the tuple and aborted. In this case, we fall back to the

last tuple version created by a transaction other than the aborted one.

We only check for case (C) if no transaction has attempted to delete the tuple. To see

how to detect an invalid replace operation one must remember how a replace operation is

implemented in the POSTGRES storage system. To replace a field in an existing tuple, a

transaction creates a new tuple difference record containing the replaced fields and a NULL

XID field. The transaction stores its own XID in the XID field of the current difference

record in the tuple (effectively “deleting” this difference record) and links the new version

to the front of the difference record chain. Thus, a later transaction checks if the replace

transaction has committed by examining the XID of the second difference record in the

chain. This XID is mapped to the COMMITTED/ABORTED state of the replace transaction

using the transaction status file. If the transaction has committed, the last difference record

describes the current tuple version. If this transaction has aborted, the last difference record

created by an earlier transaction is the valid one.

If the last transaction to update or delete the tuple has aborted, we have to search through

the tuple difference chain to locate the last valid version. The DBMS searches through the

chain until it finds a difference record with an XID field different from the XID of the

aborted transaction. If none is found and if the inserterXid is also equal to the invalid XID,

the entire difference chain was inserted by a single aborted transaction and is invalid. If

a new XID value is found, the difference record following the one containing that XID is

the last valid version. Obviously, if the inserterXid is the first XID not equal to the aborted

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 132

transaction’s XID, the initial tuple version is the valid one.

Recovery Costs in the POSTGRES Storage System

Three factors contribute to the costs of recovery in POSTGRES. First, the system must

be reinitialized after a failure. While no log processing is required, the DBMS must do

some work to initialize the storage system. Second, the DBMS must check for invalid tuple

versions on use. Third, overflow pages occasionally result in an extra I/O to find the current

version of a tuple. These costs are addressed one at a time in the paragraphs that follow.

At restart, the modified POSTGRES storage system simply allocates a new XID block

for each backend process and reinitializes its in-memory data structures. New XID blocks

must be allocated after a failure because the DBMS cannot tell which XIDs from the

old blocks had been allocated at the time of the failure. Because of efficiency concerns,

transactions do not stably record the fact that an individual XID has been allocated (only

XID blocks). The original storage system also needed to scan the tail of the transaction

status file, converting the state of each in-progress transaction to aborted in order to show

that the transactions in-progress at the time of the failure have aborted.

Although tuple validation is required for every tuple examined by a transaction, vali-

dation is not very expensive. Profiles of the debit/credit benchmark used in Chapter Three

showed that validation consumed about 1.5% of the DBMS’ CPU time; 1.3% came from

mapping the XID to a transaction status file slot.

The profile does not include the cost of reading transaction status file blocks from the

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 133

disk. If the transaction status file is too large to store in memory, additional disk reads will

be required to validate tuples. Notice from the previous subsection that at most one XID

per tuple is ever looked up in the transaction status file, but one disk read per tuple scanned

would still make the storage system prohibitively expensive.

Fortunately, the vacuum cleaner can be used to compact the transaction status file,

keeping the file small enough to be cached in main memory. To implement compaction,

the vacuum cleaner must record the XID of the oldest in-progress transaction at the time

the vacuum cleaner begins its sweep of the database. After the sweep is over, the database

contains no invalid tuple versions with updater XIDs smaller than this oldest in-progress

transaction’s XID. Now, if this oldest-unresolved XID is recorded, it can be used to validate

tuple versions. The transaction status file need not be consulted for XIDs smaller than the

oldest-unresolved XID; these transactions have definitely committed. The status file could

even be truncated at the oldest-unresolved XID in order to save disk space.

Because transaction status can be represented with a single bit, relatively small amounts

of memory are required for the status file cache. A DBMS that executes 128 transactions

per second consumes only 512 KBytes of status file in nine hours. Thus, even at high

transaction rates, the garbage collector can easily ensure that the status file lookups never

go to disk by running every few hours. Extremely long running transactions, however,

can prevent the status file from being compacted and affect the performance of the entire

system.

Finally, when the DBMS fails during the creation of an overflow page, the DBMS must

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 134

read two pages in order to find the most recent version of the tuples on the page. Figure 4.3

showed how POSTGRES created temporary pages to prevent historical tuple versions from

being destroyed. If the temporary page exists, it must be read into memory the first time

the page is accessed after a failure, requiring two I/Os to find the tuples on the page instead

of one.

POSTGRES requires much less I/O to recover its data than a conventional write-ahead

logging system. The conventional system must read each page referred to by a log record

during recovery. Many of the data pages read in during recovery will be replaced in memory

before the data on them is used by new transactions. Thus, these I/Os would never have

happened if the system had not failed. POSTGRES only recovers a page when the data on

the page has been accessed by a current transaction. At that point, the page must be read

into memory anyway. In the normal case, the current and previous version of a tuple reside

on the same page. Even if the current version of the tuple is invalid, no extra I/O is required

to access the data.

4.2.4 Validating Tuples During Historical Queries

When users query historical data, POSTGRES examines transaction commit times to

ensure that tuples were valid during the time period of interest. To determine the commit

time of a tuple version, the DBMS maps difference record XIDs to commit times using the

commit time file. If the current version of the tuple is in the time period of interest, the

DBMS must also check that the version was not written by an aborted transaction, using

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 135

the transaction status file as described above. Status file lookups are necessary because it

is possible for an aborted transaction to have a valid commit time. A failure might have

occurred between the time that the DBMS updated the commit time file and the time it

updated the status file, effectively aborting the transaction. Historical queries must use

two-phase locking in order to prevent the archiver from removing tuples from magnetic

disk while the query is in progress.

In order to improve the performance of POSTGRES time queries, the original storage

system copied the commit time into tuples during garbage collection. Thus, the commit

time file did not need to be searched for queries of data older than the last garbage collector

run. POSTGRES also maintains a cache of commit times to allow time queries to proceed

without constantly accessing the disk to read transaction commit times. However, this

cache must be 32 times as large as the status cache since POSTGRES represents commit

time using four byte quantities. If not enough memory is available for the cache, then time

queries will have to access the commit time file on disk during validation.

4.3 Performance Impact of Force-at-Commit Policy

Commercial database management systems do not use a force-at-commit policy for

managing data pages because this policy has poor performance on conventional disk-based

stable storage. If several data pages are forced to different locations on the disk, commit

is delayed while the disk arm seeks to each location. At commit time, a write-ahead

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 136

logging storage system only writes log records synchronously; data pages can be written

asynchronously when they are ejected from the DBMS disk cache. By placing the log on a

separate device from the rest of the database, the conventional DBMS does not have to pay

for any disk seeks at commit time.

Modern system architectures and file organizations have a large impact on the perfor-

mance of POSTGRES’ force-at-commit policy. This section compares the I/O performance

of POSTGRES and a conventional DBMS that uses a write-ahead log. To separate the ex-

pense of the POSTGRES historical data feature from the expense of fast recovery, we will

also consider two versions of POSTGRES: one with and one without the historical data

feature. The analysis considers: (a) conventional disk subsystems, (b) non-volatile RAM

(NVRAM) stable storage, (c) RAID parallel disk subsystems [61], and (d) Log-Structured

File Systems (LFS) [63]. This analysis is based on the analysis in [69] which did not consider

RAID, LFS, archiving costs, or the impact of large disk caches. The analysis in this section

shows that on a system with a sufficient amount of non-volatile RAM and a log-structured

file system, POSTGRES (with history disabled) performs about the same as a conventional

system, despite the force-at-commit policy. With history enabled, POSTGRES does at least

thirty percent more I/O than a conventional DBMS.

4.3.1 Benchmark

For the comparison, we use an analytic model based on the TP1 debit/credit benchmark

[26]. A transaction in the TP1 benchmark randomly accesses two “hot” relations (Branch

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 137

and Teller), and one “cold” relation (Account). Each of these is first read then written.

Finally, the transaction appends to a History relation, and writes any necessary log records.

In the subsection that follows, we describe first the parts of TP1 transaction execution

that the conventional system and both versions of POSTGRES execute in the same way.

Then, we describe the differences between the three DBMS versions when executing this

benchmark.

Assume that there is enough main memory available to cache all of the two hot relations,

but not all of the cold one. Thus, in steady state, the DBMS must read one Account page

from the disk and write one (different) Account page to the disk on every transaction.

History relation tuples contain 50 bytes of data and a tuple header. In POSTGRES, the

header is 60 bytes so 74 history tuples can fit on a single 8K page. Therefore, a History

block must be written to disk every 74 transactions, on average. A conventional system

will maintain less information in its tuple header. If the header is 10 bytes, then a history

page is filled every 136 transactions.

In the POSTGRES storage system, the four data blocks updated by TP1 and the transac-

tion status file block must be forced to stable storage after every transaction. The version of

POSTGRES in which history is disabled never creates overflow pages. Instead, it garbage

collects historical data on a given page whenever the page fills. For the analysis, we will

also assume that the version of POSTGRES with history disabled does not record commit

times. The commit times are only required by historical queries. Since the history-disabled

version of POSTGRES is not preserving historical data, there is no reason for the DBMS

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 138

to maintain commit times.

In a conventional file system, a TP1 transaction constructs log records containing the

before- and after- image of the updated tuples. At commit time, these log records are forced

to stable storage in a single write. We assume that the log records required to describe 20

TP1 transactions fill a log page. This corresponds to about 400 bytes of log record per

transaction.

Conventional systems typically do not keep the write-ahead log on the same disk as the

database in order to avoid disk seeks at commit time. Since the DBMS always appends

to the log, storing it on a separate device from the database means that the disk head is

always near the tail of the log and log writes are sequential I/Os. To make the comparison

fair, POSTGRES is also allowed one disk to use for sequential writes. Unfortunately,

POSTGRES does not have a data structure like the log with a strictly sequential access

pattern. If transactions commit in roughly the same order that they are initiated, however, the

transaction status file and transaction commit time file will be accessed nearly sequentially.

For the analysis, we assume that the version of POSTGRES that has disabled historical

queries stores the transaction status file on a separate device. The version of POSTGRES

with history support will store the commit time file on the separate device.

To simplify the presentation, we will call one sequential I/O two sevenths, 0.29, of a

random I/O. The number is taken from a Fujitsu Eagle drive that has an average seek time

of 30ms, average rotational latency of 8ms, and transfer speed of 4ms per 8K page. Thus,

the average sequential I/O takes 12ms and the average random one takes 42ms.

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 139

Historical Data and Archiving Costs

The version of POSTGRES that preserves historical data pays additional costs to main-

tain this data. The system must create overflow pages as described in Section 4.2.2 to store

the historical tuple versions until they are archived. The system must maintain a commit

time file so users can query the historical data as described in Section 4.2.4. Finally, the

historical data must eventually be copied to an archive device in order to leave room on the

disk for data that is generated by new transactions.

To record the historical data, overflow pages must be created every time a page fills.

The rate at which overflow pages are generated depends on how much free space is reserved

on each page for updates. If each database page contains a single tuple, 127 updates to a

TP1 Account, Branch, or Teller tuple can occur before the page fills. If thirty percent of

the page is reserved for historical data, 51 tuples can be stored on each page and a page is

filled every 38 updates. For the analysis, we assume that 30 percent of a page is left free

when the page is initialized. TP1 replaces three tuples per transaction and a page is filled

on average every 38 updates, so the DBMS must write to an overflow page every 3/38, or

0.08, transactions, on average.

In some environments, the cost of migrating data from the magnetic disk onto the

archive device could be ignored. In these environments, there is a slow period, perhaps

at night, when historical data can be moved from magnetic disk to the archive device.

For this analysis, however, we assume that there is no slow period or the slow period

comes infrequently enough that storage will need to be reclaimed during operation. This is

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 140

quite reasonable when a page fills every 38 updates and the DBMS has a sustained, high

transaction rate. If the DBMS runs at 128 transactions per second, it creates in an hour about

36,864 overflow pages and historical data consumes 288 MBytes of disk space. Therefore,

the analysis assumes that the cost of a transaction must include the cost of archiving the

historical data generated by the transaction.

While we must account for archiving costs, the analysis only considers the cost of

archiving overflow pages, not the cost of examining and archiving historical tuples on

current pages of the database. Overflow pages and the commit time file grow as a function

of the transaction rate, so it is relatively easy to determine how much of their costs to account

to each transaction. The vacuum cleaner also examines all of the non-overflow pages for

historical data, but this cost depends on the size of the database and the rate at which the

vacuum cleaner runs. It is independent of the transaction rate. In order to simplify the

analysis, we will assume that the vacuum cleaner runs infrequently enough relative to the

transaction rate that archiving costs will be dominated by the commit time file and overflow

page cost.

As stated in section 4.2.2, archived data is not written directly to the archive device in

POSTGRES. Instead, the pages are accumulated in a write buffer on magnetic disk. When

the buffer fills, it is reread from disk and the data is finally written to the archive. Thus, to

preserve the historical tuple versions on a single overflow page, the DBMS must:

(a) Create the overflow page and write it to the disk in the current database,

(b) During vacuum cleaning, read the page from disk to find the archivable data on the

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 141

page.

(c) The vacuum cleaner writes the page to the archive write buffer.

(d) The vacuum cleaner deletes the tuples from the overflow page in the current database

and rewrites it.

(e) The vacuum cleaner rereads the write buffer from the disk and pushes it to the archive.

The operations must be done in this order to prevent the archived data from being lost in a

failure.

We showed above that each overflow page generated causes several I/Os when all of the

archiving costs are taken into consideration. Each overflow page results in one random read

(b), one sequential read (e), and three random writes (a,c,d) in the current implementation

of POSTGRES. Thus, the total historical data cost is 3*0.08 or 0.24 random writes per

transaction and 0.08*1.29 or 0.1 random reads per transaction, plus one update to the

commit time file per transaction.

This section ignores some additional costs related to the archive device manager de-

scribed in Section 4.2.2. We assume that the archive device itself is not a bottleneck.

Currently, the optical disk archive used by POSTGRES runs at 1/40 of the speed of a

magnetic disk. POSTGRES does enough disk I/O that the archive device is not a bottleneck

at present. Also, the 1987 POSTGRES storage system design assumes that new indices

are also constructed for the data once it is moved to the archive. The cost of creating and

maintaining these indices is ignored in the analysis.

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 142

4.3.2 Conventional Disk Subsystem

We see the following costs in a conventional disk subsystem:

The conventional DBMS and both versions of POSTGRES each do one random read to

get the page containing the transaction’s account record.

The conventional DBMS writes one account page to disk to make room in its cache for the

new account page. Every 136 transactions, it fills a history relation block that must

eventually be written to disk. The cost of these History relation updates is 1/136,

rounded to 0.007.

Each version of POSTGRES writes the four pages that were updated by the transaction:

account, teller, branch, and history. The force-at-commit policy requires these pages

to be written to stable storage at transaction commit.

The conventional DBMS writes the page containing its log records to disk sequentially at

a cost of 0.29 random I/Os.

The history-disabled version of POSTGRES writes the transaction status file sequentially

at a cost of 0.29 random I/Os.

The history-enabled version of POSTGRES writes the transaction status file and the

transaction commit time file. Together, these cost 1.29 random I/Os since one of

these files will be written sequentially. As shown in the previous section, it also does

0.37 random reads and 0.24 random writes per transaction on average for overflow

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 143

Conventional Disk System Read Write Total
POSTGRES (history-enabled) 1 + .37 4 + .24 + 1.29 6.9
POSTGRES (history-disabled) 1 4 + .29 5.29
Write-Ahead Log 1 1 + .007 + .29 2.3

Table 4.1: Summary of I/O Traffic in a Conventional Disk Subsystem. POST-
GRES was not designed to be run without non-volatile RAM to use as stable
storage. The conventional system is able to make much more effective use of
the cache because of its write-ahead log.

pages.

These I/Os are summarized in Table 4.1.

The analysis shows that, in a conventional disk storage system, the POSTGRES no-

overwrite policy is much more expensive than write-ahead logging,whether historical data is

retained or not. There are two important reasons why the conventional system outperforms

POSTGRES in this environment. First, the conventional system can take better advantage

of caching than POSTGRES to mask disk writes to the branch, teller, and history relations.

The conventional system uses the log to make updates to these relations recoverable so dirty

blocks from these three relations do not need to be written to disk so frequently. Second,

the history-enabled version of POSTGRES records additional information that conventional

systems do not: commit times and overflow pages. This result is different from the one in

[69] because the benchmark used in that analysis never rereferenced pages once they were

written. Hence, the conventional system could not use the disk cache to absorb writes.

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 144

4.3.3 Group Commit

Most high performance DBMSs use a mechanism called group commit to reduce the

cost of transaction commit. In group commit, the DBMS batches several transactions and

commits them at the same time. Group commit improves performance of a conventional

DBMS because the log records from all transactions in the group can be written to disk

together in a single I/O operation. Instead of having one log write per transaction, there

is 1/G where G is the commit group size. Group commit does not decrease the number

of random I/Os done by the conventional system on a benchmark like TP1, because the

transactions usually update account records on different pages.

POSTGRES receives some benefit from group commit also. Many transactions can

share the same write to the status file and commit time file. All of the transactions in the

group will usually append to the same History relation page, as well. Some of the updates

to branch and teller will fall on the same pages. In a POSTGRES TP1 database with 1,000

branches and 10,000 tellers, the Branch relation has 17 pages and the Teller relation has 169.

This figure considers the overhead of POSTGRES page headers, tuple headers, and assumes

an average of 20 percent of each non-overflow page contains free space or historical data.

Assuming that each TP1 transaction chooses a record to update at random, the expected

number of pages can be calculated for any group size. At group size 20, about 5% of the

Teller page writes fall onto dirty pages as do 60% of the Branch writes. Thus, transactions,

on average, write .95 and .40 percent of a Teller or Branch page, respectively, for a total of

1.35 random I/Os. At group size 20, POSTGRES will write the History relation once per

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 145

Group Commit, Group Size 20 Read Write Total
POSTGRES (history-enabled) 1.37 2.4 +0.014 + .24 + 0.05 4.07
POSTGRES (history-disabled) 1 2.4 + 0.014 3.41
Write-Ahead Log 1 1 + 0.007 + 0.014 2.02

Table 4.2: Group Commit in a Conventional Disk Subsystem. POSTGRES
benefits more than the conventional system from group commit, since some of
the many random I/Os are eliminated. The four POSTGRES force-at-commit
I/Os for the TP1 relations become 2.4 I/Os because some pages in the relations
are rereferenced by consecutive transactions in the group. The table shows
the I/O traffic when the group size is 20.

group or 0.05 times per transaction. The total number of random I/Os for the four relations

is 2.4. The transaction status file and log are written sequentially once per group for a cost

of 0.05 * 2/7 or 0.014. The history-enabled version of POSTGRES writes the commit time

file once per group at a cost of 0.05 random I/Os per transaction.

4.3.4 Non-Volatile RAM

The original POSTGRES storage system was designed to use non-volatile RAM to

reduce the number of random I/Os required at commit time. POSTGRES would use

NVRAM, presumably in combination with guarding, as stable storage so data could be

stored recoverably without writes to disk. NVRAM changes the costs of the three systems

to the following:

Again, each DBMS does one random read to get the page containing the transaction’s

account record. The conventional DBMS must write a dirty account page to disk

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 146

every transaction in order to make room in the cache for the new page. POSTGRES

will have to do the same, although it is making room in NVRAM for the account

record to be written at commit time.

POSTGRES will be able to store the tail of the History relation in NVRAM. As before,

the conventional system fills a history relation block every 136 transactions at a cost

of 0.007 random I/Os per transaction. In POSTGRES, History relation blocks are

filled every 74 transactions at a cost of 0.014 random I/Os per transaction because

POSTGRES has larger tuple headers. POSTGRES will use NVRAM to mask writes

to the history relation until a page has filled.

When enough NVRAM can be made available, POSTGRES can buffer TP1’s two hot

relations in NVRAM also. The branch and teller relations together take about 1.5

MBytes, in POSTGRES. Let P be the fraction of the two hot relations that can be

stored in NVRAM.

When NVRAM is available, the conventional DBMS only writes log records to disk when

a log page has filled. We assumed that this would take 20 transactions, so the logging

cost is 0.05 sequential or 0.015 random I/Os per transaction.

If NVRAM were available, POSTGRES would certainly keep the tails of the status file

and the commit time file there. Every 64K transactions, a status file block fills and

must be written to disk. In the historical-query version of POSTGRES, a commit

time file block fills every 2K transactions. These numbers are small enough that we

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 147

will omit them from the analysis.

The history-enabled version of POSTGRES still must write overflow pages to disk every

38 transactions.

Table 4.3 summarizes disk activity required for each storage system when NVRAM is

available for stable storage. The POSTGRES costs are parameterized by P, the fraction of

the hot relations that can be buffered in NVRAM. In POSTGRES, a TP1 database with

1,000 branches and 10,000 tellers could be buffered in about 1.45 MBytes of NVRAM. This

figure considers the overhead of POSTGRES page headers, tuple headers, and assumes an

average of 20 percent of each non-overflow page contains free space or historical data.

POSTGRES and the conventional system have comparable speeds if enough NVRAM

is available for POSTGRES to cache the hot relations. The conventional system cannot

take much advantage of NVRAM; the only improvement it sees due to NVRAM is fewer

log writes. POSTGRES can use NVRAM to absorb disk writes in the same way the

conventional system used the volatile RAM cache. The NVRAM also masks the cost of

maintaining a commit time file for the history-enabled version of POSTGRES.

4.3.5 RAID Disk Subsystems

Next, we consider the cost of running POSTGRES on a RAID disk subsystems[61].

RAIDs are parallel disk subsystems that use parity to provide media recovery at lower costs

than standard techniques such as disk mirroring. A RAID is divided into stripes of N-1 data

blocks and one parity block, each on a different disk. If one disk fails, each block on the

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 148

Non-Volatile RAM Read Write Total (P=1)
POSTGRES (history-enabled) 1.37 1.014 + 2*(1-P) + 0.24 2.62
POSTGRES (history-disabled) 1 1.014 + 2*(1-P) 2.01
Write-Ahead Log 1 1.007 + 0.015 2.02

Table 4.3: Summary of I/O traffic When NVRAM is Available. The number
of random I/Os required by POSTGRES depends on the amount of NVRAM
available. If all of the branch and teller relations can be cached, POSTGRES
with the history feature enabled is about thirty percent slower than the other
two systems. POSTGRES with history disabled is slightly faster than the
conventional system in this environment because it does not have to write log
pages.

failed disk can be reconstructed using the parity block and the N-2 other data blocks from

its stripe. Unfortunately, maintaining parity blocks worsens random write performance

significantly. When a data block is randomly written, the I/O subsystem must (a) read the

parity block, (b) reread the data block from disk so its original value can be determined (c)

compute a new parity block from the old parity block, old data block, and new data block,

and (d) write the parity block out again. Thus, each random write causes two additional

random reads and a random write. The additional reads can be eliminated for random

I/Os if the I/O subsystem has enough physical memory available for caching parity blocks

and the original values of the data blocks. Since the DBMS is already delaying writes as

long as possible, such caching is unlikely to be very effective, especially when NVRAM is

available.

Because of parity blocks, RAID quadruples the number of random I/Os required by

every transaction in either storage system. Therefore, RAID increases the amount of I/O

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 149

RAID + NVRAM P=1.0 P=0.875 P=0.5
POSTGRES (history-enabled) 6.39 7.39 10.39
POSTGRES (history-disabled) 5.06 5.06 9.06
Write-Ahead Log 5.021 5.021 5.021

Conventional disk + NVRAM P=1.0 P=0.875 P=0.5
POSTGRES (history-enabled) 2.62 2.87 3.62
POSTGRES (history-disabled) 2.01 2.26 3.01
Write-Ahead Log 2.02 2.02 2.02

Table 4.4: Comparison of Random I/Os in RAID and a Conventional Disk
Subsystem. Reading and writing RAID parity blocks increases the penalty
for insufficient NVRAM to buffer random writes in POSTGRES. P is the
fraction of the branch and teller relations that can be buffered in NVRAM.
The upper part of the table shows the affect of limited NVRAM when the
database resides on a RAID. The lower table shows the effect of NVRAM
when a conventional disk subsystem is used. The P=1.0 column in the lower
table is the same as the right column of Table 4.3. The middle and right
columns are 8*(1-P) and 2*(1-P) plus the left column for the upper and lower
tables, respectively.

that takes place when insufficient NVRAM is available to buffer the hot relations. The

2*(1-P) random writes from Table 4.3 become 8*(1-P) random I/Os when parity blocks are

considered. This becomes one extra write per transaction on average when P is 0.875 and

four extra writes per transaction when P is 0.5.

4.3.6 RAID and the Log-Structured File System

Finally, the Log-Structured File System (LFS) described in [63] can be used to eliminate

the random writes required by the DBMS and to reduce the cost of maintaining parity on

a RAID. LFS organizes the disk as a collection of half-megabyte segments. One of these

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 150

segments is the current segment, or tail of the log. When an updated file block is forced to

disk in LFS, the file system appends the block to the current segment rather than seeking

to the block’s original location on disk and writing it there. The file system meta-data is

updated in memory and logged to the current segment also, so future reads can find the

newer version of the block. Eventually, LFS garbage collects old segments, throwing away

out-of-date blocks. The blocks that are not out-of-date (“live” blocks) are coalesced into a

new segment and rewritten.

LFS improves DBMS performance on a RAID because it turns random writes into

sequential writes. When enough NVRAM is available to allow the system to buffer a large

amount of data, the write traffic for many transactions can be batched together into a large

sequential write. If the data is written to disk in full stripes, the stripe’s parity block can be

computed from the N-1 other blocks in the stripe. This eliminates the cost of reading parity

blocks and amortizes the cost of writing a parity block over N-1 blocks of user data.

While LFS turns random writes into sequential writes, garbage collection increases the

number of blocks that must be read and written by the TP1 transaction. Garbage collection

cost depends on how much live data is contained in the garbage collected segment. If F

is the fraction of live data on a garbage collected segment, the TP1 transaction must read

one block and rewrite F blocks for every block of free space it reclaims. Therefore, each

random write from Table 4.3 becomes roughly (2+F) sequential I/Os, or 2/7 * (2+F) random

I/Os when LFS is used. Table 4.5 shows the bottom line: when LFS is used and enough

NVRAM is available, the POSTGRES storage system is as fast or faster than a conventional

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 151

LFS/RAID/NVRAM P=1.0 P=0.875 P=0.5
POSTGRES (history-enabled) 2.12 2.27 2.72
POSTGRES (history-disabled) 1.61 1.86 2.61
Write-Ahead Log 1.62 1.62 1.62

Conventional disk + NVRAM P=1.0 P=0.875 P=0.5
POSTGRES (history-enabled) 2.62 2.87 3.62
POSTGRES (history-disabled) 2.01 2.26 3.01
Write-Ahead Log 2.02 2.02 2.02

Table 4.5: Comparison of I/Os in LFS RAID and a non-LFS Conventional
Disk Subsystem. LFS sequentializes I/O and eliminates the I/Os associated
with calculating parity block changes for the blocks updated by a TP1 trans-
action. As in the previous tables, P is the fraction of the branch and teller re-
lations that can be buffered in NVRAM. Ten percent of each segment garbage
collected by LFS is assumed to be live data. Again, POSTGRES can outper-
form a conventional DBMS in this environment because it writes fewer log
pages and pays little penalty for non-sequential write behavior.

storage system. LFS reduces the cost of constructing parity blocks and eliminates the disk

seeking that force-at-commit causes in non-LFS file systems.

Not addressed here is the fact that LFS randomizes the layout of pages on disk, so

sequential reads during queries are effectively impossible. This problem is discussed in

[65] and database reorganization strategies to minimize this effect is a subject of continuing

research. Measurements presented in [65] comparing sequential Account file reads after

four hours of TP1 transactions on LFS and a conventional file system show the LFS read to

be about 1/3 slower than the conventional file system read.

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 152

4.3.7 Summary

In summary, large amounts of NVRAM are crucial to the performance of POSTGRES for

update-intensive applications such as TP1. A WAL-based system is able to buffer updated

pages in volatile memory and use the write-ahead log to guarantee the durability of updates.

POSTGRES can only buffer updated pages in NVRAM. Therefore, the performance of

POSTGRES is comparable to that of a WAL-based DBMS if the heavily-updated parts of

the DBMS can be cached in NVRAM. When POSTGRES is used with a RAID, the penalty

for insufficient NVRAM increases by about four times; four random I/Os are required for

every random I/O required on a conventional disk system. Using a log-structured file system

changes the way in which RAID parity blocks are calculated, hence eliminates this penalty.

Thus, even on a RAID I/O device, POSTGRES performs well when enough Non-volatile

RAID is available. This section also indicates that, while a DBMS can use the fast recovery

features of POSTGRES without losing performance, the historical data feature reduces

performance by about 30 percent in a high-update-rate environment.

The analysis in this section also drives home the importance of techniques like page

guarding to both conventional systems and to POSTGRES. Using NVRAM as stable storage

only makes sense if data stored there is safe from errors. Because of the increasing

importance of software errors, systems can only assume that data in NVRAM is safe from

errors if precautions such as guarding are taken.

Finally, we have assumed in this section that the archive device itself is not a bottleneck.

Current POSTGRES measurements [59] show that data can be archived to optical disk at

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 153

about a fortieth the rate that it can be stored on magnetic disk. Given the current archiver

implementation, archive data is not generated quickly enough for the archive to limit

performance. However, POSTGRES archives all information that a conventional DBMS

would store in its log. Performance of a conventional high performance DBMS is usually

limited by log device speeds. Hence, it is conceivable that a redesign of the storage system

would make archiving a bottleneck.

4.4 Guarding the Disk Cache

Large main memory disk caches help DBMS performance significantly, but make the

outage that occurs after a software failure more noticeable to customers. After a software

failure, the disk cache (DBMS buffer pool) is usually discarded because the extent of the

damage caused by the error is unknown. Rather than risk propagating corrupted data into

the permanent database, the DBMS reinitializes the disk cache using the clean versions

of the cached pages on disk. The recovery cost of demand-paging the database into main

memory is:

disk-seek-time * effective-cache-size / page-size.

Ignoring the effect of disk arm contention with currently executing transaction, recovering

the disk cache takes about 4 minutes if the disk seek time is 30ms, the effective cache size

is 64Mbyte and the page size is 8 KBytes.

Chapter Two, however, showed that the most common types of errors are not the ones

most likely to damage data in the buffer pool. Most errors are control errors which do

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 154

not affect the guarded buffer pool. If the buffer pool is guarded to prevent corruption by

addressing errors, the DBMS can reuse the old buffer pool after a failure. Reliability is only

affected if errors have propagated to buffer pool pages, but not to pages stored on disk (or

in stable memory). This section describes the situations under which additional reliability

risk does occur. We must consider four separate cases.

First, an error could corrupt the values that are being inserted into the database. For

example, a data error could cause ten dollars to be deducted from a bank account instead of

one dollar. If the transaction is allowed to commit, these errors will become unrecoverable

whether the buffer pool is guarded or not. Because of transaction durability, all updated

tuples become permanent at transaction commit time. In a conventional system, the cor-

rupted values are written to the log; in POSTGRES, the corrupted values are written into

data pages and forced to stable storage. Thus, recovering from a guarded buffer pool does

not increase reliability risk due to this first class of errors.

Second, an error could corrupt data on the same page as a tuple updated by the DBMS.

In POSTGRES, this corrupted page will be written to stable storage at the end of transaction.

In a conventional DBMS, the corrupted page will remain in the buffer pool until it is replaced

or until the next checkpoint. If the DBMS fails before the page would have been written

to stable storage in a conventional system, recovering the buffer pool from disk would

clear the damaged page, hence guarding reduces reliability in this case. In POSTGRES,

the damaged page is written to disk at transaction commit, so reloading the buffer pool

provides no benefit. Presumably, the DBMS would reload any pages that were unprotected

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 155

at the time of the failure. This class of errors argues strongly for the deferred write model

of guarding, which is unlikely to affect unmodified records on a page containing modified

ones.

Third, an error could corrupt a page that is not updated by any transactions at all.

The data from Chapter Two shows that it is unusual for “random” pages in memory to be

damaged by errors. When they do occur, such errors are also the ones that are most likely

to be detected by guarding.

The fourth error case to consider is corruption of the buffer map. Buffers are identified

by a mapping between <relation ID, blockNumber> and the buffer. Even if the page is not

physically corrupted by an error, corrupting the mapping will effectively corrupt the data.

By saving <relation ID, blocknumber> pair in the header of each data page, this kind of

error can be detected on use.

In summary, recovering without reloading the buffer pool will improve availability at

some risk to DBMS reliability. Given the available data on software errors and the lack of

available techniques for measuring software reliability, it is hard to quantify the increase in

risk. Case two, corrupting data near updated tuples, and case three, random corruption of

the buffer pool are the only ways the recoverable cache can decrease reliability. The exact

increase in risk depends on how effective guarding is at preventing errors and how long

errors remain undetected after they occur. The data in Chapter Two is not conclusive, but it

indicates that the risk to guarded data in the buffer pool is small, especially if the deferred

write model of guarding is used.

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 156

4.5 Recovering Session Context

In order for a DBMS client program to submit queries to the POSTGRES backend (or

server) process, it must establish a communication session with several kinds of state that

can be lost in a failure. Reestablishing sessions between clients and the server is slow for

four reasons. First, recovery is client-driven. The clients must detect through timeouts

that the DBMS server has failed before any recovery actions can begin. Second, restoring

sessions requires messages to be exchanged between client and server processes, hence

transmission delays are incorporated into the recovery time. Third, when the server has

many clients, all of them try to reconnect at the same time and contend for server resources.

Finally, if a client is awaiting confirmation of a transaction commit, it must query the

database to determine whether or not the commit occurred before the system crash. If the

transaction did not commit, the client must resubmit it. When a transaction is short enough

(e.g. debit/credit workload), the entire transaction can be contained in a single message so

every client needs to find out if its last transaction committed before submitting a new one.

This section describes techniques developed in the course of this dissertation for reducing

the impact of these problems. In the modified version of POSTGRES, recovery is server-

driven. It allows sessions to be created and stored so clients do not have to run the reconnect

protocol before new queries are submitted to the DBMS after a failure. The session recovery

mechanism also integrates the POSTGRES storage system and the communication protocol

in order to determine quickly whether or not a clients’ last transaction succeeded. Finally,

the recovery mechanism takes advantage of guarded memory to limit the number of clients

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 157

that need to communicate with the server during recovery from software errors.

4.5.1 Communication Architecture of POSTGRES

The original version of POSTGRES had a backend-per-client software architecture; one

backend process was created for each DBMS client requesting service from the DBMS. In

the original version of POSTGRES, the DBMS was considered available again when the

DBMS server was ready to accept new connections from clients. Little work had been done

to help clients determine how to reestablish state lost in the failure.

Partly in order to support fast recovery, the architecture was changed so that all clients

connect to and share a pool of DBMS backend processes. When a message arrives from

one of the clients, it is queued in shared memory. Every time a backend process becomes

idle, it chooses a session with pending work and does the work. Once a client’s session is

assigned to a given backend process, the backend continues working with the client until

the end of a transaction. This simplifies the implementation substantially since backend

processes are not multi-threaded and POSTGRES has a great deal of per-transaction state.

In order to simplify the protocols described below, we assume that a client does not submit

more than one transaction in a single message.

To simplify the description of the recovery mechanism that follows, we break client/server

communication into five phases based on the status of the client’s outstanding transaction:

unsubmitted, submitted, queued, executing, and committed/unconfirmed. These phases are

summarized in Figure 4.5. When a client has no outstanding transaction, the communi-

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 158

cation protocol is in the unsubmitted phase. The second phase, submitted, takes place

while the message initiating the transaction is in transit between the client and the server.

The queued phase fills the time between the arrival of the message and the assignment of

the transaction to a backend process for execution. The executing phase is next and may

involve additional message traffic between the client and server. After the DBMS commits

the transaction, the protocol begins the committed/unconfirmed phase which lasts until

the client receives confirmation of the commit from the server. Because all executing trans-

actions are aborted anyway after a failure, unconfirmed aborts are effectively the same as

executing transactions. When transactions abort, the executing phase simply continues until

the abort confirmation arrives at the client. After the commit/abort status of the transaction

is confirmed, the unsubmitted phase begins again.

Before sending transactions to the DBMS server, the client application must authenticate

itself and initialize a session. The original version of POSTGRES used a communication

protocol implemented using operating-system-supplied virtual circuits (TCP/IP [19]). For

the work described in the current Section, POSTGRES was modified to use a reliable

datagram protocol built on top of the unreliable datagrams provided by the operating

system (UDP [19]). Reimplementing parts of the network protocol at user level gave

POSTGRES control over the system state used in interprocess communication. Because

this state is managed by POSTGRES instead of the operating system, it can be saved at

session establishment time and restored after a failure. As in TCP/IP connections, reliable

datagram sessions are established in a three-message exchange between the client and the

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 159

Unsubmitted

Phase

Submitted

Phase

Client Prepares

Next Transaction

Transaction

in Transit

Queued

Phase

Awaiting Service

at DBMS

Phase

Client Prepares

Next Transaction

Committed/

Unconfirmed

Executing at

DBMS Server

Confirmation

in Transit

Executing

Phase

Unsubmitted

Phase

Figure 4.5: Phases of the Client/Server Communication Protocol. The unsub-
mitted phase ends when the client sends a message containing a transaction
to the DBMS server. The submitted phase ends when the server accepts the
messages and queues its contents for service. The queued phase ends when
a server process is available to execute the transaction. The executing phase
ends when the server commits the transaction. The committed/unconfirmed
phase ends when the client receives confirmation of the transaction’s commit.
The executing phase may contain other client/server communication if the
transaction requires more than one message and this phase leads directly to
the next unsubmitted phase if the transaction is aborted.

server in which sequence numbers are established and the client is authenticated. The

dissertation considers only server recovery, hence, the section that follows contains no

provisions for saving and restoring state present only at the client.

4.5.2 Recovery Mechanism for POSTGRES Sessions

To reestablish communication with a client after a failure, the server must restore four

kinds of session state:

(1) Authentication information: When a client has been authenticated, the server gener-

ates an authentication token. The client must send the token with every subsequent

message to prove it has been authenticated.

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 160

(2) Peer address: The client and server must each record the other’s network address.

(3) DBMS context: In addition to the communication-related context, clients have some

database-related context that is maintained with the session. For example, the client

states the name of the database it is operating on when it establishes a session.

(4) Sequence numbers: A sequence number is recorded for the next incoming and outgo-

ing network packet in order to detect lost and duplicated packets.

The first three items are generated at the beginning of the session and not modified again until

the session is closed. Sequence numbers change every time a message is sent or received

and the server’s sequence numbers must agree with the sequence numbers maintained at

the client. Saving the sequence numbers of a session that is actively being used is two

expensive to be practical, however, an established, but unused, session can be described by

a small structure containing the first three kinds of state plus the initial sequence numbers

for the session.

In order to have sessions that are ready to use at recovery time, POSTGRES allows clients

to create backup sessions and save the server side of the backup session on stable storage.

After a failure, the client and server can begin to use the backup sessions immediately

without going through the normal session establishment protocol. When a client initially

connects to the server, it establishes several sessions simultaneously, using a single three-

way message exchange. Each of these sessions has a unique authentication token, but

all share the same peer address and DBMS context. One of the sessions established is

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 161

designated the active session and used for the initial communication between client and

server. The other sessions are linked into an ordered list and saved on stable storage.

Backup sessions are always activated in the order assigned them when they were created.

After a failure, a backup session can be activated in one of two ways. First, either the

client or the server can activate a session simply by sending a message using that session.

The client can also ask the server to activate a backup session automatically if the primary

session has failed. To request an automatic activation, the client appends a backup session’s

session ID and authentication token to every request it sends to the server. If the primary

session has been lost in a failure, the DBMS acts as if it received the message using the

backup session. Eventually, new sessions can be established to replace the ones destroyed

during the failure, but the database is available while the backup sessions are being replaced.

The automatic activation mechanism is designed to help avoid additional communication

when a client submits a new transaction after a server failure. Without such a mechanism,

the server would reject the first message each client sent after a failure and force the client

to resend the message using one of the backup sessions. This mechanism just piggybacks

the information that would be resent onto the first message, making the message eight bytes

longer but avoiding a retransmission after a failure. Note that only the message that initiates

a transaction can specify a backup session. Once the transaction begins, the client must do

extra work to handle transaction aborts as described below anyway, so the extra message

traffic cannot be saved.

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 162

4.5.3 Restarting Transactions Lost During Failure

Because all communication between client and server is associated with a transaction,

the recovery action required to restore data that was in transit at the time of the failure is

fairly straightforward. If a given client session was in the submitted or queued phase, the

outstanding transaction must be resubmitted. If the transaction was executing at the time

of the failure, it has been aborted. An aborted transaction can be resubmitted unless the

transaction is complex enough that higher level abort recovery procedures are required.

For this section, we will assume that if an aborted transaction cannot be resubmitted then

fast recovery is impossible. If the transaction was in the unsubmitted, then the client

simply continues normally. If the client was in the committed/unconfirmed phase, it can

continue without resubmitting the transaction as soon as it confirms that the transaction has

committed. Thus, to recover the data in-transit at the time of the failure, the client must

only determine whether or not to resubmit the last transaction.

To determine which phase the communication protocol was in at the time of the failure,

POSTGRES uses the transaction identifiers (XIDs) discussed in Section 4.2. In addition

to the four items of session state described above, each POSTGRES session is allocated

an XID. The initial XID is sent to the client as part of the session establishment protocol.

Every time the server confirms a transaction commit, a new XID is allocated and sent to

the client in the confirmation message. The client saves the current XID of the session to

be used in recovery if the server ever fails.

After a failure, the server sends a recover message to each client, telling the client that

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 163

a failure has taken place. After receiving a recover message, the client assumes that the

last transaction was either lost or aborted and resubmits it using a new session. The client

also sends the both the XID and the session ID used by the transaction the first time it was

submitted. These two items will be used to determine if the transaction was committed but

unconfirmed when the server failed.

After receiving the resubmitted transaction, the DBMS server looks up the XID sub-

mitted by the client in the transaction status file. If the status file shows that the transaction

has committed, the transaction was committed but unconfirmed at the time of the failure.

The server resends a confirmation message in this case and does not reexecute the transac-

tion. If the lookup returns “aborted,” the transaction was in one of the other states when

the server failed. The DBMS then assigns the transaction a new XID, the one associated

with the current session, and executes it. The transaction cannot reuse the old XID since

uncommitted tuple versions with that XID may have been created before the failure.

If the server fails again before completing the resubmitted transaction, the client will

resubmit the transaction again using the next available backup session. As before, the client

must send the XID used when the transaction was originally submitted and the session

ID of the initial session over which the transaction was submitted. Since the sessions are

ordered, the server will realize that it has received the second resubmission of a transaction

(the original session ID and the current session ID will differ by two). This time, the server

must check two XIDs when it receives the resubmission. Either the original submission

of the transaction or the first resubmission may have resulted in transaction commit. The

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 164

XID for the session used in the first resubmission is determined from the backup session

structure stored on stable storage. Again, if either of them committed, a confirmation is

sent to the client. If neither did, the transaction is reexecuted using the XID associated with

the current session.

If the server fails more than two times without completing a transaction, the same

procedure is followed until the client runs out of backup sessions. Each time the server

fails, the client resubmits the transaction using a new backup session. Because sessions are

ordered and the client sent the session ID of the first session used to submit the transaction,

we can find all XIDs that might have been associated with the transaction. The DBMS

checks the XID for each session between the initial one and the current one, sending a

confirmation message if one of them is committed. The session structures on stable storage

are used to find the XID associated with each of the intermediate sessions. Once the

transaction is executed and the client receives a confirmation of the commit, it will send a

new transaction (not a recovery message). When the server receives the new transaction,

the old sessions can be garbage collected from stable storage.

Using these techniques, the server still must send a recover message to every client

at recovery time, and every client that has an outstanding transaction must resubmit that

transaction. If guarded memory is available, however, the server can recover with reduced

message traffic after software failures. Guarded memory buffers are used to store the

messages containing queued transactions. By also maintaining a guarded memory list of

clients that have acknowledged their commit confirmation message, the server can avoid

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 165

sending messages to most clients in the unsubmitted state as well. At recovery time,

the server sends recover messages to some clients in the resubmit state and all clients

in the executing and committed/unconfirmed state. Only clients in the executing and

committed/unconfirmed state ever resubmit transactions. Fewer messages from the server

and fewer clients requesting recovery actions will help the system scale to larger numbers

of clients.

4.6 Summary

Fast recovery techniques such as those discussed in this chapter are an important com-

ponent of the fault tolerant system. The error detection mechanisms normally used in fault

tolerant systems and the new error detection mechanism presented in Chapter Three halt

the system when an error is detected. This makes the system more reliable, prevents it

from producing incorrect results, but also makes the system less available to its users. In

addition to detecting its errors, the system must minimize the length of time that it takes

before beginning to accept new transactions. Also, the mechanisms used to limit downtime

must be simple enough that they do not reduce reliability as they increase availability.

Because processing the write-ahead log consumes the bulk of the recovery time in a

conventional system, the key fast recovery feature in POSTGRES is the 1987 storage system

design, which allows systems to restart without log processing. This chapter builds on the

original storage system design by providing enhancements that improve storage system

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 166

performance on transaction processing workloads. The enhancements include backward

differencing of tuple versions, shorter tuple difference chains, a shortened transaction status

file, and a faster strategy for system restart. We also provide more details to data page

garbage collection than were considered in the original design.

This chapter does a thorough analysis of the impact of the POSTGRES force-at-commit

buffer management policy on TP1 performance. The analysis shows that the optimized

version of the POSTGRES storage system does the same amount of I/O as a conven-

tional storage system when a sufficient amount of non-volatile RAM is available and the

POSTGRES historical data feature is disabled. For TP1, about 1.5 MBytes of NVRAM

is required for performance comparable to a WAL DBMS. When a RAID disk subsys-

tem is used, POSTGRES still performs as well as a conventional system as long as the

log-structured file system (LFS) is used. When the POSTGRES historical data feature is

enabled, the analysis shows that POSTGRES does about thirty percent more I/O.

Finally, this chapter extends POSTGRES fast recovery support by with mechanisms

for recovering the state required for communication between clients and the DBMS server.

Saving client/server connections in stable storage allows the client to begin submitting

transactions to the server immediately after the server recovers from a failure, without first

going through a connection reestablishment protocol. The chapter also discusses the effects

of using the guarded memory facility introduced in Chapter Three to reduce the need to

reload the disk cache after a failure.

Technology trends are making the fast recovery benefits of POSTGRES more practical in

CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 167

many environments, particularly high end data processing systems. Increasing CPU speeds

are reducing the already small performance impact of POSTGRES garbage collection and

run-time checks. Hopefully, the performance impact of guarded memory will be reduced in

faster processors as well. The costs related to force-at-commit can be controlled if enough

NVRAM are made available to the DBMS. NVRAM prices are dropping and are currently

about four to six times the cost of volatile RAM [4]. As cost effective, high performance

systems become easier to build with new generations of hardware, customers will be more

willing to trade limited amounts of transaction performance for high availability.

168

Chapter 5

Supporting Indices in the POSTGRES

Storage System

5.1 Introduction

Both the original version of POSTGRES and the extended one presented in Chapter Four

addressed ways that no-overwrite strategies in the management of heap (unkeyed) relations

could improve DBMS availability. Chapter Five considers the effects of no-overwrite

recovery strategies on DBMS index data structures, an issue omitted from the original

POSTGRES storage system. In this chapter as in the previous one, the goal is to support

fast DBMS recovery and reduce down time after failures. By recovering without relying on

a write-ahead log, the database becomes available immediately after the DBMS is restarted.

If the failure causes inconsistencies in the index data structures, these are detected and

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 169

repaired as they are encountered. From an availability standpoint, this is a better strategy

than checking for and repairing all inconsistencies at DBMS restart time.

Most database management systems treat indices and heap relations in different ways

because indices have higher concurrency requirements than heap relations and have more

complex structure. For example, a high performance DBMS often uses two-phase locking

only on the heap relations and short-term locks on B-tree index pages. In two-phase locking,

data updated by a transaction remains locked until the transaction commits. Non-two-phase

locking improves concurrency in indices because many unrelated index keys are accessed

using the same internal pages of the index. If one transaction modifies a shared internal

page, two-phase locks would prevent other transactions from using the page until the first

transaction committed. Non-two-phase locking complicates recovery, however, because

one transaction, A, can insert a key using a shared page modified by another transaction,

B. If A commits, it must also commit the shared page in order to commit the inserted key.

If B aborts, it must not undo any modifications to the shared page or it might also remove

access to the key inserted by transaction A.

The POSTGRES storage system techniques described in Chapter Four will not provide

recovery when these non-two-phase locks are used. The POSTGRES storage system

associates a transaction identifier (XID) with any update to the database. When the data

is examined, the XID is mapped to a status bit to determine whether or not the transaction

has committed. Because XIDs are allocated to transactions, one transaction cannot commit

changes that depend on updates made by other transactions.

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 170

A second problem for index management in the POSTGRES storage system is that

inserting a single key into an index sometimes requires several pages to be updated. For

example, in a B-tree index, adding a key to a leaf page can cause the leaf page to split,

which in turn causes the leaf’s parent to be updated. The page split modifies the contents of

several pages and changes the inter-page pointers that maintain index structure. Failing after

some but not all of the updated pages have been written to stable storage leaves the index

structurally inconsistent. In a conventional DBMS which uses a write-ahead log (WAL)

protocol for recovery, the atomicity of index updates is guaranteed by log processing at

recovery time (e.g. [56]). In these systems, the log records describing structural changes

to the index are written to stable storage before the updated index pages. During recovery,

the structural changes are redone and the inconsistent pointers are repaired before new

transactions are allowed to update the index. Because POSTGRES has no log, it requires

other solutions.

In [54], the DBMS maintains consistency of B-tree indices by adding extra synchronous

disk writes and by controlling page write order. For example, if a new index pageP is created

in a page split, P must be forced to stable storage synchronously before any page of the index

that contains a pointer to P . POSTGRES index management assumes that synchronous

writes to a single file are unordered for two reasons. First, using several synchronous writes

per page split would significantly worsen page split performance. Controlling write order

in a single multi-page synchronous write is not allowed in UNIX-based operating systems

and would worsen the performance of disk scheduling algorithms even if it were allowed. A

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 171

second and more important reason not to depend on write ordering for index management

is that it will not work for some common kinds of indices. Section 5.3.6 describes an

example from the Blink-trees used in POSTGRES. No write order exists that will leave this

data structure consistent during the entire page split. 1 In file systems that support efficient

transactional updates to files, such as the version of the log-structured file system described

in [65], solutions based on control of write order will perform well and will be simpler than

the techniques described in this chapter.

This chapter presents two general techniques for maintaining index consistency with-

out using write-ahead logging. In both techniques, the DBMS detects on first use any

inconsistencies in the index caused by interrupted updates. When an inconsistency in the

index is discovered, consistency is restored by reexecuting incomplete page split or merge

operations. Although we have implemented them only for Blink-trees, the same techniques

can be used for R-trees [33], extensible hash indices [27], and other B-tree variants such as

B�-trees [18].

One of the two techniques uses a no-overwrite strategy which is similar to shadow

paging [53]. The before-image of a page to be split is left intact on stable storage until

the two half-pages resulting from the split have been written out. Although recovery

mechanisms based on shadow paging have been abandoned in commercial systems because

of the performance problems experienced by System R [31], they are a practical mechanism

1When the chapter refers to “conventional” B-trees, it assumes that write-ahead logging is used for
recovery, not ordered writes. Commercial systems sometimes use the ordered write model despite its
problems. Customers also sometimes use non-recoverable indices, preferring to rebuild the indices from
scratch when the indices are corrupted to suffering the performance penalties of the ordered-write model.

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 172

for managing indices. Shadow paging makes sequentially-ordered pages in the file non-

sequential on the disk. While non-sequential ordering ruins the performance of clustered

relation scans, it is not an issue for index files. The shadowing technique, however, requires

the index to store pointers to the locations of before-images of its pages. These additional

pointers cause the shadow page B-tree to use more disk space than a conventional B-tree.

The second technique, page reorganization, eliminates that space overhead, but performs

poorly when the same index page splits many times during the same transaction. The page

reorganization scheme ensures that keys moved from one page to another in a split are

always available on either the source or destination page. A hybrid between the two

algorithms could preserve the best features of each at a cost of greater software complexity.

The hybrid would use different algorithms for splitting pages near the root and near the leaf

of the B-tree. Using the shadowing technique at the leaf nodes where page splits are most

common would maintain high performance during page splits. Using page reorganization

near the root would reduce space overhead.

The index management techniques used in POSTGRES can even improve the perfor-

mance and reliability of a conventional write-ahead log storage system. In these systems,

B-tree index implementations record structural changes to the index in the log. The keys

involved in page splits and merges must be physically copied into the log in order to guaran-

tee the structural integrity of the index. Using POSTGRES indices would allow the system

to log the keys inserted and deleted from the index, but not the keys involved in struc-

tural changes. Combining POSTGRES index management with conventional write-ahead

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 173

logging would have both performance and software fault tolerance benefits.

This remainder of this chapter is divided into five parts. The first one lists some

assumptions used throughout the chapter. The second section describes the new index

management techniques. A third section discusses the implications of the techniques for

a conventional storage system based on write-ahead logging. The fourth section evaluates

the performance impact of these techniques and the fifth section gives conclusions.

5.2 Assumptions

An index allows the DBMS to improve access to tuples in a base relation. Entries in

the index are <V , TID> pairs where V is a key value and the TID (tuple identifier) is a

pointer (page number, offset) to a tuple in the base relation. The index implementation must

support an insert operation that adds entries to the index, a delete operation that removes

entries, and a lookup operation that returns the TID associated with a given key. B-trees

often allow a GetNext and GetPrev operation which returns the <V , TID> pair following

or preceding the last key looked up. In POSTGRES, these operations are implemented as

options to the normal lookup operation.

The algorithms described in this chapter require each key managed by the index to be

unique. Since indices are sometimes built using attributes that can have duplicate values,

the DBMS must convert each user-visible key value V into a pair <V , OID> before it is

entered into the index. The OID is the unique object identifier associated with the object

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 174

referred to by the index entry. Because the OIDs are unique, the keys inserted into the

index are unique. This conversion adds four bytes to the size of every key. Note that the

Lehman-Yao concurrency control algorithms used in most B-tree implementations make

the same assumption. Therefore, these four bytes of overhead are not an overhead we

associate with the shadow or page reorganization B-trees in the analysis of this chapter.

In POSTGRES, all pages that are modified by a transaction must be written to stable

storage before the transaction commits. For the purposes of this paper, when the DBMS

syncs its pages, all modified pages are written to disk. They are written to disk in an

order chosen by the operating system, not the DBMS. When a crash occurs during a sync

operation, any subset of the synced pages may have been written to disk. We assume that

single-page disk writes are atomic. The sync system call is assumed either to block the

DBMS or to notify the DBMS when all the page writes have been completed. The sync

operation corresponds to the limited control over page write order that the UNIX operating

system gives its users. UNIX allows groups of pages to be written to disk together, but does

not allow the application to control the write order of the pages within a group. Also, it is

possible for one transaction to be updating data in a page at the time that another transaction

is syncing the page.

To make the index recoverable without log processing, the DBMS must ensure that

currently valid keys are visible and invalid keys are invisible to index lookup operations.

The POSTGRES storage system can detect and ignore records pointed to by invalid keys,

so recovery only needs to ensure that valid keys are not lost.

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 175

In POSTGRES indices, there are two possible sources of inconsistencies: inter-page

and intra-page inconsistencies. Inter-page inconsistencies occur when a pointer to page

B is stored in page A. A failure could occur after A has been written to stable storage

but before B has been. An intra-page inconsistency happens if a page is written to stable

storage while the DBMS is adding a key to the page or deleting a key from it. Concurrency

control prevents two processes from modifying a page at the same time. However, for

performance reasons, POSTGRES does not reacquire a lock on the page when it forces

the page to stable storage. If one process is modifying the page while another commits,

the page will be inconsistent on stable storage. After a crash, the DBMS must detect the

inconsistency and repair it.

5.3 Support for POSTGRES Indices

This section describes two algorithms for implementing indices in the POSTGRES

storage system. We will describe both in terms of Blink-trees, but R-trees [33] can be

managed using the same algorithms. Techniques analogous to those discussed for Blink-

trees can be used with extensible hashing [27]. The application of our techniques to hashing

is discussed briefly in [75].

This section describes the basic B-tree data structure, then the modifications to that

data structure required for the POSTGRES shadow and page reorganization algorithms.

Separate sections highlight the parts of the algorithms required to support Blink-trees, delete

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 176

ChildPtr
Key

ChildPtr
Key

ChildPtr
Key Key

ChildPtr ChildPtr
Key

Header
Line Table

Figure 5.1: Conventional B-tree Page.

operations, and short term locking.

5.3.1 Traditional B-tree Data Structure

In a traditional B-tree [9], each page of the tree contains an array of <key,data> pairs

and a header that describes space allocation on the page (see Figure 5.1). The order of the

keys on the page is recorded by a line table. Each entry of the line table contains an offset

to the beginning of a <key,data> pair in the page. If a new key is added to a page, the line

table entries are reordered, not the <key,data> elements stored on the page. On an internal

page, the data element associated with a key is a pointer to a child page. On a leaf page,

the data element associated with a key is a tuple identifier (TID) — a pointer to a data page

and a line table entry on that page.

Comer [18] describes B-tree data structures in some detail, but several details of the

insert and delete operations are important enough for our algorithms to summarize here. In

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 177

the simplest B-tree, a split occurs when the amount of free space in a page goes below a

threshold. To split a page, one new page is allocated. Half of the <key,data> pairs from

the old page are inserted into the new one and deleted from the old. A <key,data> pair

representing the new page is added to the split page’s parent. When the last key is removed

from a page, the page is freed.

Some variations of the B-tree data structure use a merge operation to rebalance two

neighbor pages if inserts or deletes cause one page to have many more keys than its

neighbor. Merge moves keys from the heavy page to the light one and adjusts the key value

on the parent page to reflect the change. Simple variations on the basic POSTGRES page

split algorithms will support page merges. These variations are described in Section 5.3.5

after the basic algorithms have been presented.

5.3.2 Sync Tokens and Synchronous Writes

The POSTGRES index management algorithms need to be able to determine whether

two B-tree pages linked by pointers were written out during the same sync operation. To

record this information, POSTGRES maintains a global sync counter that counts sync

operations in which the B-tree underwent structural changes. After every sync operation in

which an index split occurred, the DBMS increments the global sync counter. A maximum

sync counter guaranteed to be larger than the global sync counter is maintained on stable

storage. If the current global sync counter approaches the maximum, a new maximum must

be chosen and written to stable storage. After a crash, the maximum sync counter is used

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 178

to reinitialize the global sync counter.

A sync token is the value of the global sync counter at one point in time. Sync tokens

are saved on index pages to detect inter-page inconsistencies. The value of the maximum

sync counter at the time of the most recent system crash is called the last crash sync token.

If the DBMS shuts down cleanly, the global sync counter and last crash sync token are

written to stable storage.

5.3.3 Technique One: Shadow Page Indices

In POSTGRES shadow B-trees, every key on an internal page contains a pointer to

the current and previous version of the child page associated with the key. Instead

of an array of <key,childPtr> pairs on the page, the shadow B-tree page is an array of

<key,childPtr,prevPtr> triples (see Figure 5.2). The previous page associated with a key is

a page containing the key value which is guaranteed to be on stable storage. The current

page pointed to by childPtr is the most up-to-date version of the page, which may be stored

in volatile memory. If the system crashes and the current page is lost in the crash, the

previous page will be used to construct a new current page in a manner described below.

Page Split Algorithm for Shadow B-trees

When splitting a page P in the shadow B-tree, two new pages are allocated — call them

Pa and Pb. Half of the keys from P are copied to Pa and half to Pb. During the split, the

keys on P are neither modified nor overwritten. When Pa and Pb are initialized, the value

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 179

KeyKey

CurrentPrevious

Key

Ancestor

Figure 5.2: Shadowing Page Strategy. Keys on internal pages of the tree
contain a prevPtr and a childPtr. The childPtr points to the most up-to-date
version of the page (current). Because current might be on volatile storage,
prevPtr points to the most recent version of the page that has definitely been
written to stable storage.

of the global sync counter is recorded in a syncToken field in each page’s header.

After the split, P ’s parent page, A, must be updated. Page A initially contains a key K1

which points to P . The traditional B-tree split algorithm calls for a new key, K2, containing

a pointer to Pb, to be added to A. In the shadow paging algorithm, A is updated in the

following manner:

(1) The new key K2 is allocated on A. K2’s childPtr field contains the page number of

page Pb.

(2a) If P ’s sync token is different from the current global sync counter, P must have been

written to stable storage already. In this case, the prevPtrs for both K2 and K1 are set

to point to P , and P is added to an in-memory to-be-freed list. After the next sync

operation, P will be added to the index freelist (see Figure 5.3).

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 180

Key1
Key1Key2 Key2

Key2Key1

PA Pb

childPtr
prevPtr

A

P

Figure 5.3: Shadowing Page Split. Page P has split. After using the syncToken to
verify that P is on stable storage, the original prevPtr value for Key1 on page A is
discarded. P becomes the previous page for both Key1 and the new Key2.

Pa 2
Pa 1

PbP

A
childPtr
prevPtr

Figure 5.4: Two Page Splits During the Same Transaction. First P split then Pa split
in the same transaction. Pa1,Pa2 , and Pb all share the same previous version since any
key on any one of these pages that existed before the failure is recorded stably on page
P .

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 181

(2b) If P ’s sync token is the same as the current global sync counter, the prevPtr for K1

must be reused since P is not yet on stable storage. K1’s prevPtr is assigned to K2’s,

and P is freed immediately. This situation only occurs if two splits occur at the same

key between sync operations (see Figure 5.4).

(3) K2 is inserted into page A’s line table.

(4) K1 is modified so that its childPtr field contains the page number of Pa instead of P .

If adding K2 to the page A causes A to split, the same algorithm is followed unless A

is the B-tree root page. If the root page splits, a new root page is created containing two

<key,data> pairs pointing to the two halves of the old root. The first page of the index is a

meta-data page containing a pointer to the current root of the tree. Like internal page keys,

the root pointer must contain a previous and current page pointer.

In order to prevent an intra-page inconsistency, we must be careful when adding K2 to

the line table. The line table entries are intra-page pointers, offsets within the page, which

point to key values. The line table is ordered, so the line table entry following K1’s offset is

selected to hold K2’s offset. The line table is extended by first copying the last entry in the

line table one element beyond the line table, then incrementing the nKeys field of the page

header. Next, all of the line table entries between K1’s and the last one are copied one entry

to the right of their current position. Finally, K2’s offset is saved in the entry after K1’s.

Adding elements to the line table in this manner limits the kind of intra-page inconsis-

tency that can occur. Even if one transaction forces a B-tree page to stable storage while

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 182

another is adding a line table entry, we guarantee that the only possible intra-page incon-

sistency is a duplicate entry in the line table. The subsections below explain how these are

detected and removed.

Detecting Inconsistencies in the Index

Section 5.2 pointed out that, in POSTGRES B-trees, only two kinds of inconsistencies

could potentially arise after a failure: inter-page and intra-page inconsistencies. Intra-page

inconsistencies occur when a duplicate line remains in the page as described in the previous

subsection. A crash during a B-tree update can cause an inter-page inconsistency only if

the parent, A, is written to stable storage before the crash, but not the child. In that case, A

points to an uninitialized page or a page that has been reused. If A was not written, then

the new child page is inaccessible, but the parent-child link is consistent. Reclamation of

pages that become inaccessible in a crash is discussed in a subsection below.

The key whose insert originally caused an interrupted page splits may or may not have

been lost in the failure, but, because of the POSTGRES force-at-commit policy, that key

will not make the index inconsistent. If the key is present, it is certainly uncommitted.

The transaction that caused the interrupted page split must have been aborted by the crash.

POSTGRES transactions force all writes to disk at commit time, so the split could not have

been interrupted if the transaction had committed. If an uncommitted key is on a leaf page,

it points to an invalid heap record (or no heap record) and POSTGRES will ignore it as

explained in Chapter Four. The committed keys in the subtree rooted at any B-tree internal

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 183

page are the same whether the split occurs or not. Thus, the failure effectively causes one

or more spontaneous page splits, but does not affect the committed contents of the index.

POSTGRES detects both inter-page and intra-page inconsistencies in the index during

the course of normal index operations. When descending fromA to P during a key lookup,

insert, or delete, the DBMS determines fromA the minimum and maximum key values that

should be on P before stepping fromA to P . At P , the minimum and maximum key values

actually present on the page are compared to the expected key range. If the key ranges are

the same, the parent-child link is consistent and the search can continue. If the key ranges

differ or if the page is zeroed, the DBMS has detected an inter-page inconsistency.

The DBMS detects an intra-page inconsistencies by checking whether or not adjacent

entries in the line table contain the same offset value. Intra-page inconsistencies only need

to be detected and repaired when a key is added to or deleted from a page. The duplicate

entry will not cause key lookups to fail, so it can be ignored during key lookups.

Repairing Inconsistencies in the Index

As soon as a broken inter-page pointer link is discovered, the DBMS completes the

work lost in the interrupted page split operation. The prevPtr shows the page that existed

before the split. To reinitialize the out-of-date child page, the DBMS uses the keys on the

parent page to determine the range of keys that were on the missing page. These keys are

copied directly to the child page from the page pointed to by prevPtr. The sync token on

the child page is initialized to the current global sync counter. After the child page has

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 184

been reinitialized, the B-tree search can continue using the new child page. Note that it is

possible that both halves of the page split were lost in the crash. If that is the case, the loss

of each is detected and repaired independently.

If the root page is split and the new version of the root is lost, the prevChild page is

copied directly to the child page. If no root page existed before the failure (i.e. all keys

inserted into the tree were lost), the root has no prevChild page and is initialized to an empty

page.

The DBMS repairs an intra-page inconsistency by deleting the duplicate entry. The

DBMS copies line table entries left until the duplicate is the last entry in the line table, then,

decrements nKeys in the page header.

Free Space Management

During normal operation, a linked list of pointers to the pages freed from an index

is kept on an in-memory freelist associated with that index. Because the freelist is in

volatile storage, it does not survive system failures and must eventually be regenerated. As

discussed in Chapter Four, POSTGRES heap relations require a garbage collector as part of

the storage system’s archiving feature [69]. Adding index freelist regeneration to its current

archiving tasks does not make garbage collection much more expensive. While the freelist

is being regenerated, new pages can always be allocated by extending the index file as long

as the file system does not run out of disk space. We assume that crashes are infrequent

enough and disk space is plentiful enough that the index file can be extended while the

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 185

freelist is being regenerated.

The volatile memory freelist is only lost if the system fails. When the DBMS is shut

down cleanly, the index freelist is written to disk. Index meta-data records the number of

entries in the freelist and a pointer to the list on disk. When the DBMS is restarted, the

freelist from disk is used to initialize a new in-memory freelist. Before any of the pages

from the freelist are used in new page splits, the meta-data pointer to the freelist on disk is

invalidated. The list has to be invalidated on disk since all pages on the disk freelist will

become free again after a failure. If pages are taken from the in-memory freelist in the

mean time and allocated to page splits, these pages could be reallocated when the DBMS

restarts.

The freelist in POSTGRES indices also must record information about the contents

of the free page in order to ensure that broken parent-child pointer links in the shadow

B-tree will be detected. To show what information is necessary, we first review how the

freelist is used in a shadow B-tree page split. First, two new pages, Pa and Pb, are allocated

from the free list. Next, half the keys from the original page P are copied to each of the

newly-allocated pages. Then, a reference to P is added to a to-be-freed temporary freelist,

whose contents are added to the true freelist only after the page split has been committed.

Finally, P ’s parent A is updated so it contains pointers to Pa and Pb. Remember that when

the DBMS later descends from A to Pa during the search for a B-tree key, the DBMS

compares the range of keys on P
a

to the range of keys that A indicated would be on that

page. If the child page contains a different key range, an inter-page inconsistency has been

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 186

detected; page A was been written to stable storage before a failure, but not Pa.

This technique for detecting inter-page inconsistencies restricts the way the DBMS can

allocate pages from the freelist to hold the new child pages Pa and Pb. At the time of the

page split, the page allocated to Pa from the freelist contains whatever keys were on that

page at the time it was deallocated. Inter-page inconsistencies will not be detected unless

the keys contained on the freelist page allocated to Pa in the page split are not legal contents

of page Pa. If the freelist page and Pa contain the same key range, the DBMS will be unable

to determine if Pa was written out to stable storage before the system failed. In order for

the inter-page inconsistency to be detected, the freelist must record the key ranges of the

pages in the list. When a page P is deallocated during a page split, the first and last key

value on P must be recorded in the freelist along with the usual pointer to the deallocated

page. This allows the DBMS to check that the page is not reallocated to hold the same key

range.

5.3.4 Technique Two: Page Reorganization Indices

The B-tree modifications described above add four bytes to each key on an internal page

(for a prevPtr). If keys are small, the extra four bytes will reduce B-tree fanout and increase

the height of the tree. Increasing the height of the tree increases the average cost of data

access.

The page reorganization algorithm reduces this loss of fanout by eliminating the prevPtr

from the <key,data> pairs in a B-tree page. In this algorithm, however, splitting page P

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 187

does not reclaim space on the page immediately. During the split, the DBMS copies half

the keys on P to a new page and reorganizes P according to the algorithm described below

(see Figure 5.5). After reorganization, P ’s original keys are intact on the page, so space

has been made available on the new peer but not the original page P . If the DBMS ever

fails after P is written to stable storage but before P ’s new peer is, no keys are lost. The

reorganized page P can still be used for recovery. Once a sync operation successfully

writes both the reorganized P and its new peer to stable storage, the space on page P

containing the duplicated keys is reclaimed. If the DBMS must add keys to the original

page P before the next sync operation, it initiates an extra sync operation and blocks until

the sync completes. Once the sync operation is done, the space containing the duplicate

keys on P can be reclaimed and the DBMS can add a new key to the page.

The page reorganization algorithm adds the fields prevNKeys and newPage to the page

header. If the prevNKeys field on a page is non-zero, the page still contains backup keys to

be used in recovery. If prevNKeys is zero, the page is safe for update. Below, we describe

a split of page P into Pa and Pb. Pa is the reorganized page. Pb is the page that will contain

the new key that caused the split. Note that Pa may be either the left or the right child after

the split. The newPage pointer in the reorganized page (Pa) points to Pb; newPage in Pb is

null.

A split of page P proceeds as follows:

(1) Two new pages are allocated. Pa is allocated in memory only; it is not backed up on

the disk. P
b

is allocated normally.

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 188

K4

K3

AfterBefore

Header

K4

K2

K1

K3

Header

Header

K1

K2

K3

K4P Pa

Pb

Figure 5.5: Page Split For Page Reorganization B-trees. After the split, the
reorganized page Pa is mapped on top of the old page P on disk. Keys K3
and K4 are saved in the free space region of Pa. If all of the split pages are
successfully written to stable storage, the area containing K3, K4 and the
corresponding line table entries becomes free space. If not, the duplicate
copies of the keys will be used in recovery.

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 189

(2) Half of P ’s keys are copied to Pa and half to Pb, just as in a normal split. The

prevNKeys field on Pb is initialized to zero. On Pa, it is initialized with the number

of keys on the original page P .

(3) The keys from Pb are now copied to the free space area of Pa. These keys are not

allocated on the page, just copied into the page’s free space region. A line table for

the keys is set up just beyond the line table for Pa. Pa is guaranteed to have space

enough for Pb’s keys and line table because all of this information was stored on the

original page P .

(4) The sync tokens of Pa and Pb are initialized using the global sync counter.

(5) Pa is remapped (in the in-memory buffer pool meta-data) to P ’s location on disk.

(6) The new key whose insertion caused the split is added to Pb. P ’s parent page is now

updated to reflect the split.

Detecting and Repairing Inconsistencies

POSTGRES uses the same technique for detecting inter-page inconsistencies in the page

reorganization B-trees as it did in the shadow page B-trees. When the DBMS is searching

for a key, it steps from parent page to child page. At each step, the DBMS checks that the

key range on the child is consistent with the key range indicated by the parent. Intra-page

inconsistencies are detected and repaired in the same way in both types of B-trees.

Repairing inter-page inconsistencies is slightly more complex in the page reorganization

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 190

B-tree, however. In the shadow B-trees, inter-page inconsistencies could occur only if the

parent page was written to stable storage before either of the new child pages created in

the page split. In the page reorganization B-trees, the children are not symmetric so five

different kinds of inconsistencies can occur:

(a) only Pa is written to disk (replacing P),

(b) only Pa and Pb are written (Pb is inaccessible from the parent),

(c) only the parent and Pa are written,

(d) only the parent and Pb are written,

(e) only the parent is written.

If only Pb is written, the tree is not inconsistent (but page Pb is lost). Note that each of these

inconsistencies will be detected by the same kind of range check used in the shadow B-tree.

As was the case in shadow B-trees, the inconsistencies are repaired as soon as they are

detected. In cases (a) and (b), the tree becomes consistent by regenerating P (assigning

prevNKeys to nKeys reallocates the duplicate keys). In case (c), Pb is regenerated by

copying the duplicate keys saved on Pa. In case (d), Pa is regenerated by removing the keys

that are represented on Pb. In case (e), the split is repeated to generate both Pa and Pb.

Every time a key is added to or deleted from a page, the DBMS must check whether

or not the free space on the page needs to be reclaimed. If the prevNKeys field is zero,

there are no extra keys stored in free space. Otherwise, the sync token on the page must be

checked. There are three cases:

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 191

(1) If the sync token is the same as the global sync counter, no sync operation has occurred

since the page was initialized, so the duplicate keys on the page are still required for

recovery. The DBMS must block for a sync operation before the key can be added to

the page.

(2) If the sync token is greater than or equal to the last crash sync token but different

from the global sync counter, the new key can be added normally. A sync operation

has definitely committed Pa and Pb, and the keys on Pa will no longer be needed for

recovery.

(3) If the page sync token is less than the last crash sync token, we cannot immediately

tell if the split was committed successfully. The DBMS has crashed since this page

was written. If the page’s sibling from the last split was lost in the crash, the backup

keys on this page are still needed for recovery.

In the last case, the newPage pointer is used to find the sibling. If the sibling exists and

has the same sync token as the current page (or a larger one), the sibling does not need

to be recovered; the parent and both halves of page P made it to stable storage after the

split. If the sibling is zero or has an older sync token, the sibling is out of date and must be

recovered. After a new key is inserted, the prevNKeys field should be zeroed so we do not

check for inconsistencies again until the next page split.

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 192

5.3.5 Delete, Merge, and Rebalance Operations

In a conventional storage system, deleting a record from the database forces the DBMS

to delete all index keys that refer to that record from the database as well. If the transaction

that deleted the record aborts, the DBMS must reinsert the record and all of the index keys

that referred to it. As Chapter Four explained, POSTGRES is not a conventional system.

When a record is logically deleted, it remains physically in place but is marked invalid.

When the DBMS encounters an index key that points to a logically-deleted record, it is

ignored. Eventually, a vacuum cleaner process deletes the record and its related index keys.

This strategy means that the index recovery algorithms used by POSTGRES do not

need to consider the problem of reinserting index keys after a failure. The vacuum cleaner

only physically deletes index keys when the transaction that logically deleted them has

definitely committed. If the DBMS halts without completing a given index key delete

operation, the vacuum cleaner will eventually encounter the key again after DBMS restart

and delete it. Therefore, the only recovery-related problem that needs to be considered in

delete operations is ensuring that no structural inconsistencies in the index occur as a result

of failed delete operations.

For the simplest kinds of B-trees, deletes have less potential for causing inconsistencies

than inserts. Delete operations remove inter-page pointers from pages rather than store

them on pages. Thus, deletes never leave pointers to allocated but uninitialized pages as

occurred in page splits. In the simplest B-trees, a page is ready to deallocate when the last

key on that page is deleted. When a page P is empty, P s key on the parent page is deleted.

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 193

A
prevPtr
childPtr

Key1Key2

Key2
Key1

Key3

Key2

Key3

Old
Heavy

Old
Light

New
Heavy

New
Light

Key1Key3

Figure 5.6: A merge operation on a balanced shadow B-tree. Some keys,
including Key2, have been moved from the heavy page to the light page in
order to even the sizes of the two pages. On the ancestor page, A, a dummy
key has been added to represent the keys moved from heavy to light.

As was the case with prevPages in the shadow algorithm, P cannot actually be deallocated

until the parent has been written to stable storage in the next sync operation. Delaying P ’s

deallocation ensures that it will not be reallocated while pointers to the page still exist in

valid parts of the index on stable storage. Intra-page (line table) inconsistencies resulting

from interrupted deletes look exactly like interrupted inserts (duplicate entries remain in

the line table), and are handled in the same way.

In general, the merge operations required by balanced B-trees (B�-trees) can be handled

by the recovery algorithms in the same way as page splits. Page reorganization can treat

merge operations exactly like splits. When the merge operation moves keys from the heavy

page to the light page to balance the two, it leaves the two peers in exactly the same state

as two page reorganization peers: the heavy page is treated as the original peer in the split,

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 194

and the light page is treated as the “new” peer created by the split. The “new” peer in this

case initially contains a few keys, but the recovery mechanism will not need to be aware of

this.

For shadowing, merge operations must be done a little more carefully since the new

light page effectively has two prevPages, the original light page and the original heavy

page. The merge proceeds as usual, keys are moved from the heavy page to the light page,

however, instead of modifying the key for the light page on the ancestor, we add a new key.

The new key represents those keys moved from the heavy to the light page during the merge

operation. Its child page is the new version of the light page; its prevPage is the old version

of the heavy page. After the new pages are written to stable storage, this dummy key and

the light key can be merged in order to reclaim space on the ancestor page. See Figure 5.6

for an example.

The first five subsections of section 5.3 described shadow and page reorganization

algorithms for managing basic B-tree operations without a write-ahead log. However,

POSTGRES and many commercial systems use a slightly more complex variation on the

basic B-tree called a Blink-tree. These data structures have additional pointers between

pages to achieve better performance. Section 5.3.6 explains how these structures work

and shows the changes required to support them without a write-ahead log. Section 5.3.7

discusses conventional index concurrency control algorithms and the ways in which they

can be modified to support the POSTGRES index recovery techniques.

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 195

Root-to-leaf

Peer

l 1 l 2 l 3 l 4 l 5

Figure 5.7: Normal Blink-Tree. Leaf nodes li are connected to one another by
peer pointers. The path from parent to child is referred to as the root-to-leaf-
path.

5.3.6 Secondary Paths to Leaf Pages: Blink-tree

In Blink-tree indices, the performance of indexed scans is improved with a doubly-linked

peer pointer chain between leaf pages with consecutive keys (see Figure 5.7). The peer

pointers allow scans to move from leaf page to leaf page without reading additional internal

pages. Key inserts still traverse the path from root to leaf. When a page is split, the left

neighbor (or right and left, in the shadow page algorithm) of the page must be re-linked so

that the peer pointer path is consistent.

Blink-trees have more complicated failure modes than simple B-trees. There are two

paths to any given leaf page; a key on the leaf page may be reached by either the peer pointer

or the root-to-leaf path. Techniques like those described above could be used to correct

inter-page inconsistencies in either path, but, in the worst-case failure mode, the two paths

could become inconsistent with one another. For example, in Figure 5.8, the root-to-leaf

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 196

P

PbPaK L

A

Figure 5.8: Worst-Case Inconsistent Blink-Tree. Page P has split and A, Pa,
and Pb were written to stable storage before the system crashed. P ’s peers,
K and L, were not. Thus, the tree has a peer pointer path consistent with the
tree before the split and a root-to-leaf path consistent with the tree after the
split.

path contains the post-split version of a given page (in bold), while the old peer pointer path

contains the pre-split version of the page.

Even this worst-case failure does not actually corrupt the index unless a key is added

to or deleted from one of the duplicate pages created by the failure. The transaction whose

incomplete split created the duplicate paths did not commit (otherwise both paths would

have been successfully written to disk). Until the first insert/delete after the failure, the

duplicate pages contain the same set of valid keys.

Detecting Inconsistencies in the Index

During a Blink-tree scan, the peer pointer path is checked for inter-page inconsistencies.

Unfortunately, the key ranges used to detect inconsistencies in the root-to-leaf path cannot

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 197

be used for the peer pointer path. On the peer pointer path, a page does not know its peer’s

key range and cannot record it accurately unless each page is updated when keys are added

to its peer.

To detect inconsistent peer pointer paths, we use two additional sync token fields which

must be included in the page header — one associated with each peer pointer. If P1 and P2

are peer pages, P1’s pointer to P2 and P2’s pointer to P1 must have the same sync token

associated with them. When the peer pointers are reconciled during the split, the sync

tokens for the peer pointers on the neighbor pages must be reset also.

Comparing two peers’ sync tokens during path traversal will detect any inconsistency in

the path. If a link is broken by a crash during update, the sync tokens on adjacent pages will

not agree. An inconsistent link is repaired by following the root-to-leaf path to the correct

peer. If the root-to-leaf path is broken, it is repaired using one of the repair algorithms

described above.

Even sync tokens do not detect the existence of two completely separate pointer paths

as occurs in Figure 5.8. In this case, the peer pointer path is internally consistent (and the

sync tokens match), but the peer pointer path is not consistent with the root-to-leaf path.

Whenever a key is inserted into a page P , we must ensure that P is linked into the most

recent peer pointer path.

When inserting a key into page P , the DBMS first checks that P ’s sync token is greater

than the last crash sync token. If so, we know the page is part of a consistent peer pointer

path. The path only becomes inconsistent during a system failure. Otherwise, the DBMS

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 198

must follow the peer pointer path in both directions from the leaf page targeted for insert.

The search stops when a page with a different sync token is discovered (page sync token not

peer pointer sync token). If the peer pointer path is consistent until this point, the leaf page

inserted into is reachable along the peer pointer path. Once this is done, we reinitialize the

sync token on the page. This will prevent the DBMS for rechecking the path on subsequent

insertions. Because we are inserting a key into the page, the page will be written to stable

storage anyway. Thus, the reinitialized sync token will reach stable storage at the end of

transaction without causing any extra I/O.

In the worst case, searching this path is the most expensive part of this algorithm. If

many page splits occur at the same time, the resulting pages have the same sync token.

An insert into one of these pages, will cause each of them to be read. Even in this case,

insert performance is affected only for the first key inserted into each page in the path after

a failure; key lookup is not affected at all, even after failures. Insert performance after a

crash could be improved in this worst case with a small LRU cache of sync tokens. When

a sync token is verified (by searching the peer pointer path during an insert and finding no

inconsistencies), the token should be added to the cache. On an insert, the cache is checked

before verifying the peer path. A cache of size one would handle the worst-case, which

occurs when a large index is created in a single transaction. In this case, each page in the

index has the same sync token.

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 199

5.3.7 Dynamic Hashing for POSTGRES

In hash indices, a hash function applied to the index key determines the address of the

page (bucket) containing a <key, TID> pair. Dynamic hashing algorithms allow the hash

table to grow as keys are added to it. Linear hashing [52] maps the value produced by the

hash function directly to a bucket address. Extendible hashing [27] uses the hash value

to find a directory entry. The directory entry contains a pointer, which is used to find the

bucket address.

As a hash table grows, additional bits of the hash value are considered when mapping

key to hash bucket. If a bucket overflows before it can be split, a second bucket is chained

from the first using a pointer link. A bucket is split by using the extra bit of the hash value

to rehash keys into either the old bucket (new bit is zero) or a new one (new bit is one). See

[66] or [23] for surveys of dynamic hashing algorithms.

The POSTGRES index management schemes are more applicable to extendible hashing

than to linear hashing. The shadowing algorithm can take advantage of the extra level of

indirection provided by the directory in extendible hashing. A direct hashing algorithm

like linear hashing could not use the shadow algorithm, but could use page reorganization.

Inconsistent directory pointers could be detected by storing the bit mask and the number of

bits considered in the bucket header (rather than key ranges as in B-trees). Inconsistencies

in pointers between overflow pages can be detected with split tokens in the same way as

peer pointers are in Blink-trees.

Although we do not yet have an extendible hash index implementation, we can estimate

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 200

the impact of the shadowing algorithm on hash index read performance. Extendible hashing

requires one I/O to lookup a key value if the directory entry is in memory and two if the

directory entry must be fetched from disk. The shadowing scheme doubles the size of

the directory (with a prev pointer), so either doubles the amount of memory used for the

directory or increases average access cost (as parts of the directory must be demand paged

into memory).

5.4 Concurrency Control

The POSTGRES Blink-tree implementation uses a concurrency control algorithm based

on the one designed by Lehman and Yao [48]. In Lehman-Yao, readers and writers must

descend the tree from root to leaf to find the page containing a given key. Writers ascend

again as splits or deletes propagate up from the leaf. When descending, locks are not

coupled; readers always release one lock before acquiring the next. When ascending, locks

are coupled; the lock on a child page is released only after the lock on the correct parent page

is acquired. As pointed out in [47], this algorithm is deadlock-free, since lock coupling is

only used when traversing the tree in one direction. Lock coupling in both directions allows

deadlock when a reader holding a lock on ancestor, A, tries to acquire a lock on child page

P at the same time a writer holding a lock on P (during a page split) tries to lock A.

Complexity arises in Lehman-Yao from the fact that a reader descending from A to P

may find thatP has split during the period when the reader was not holding any locks. When

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 201

descending, the reader saves a pointer to a child page P , releases the lock on the parent,

and acquires the lock on P . It is possible for the reader to be descheduled by the operating

system right before it acquires the lock on P . Other processes could split P before the

reader is rescheduled. In the original Lehman-Yao scheme, the page split operation could

move the key sought by the reader from P to a neighbor page. Pages are never deallocated

in Lehman-Yao B-trees and a page split always moves the higher-valued keys to a new page,

leaving the lower-valued ones in place. Thus, if the reader finds that the key it is searching

for is no longer in P , the reader moves horizontally in the tree (again, without coupling)

until it finds the key. In the unlikely event that there have been many page splits during the

descent, the reader may traverse many pages.

POSTGRES B-trees, especially the shadow B-trees, must account for page deallocation.

Because POSTGRES pages can be deallocated after a split, the DBMS must ensure that,

when a page is deallocated, no descheduled reader will reawaken and try to examine the

deallocated page. Our algorithm calls on the reader to pin the buffer containing the child

page in memory before releasing the parent lock. The allocator knows not to reallocate

pages in buffers with a pin count greater than one. The reader may unpin the buffer as soon

as the child’s lock is released. This solution does not add synchronization overhead since

the buffer must be pinned in memory before use anyway. Lanin and Shasha [47] discuss

two more complex techniques for solving this problem in the case of pages recycled after

the last key is deleted.

Also unlike Lehman-Yao, the reader process in POSTGRES shadow B-trees must find

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 202

out which pages were produced in the split of the child page P . Lehman-Yao guarantees

that P itself is one of the pages that results from the split. The reader process can start its

horizontal movement from the original page P and be guaranteed to find any key that was

on P at the time of the split. For POSTGRES page reorganization B-trees, this is still true.

For shadow B-trees, the page P was replaced with two new pages. To allow the reader to

find these pages, we add a page replacement pointer to the B-tree page header. The page

replacement pointer on the original page is set to point to the new left page. Whenever a

process visits a page with a non-null page replacement pointer, it traverses the link to the

new left child. This is analogous to the horizontal movement described above, required

when the key of interest was on the high half of a split page. Note that the page replacement

pointer is only of interest when the page is pinned in memory by a current reader. It does

not ever need to be written to disk and does not need to survive failures.

The original Lehman-Yao locking algorithm also assumed that peer pointers were

unidirectional; each page only had a pointer to its right peer. This restriction means

that rightward scans are faster than leftward scans. In order to eliminate the restriction,

we introduce a new locking protocol to ensure that peer pointers are adjusted correctly.

The POSTGRES protocol relies on a new type of lock called a split lock that allows us

to distinguish page splits from reads and writes. Split locks conflict only with split locks.

Only the process holding a split lock can split a page or add keys to a page. Other processes,

however, may adjust peer pointers on the page without holding the split lock.

The protocol will be described in detail below, but the description will be easier to

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 203

follow if it is clear how bidirectional peer pointers can give rise to deadlock. When a

DBMS process splits a page, it first acquires a lock on the page to ensure that, during the

split, no other processes add keys, delete keys, or concurrently attempt to split the page.

When the split is complete, the process must adjust the peer pointers so that the new pages

resulting from the split are accessible from the original page’s neighbors. To adjust the

neighbor page’s peer pointers, each neighbor page must be locked. This situation is a case

of lock coupling. The DBMS process is holding a lock on the page being split and acquiring

a lock on its neighbor. If two adjacent pages are split concurrently, a deadlock can occur

as each process holds its own page and tries to acquire the neighbor. In the unidirectional

pointer case, processes never lock couple in opposite directions so deadlock never occurs.

Deadlock is possible in the bidirectional case because two processes are lock coupling in

opposite directions.

POSTGRES uses normal (write) locks on pages in combination with the new split locks

in order to avoid deadlock when two processes lock couple in opposite directions. When a

DBMS process inserts a key into a page, it first acquires a write lock on the page to prevent

other processes from inserting keys at the same time. If the process finds that a page must

be split, it releases the write lock, acquires a split lock, and reacquires the write lock. Then,

if the split is still necessary (someone else could have gotten the write lock and split the

page after the process released the write lock), the process splits the page. Finally, the write

lock on the original page is released and peer pointers on neighboring pages are updated.

Updating a neighboring peer pointers requires a write lock on the neighbor page, but not

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 204

a split lock on the neighbor page. The split lock on the original page is released once the

neighbor’s peer pointers have been updated.

Deadlocks are impossible since processes acquire the split lock before the write lock,

and acquire only one such pair in the tree at a time. Because split locks and write locks do

not conflict, processes can hold a split lock on one page and acquire a (write) lock on a peer

without causing deadlock.

Concurrent access can make inter-page links temporarily inconsistent, so our algorithm

must distinguish between true inconsistencies and false inconsistencies that arise during

concurrent updates. When a link token inconsistency is discovered, the two inconsistent

tokens are compared to the last crash sync token. If one or both of the inconsistent tokens is

more recent than the last crash sync token, then the inconsistency was a transient one caused

by concurrent access. If both are older than the last crash sync token, the inconsistency

could not have been caused by a concurrent update.

5.5 Using Shadow Indices in Logical Logging

Thus far, we have discussed our index management techniques in terms of the POST-

GRES storage system, however, the same techniques can be used to support logical logging

in a conventional WAL-based storage system. Conventional index management schemes,

such as the one used by ARIES/IM [56], require all modifications to the index to be written

into the log. If a tuple is updated, the DBMS logs all keys inserted into indices as a result

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 205

of the update. If an index insert results in a page split, all keys moved from one page to

another in the split must be logged as inserts into the destination page. Deletes from the

original page in a split are logged simply as changes to the line table (i.e. an abbreviated log

record is constructed that tells which key range was moved from the page in the split). As

stated in the introduction to this chapter, conventional systems use the logged information

to restore the index to consistency after a failure.

A logical logging scheme does not save index changes in the log. When a tuple is

updated, changes to the tuple are logged but not the keys inserted into or deleted from the

index. Instead, the logged tuple attributes serve as implicit log records for the indices on

those attributes. During recovery, the index keys affected by an update can be derived from

the logged attribute values. If the logged change is undone or redone, the DBMS deletes or

inserts keys into the indices as necessary. The DBMS must detect and ignore reinsertion or

redeletion of the same <key,data> pair.

The difference between the logical log and the conventional log is that the logical log

contains only the keys inserted into or deleted from the index. It does not log keys that

move around within the index due to page split and merge operations. While the logical

log allows the system to determine which keys have been inserted into or deleted from the

index, it does not maintain the structural integrity of the index. Some other technique, such

as the ones described in this chapter, must be used to maintain index consistency during

page splits. A conventional system using the POSTGRES index consistency techniques

would not need to sync the index after every transaction. In the POSTGRES storage system,

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 206

the DBMS had to sync the index after every transaction in order to make the keys inserted

or deleted by that transaction permanent. Syncing the logical log makes inserts and deletes

to the index permanent when logical logging is used. Log processing will restore any keys

lost during the failure.

Logical logging has some performance and disk space advantages over conventional

index management. The conventional log is longer than the logical log, since conventional

logs store many <key,data> pairs after a split or a merge. Because the conventional system

must log all keys moved from the original page to the new peer page, each page split adds

at least half a page to the log (8KBytes and 4KBytes are typical page sizes). The longer

log means more data needs to be written to disk on commit, and more log pages need to be

read from the disk during recovery. The conventional log log takes up more space on disk

as well.

More importantly, logical logging has some fault tolerance advantages over conventional

B-tree management. Little special case code is required for recovery. The same insert and

delete operations used for normal execution are also used for recovery. Specialized recovery

code includes only the code to repeat the incomplete page split after an inconsistency

is detected. Also, because logical logging stores a high level representation of index

operations, systems using it are less likely to propagate damage caused by software errors

into the log. If, for example, an internal index page is corrupted by a software error,

conventional physical logging techniques can copy the corrupted keys into the log. During

recovery, the corrupted keys will be restored to the index. Logical logging never copies

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 207

information from the index into the log. If software corrupts an index, the index can be

recovered using a backup version (or checkpoint) and the log.

When comparing System R to ARIES, Mohan and Levine [56] suggest four reasons

why the write-ahead logging techniques used by ARIES are superior to the shadow-based

logging approach used in System R[31]. These four objections do not apply to logical

logging using shadow B-trees:

(1) Deadlocks During Undo: The usual response to a deadlock is to abort one of the

deadlocked transactions. Since abort requires an undo, the potential for deadlocks during

undo means only one aborting transaction can be active at a time. The lock coupling strategy

described in Section 5.4 prevents processes from deadlocking during index operations.

Therefore, concurrent aborts can execute concurrent shadow B-tree operations.

(2) Concurrency Overhead During Recovery: If several processes are used for recov-

ery in System R, concurrency overhead is incurred during logical undo and redo operations.

ARIES requires no concurrency control for the index during recovery because recovery op-

erations can be applied to each page independently. Parallel recovery of shadow B-trees will

have to use concurrency control just as System R did, but the locks involved are short-term

locks, not two-phase locks. Recent simulation results indicate that when short term locks are

used concurrency control overhead will not limit recovery performance. In [68], the concur-

rency control scheme from [48] was simulated on a DBMS running a100% insert workload

with enough main memory buffering for 75% of the B-tree. The simulations showed that

the workload was I/O-bound even at high degrees of multi-programming. If concurrency

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 208

overhead had significantly affected performance, the simulation workload could not have

been I/O bound, especially with such a large amount of buffer space available.

(3) I/O Overhead During Recovery: System R and shadow B-trees require more I/O

operations during recovery than ARIES because logical undo operations must traverse the

path from the root to leaf for every operation undone or redone. ARIES’ page-oriented

recovery can usually undo or redo an operation with a single read and write of a leaf page.

The additional I/O required by the shadowing scheme, however, is small. The root and the

upper pages of the B-tree index must be loaded into memory as the first few operations are

processed. Unless memory is scarce, these pages will remain in memory during the rest

of log processing. Page-oriented recovery may not require these pages to be brought in

during recovery, but the pages will have to be brought in before any useful work is done

with the index after recovery. Also, operational logging will actually reduce the number of

disk reads required to process the log since the log itself is much more compact.

(4) B-tree Consistency After Failures: DBMS failures can leave indices inconsistent

unless the file system uses shadow paging. Mohan and Levine’s objections to maintaining

index consistency with shadow pages are based on the poor performance of shadow paging

in System R.

Because System R used shadow paging in the file system, it had to use the technique

to support recovery on both indices and data files. For data files, shadow paging reduced

the performance of sequential scans dramatically. Shadow paging makes sequentially-

ordered pages in the file non-sequential on the disk. The techniques also force an extra

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 209

lookup (through the page map) for direct access to file pages. The consistency maintenance

techniques described in this paper allow either no shadowing at all (page reorganization

algorithm), or shadowing limited to index files only. In indices, the sequential order of

the pages on the disk is unimportant for performance. As shown in the next section, our

shadowing-based algorithm does have an impact on performance, but not as pronounced as

the impact of shadow paging on System R’s data files.

In summary, even in a DBMS that relies on conventional write-ahead logging instead of

the POSTGRES storage system, the index recovery techniques from Chapter Five can be

helpful. Using our index recovery techniques in conjunction with logical logging reduces

the amount of information stored in the log, giving both performance and fault tolerance

advantages over more conventional index management. While a similar logical logging

scheme caused performance problems in System R, the POSTGRES techniques have been

designed to avoid these problems.

5.6 Performance Measurements

The index management techniques described in this chapter increase the cost of indexed

access to the data in the database in several ways. First, shadow B-trees have larger space

requirements than conventional B-trees. The prevPtrs stored in the shadow B-tree keys

make the keys bigger so fewer keys fit on a page. Thus, shadow B-trees will eventually

become higher than conventional B-trees with the same number of keys. Higher B-trees

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 210

mean more pages will have to be accessed to get to the indexed data. In order to illustrate this

cost, Section 5.6.1 presents a comparison of shadow and normal B-tree heights. Second, the

DBMS must check for inter-page inconsistencies as it descends from page to page in the tree

(the key-range checks are described in Subsection 5.3.3). To quantify the cost of checking

for inter-page inconsistencies, we have implemented both techniques and measured the

implementations. Section 5.6.2 presents these measurements. Third, several special cases

cause POSTGRES B-trees to do an extra disk read or write either during recovery or during a

page split. Section 5.6.3 enumerates these cases and estimates their impact on performance.

5.6.1 Modelling The Effect of Increased Tree Heights

One performance concern regarding POSTGRES Blink-tree indices is that the additional

space overhead they incur will increase the height of the tree, thus driving up access costs.

In order to quantify this cost, we calculated the index capacity at fixed heights for normal,

page reorganization, and shadow Blink-trees. As expected, normal trees add levels the most

slowly, and shadow trees add levels the most quickly. Page reorganization trees grow at

nearly the same rate as normal trees, so we have omitted them from the analysis that follows

for the sake of brevity.

Figure 5.9 illustrates the differences in height between normal B-trees and POSTGRES

shadow page B-trees for different tree sizes. The curves in Figure 5.9 labelled “Normal

4-Byte” and “Shadow 4-Byte” show the heights of normal and shadow Blink-trees storing

four-byte keys. The curves labelled “Normal 20-Byte” and “Shadow 20-Byte” show the

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 211

storage capacity vs. height tradeoffs for trees with twenty-byte keys. Note that the X axis

in Figure 5.9 is logarithmic. The shaded regions highlight the tree sizes at which shadow

trees have greater height than normal trees. For all regions of the X axis which do not

have values in the shaded areas, shadow and normal trees have the same height. The trees

modelled have 8-KByte pages. Normal Blink-trees have 6-byte internal page keys while

shadow Blink-trees have 10-byte internal page keys because of the 4-byte prevPtr. The page

header in a normal tree is 16-bytes while the shadow tree header is 36 bytes because of sync

tokens and the replacement pointer.

The growth rate used in the calculations is pessimistic for the shadowing strategy, since

tree height is calculated assuming that keys are inserted in worst case order (ascending

values). Ascending order leaves the maximum amount of unused free space in the index

and forces the tree to grow at the fastest rate. If the trees grew more slowly, the curves

would have the same relationship to one another (the shaded regions would have the same

area), but the steps would occur at larger tree sizes. We used a page size of 8 KBytes in the

analysis, since this is the default in POSTGRES.

The figure shows that prevPtr overhead in shadow trees has lower impact as key size

increases. At height three, the difference in capacity between the trees storing twenty-byte

keys is much smaller than the difference between those storing four-byte keys. The space

consumed by prevPtrs in internal pages causes a reduction in fanout,which eventually causes

greater tree height at smaller capacities. The reduction in fanout caused by shadowing is a

function of the ratio of overhead to key size. Larger keys have proportionally less overhead,

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 212

Of Keys
Number

1e+071e+061e+051e+041e+031e+02

4.00

3.00

2.00

1.00

Height

Normal 4-Byte
Shadow 4-Byte
Normal 20-Byte
Shadow 20-Byte

Figure 5.9: Height of Tree for Different Size B-trees.

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 213

hence, show a proportionally smaller reduction in fanout.

In practice, the space overhead for shadow index prevPtrs will usually not affect tree

height, even when key size is small. Small trees have few levels of internal pages, so prevPtr

overhead is negligible. The heights of Blink-trees with several levels will coincide for most

tree sizes, so the height impact of shadowing will still be minimal. If an intermediate-height

shadow tree becomes stable at one of the non-coincident values, running a reorganization

utility will redistribute free space and reduce the height of the index to the same level as a

normal tree. Significant height differences that could not be masked through reorganization

would arise only if keys were small and if the tree had many levels. However, even with the

worst-case insertion order, a Blink-tree of either type storing four-byte keys would exceed

the 2 GByte maximum size of a UNIX file before it reached five levels.

5.6.2 Measurements of the POSTGRES Blink-tree Implementation

To measure the performance of the shadow and page reorganization index implemen-

tations, we ran two tests against each type of index. The first test built indices of three

different sizes using four-byte keys. As in the calculations of the previous subsection, these

measurements give worst case performance; keys were added in ascending order in order

to give the largest number of page splits and greatest tree height. The second test retrieved

8,000 random keys from each index created in the insertion test. Keys were uniformly

distributed throughout the range represented in the index. Measurements were made on a

Decstation 5000/200 running Ultrix 4.0 and POSTGRES.

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 214

Operation Size of Index in Keys
B-tree Type 10,000 20,000 40,000

Inserts
Normal 12.065 s 24.269 s 51.307 s

(1.000) (1.000) (1.000)
Page Reorg 12.584 s 25.191 s 53.718 s

(1.043) (1.038) (1.047)
Shadow 12.318 s 24.924 s 52.282 s

(1.021) (1.027) (1.019)
8,000 Lookups

Normal 9.122 s 12.492 s 19.536 s
(1.000) (1.000) (1.000)

Page Reorg 9.441 s 12.879 s 20.259 s
(1.035) (1.031) (1.037)

Shadow 9.368 s 12.892 s 20.200 s
(1.027) (1.032) (1.034)

Table 5.1: Insert/Lookup Performance Comparison.

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 215

The times shown in Table 5.1 are the mean elapsed times of ten repetitions of each test.

The standard deviation of each set of measurements was less than 2.5% of the mean. Each

entry in the table includes, in parentheses, a normalized time for that test. The normalized

time is calculated by dividing the elapsed time for the test by the elapsed time of the

conventional B-tree. For example, a shadow B-tree with a normalized read time of 1.02

is two percent slower than a conventional B-tree on the same workload. Only time spent

in the Blink-tree access method, and in the routines that it calls, is reported in the table.

This includes the cost of reading and writing index pages from and to the operating system

cache, but does not include the cost of committing transactions. Commit cost will depend

on the logging scheme chosen.

The results show that the shadow algorithm is within three percent of the cost of ordinary

Blink-trees for insertions. The higher cost is due to the added expense of verifying inter-page

links in traversing the tree. For reads, the shadow tree percentages are about three and a

half percent worse than ordinary Blink-trees. These measurements only show the CPU costs

of the algorithm; they do not account for extra I/O that would be necessary if the shadow

tree is higher than the normal B-tree. In each of the cases shown here, the heights of the

shadow B-tree and normalized B-tree are the same. For the ranges at which the shadow

tree is higher than the normal tree, each shadow lookup would pay an additional I/O.

Costs for the page reorganization algorithm are similar. Reads are between three and four

percent more expensive than for the normal tree. Page reorganization insertions, however,

are more expensive, between three and five percent higher than the cost for insertions into

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 216

an ordinary Blink-tree. Extra work must be done to order data on old pages during splits in

page reorganization. As noted elsewhere in this chapter, page reorganization is best suited

to environments with low insertion rates.

The overall cost of using either index management strategy is likely to be very small for

many workloads, since the DBMS spends little of its time in the index access methods. For

example, in the Wisconsin benchmark [12], POSTGRES spends only 3.6 percent of its time

in the indexed access methods. The debit/credit benchmark used int Chapter Three spends

only 16 percent of its time in the index access methods. Even 4.7 percent of this, our worst

performance degradation, is smaller than the measurement error in the benchmark.

5.6.3 Estimating Additional I/O Costs During Recovery

The POSTGRES index management techniques have several workload-dependent I/O

costs that were not measured in the dissertation. In the normal case, a POSTGRES B-tree

page split and a conventional B-tree page split each require three pages to be written to disk:

the parent and each child. A page reorganization B-tree, however, will force a synchronous

page write if the same index page splits twice during the same transaction. If keys are four

bytes long and pages are 8 KBytes, inserting 292 keys in the worst-case order during a

single transaction could cause this additional synchronous write.

The other workload-related I/O cost occurs the first time keys are inserted into some

page reorganization B-tree or Blink-tree pages after a failure. In both trees, inserting a

key into a page P sometimes requires the DBMS to read additional pages to determine

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 217

whether the page split that created P was committed. For example, when a page split

occurs in a page reorganization B-tree, the duplicate keys on the reorganized page cannot

be overwritten unless the peer page has definitely been written to stable storage. The first

time a key is inserted into the page after the split has been committed, the page is marked

(prevNKeys is cleared) so later key insertions do not have to consider the state of the peer.

When no failure has occurred since the split, comparing the sync token on the page to the

global sync counter provides this information without examining the peer. If the first key

insertion to a reorganized page occurs after a failure, however, the peer must be read and

examined to ensure that it has the same token as the reorganized page (or a larger token).

When the first key insertion to a Blink-tree page occurs after a failure, the DBMS must check

that the page is linked into the peer pointer path as explained in Section 5.3.6. Again, extra

work must be done if no key has been inserted into a page since the split that created the

page.

Without workload measurements, it is difficult to determine exactly how much additional

I/O will occur in each of these situations in practice. If we assume that key values are

drawn from a uniform distribution, however, we can estimate the number of pages that are

untouched at the time of a crash. To estimate the number of pages for which extra I/Os were

required, we simulated the construction of 8,000 B-trees each with a randomly-selected

size averaging 40,000 random-valued 4-Byte keys (� 500). These are two-level trees with

about 128 pages. On average 0.05 pages were untouched since the last page split. Hence,

the additional I/O was rarely required. Simulating 1,000 B-trees with 1,000,00 4 byte

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 218

keys each, we found an average of 17 untouched pages that would have to be recovered.

However, one of these pages would only be encountered every 1,000 key insertions, so the

extra recovery work would still have a limited effect on performance.

5.7 Summary

The POSTGRES DBMS relies on a no-overwrite storage system to avoid log processing

during recovery. By avoiding log processing, POSTGRES recovers from failures quickly

and eliminates a great deal of the complex recovery code found in most data managers.

Unfortunately, concurrency requirements and inter-page pointers make the POSTGRES

storage system techniques difficult to apply to index data structures such as Blink-trees.

In this chapter, we have presented two techniques for managing indices without using

either write-ahead log processing or the usual no-overwrite techniques of the POSTGRES

storage system. The first technique is based on shadow paging; the second on page

reorganization during splits. Both algorithms use redundant information in index pages to

detect inconsistencies caused by system failures as they are encountered. Inconsistencies

are removed by repeating the interrupted page split or merge operations. The two techniques

will also be useful in WAL-based data managers that want to avoid physical logging during

page splits.

Measurements of a prototype implementation suggest that the algorithms will have little

overall effect on data manager performance. Performance measurements show that key

CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 219

inserts and lookups will only be three to five percent slower when the tree is entirely in main

memory. Estimates of the effect of the algorithm on tree height show that key lookups in

shadow-page Blink-trees will read one more page from the disk than lookups in conventional

Blink-trees under some workloads.

The height estimates and performance measurements also indicate that a hybrid between

the two algorithms could reduce costs while preserving the best features of each algorithm.

Using shadow paging near the leaf pages would eliminate the cost of page reorganization

splits in the part of the tree in which splits are most common. Using page reorganization

nearer the root would reduce space overhead caused by prevPtrs in internal pages and

significantly increase fanout.

220

Chapter 6

Conclusions

The days when users simply accepted that computer systems could go down for hours or

even minutes are rapidly drawing to a close. In the future, fault tolerance will no longer be

a specialty service required only by military systems, hospitals, banks and stock exchanges.

Trends in the prices of non-volatile RAM (NVRAM) and hardware reliability have reduced

the costs of the hardware components of fault tolerant systems. The advances in operator

interfaces and maintenance of fault tolerant systems will probably enter mainstream systems

soon as well. This will lead to widely-available, reasonably-priced conventional systems

that mask most hardware errors and power outages. The tools used to administer these

systems will prevent eliminate operator and maintenance errors.

However, in order for modern systems to remain reliable and available for long periods

of time, they must run reliable system software. More careful software engineering will

help somewhat, but software will always be complex enough that software failures will

CHAPTER 6. CONCLUSIONS 221

occur. In the face of these failures, the fault tolerant system must be able to halt rather

than produce incorrect results. Once halted, the system must recover quickly, hopefully

without interrupting people using the system. Regeneration of lost program state must be

fast both to mask failures from users of the system and to eliminate the temptation for

system designers to build complex, unreliable recovery systems.

This dissertation has examined the software fault tolerance problem from the standpoint

of database management systems. It has addressed three problems faced by the designers

of fault tolerant software. First, it presented and analyzed data from software errors

uncovered in commercial systems in order to help characterize software errors. Second,

it described and evaluated a technique for detecting addressing errors and controlling the

error propagation that they cause. Finally, it extended the POSTGRES fast recovery feature

to improve every day performance in high-update-rate environments and to handle fast

recovery of communication state and index data structures.

Using data from commercial systems programs, Chapter Two assessed some of the root

causes of software outage. We proposed a model of errors based on different kinds of error

propagation: control, addressing, and data errors. Studies of the MVS operating system,

IMS database manager, and DB2 database manager showed that the distribution of these

three kinds of errors was similar over the three systems. Control errors were about half

of all errors, addressing errors 25–30%, data errors 10–15%, and the rest miscellaneous.

Chapter Two showed that programs lost their point of control largely due to forgotten error

conditions or unanticipated program events. Addressing errors often had to do with memory

CHAPTER 6. CONCLUSIONS 222

management, not necessarily with bad pointers. Addressing errors had higher than average

customer impact, probably because error propagation made them difficult to diagnose and

correct. The data presented in Chapter Two showed that most addressing errors were small

and affected working data structures rather than data structures far away from the point

of control. Finally, repeatable errors were relatively common. This fact combined with

the difficulty of designing primary/backup communication protocols bodes ill for the most

common redundancy-based software fault tolerance techniques.

Chapter Three evaluated several models of page guarding, a technique that uses con-

ventional virtual memory hardware to limit propagation of addressing errors. The models

differed in the manner in which the DBMS specified legitimate updates to the data, offering

different protection/cost tradeoffs. An implementation on the DECStation3100 showed

seven to eleven percent impact for protecting the buffer pool in an update-intensive main-

memory database, but only two to three percent impact for the same database when disk

I/Os were considered. While Chapter Two indicated that the kinds of “wild pointer” errors

that would be most easily detected by guarding were uncommon, these errors are among the

hardest to find and fix using conventional debugging techniques. More important than their

error detection ability, the guarding techniques help eliminate the set of errors that affect

data cached in main memory differently than data written to disk. In the guarded version

of POSTGRES, the primary reliability difference between data on disk and data cached in

main memory is that the data structures used to manage the two resources are different,

hence, are subject to different software errors.

CHAPTER 6. CONCLUSIONS 223

Chapters Four and Five attacked the system availability problem by extending the

POSTGRES DBMS fast recovery features in several ways. In the original POSTGRES

storage system design, the DBMS was optimized for fast restart rather than fast commit

in order to improve system availability. Chapter Four described enhancements to the

POSTGRES storage system that reduce its cost in a high-update-rate environment. These

enhancements include backward differencing and a new strategy for handling overflow pages

that together make access to the current database fast even when the database contains a

great deal of historical data. Performance analysis in Chapter Four suggests that with these

enhancements, POSTGRES does the same amount of I/O as a conventional DBMS if (1)

a sufficient amount of non-volatile RAM is available and (2) the log-structured file system

(LFS) is used, and (3) the POSTGRES historical data feature is disabled. If historical

data is enabled, the analysis shows that POSTGRES does about thirty percent more I/O.

Chapter Four also showed how changes to the use of the transaction status file can eliminate

all examination of this file during system restart. Because the database remains unavailable

until clients are actually connected to the DBMS, Chapter Four added to POSTGRES

techniques for quickly recovering communication between clients and the DBMS server.

Chapter Five extended the POSTGRES storage system to handle index data structures

without a write-ahead log. It described two index management techniques, one based on

shadow pages and one based on page reorganization.

Overall, the POSTGRES fault tolerance strategy has been to anticipate technology

shifts — faster processors, non-volatile RAM — and assume that new hardware can be

CHAPTER 6. CONCLUSIONS 224

used to mask the performance impact of simpler recovery strategies and additional error

detection. Non-volatile RAM makes the POSTGRES storage system possible by softening

the performance impact of force-at-commit buffer management. Faster processors mean

that additional processing costs associated with guarding and POSTGRES on-demand

database recovery will be little noticed by customers. Faster processors will also mean that

using the same routines for recovery and for normal processing will have limited effects

on performance. This has important reliability implications in, for example, the index

management code, since the code used at recovery time is continually tested during normal

processing instead of just at recovery time.

6.1 Future Work

6.1.1 Providing Availability for Long-Running Queries

The recovery model discussed in this dissertation considered the DBMS to be available

if new transactions could be initiated against the data. It did not consider the cost of

discarding work done by uncommitted transactions. In a high-update-rate, short-transaction

environment, the current POSTGRES model works well. Forcing the clients to simply

resubmit failed transactions is a worthwhile complexity/availability tradeoff.

When the DBMS is used for long-running complex queries, however, restarting the

query after a failure may be unacceptable. Complex queries can run for minutes or hours,

even in a high performance system. If the DBMS fails frequently relative to query execution

CHAPTER 6. CONCLUSIONS 225

time, users may not be able to make any progress on their work even though the database

is “available” in that users can submit new queries at a moment’s notice.

To provide high availability for long-running queries, POSTGRES would have to check-

point intermediate state such as the current state of the query plan and temporary relations.

Current commercial systems use savepoints to limit the rollback of long-running trans-

actions, but savepoints only record updates made by the long running transaction. The

complex query checkpoint mechanism would record intermediate state of read-only trans-

actions and record some DBMS data structures in addition to database changes. Such a

mechanism would require a tunable parameter to set the frequency with which checkpoints

are taken. An additional open question in the design of such a system is determining how

to restore the two-phase locks associated with the query.

6.1.2 Fast Recovery in a Main Memory Database Manager

An important disadvantage of the POSTGRES Storage System is its reliance on a

force-at-commit strategy for managing buffers. RAID, LFS, and NVRAM minimize this

disadvantage, but still the cost of using magnetic disk as stable storage is a significant

cost in today’s systems. Obviously, database management systems designed to reside in

main memory, rather than disk, would eliminate concerns related to force-at-commit [20].

POSTGRES can use NVRAM to lessen its commit costs, but it is still designed for a disk

database. For example, care is taken that previous and current tuple versions reside on

the same disk page to reduce the I/Os required during recovery and on index scans. As

CHAPTER 6. CONCLUSIONS 226

NVRAM prices approach those of conventional main memory, the idea of maintaining

a main memory large enough to safely store an entire database becomes more and more

practical.

Such a system could maintain high reliability and availability using variations on the

page guarding and POSTGRES fast recovery techniques. The database itself would be

organized probably as a single append-only log to facilitate page guarding; only the tail of

the log would ever be unguarded. Indexing strategies might be changed since structures

such as B-Trees were designed for speedy access to data on disk. The garbage collection

strategies would be closer to those of the log-structuredfile system than to the ones described

in this dissertation. The storage system would be unlike a conventional write-ahead log

in that the log contains actual data values, not just undo/redo information for recovery. A

fast main memory database management system would require some kind of checkpointing

mechanism in order to provide media recovery.

6.1.3 Automatic Code and Error Check Generation

Much of the control error problem in IMS and DB2 had to do with programmers “missing

a case” — not considering an error condition or timing condition that might arise. Software

engineering tools that track where error conditions are handled would be helpful. This is

especially true during program maintenance. The change team that repairs a software error

discovered in the field may not always understand how the change affects the rest of the

program control flow. Regression testing alone does not seem to show whether all error

CHAPTER 6. CONCLUSIONS 227

conditions that were handled previously are still handled after a bug fix. In older programs

such as IMS, a significant fraction of software errors come from program maintenance.

Software engineering tools that helped show how small modifications to the code affect

program control flow would be helpful.

DB2 had a small number of false error detections that occurred when the program

changed, but the assert statements designed to detect bad internal state did not. Software

engineers would help alleviate this problem by designing tools to (a) generate assert state-

ments, or (b) flag assert statements that are affected when code is changed. Solution (a)

requires less work for programmers, but, on the surface, seems more error prone. Pro-

grammers are supposed to think about assert statements. If assert statements are generated

automatically, incorrect data structures can generate incorrect assert statements.

6.1.4 High Level Languages

Throughout this dissertation, we have assumed that the current generation of low-level

systems languages will remain popular among system designers. While these languages

will probably never go away, it is conceivable that fault tolerant system designers will

switch over to languages with more debugging and anti-bugging features than the ones

used to construct POSTGRES and the systems studied in Chapter Two. One important

area of future work is to examine the error characteristics of languages such as C++ [22],

Hermes [71], and Modula-3 [35] with higher degrees of type safety than current languages.

Many of the addressing-related errors catalogued in Chapter Two involved errors in memory

CHAPTER 6. CONCLUSIONS 228

management, unsafe pointer operations, and errors in type coercion (union type problems)

that these languages are designed to prevent. To our knowledge, no detailed error studies

of systems programs written in these languages exist. It would be interesting to find

out whether such languages have additional classes of errors not found in conventional

programming languages.

The programming language Ada [38] has a built-in exception handling facility. We have

seen that many errors in systems programs result from mishandled error conditions. Since

many large Ada programs exist now, a study of error reports in this language – especially in

users’ exception handling code – would be interesting. Such a study would also be useful to

designers of software engineering tools that help programmers write code to handle errors.

229

Bibliography

[1] A. Appel and K. Li. Virtual memory primitives for user programs. Proceedings of the

4th International Conference on Architectural Support for Programming Languages

and Operating Systems, April 1991.

[2] M. Auslander, D. Larkin, and A. Scherr. Evolution of mvs. IBM Journal of Research

and Development, 25(5), September 1981.

[3] A. Avizienis. The n-version approach to fault tolerant software. IEEE Transactions

on Software Engineering, SE-11, December 1985.

[4] Mary Baker, Satoshi Asami, Etienne Deprit, John Ousterhout, and Margo Seltzer. Non-

volatile memory for fast, reliable file systems. Proceedings of the 5th International

Conference on Architectural Support for Programming Languages and Operating

Systems, October 1992.

[5] Mary Baker and Mark Sullivan. The recovery box: Using fast recovery to provide high

availability in the unix environment. Proceedings of the Summer USENIX Conference,

June 1992.

BIBLIOGRAPHY 230

[6] J. Bannerjee, W. Kim, H. Kim, and H. Korth. Semantics and implementation of scheme

evolution in object-oriented databases. Proceedings of the SIGMOD Conference, pages

311–322, December 1987.

[7] J. Bartlett. A nonstop kernel. Proceedings of the 8th Symposium on Operating System

Principles, 1981.

[8] V. R. Basili and B. T. Perricone. Software errors and complexity: An empirical

investigation. Communications of the ACM, 27(1), 1984.

[9] R. Bayer and C. McCreight. Organization and maintenance of large ordered indexes.

Acta Informatica, 1(3):173–189, 1972.

[10] B. Bershad, T. Anderson, L. Lazowska, and H. Levy. Lightweight remote procedure

call. Proceedings of the 12th Symposium on Operating System Principles, pages

102–122, December 1987.

[11] A. Bhide, E. Elnozahy, and S. Morgan. Implicit replication in a network file server.

IEEE Workshop on Management of Replicated Data, November 1990.

[12] D. Bitton, D. DeWitt, and C. Turbyfill. Benchmarking database systems, a systematic

approach. Proceedings of the Very Large Data Bases Conference, November 1983.

[13] A. Borg, W. Blau, W. Graetsch, F. Herrman, and W. Oberle. Fault tolerance under

unix. ACM Transactions on Computer Systems, 7, February 1989.

BIBLIOGRAPHY 231

[14] M. Carey, D. DeWitt, D. Frank, G. Graefe, M. Muralikrishna, and E. Shekita. The

architecture of the exodus extensible dbms. PROC IEEE International Workhop on

Object-Oriented Systems, September 1986.

[15] X. Castillo and D. P. Siewiorek. Workload, performance and reliability of digital com-

puting systems. Digest 11th International Symposium on Fault-Tolerant Computing,

1981.

[16] A. Chang and M. Mergen. 801 storage: Architecture and programming. ACM

Transactions on Computer Systems, 6(1):28–50, February 1988.

[17] R. Cheng. Virtual address cache in unix. Proceedings of the Summer USENIX

Conference, 1987.

[18] D. Comer. The ubiquitous b-tree. ACM Computing Surveys, 11(4), 1979.

[19] D. Comer. Internetworking with TCP/IP. Prentice Hall, Englewood Cliffs, New

Jersey, 1988.

[20] D. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stonebraker, and D. Wood. Implemen-

tation techniques for main memory database systems. Proceedings of the SIGMOD

Conference, June 1984.

[21] B. Efron and R. Tibshirani. Bootstrap methods for standard errors, confidence in-

tervals, and othermeasures of statistical accuracy. Statistical Science, 1(1):54–77,

1986.

BIBLIOGRAPHY 232

[22] M. Ellis and B. Barnestroup. The Annotated C++ Reference Manual. Addison-Wesley,

1990.

[23] R. J. Enbody and H. C. Du. Dynamic hashing schemes. ACM Computing Surveys,

20(2):85–113, June 1988.

[24] A. Endres. An analysis of errors and their causes in system programs. IEEE Transac-

tions on Software Engineering, 1(2), 1975.

[25] K.P. Eswaran, J.N. Gray, R.A. Lorie, and I.L. Traiger. The notions of consistency and

predicate locks in a database system. Communications of the ACM, 19(11):624–633,

November 1976.

[26] Anon et. al. A measure of transaction processing power. Technical Report 85.1,

Tandem Corporation, January 1985.

[27] R. Fagin, J. Nieverrgelt, N. Pippenger, and H. Strong. Extensible hashing — a

fastaccess method for dynamic hashing. ACM Transactions on Database Systems,

4(3):315–334, September 1979.

[28] R. Glass. Persistent software errors. IEEE Transactions on Software Engineering,

SE-7, March 1981.

[29] J. Gray. Why do computers fail and what can be done about it? Proc. 5th Symposium

on Reliability in Distributed Software and Database Systems, 1986.

BIBLIOGRAPHY 233

[30] J. Gray. A census of tandem system availability between 1985 and 1990. IEEE

Transactions on Reliability, 39(4), October 1990.

[31] J. Gray, P. McJones, M. Blasgen, B. Lindsay, R. Lorie, T. Price, F. Putzolu, and

I. Traiger. The recovery manager of the system r database manager. ACM Computing

Surveys, 13(2), June 1981.

[32] R. Gupta. A fresh look at optimizing array bounds checking. PROC of ACM SIGPLAN

Notices Conference on Programming Language Design and Implementation, pages

272–282, June 1990.

[33] A. Guttman. R-trees: A dynamic index structure for spatial searching. Proceedings

of the SIGMOD Conference, pages 47–57, 1984.

[34] T. Haerder and A. Reuter. Principles of transaction-oriented recovery. ACM Computing

Surveys, 15(4), 1983.

[35] S. Harbison. Modula-3. Prentice Hall, Englewood Cliffs, New Jersey, 1992.

[36] IBM. MVS/Extended Architecture Overview, publication number gc28-1348 edition.

[37] IBM Corporation. MS/VS Extended Recovery Facility (XRF): Technical Reference,

1987.

[38] J. D. Ichbiah, J. C. Heliard, O. Roubine, J. G. P. Barnes, B. Krieg-Bruckner, and B. A.

Wichmann. Preliminary ada reference manual. SIGPLAN Notices, 14(6), June 1979.

BIBLIOGRAPHY 234

[39] R. Iyer and D. Rossetti. Effect of system workload on operating system reliability:

A study on ibm 3081. IEEE Transactions on Software Engineering, SE-11(12),

December 1985.

[40] D. Jewett. Integrity-s2 – a fault-tolerant unix platform, field failures in operating

systems. Digest 21st International Symposium on Fault-Tolerant Computing, June

1991.

[41] Gerry Kane. R2000 RISC Architecture. Prentice Hall, Englewood Cliffs, New Jersey,

1987.

[42] W. Kim. Highly available systems for database applications. ACM Computing Surveys,

16(1), March 1984.

[43] J. C. Knight, N. G. Levenson, and L. D. St.Jean. A large scale experiment in n-version

programming. Digest 15th International Symposium on Fault-Tolerant Computing,

1985.

[44] D. Knuth. The errors of tex. Software: Practice & Experience, 19(7), July 1989.

[45] C. Kolovson. Indexing Techniques for Multi-Dimensional Spatial Data and Historical

Data in Database Management Systems. PhD thesis, University of California, Berke-

ley, EECS Department, Computer Science Division, 1990. UCB/ERL TR M90/105.

[46] B. Lampson and D. Redell. Experiencs with processes and monitors in mesa. Com-

munications of the ACM, 23(2):105–117, February 1980.

BIBLIOGRAPHY 235

[47] V. Lanin and D. Shasha. A symmetric concurrent b-tree algorithm. Proceedings Fall

Joint Computer Conference, pages 380–389, 1986.

[48] P. Lehman and S. Yao. Efficient locking for concurrent operations on b-trees. ACM

Transactions on Database Systems, 6(4), December 1981.

[49] Y. Levendel. Defects and reliability analysis of large software systems: Field ex-

perience. Digest 19th International Symposium on Fault-Tolerant Computing, June

1989.

[50] H. Levy and P. Lipman. Virtual memory management in the vax/vms operating system.

IEEE Computer, March 1982.

[51] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira, and M. Williams. Replica-

tion in the harp file system. Proceedings of the 13th Symposium on Operating System

Principles, October 1991.

[52] Witold Litwin. Linear hashing: A new tool for file and table addressing. Proceedings

of the Very Large Data Bases Conference, 1980.

[53] R. Lorie. Physical integrity in a large segmented database. ACM Transactions on

Database Systems, 2(1):91–104, March 1977.

[54] D. Menasces and O. Landes. Dynamic crash recovery of balanced trees. Proceedings

on Reliability in Distributed Software and Database Systems, pages 131–137, July

1981.

BIBLIOGRAPHY 236

[55] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. Aries: A transaction

recovery method supporting fine-granularity locking and partial rollbacks using write-

ahead logging. ACM Transactions on Database Systems, 17(1), March 1992.

[56] C. Mohan and F. Levine. Aries/im: An efficient and high concurrency index manage-

ment method using write ahead logging. Technical Report RJ 6846, IBM, 1989.

[57] D. Morgan and D. Taylor. A survey of methods for achieving reliable software. IEEE

Computer, 10(2), February 1977.

[58] S. Mourad and D. Andrews. On the reliability of the ibm mvs/xa operating system.

IEEE Transactions on Software Engineering, SE-13(10):1135–1139, October 1987.

[59] M. Olson. Extending the postgres database system to manage tertiary storage. Mas-

ter’s thesis, University of California, Berkeley, EECS Department, Computer Science

Division, May 1992.

[60] J. Ousterhout, A. Cherenson, F. Douglis, M. Nelson, and B. Welch. The Sprite network

operating system. IEEE Computer, 21(2):23–36, February 1988.

[61] D. Patterson, G. Gibson, and R. Katz. A Case for Redundant Arrays of Inexpensive

Disks (RAID). Proceedings of the SIGMOD Conference, June 1988.

[62] B. Randell. System structure for software fault tolerance. IEEE Transactions on

Software Engineering, SE-1(2), June 1975.

BIBLIOGRAPHY 237

[63] M. Rosenblum and J. Ousterhout. The design and implementation of a log-structured

file system. Proceedings of the 13th Symposium on Operating System Principles,

pages 1–15, October 1991.

[64] M. Schroeder and J. Saltzer. A hardware architecture for implementing protection

rings. Communications of the ACM, 15(3):157–170, March 1972.

[65] M. Seltzer. File System Performance and Transaction Support. PhD thesis, University

of California, Berkeley, EECS Department, Computer Science Division, 1992.

[66] M. Seltzer and O. Yigit. A new hashing package for unix. Proceedings of the Winter

USENIX Conference, January 1991.

[67] T. Shimeall and N. Leveson. An empirical comparison of software fault tolerance and

fault elimination. IEEE Transactions on Software Engineering, SE-17(2), February

1991.

[68] V. Srinivasan and M. Carey. Performance of b-tree concurrency control algorithms.

Proceedings of the SIGMOD Conference, pages 416–425, June 1991.

[69] M. Stonebraker. The postgres storage system. Proceedings of the Very Large Data

Bases Conference, pages 289–300, September 1987.

[70] M. Stonebraker and L. Rowe. The design of postgres. Proceedings of the SIGMOD

Conference, June 1986.

BIBLIOGRAPHY 238

[71] Robert E. Strom, David F. Bacon, Arthur Goldberg, Andy Lowry, Daniel Yellin, and

Shaula Alexander Yemini. Hermes: A Language for Distributed Computing. Series

in Innovative Technology. Prentice Hall, Inc., 1991. ISBN 0-13-389537-8.

[72] M. Sullivan. Software errors reported in 4.1 and 4.2 bsd unix. Unpublished notes

from a survey of the BSD error report database, 1990.

[73] M. Sullivan and R. Chillarege. Software defects and their impact on system availability

— a study of field failures in operating systems. Digest 21st International Symposium

on Fault-Tolerant Computing, June 1991.

[74] M. Sullivan and R. Chillarege. A comparison of software defects in database man-

agement systems and operating systems. Digest 22nd International Symposium on

Fault-Tolerant Computing, July 1992.

[75] M. Sullivan and M. Olson. An index implementation supporting fast recovery for

the postgres storage system. Technical Report M91-98, University of California,

Berkeley, 1991.

[76] D. Taylor, D. Morgan, and J. Black. Redundancy in data structures: Improving

software fault tolerance. IEEE Transactions on Software Engineering, SE-6, May

1980.

[77] T. Thayer, M. Lipow, and E. Nelson. Software Reliability. TRW and North-Holland

Publishing Company, 1978.

BIBLIOGRAPHY 239

[78] K. Tso and A. Avizienis. Community error recovery in n-version software: A design

study with experimentation. Digest 17th International Symposium on Fault-Tolerant

Computing, 1987.

[79] P. Velardi and R. Iyer. A study of software failures and recovery in the mvs operating

system. IEEE Transactions on Computers, C-33(6):564–568, June 1984.

[80] S. Webber and J. Beirne. The stratus architecture. Digest 21st International Symposium

on Fault-Tolerant Computing, June 1991.

[81] W. Wulf. Reliable hardware/software architecture. IEEE Transactions on Software

Engineering, SE-1(2), June 1975.

[82] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack.

Hydra: The kernel of a multiprocessor operating system. Communications of the

ACM, 17(6):337–345, June 1974.

[83] M. Young, A. Tevanian, R. Rashid, D. Golub, J. Eppinger, J. Chew, W. Bolosky,

D. Black, and R. Baron. The duality of memory and communication in the implemen-

tation of a multiprocessor operating system. Proceedings of the 11th Symposium on

Operating System Principles, pages 63–76, December 1987.

