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Abstract

As is painfully evident today, the deterioration of the transportation, education2,
and other national infrastructures negatively impacts many aspects of life, business,
and our economy. This has resulted, in part, when responses to short term crises
discourage investing in infrastructure enhancement and when there are no effective
means for infrastructure evolution. This paper responds to the deterioration of the
information system (IS) infrastructure that has strong negative impacts on ISs, on
the organizations they support, and, ultimately, on the economy. This paper
addresses the problem of legacy IS migration by methods that mediate between
short term crises and long term goals. It presents an effective strategy and a
spectrum of supporting methods for migrating legacy ISs into a target environment
that includes rightsized hardware and modern technologies (i.e., infrastructure)
such as a client-server architecture, DBMSs and CASE. We illustrate the methods
with two migration case studies of multi-million dollar, mission critical legacy ISs.
The contribution of this paper is a highly flexible set of migration methods that is
tailorable to most legacy ISs and business contexts. The goal is to support
continuous, iterative evolution. The critical success factor, and challenge in
deployment, is to identify appropriate portions of the IS and the associated planning
and management to achieve an incremental migration that is feasible with respect to
the technical and business requirements. The paper concludes with a list of
desirable migration tools for which basic research is required. The principles
described in this paper can be used to design future ISs and an infrastructure that
will support continuous IS evolution to avoid future legacy ISs.

2 The Edison project of Whittle Communications L.P., is attempting to create a innovative, for-profit
alternative to the government funded school systems. It is based on the principle that Darwinian
evolution applies not only to the species, but also to our institutions and organizations.
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 1. MIGRATING LEGACY INFORMATION SYSTEMS

Most large organizations are deeply mired in their information systems (IS) sins of the past.
Typically, their ISs are large (e.g., 107 lines of code), geriatric (e.g., more than 10 years
old), written in COBOL, and use a legacy database service (e.g., IBM’s IMS or no
database management system (DBMS) at all). These ISs are mission critical (i.e., essential
to the organization’s business) and must be operational at all times. These characteristics
define what we call legacy information systems (legacy IS). Today, legacy ISs
pose one of the most serious problems for large organizations. Costs due to problems of a
single legacy IS (e.g., failures, maintenance, inappropriate functionality, lack of
documentation, poor performance) can often exceed hundreds of millions of dollars per
year. They are not only inordinately expensive to maintain, but also inflexible (i.e., difficult
to adapt to changing business needs), and brittle (i.e., easily broken when modified for any
purpose). Perhaps worse is the widespread fear that legacy ISs will, one day, break
beyond repair. Such fears combined with a lack of techniques or technology to fix legacy
IS problems result in IS apoplexy. That is, legacy ISs consume 90% to 95% of all IS
resources. This prevents organizations from moving to newer software, such as client-
server configurations, current generation DBMSs, and fourth generation languages
(4GLs). Consequently, organizations are prevented from rightsizing that involves moving
from large mainframe computers to smaller, less expensive computers that fully meet
current IS requirements. This apoplexy, in turn, is a key contributor to the software crisis.
New requirements, often called the IS backlog, cannot be met since legacy ISs cannot be
extended and new ISs cannot be developed with the 5% to 10% remaining resources.
These problems are both key motivations of and major roadblocks to the world-wide
movement to re-engineer corporations and their major ISs.

In legacy IS migration, an existing IS is evolved into a target IS by replacing the hardware
and much of the software including the interfaces, applications, and databases. Under some
circumstances, some existing components can, and should, be incorporated into the target
environment. In this paper, the target environments are intended to take maximum
advantage of the benefits of rightsized computers, a client-server architecture, and modern
software such as relational DBMSs, 4GLs, and CASE. For example, a modern DBMS
(e.g., backup, recovery, transaction support, increased data independence, performance
improvements) assists in increasing control over the IS (e.g., maintenance). It also
provides a basis for future evolution and integration with other ISs. For example, a DBMS
could facilitate data liberation (i.e., any application could use the DBMS to access valuable
corporate data that is currently inaccessible due to the legacy database service).

A fundamental goal of legacy IS migration is that the target IS not become a legacy IS.
When the migration is complete, the target IS is fully operational in the target environment.
All application code and user interfaces are completely written in a 4GL and the database
resides on a current generation DBMS. A wise choice of target environment will facilitate
the application being moved to a wide variety of current and future desktop machines and
the database being deployed on a wide variety of computing platforms. Hence, the target IS
can readily be ported to environments appropriate to current and future requirements. That
is, the target IS is designed to be very flexible (e.g., portable) for current and future
rightsizing and to avoid becoming a future legacy IS.

In the rest of the introduction, we discuss migration strategies and select one, list migration
objectives, and introduce the alternative migration architectures and methods that are
presented in the paper.
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 1.1 Strategies

We now describe the motivating problems and the key to their solution in the context of
two strategies for migrating legacy ISs, Cold Turkey and Chicken Little.

Cold Turkey involves rewriting a legacy IS from scratch to produce the target IS using
modern software techniques and hardware of the target environment. This strategy carries
substantial risk of failure for the following reasons.

• A better system must be promised.

It is nearly impossible to propose a one-for-one rewrite of a complex IS. Management will
rarely budget the required major expenditure if the only payoff is to lower future
maintenance costs. Additional business functions must be promised. This adds complexity
to the replacement IS and increases the risk of failure.

• Business conditions never stand still.

The development of large, complex ISs requires years to accomplish. While the legacy IS
rewrite proceeds, the original legacy IS evolves in response to maintenance and urgent
business requirements, and by midnight functions (i.e., features installed by programmers
in their spare time). It is a significant problem to evolve the developing replacement IS in
step with the evolving legacy IS.

More significant than maintenance and minor ad hoc changes are changes in the business
processes that the IS is intended to support. These are typically in a constant state of flux.
The prospect of incorporating support for new business processes in the replacement IS
may lead to significant changes to the IS’s requirements throughout its development. This
also increases the risk of failure.

• Specifications rarely exist.

The only documentation for legacy ISs is typically the code itself. The original
implementors have long since departed. Documentation is often non-existent, out of date,
or has been lost. The original specifications and coding practices are now considered
primitive or bad (e.g., self-modifying code). For example, the code is often the only
documentation for the commonplace variant record encodings in which the interpretation of
one data element is controlled by another data element. Often, legacy code was written for
high performance on some extinct computer, resulting in arcane code constructs.

In such situations, the exact function of the legacy IS must be decrypted from the code, if it
is to be understood or copied in the replacement IS. This adds greatly to the complexity and
cost of developing the replacement IS.

• Undocumented dependencies frequently exist.

Invariably, applications, from non-critical (e.g., reporting programs) to mission critical,
access the legacy IS for its mission critical information and other resources. Over the ten
plus year life of the legacy IS, the number of these dependent ISs grows (e.g., 1,200 in a
case study described below), few of which may be known to the legacy IS owners. The
process of rewriting legacy ISs from scratch must identify and accommodate these
dependencies. This again adds to the complexity of the rewrite and raises the risk of failure
of dependent ISs.
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• Legacy ISs can be too big to cut-over.

Many legacy ISs must be operational almost 100% of the time. Many legacy databases or
files require weeks to dump or download. Even if the rewritten IS were fully operational,
there are no techniques to migrate the live data from the legacy IS to the new IS within the
time that the business can support being without its mission critical IS. Live data must also
be converted to fit the new system, again increasing project time and complexity. This may
not just add complexity, it often prohibits Cold Turkey altogether.

• Management of large projects is hard.

The difficulty of most large projects is seriously under-estimated. Hence, there is a
tendency for them to grow uncontrollably in head count. Few organizations are capable of
managing the development of an IS with the several hundred contributors that are common
for ISs of the size and complexity we are considering. Managing more and more people
inevitably brings on the famous Brooks effect [BROO75] resulting in less and less useful
work.

• Lateness is seldom tolerated.

Large projects are inevitably late due to the problems cited above. Management patience
wears out quickly, especially in organizations whose basic function is not software
production. This frequently results in the termination of partly or mostly completed
projects.

• Large projects tend to bloat.

There is a tendency for large projects to become bloated with nonessential groups. For
example, for a project as critical as a legacy IS migration, organizations may want to
explore the introduction of new management techniques and technologies (e.g., Re-
engineering, CASE). This is often done by adding additional groups to the already large
project. Groups that are not critical to the migration itself increase the budget and
management complexity, thus making the project more vulnerable to termination.

Cold Turkey involves high risk. It has been applied and has failed many times in large
organizations. We now turn our attention to the alternative, low-risk and novel strategy,
Chicken Little, the focus and contribution of this paper.

Chicken Little involves migrating the legacy IS, in place, by small incremental steps
until the desired long term objective is reached. Each step requires a relatively small
resource allocation (e.g., a few person years), a short time, and produces a specific, small
result towards the desired goal. This is in sharp contrast to the vast resource requirements
of a complete rewrite (e.g., hundreds of person years), a multi-year development, and one
massive result. If a Chicken Little step fails, only the failed step must be repeated rather
than the entire project. Since steps are designed to be relatively inexpensive, such
incremental steps do not need to promise dramatic new function to get funded.

Each problem cited in Section 1.1 can be addressed in an incremental fashion. In addition,
failures in individual steps may indicate large or previously unforeseen problems. Due to
the incremental nature of Chicken Little, such problems can be addressed incrementally.
Hence, Chicken Little is much safer and more feasible than Cold Turkey.

In this paper, we investigate and apply the Chicken Little migration strategy to legacy ISs,
from well structured to unstructured. The key to successful Chicken Little migration, and
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its principal challenge, concerns the selection of independent increments to migrate (i.e.,
portions of legacy interfaces, applications, and databases that can be migrated
independently of each other), the sequencing of the increments to achieve the desired goal,
and dealing with unavoidable problems (e.g., dependencies between migration steps).

 1.2 Architectures

All ISs can be considered as having three functions: interfaces, applications, and a database
service. The architectures of legacy ISs vary widely on a spectrum from well-structured
(e.g., modular, hence decomposable) to unstructured3 (e.g., non-decomposable).

The best architecture for migration purposes is a decomposable structure in which the
interface, application, and database services can be considered as distinct components with
well-defined interfaces. Figure 1.1 illustrates a decomposable legacy IS that consists
of a collection of application modules (Mi) each interacting with a database service and
each, potentially, with its own user interface (UIj) and system level interface (SIj) through
which it interacts with one or more IS. Interfaces, both user and system level, must be
considered separately since they differ significantly in technology, design, performance
requirements, and impact (e.g., number and requirements of human users versus ISs
accessing the legacy IS). The prime requirements for an architecture to be decomposable
are that the application modules are independent of each other (e.g., have no hierarchical
structure) and interact only with the database service.

Legacy
Data

UI1

Legacy Database Service

UI2

M1 M2

UIn

Mn• • •

SISI SI1 2 n

IS

End
User

IS

End
User

IS

End
User

Figure 1.1: Decomposable Legacy IS Architecture

3 The reasons for a lack of structure are many.  They relate to the state of the technology at the time of
design, the design and development methods and tools, uncontrolled enhancements and maintenance,
lack of documentation, and to many other aspects of ISs.
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A worse architecture for migration purposes is a semi-decomposable legacy IS,
illustrated in Figure 1.2. In comparison with a decomposable legacy IS, only user
interfaces, UIi, and system interfaces, SIi, are separate modules. The applications and
database service are not separable since their structure is more complex, not adequately
engineered in accordance with current standards, or is poorly understood. The lack of
desirable structure makes analysis and migration more complex and error prone.

•  •  ••  •  •

IS

End
User

Legacy Applications
and Database Service

Legacy
Data

End
User

IS

SI1 SIn u1 un

Figure 1.2: Semi-Decomposable Legacy IS Architecture

The worst architecture for migration is a non-decomposable legacy IS, illustrated in
Figure 1.3. Such ISs are, from a system point of view, black boxes since no functional
components are separable. End Users and ISs interact directly with one, apparently
unstructured, legacy IS.

ISs End Users

Legacy
Data

Legacy Interfaces, Applications, and
Database Service

Figure 1.3: Non-Decomposable Legacy IS Architecture

In general, the architecture of most legacy ISs may be neither strictly decomposable, semi-
decomposable, nor non-decomposable. During its decade long evolution, a legacy IS may
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have had parts added that fall into each architectural category resulting in a hybrid
architecture, as illustrated in Figure 1.4. The figure is intended to suggest that some
interface and application modules are inseparable from the legacy database service while
others are modular and independent.

• • •

Legacy
(some) Interfaces, (some) Applications,

Database Service

ISs

Legacy
Data

UI1 UIl

End
Users

End
User

End
UserIS IS

SI1 SIn

UIl+1 UIn

Ml+1 Mn

SIl+1

IS

End
User

IS

End
User

• • • • • •

SIn

Figure 1.4: Hybrid Legacy IS Architecture

A Chicken Little legacy IS migration involves iteratively selecting and migrating parts of the
legacy IS to become new parts of the iteratively constructed target IS. During the migration,
the legacy IS and the target IS form a composite IS which collectively provides the mission
critical IS function. In the composite IS, the legacy IS and target IS are connected by a
gateway, as illustrated in Figure 1.5.

Gateways play the key role in the migration architectures described in this paper. By
gateway we mean a software module introduced between operational software
components to mediate between them. Given its controlling position, it can mediate many
things (i.e., play many roles). One role is to insulate some components from changes being
made to others. In Figure 1.5, the gateway makes any change to the legacy IS transparent
to the legacy user interface (UI). That is, the gateway maintains the interface that the UI
expects of the legacy IS even though the legacy IS is being changed “behind the scenes.”
This transparency permits us to alter one part of the legacy IS at a time. This capability is
critical to the Chicken Little strategy. As the target graphical user interface (GUI), in Figure
1.5, is iteratively introduced, the gateway makes transparent to the GUI and UI whether the
legacy IS or target IS or both are supporting a particular function. Hence, the gateway can
insulate a component that is not being changed (e.g., the UI) from changes that are being
made (e.g., migrating the legacy database to the target database).

A second gateway function is to translate the requests and data between the mediated
components (e.g., UI calls to target IS calls, target IS data to legacy UI formats).
Gateways are widely used for the two purposes stated above. Few if any gateways provide
the third, critical function of coordination between the mediated components. For example,
coordination for update consistency may be required for an update request that the gateway
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directs to the legacy IS and to the target IS. In the migration methods presented, we
specifically define this critical coordination function of gateways.

Legacy
Gateway
Target

Gateway

GUIUI

Legacy IS Target IS

Figure 1.5: IS Migration Architecture

The placement of the gateway is a critical factor that affects the complexity (or simplicity) of
the migration architecture, the gateway, and the migration method. In the best case, the
decomposable legacy IS, the gateway can be placed between the application modules (Mj)
and the legacy database service, illustrated on the right hand side of Figure 1.6 (for
simplicity, target ISs are not shown). In this case, we call it a database gateway since it
encapsulates the entire database service and database from the perspective of the application
modules. For the semi-decomposable legacy IS, the lowest the gateway can be placed is
between the interfaces and the rest of the legacy IS (i.e., applications, database service, and
database), illustrated in the center of Figure 1.6 (and in Figure 1.5). It is called an
application gateway since it encapsulates from the applications down, from the
perspective of the interfaces. Due to the functionality it encapsulates, an application
gateway can be considerably more complex than a database gateway. In general, the higher
up in the architecture the gateway is placed, the more functionality it encapsulates and the
greater the complexity of the gateway. Finally, an IS gateway encapsulates the entire
legacy IS in the case of the non-decomposable legacy IS. Hence, it is the most complex.

 1.3 Methods

A migration method consists of a number of migration steps that together achieve the
desired migration. A step is responsible for specific aspects of the migration (e.g.,
database, application, interface). Each legacy IS and its operational context, both business
and technical, pose unique and frequently mutually inconsistent, migration requirements
that, in turn, require a unique migration method. The migration methods presented in this
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paper are tailorable to address these requirements, which include the following:

• Migrate in place.

• Ensure continuous, safe, reliable, robust, ready access to mission critical functions
and information at performance levels adequate to support the business’s workload.

• Make as many fixes, improvements, and enhancements as is reasonable, to address
current and anticipated requirements.

• Make as few change as possible to reduce migration complexity and risk.

• Alter the legacy code as little as possible to minimize risk.

• Establish as much flexibility as possible to facilitate future evolution.

• Minimize the potential negative impacts of change, including those on users,
applications, databases, and, particulalrly, on the on-going operation of the mission
critical IS.

• Maximize the benefits of modern technology and methods.

Legacy Interfaces, Applications,
Database Service

Legacy
Data

• • •ISs UI1 UIl

End
Users

End
User

End
UserIS IS

SI1 SIn

UIl+1 UIn

Ml+1 Mn

SIl+1

IS

End
User

IS

End
User

• • • • • •

SIn

Application Gateway Database GatewayIS Gateway

Figure 1.6: Gateway Types and Placements

The iterative nature of the Chicken Little strategy leads to two ways to reduce risk. First,
there must always be a fail safe fall back position, should any incremental step fail.
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Second, the increment size must be chosen to make the risk of the current step effectively
zero. We offer no new ways of evaluating such risks but we do emphasize the importance
of risk evaluation and avoidance.

The greater the independence of the steps, the greater the flexibility for adapting a migration
method to specific migration requirements, changing requirements, and mistakes.
Independent steps can proceed independently (e.g., in any order). Gateways are one of the
primary means of providing independence between steps, since they can encapsulate
system components that are undergoing change behind an unchanging interface.

This paper presents a set of migration methods that apply to all legacy ISs. Each method
consists of five basic steps:

• Iteratively migrate the computing environment.

• Iteratively migrate the legacy applications.

• Iteratively migrate the legacy data.

• Iteratively migrate the user and system interfaces.

• Iteratively cut-over from the legacy to the target components.

Migrating the computing environment, the applications, and the database are obvious steps.
The final two steps are less obvious and require some explanation.

Interface Migration and Gateways

First, let’s consider interface migration. Legacy ISs are, by definition, mission critical.
They contain key corporate resources. The user and system interfaces control all uses of the
system and all access to those resources. Hence, IS interfaces are as critical as the
databases and the applications. Errors that originate in the interfaces can significantly
negatively affect the viability of the content and performance of an IS and of all the ISs and
people that interact with it. Generally, user interfaces significantly affect the working
environment and productivity of a large number of people (e.g., bank or telephone service
order clerks). The system interfaces significantly influence the efficiency of all current and
future ISs that interact with the target IS. Interfaces are critical before, during, and after the
legacy IS migration. Indeed, the success of the migration depends critically on the
interfaces to the composite IS that exists during the migration. Hence, interface migration
should be considered equally with database and applications migration. This makes sense
technically, since interfaces, databases, and applications have distinct technical challenges
and supporting technologies.4 Interface migration can be used to implement corporate-wide
interface improvements (e.g., TTY to GUI) and standardization that is currently being
pursued in most IS organizations. Interface migration can provide a basis for, and many of
the benefits of, IS integration and interoperability before their being provided at the
database and applications level.

4 The separation of interface, database, and application issues and technologies is part of a trend towards
next generation information systems technologies, architectures, and methods.  The trend is to separate
as many aspects as possible to achieve, amongst other goals, greater modularity, flexibility,
reusability, portability.  This is widely discussed in terms of Enterprise Information Architectures and
middleware [BROD92a].
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During migration, legacy IS modules and their interfaces can be operational simultaneously
with the corresponding target IS modules and their interfaces. This may require that the
desktop machine (e.g., PC) of the target environment emulate a dumb terminal interface.
For IBM legacy code, the PC must include 3270 emulation, a widely available feature. As a
result, The user interface could get ugly during the migration with GUI windows existing
simultaneously with 3270 windows on the PC. These problems can be addressed by an
interface gateway (i.e., a single user interface that can help to simplify the multiple
interfaces of the composite IS). It can also hide the fact that the functions are being
supported by the legacy IS, the new IS, or both. This helps to insulate IS users from
changes in the user interface as well as IS changes. The interface gateway permits the
changes to be phased in at a rate appropriate to the user community. Interface gateways can
also be used to introduce, temporarily, functionality and extensions intended for the target
IS but added earlier to gain some benefits (e.g., essential edit checks not in the legacy
interfaces and not yet available in the target interfaces). This adds alternatives hence
flexibility to the migration methods.

A key to a successful interface migration is the interface gateway. It insulates all end users
and interfacing systems from any negative effects of the migration, as illustrated in
Figure 1.7. An interface gateway captures user and system interface calls to some
applications and then translates and re-directs them to other applications. It also accepts the
corresponding application responses and translates, integrates and re-directs them to the
calling interface. For some legacy interfaces, this means capturing TTY keystrokes and
mapping them into GUI interfaces or directly to applications. An interface gateway
provides more independence between the interfaces and the applications thus adding to the
flexibility of the corresponding migration methods. Besides gateway functionality, it could
provide a complete user interface development and management environment. It might also
support migration with versioning and other functionality. Finally, as suggested in Section
9, the interface gateway can be maintained as part of the target IS architecture to support
future interface migration and evolution.

GUIk GUI

Mk M

Target DBMS

SInSIk
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UI1SI1 UIk-1SIk-1

Interface Gateway

ISs End Users

Legacy IS

•••
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Figure 1.7: Interface Gateway
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Cut-Over

We end this subsection by considering cut-over. We use the term cut-over to refer to the
process of switching from the legacy IS to the target IS. For example, whereas the
application migration step is used to design, build, and install target applications, the cut-
over step is used to iteratively cut-over operations from the legacy applications to the target
applications, application by application, site by site, and user by user according to specific
requirements.

Although there could be a cut-over phase for each of the above four steps, the size and
complexity of the ISs we are considering can warrant a separate cut-over step. In large
organizations, such as banks and telecommunications companies, IS cut-over may involve
hundreds of sites, hundreds of users, and hundreds of versions of legacy and target
database, application, and interface modules. Target modules may be ready months or
years before the target environment is in place or before all end users are prepared for the
change. The cut-over step involves coordinating all these components so that the composite
IS continues to meet the mission critical IS requirements. This complexity alone can
warrant a separate cut-over step. The size of the cut-over step may require that it be iterative
(i.e., done in appropriately sized chunks), consistent with the Chicken Little strategy. It can
also be optimal to proceed with all steps in parallel. For example, some hardware and some
software in some sites can be cut-over for some users while the corresponding legacy
components are still in operation. Iterative and parallel cut-over increases the flexibility of
the methods but also increases the complexity of the cut-over procedure, further motivating
cut-over as a separate step.

A significant challenge for most migration methods is to plan, manage, and modify, as
needed, the steps and their interactions. A related challenge is to achieve a migration plan
that is adequately coordinated to iterate and parallelize the migration steps. The methods
presented in this paper are intended to provide this flexibility so that they can be tailored to
the requirements and available resources.

In Section 2, we develop and present the simplest method that applies to decomposable
legacy ISs. We illustrate this method in Section 3, with a case study for a legacy banking
system from a major bank. For legacy ISs with more complex requirements and
architectures (e.g., semi-decomposable, non-decomposable, general case), we extend the
simple method in subsequent sections. We also add details that could have been included
earlier but were deferred to simplify the initial descriptions. In Section 4, we extend the
method to semi-decomposable legacy ISs and illustrate it, in Section 5, by a case study for
a legacy telecommunications facilities management system from a large telephone company.
In Section 6, we further extend the method to non-decomposable legacy ISs. Finally, in
Section 7, we present the migration method for the general case.

The legacy ISs presented in the case studies are typical of hundreds of such ISs known to
the authors. They provide excellent examples of legacy IS migration problems and
challenges. Although legacy IS re-engineering and migration are frequently discussed,
there are few, if any, effective migration methods, tools, or techniques. In this regard, we
list, in Section 8, desirable tools and needed research that would facilitate the application of
Chicken Little to real legacy ISs. We conclude the paper with summary comments and an
epilogue on the status of the case studies.
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 2. MIGRATING DECOMPOSABLE LEGACY ISs

In this section, we present a Chicken Little method for migrating legacy ISs that are
decomposable, or that can be restructured accordingly. Our goal is a target IS that is
decomposable and is in our target environment (e.g., rightsized computers, a client-server
architecture, modern software). Decomposability in the target IS is intended to facilitate
future change to avoid future legacy IS problems.

The method for migrating decomposable legacy ISs involves a forward migration method,
described in Section 2.1, and a backward migration method, described in Section 2.2. On
their own, the forward and backward migration methods are not widely applicable.
However, they are fundamental to the migration methods presented in the rest of the paper.

 2.1 Forward Migration Method For Decomposable Legacy ISs

This sub-section presents the method for migrating decomposable legacy ISs for which the
database can be migrated in one initial, Cold Turkey step. It involves a forward database
gateway. This facilitates a Chicken Little migration of the applications and their interfaces
after the Cold Turkey database migration. It is called a forward migration since it migrates
unchanged legacy applications forward onto a modern DBMS and then migrates the
applications. As discussed below, a Cold Turkey database migration and other limitations
may render the forward migration method inappropriate for most migrations.

Step F(orward)1 Iteratively install the target environment.

Identify the requirements for the target environment based on the total target IS
requirements. Select and test the environment. Install the environment including a desktop
computer for each target IS user (e.g., bank clerk, telephone service order clerk) and
appropriate server machines. This requires replacing a dumb terminal with a PC or
workstation and connecting them with a local area network. Such a move to desktop,
client-server computing is currently being studied in most IS shops and is being
implemented in many. This facilitates the construction of GUI programs, necessary in
subsequent steps, and off-loading code from a server machine, where MIPS are typically
expensive, to a client machine, where MIPS are essentially free.

Step F1 involves significant changes in (i) hardware and software, (ii) applications,
development, and maintenance architectures, and (iii) users and management. These
changes may require significant investments and time. Hence, Step F1 may prolong the
entire migration. Following the premise underlying Chicken Little of migrating in small,
iterative steps, Step F1 can begin at any time and can be taken in steps appropriate to the
context. That is, install a few PCs at a time and deploy new software at a rate appropriate to
the context.

Step F2 Analyze the legacy IS.

Understand the legacy IS in detail. This corresponds to writing requirements for the legacy
IS and for the target IS. Sources for the understanding include documentation, if any
exists, the code5, and knowledge of the system and its use from people who support,
manage, and use the legacy IS. The tendency to include new target IS requirements must be

5 Existing tools can assist with this step (e.g., Reasoning Systems’ Refine and Bachman Information
Systems’ The Analyst for code analysis.
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managed due to the consequent increase in complexity and risk of failure.

Step F3 Decompose the legacy IS.

Modify the legacy IS to ensure that it is decomposable. Dependencies between modules,
such as procedure calls, must be removed. There must be well-defined interfaces between
the modules and the database services. The cost of this step depends on the current
structure of the legacy IS. If such a restructuring is not possible, other migration methods
may apply.

Step F4 Design the target applications and interfaces.

Design and specify the target IS. This requires designing the software architecture of the
target IS, illustrated in Figure 2.1. It includes a modern DBMS and target database that can
be centralized, on one server machine, or distributed over the multiple servers in a client-
server architecture. It also includes application modules (Mi) each with its corresponding
user interface (GUIi) and, possibly, system interface (SIi). Design target GUIs and SIs and
an interface migration strategy including the decision whether to build an interface gateway.
The target modules and interfaces will run on the client machines in the target environment.
Following the principle that significant functionality not be added during the migration,
legacy and target application module functions are intentionally similar.

Target
Database

GUI1

Target DBMS

GUI2

M1 M2

GUIn

Mn• • •

SI1 SI2 SIn

Figure 2.1: Target IS Architecture

Step F5 Design the target database.

Design a relational6 schema to meet the data requirements of the target IS. This requires an
understanding of the target and legacy ISs and uses the results of the previous steps.
Depending on the legacy code and the application requirements, the target database design

6 Unless there are very unusual requirements, we recommend the use of an SQL-based, relational DBMS.
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step can be very complex. Legacy IS development techniques can make data definitions and
structures difficult to find and understand. Before the age of databases, the distinction
between data and application code was often blurred. It was also common to distribute data
definitions throughout the application7. The complexity of this step can be large enough to
warrant iterating in small increments, as discussed in Section 2.3. Re-engineering tools8

can be used to extract data definitions from legacy code, to design schema fragments for
each increment, and to integrate the schema fragment into a single schema.

Due to the critical role of data in any IS, this step provides benefits whether or not the
legacy IS migration proceeds (e.g., a deeper understanding of the IS).

Step F6 Create and install the forward database gateway.

Develop the forward database gateway. The gateway is intended to encapsulate the target
DBMS and target database from the legacy applications and to permit the application and
database migration steps to proceed independently. The forward gateway is designed so
that the legacy applications need not be altered in any way. It includes a translator that
captures and converts all legacy database service calls from legacy applications on the
mainframe into calls against the modern DBMS on the server machine(s). The conversion
may require a complex mapping of the calls (e.g., one to many, many to many, special
purpose procedures), and data translation. The gateway must also capture responses from
the DBMS, possibly convert them, and direct the result to the appropriate module(s). The
gateway can also be used to enhance or correct legacy applications immediately rather than
waiting for the application migration step. For example, the data and call translator can
introduce new data formats, data edits, and integrity and error checking and correction that
will later be done in target applications.

The forward database gateway evolves as the IS migration proceeds. As target applications
are cut-over and legacy applications are retired, the gateway’s translation and redirection
functions are reduced accordingly. To support the mapping and redirection functions, it
may be useful to implement mapping tables. Mapping tables are tables or directories that
provide a mapping between legacy database service calls and their modern DBMS
counterpart(s) as well as between legacy data items and their corresponding target data
counterpart(s). The tables can identify when complex mappings (e.g., mapping programs)
are required.

Constructing a forward gateway can be very costly. It involves writing the gateway from
scratch or tailoring a commercial gateway product9 to meet the migration requirements. For
certain DBMSs, a general purpose forward database gateway can be built. In some cases,
constructing a forward database gateway can be very complex due to the low-level legacy
database service calls which may have semantics that are unimplementable in SQL. See
[DATE87] for a discussion of this point in the context of IMS to SQL conversion. Such
cases require a special purpose gateway that handles calls on a case-by-case basis.

7 There is currently a trend back to these ideas. Object-oriented and distributed computing principles
suggest moving from a single, centralized database schema to distributed class definitions that
encapsulate data and functions.

8 For example, Bachman Information Systems’ Re-Engineering Product Set.
9 Some DBMS vendors provide forward database gateway functions, other vendors specialize in them.

For example, Computer Associates’ Transparency Software is intended to provide translation of native
or legacy DBMS calls to IMS, VSAM, and DB2 to calls to their CA-Datacom DBMS.
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The gateway must be installed in the legacy IS architecture between the application modules
and the legacy database service in preparation for the database migration (Step F7). A
gateway can significantly impact IS performance. It must be carefully designed and
thoroughly tested keeping in mind that the composite IS (the legacy IS plus the target IS) is
mission critical and can never fail.

If a forward database gateway is impractical, alternative methods, discussed in subsequent
sections, may be applicable.

Step F7 Migrate the legacy database.

Force-fit the legacy application modules to the target database to achieve the architecture
illustrated in Figure 2.2. This involves installing the target DBMS on the server
machine(s), implementing the schema resulting from Step F5, migrating the legacy
database to the target DBMS under the new schema, and using the gateway to support the
legacy application calls. Database migration involves downloading, converting, and
uploading, possibly large amounts of data. Products10 support some of these functions.
The forward database gateway may be useful in the database migration as it contains
relevant mapping and translation information.

Target
Database

UI1

Forward Gateway

UI2 UIn

M1 M2 Mn• • •

Target DBMS

SI1 SI2 SIn

Figure 2.2: Forward Migration Architecture, Initial State

Cold Turkey database migrations may be impractical for several reasons. The legacy
database may be so large or complex that there is no effective one-step, Cold Turkey
migration method. Even if a method exists, some databases are so large that the time
required for migration is greater than that allowable for the system to be non-operational.
Such cases may require an iterative database migration method, as described in subsequent

10 For example, IBM’s Data Extractor Tool (DXT) and BMC Software’s LoadPlus.
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sections.

Step F8 Iteratively migrate the legacy applications.

Select and migrate legacy modules, one (or more) at a time. Selection should be based on
technical (e.g., simplicity) and organizational (e.g., cost, importance) criteria. This
involves rewriting the legacy module(s)11 (Mi) to run directly against the modern DBMS,
as illustrated in Figure 2.3 for modules M1 through Mj.

The target applications will run on a client machine in the target environment. They can be
used to replace the legacy application modules that run on dumb terminals. The remaining
legacy modules (Mk through Mn in Figure 2.3) must continue to be used.

Target
Database

GUI1

Forward Gateway

GUIj

UIk UIn

M1 Mj

Mk Mn• • •

Target DBMS

SInSIk

SIjSI1

• • •

Figure 2.3: Forward Application Migration Architecture, Intermediate State

Step F9 Iteratively migrate the legacy interfaces.

Select and migrate legacy interfaces, one (or more) at a time. Selection should be based on
principles similar to those in Step F8. If a 4GL is used which supports application and
interface development, interface and application migration might be coordinated. This
involves rewriting the legacy user (UIi) and system interfaces (SIi) to run directly against
the modern DBMS. The target interfaces will run on a client machine in a 4GL/GUI
environment on the desktop. They can be used to replace the legacy interfaces that run on
dumb terminals. The remaining legacy interfaces (Uk and SIk through Un and SIn in
Figure 2.3) must continue to be used. An interface gateway could be used here to support

11 There is a growing number of products to assist with rewriting legacy code into target applications. For
example, Seer Technologies Inc.’s High Productivity System assists in converting IMS applications to
SQL.
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interface migration.

Step F10 Iteratively cut-over the target IS.

Cutting-over the new IS involves cutting-over operations to the forward gateway, and the
migrated target database, applications, and interfaces on client-server machines, and then
discarding the legacy components. When the last module is cut-over and no legacy modules
are in use, the forward database gateway can be discarded. However, since change is
constant and the migration process may take a long time, the gateway may serve future
migration and evolution requirements, as discussed in Section 9. Finally, the costly legacy
environment, including the mainframe and the dumb terminals, can be discarded. The
resulting target IS is illustrated in Figure 2.1.

The cut-over can begin as soon as the database is migrated. It continues as applications are
migrated and can be extended indefinitely. For example, it may be economical to run a bank
branch or telephone office on the legacy IS for a year after others have migrated if they are
to be shut down thus losing the migration investment. Using the forward database
gateway, legacy IS modules and their interfaces can be operational simultaneously with the
corresponding target IS modules and their interfaces as long as required.

The flexibility, hence applicability, of a migration method increases as the steps become
iterative and parallel. In the forward migration method, only four steps (i.e., F1, F8, F9,
and F10) were described as iterative, partly to simplify the explanation. More steps could
and should be iterative. For example, the database migration step could be made iterative.
However, this will complicate the cut-over as well as the gateway that would have to
mediate between the diminishing legacy database and the growing target database. In
subsequent migration methods in this paper, all steps become iterative.

 2.2 Reverse Migration Method For Decomposable Legacy ISs

This sub-section presents the method for migrating decomposable legacy ISs for which the
database can be migrated in one final, Cold Turkey step. It involves a reverse database
gateway that facilitates a Chicken Little migration of the applications and their interfaces
before the Cold Turkey database migration. It is called a reverse migration since it migrates
target applications in the reverse direction, back onto the legacy database until it is
subsequently migrated. This method permits more time to deal with the database migration.
As with the forward migration, a Cold Turkey database migration and other limitations
render the reverse migration method of limited applicability. Reverse migration principles
are important as they are included in all subsequent migration methods.

In the reverse migration method is similar in most steps to the forward method. We focus
here on only those steps that differ.

Step R(everse)1 Iteratively install the target environment. (See Step F1)

Step R2 Analyze the legacy IS. (See Step F2)

Step R3 Decompose the legacy IS. (See Step F3)

Step R4 Design the target applications and interfaces. (See Step F4)

Step R5 Design the target database. (See Step F5)
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Step R6 Create and install the reverse database gateway.

Develop the reverse database gateway. The reverse database gateway includes a translator
that captures and converts all calls to the modern DBMS from target applications and maps
them into calls to the legacy database service. It must also capture, translate, and direct
responses from the legacy database service to the appropriate modules.

The functions of and challenges in developing a reverse gateway are similar to those of the
forward gateway (e.g., potentially complex mappings). As the IS migration proceeds, the
reverse gateway must be evolved. Initially, it may support one target application module.
Iteratively, it supports more target application modules until all are supported, thereby
completely encapsulating the legacy database service. It contracts as the target applications
are migrated to access the target database directly.

As with the forward database gateway, the reverse database gateway may require mapping
tables or directories, data and call conversion, and can have its functionality extended.
Also, there are many alternatives for constructing a reverse database gateway (e.g., hand-
code functions as needed, build a general purpose reverse database gateway, adapt
commercial products). Hand coded reverse database gateways may be appropriate for small
IS migrations. However, a general purpose reverse database gateway may be more
appropriate for large IS migrations. Some products provide reverse database gateway
functions12. These products do not support data integrity, transactions (i.e., updates), or
query optimization. They also require that the calling applications be aware that they are
calling a gateway and not a DBMS directly. This will require changes to all target
applications once the gateway is removed.

The reverse database gateway must be installed in the migration architecture between the
target application modules and the legacy database service, as illustrated in Figure 2.4. It
then becomes a vital component in the migration and operation of the mission critical IS.

Step R7 Iteratively migrate the legacy applications. (See Step F8)

Using the reverse gateway, map the target application modules onto the legacy database to
achieve the architecture illustrated in Figure 2.4. Select and migrate legacy modules one (or
more) at a time. This step is similar to Step F8 in the forward migration method except
that, initially, target application modules run against the reverse gateway.

The target applications will run on a client machine in the target environment on the
desktop. They can be used to replace the legacy application modules. The remaining legacy
modules (Mk through Mn in Figure 2.4) must continue to be used until they too are
migrated.

Step R8 Iteratively migrate the legacy interfaces. (See Step F9)

12 Some DBMS vendors provide reverse gateway functions, other vendors specialize in them. For
example, SQL Solutions’ RMS Gateway product provides translation between DEC’s RMS (files) and
various RDBSMs. Oracle’s SQL*Net and SQL*Connect provide translation from SQL to DB2,
SQL/DS, RMS (files), and IMS. Information Builders Inc.’s Enterprise Data Access (EDA) provides
translation between more than 50 DBMSs and file systems in client-server environments. Cross Access
Corp.’s Cross Access product provides similar translation between more than 15 DBMSs and file
systems.Apertus Technologies’ Enterpise/Access product will povide reverse gateway services.
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Step R9 Migrate the legacy database. (See Step F7)

Step R10 Iteratively cut-over the target IS. (See Step F10)

This step is similar to the forward migration Step F10 except that the reverse migration cut-
over is more constrained and, consequently, of higher risk. The forward migration
architecture can simultaneously support legacy and target applications. This provides
flexibility as to how and when to cut-over the IS. In the reverse migration method, once the
legacy database is migrated, the legacy applications can no longer be used. Hence, the
database, applications, and interface cut-overs must be coordinated and must conclude
simultaneously. This may place severe constraints on the cut-over since the IS is mission
critical and can be non-operational for only a very short time.
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Figure 2.4: Reverse Migration Architecture, Intermediate State

 2.3 General Migration Method For Decomposable Legacy ISs

This sub-section presents a migration method for all decomposable legacy ISs. It uses a
reverse database gateway and a forward database gateway, which permits all migration
steps to be iterative and parallel. Following our Chicken Little strategy, IS migration can
proceed by selecting, as iteration increments, any appropriate subset of IS functions and
corresponding data (or vice versa).

For simplicity, we describe only the key differences with the forward and reverse migration
methods already described. These include, the gateway (Step D6), and the database,
application, and interface migration steps (Steps D7, D8, and D9). Making Steps D2
through D5 iterative is a challenge left to the reader, as is their coordination in the cut-over,
Step D10.
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Step D(ecomposable)1 Iteratively install the target environment. (See Step R1)

Step D2 Iteratively analyze the legacy IS. (See Step R2)

Step D3 Iteratively decompose the legacy IS. (See Step R3)

Step D4 Iteratively design the target applications and interfaces. (See Step R4)

Step D5 Iteratively design the target database. (See Step R5)

Logically partition the legacy database to facilitate iterative database migration. Identify
subsets of the legacy database that are sufficiently separable to be migrated independently to
the target database. For each subset, design the target database schema (i.e., apply Step
R5) so that the subset can be integrated into the target database.

Step D6 Iteratively create and install the database gateway. (See Steps F6 and R6)

Unlike the reverse and forward methods, this migration may require simultaneously
supporting portions of the corresponding legacy and target applications and databases.
During the migration, the operational mission critical IS will be some composite of legacy
and target ISs, as illustrated in Figure 2.5. The gateway must support this composite. For
example, it must ensure that a degree of update integrity be maintained on any part of the
legacy database that is replicated in the target database. For example, if a data item in the
legacy database is updated, the corresponding target data item may be required to be
updated accordingly within a given time. Such correspondences must be identified,
expressed in inter-database dependencies (e.g., conditions under which legacy database
updates must be reflected in the target database, and vice versa), and maintained by the
gateway. This coordination role of the gateway is similar to the transaction management
role of a DBMS.

This step is iterative in that the gateway functions vary throughout the migration. At the
beginning of the migration, when the target database is empty, and at the end, when the
legacy database is empty, there is little for the gateway to do. When there are many legacy
and target components operating simultaneously, the gateway must maintain all the inter-
database dependencies. Failure to do so at all or within adequate performance bounds may
cause the mission critical, composite IS to fail.

The gateway consists of at least four components: the forward database gateway, the
reverse database gateway, a mapping table, and a coordinator. Since the potential mappings
are more complex than in the forward and reverse database gateways, mapping tables will
be correspondingly more sophisticated. It may be useful to maintain other descriptive data
to assist with the migration. This meta-data may form a small migration database that could
be supported by the target DBMS. If the database mappings are sufficiently complex, the
migration database may contain a schema that integrates those of the legacy and target
databases, as is done in distributed DBMSs [OZSU91]. Indeed, the gateway bears strong
similarity to a general purpose distributed DBMS.

The coordinator manages all gateway functions. On the basis of the location of the data
being accessed and on the relevant inter-database dependencies, all given in the migration
database, the coordinator must map calls from the legacy and target applications to one or
more of the legacy database, the target database, the reverse gateway or the forward
gateway. The alternatives are illustrated in Figure 2.5. Calls from legacy modules Mk
through Mn can be directed to the legacy database service, without translation, and to the
target DBMS via the forward database gateway. Calls from target modules M1 through Mj
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can be directed to the legacy database service via the reverse database gateway and to the
target DBMS, without translation. The gateway may also need to combine responses from
both database services and map them to either or both legacy and target applications. The
most challenging requirement for the coordinator is to ensure the inter-database
dependencies for updates as well as for queries mixed with the updates. This may require a
two-phase commit (2PC) protocol [SKEE82] to be used by both the legacy and target
DBMSs and by the gateway coordinator, as is done in distributed DBMSs [ELMA92,
OZSU91].
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Figure 2.5: Decomposable Legacy IS Migration Architecture

In an IBM environment, CICS can perform the coordinator role and both DB2 and IMS
support 2PC; hence distributed transactions are easily supported. However, most legacy
database services do not support 2PC. To guarantee that the inter-database dependencies
are maintained, 2PC can be hand coded into the application modules. This exotic and
difficult work-around is described in [BREI90]. Alternatively, the user can decompose a
distributed transaction into two transactions, each updating only one database. If either
transaction fails to commit, application logic can perform a compensating transaction to
return the database to a consistent state. Compensating transactions are discussed in
[GARC87, WACH92]. Another alternative that alleviates the application programmers
from such concerns is to develop distributed transaction support in the coordinator, based
on existing and special purpose components (e.g., build the coordinator on the target
DBMS that might also support distributed transactions). Besides providing 2PC protocols
and distributed transaction management, the legacy database service must also be
augmented with other transaction support including transaction commit and abort, rollback,
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and compensation. This will be one of the most complex technical challenges in the
migration and should be left to expert DBMS developers. It is this coordinator function that
current gateway products do not support. Although costly and risky, the benefits of
building a coordinator may be more considerable than might initially be thought. The longer
the gateway is used, the greater the benefits of implementing distributed transactions
support, since it is amortized over a longer productive period. Later in this paper, we
suggest that IS migration will become a way of life. Hence, distributed, flexible transaction
support, as described above, will become a critical component of the target environment.
No such products exist.

Step D7 Iteratively migrate the legacy database. (See Step R9)

Select one (or more) independent legacy database subsets (identified in Step D5), based on
technical and organizational criteria. Implement the corresponding schema in the target
DBMS (e.g., by iteratively augmenting the current target schema). Migrate the
corresponding legacy database subset to the target DBMS. This might be aided with several
potential migration or downloading tools (e.g., in the legacy database service, in the target
DBMS, or special purpose products). The gateway could be extended to support database
migration since the migration database could contain the relevant meta-data for translation.
The gateway must be enhanced to accommodate any new inter-database dependencies that
may have arisen from the migration of the current database subset.

Database migration can use the following simple method. When the migration of some
subset of the database is attempted, there are K old modules and N - K new ones . The new
applications use a reverse gateway to convert as needed from SQL to the legacy database
service. The old applications use the forward gateway when needed to talk to the SQL
DBMS. Now, introduce a target distributed DBMS that supports fragments for database
tables. Hence, each table can be distributed, and a distribution criteria determines where
individual records reside. For example, the following distribution criteria places young
employees on machine 1 and old employees on machine 2.

distribute EMP to machine-1 where EMP.age < 30

to machine-2 where EMP.age >= 30

Further suppose the distributed DBMS supports distributed transactions through 2PC.
Lastly, most distributed DBMSs allow data to be stored in tables managed by other
vendor's single-site DBMSs. This is accomplished by an SQL reverse gateway within the
distributed DBMS that translates from SQL to the foreign vendor’s protocol.

Such software makes migration a breeze. Bring up the distributed DBMS with the initial
distribution criteria:

• old system: everything

• new system: nothing

Legacy IS transactions are supported by converting legacy database accesses to SQL
accesses that are processed by the distributed DBMS. If necessary, the distributed DBMS
can route accesses to data not yet migrated through the reverse gateway to the old DBMS.

Over time the migration is accomplished by changing the distribution criteria in small
increments until it is finally:
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• old system: nothing

• new system: everything

The cut-over Step D10 must be invoked to support the related database cut-over that brings
the migrated database into operational use.

Step D8 Iteratively migrate the legacy applications. (See Step R7)

Select and migrate legacy modules one (or more) at a time similar to Step R7. A target
module will run against the gateway until the gateway is no longer required (e.g., the
corresponding target database has been migrated and no coordination is required). Then,
the target module can be migrated  from the gateway to the target DBMS.

Step D9 Iteratively migrate the legacy interfaces. (See Step R8)

Step D10 Iteratively cut-over the target IS. (See Step R10)

Coordinate all the iterative, and possibly parallel, migrations of subsets of the legacy IS
(e.g., environment, database, applications, and interfaces) making them operational while
ensuring that the composite IS meets its mission critical requirements. This step is similar
in nature to the corresponding forward and reverse migration steps, Steps F10 and R10.
This step offers a wider range of alternatives to avoid problems that arise in those steps.

A fundamental difference with the forward and reverse migrations is the need to coordinate
updates between the legacy and target databases. Throughout the migration, some, or all,
of the legacy database on the mainframe will be operational simultaneously with the target
database on the database server(s). Hence, there may be distributed transactions that
perform updates in both systems using a 2PC protocol. At the end of the cut-over process,
the distributed DBMS (suggested in Step D7) can be discarded or used in cutting over the
next portion of the database.

The cut-over must deal with iteratively retiring subsets of the legacy IS that have been
migrated after the corresponding target IS subset is operational. The legacy subsets should
be retired only if they are of no further use. This permits the gateway to be simplified
accordingly. A legacy database subset is no longer of use only when it is strictly
independent from all other database subsets and no legacy application accesses it. Due to
the interdependence within legacy databases and between legacy databases and their
applications, this may be difficult to judge. For example, what may appear as a two or
more logically distinct data groupings may be stored physically as one highly
interdependent data and index structure. Such considerations significantly complicate the
cut-over step.
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 3. CASE STUDY 1 MIGRATING CMS

We had the opportunity to construct a migration plan for the Cash Management System
(CMS) for a large money center bank. We used the occasion to develop and validate the
above methods. This section describes CMS, our analysis, and our migration plan.

 3.1 CMS

CMS supports check processing and other specialized services for large corporate
customers. One service CMS provides is zero balance accounts for which the bank will
notify the customer of all the checks that are processed during a given day, and allow the
customer to cover the exact amount of these checks with a single deposit. Hence, the
customer applies the minimum possible capital to cover his liabilities, and only at the exact
time that the capital is needed.

A second CMS service is the reconciliation of cleared checks. A customer can provide the
bank with an electronic feed of all the checks that he writes each day. The bank will match
the issued checks against those that clear, and provide the customer with an electronic feed
that indicates all checks that have cleared, as well as those that are still pending.

A third service supported by CMS is electronic funds transfers between customer accounts.
When the initiator or recipient of the transfer is another bank, the funds must be
electronically received from or transmitted to the other bank. This requires connection to
several electronic money transfer systems (e.g., Swift) as well as to the Federal Reserve
bank. CMS also supports lock box operations in which U.S. mail is received from a post
office box and is opened; the checks are deposited for the customer; and an accounting is
rendered. Such a service is appropriate for a customer who receives large numbers of
checks in the mail, such as a large landlord or a utility company. A final example CMS
supported service is on-line inquiry and reporting of account status by customers as well as
on-line transactions such as the previously discussed funds transfer.

CMS includes 40 separate software modules that perform these and other functions,
totaling approximately 8*106  lines of code. Most of the code runs in a
COBOL/CICS/VSAM environment. However, the connection to the Federal Reserve bank
is implemented on a Tandem machine using TAL. Lockbox operations are provided on a
DEC VAX and are written in C. These additional environments exist since the bank bought
external software packages, and then acquired the hardware to run them.

The majority of CMS was written in 1981. It has grown to process between 1 and 2 million
checks in a batch processing run each night and approximately 300,000 on-line transactions
each day. Most of CMS runs on an IBM 3090/400J with 120 spindles of DASD. Total on-
line storage exceeds 100 gigabytes.

CMS is probably too complex for any group to understand in its entirety. Much of the
CMS code provides interfaces to ISs elsewhere in the bank or in other organizations. These
interfaces are not key CMS functions. To reduce the migration problem to one of
manageable proportions, we removed from consideration modules that are not within the
core function of CMS.

After discussion with application experts, we concluded that core functions of CMS were
supported by the following three subsystems:
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• Xcheck -- 1,000,000 lines of COBOL

• Xtransfer -- 200,000 lines of COBOL

• Xcash -- 500,000 lines of COBOL

Xcheck provides batch check processing and reconciliation mentioned above. It also
supports on-line transactions submitted by internal bank personnel from synchronous 3270
terminals. Xtransfer supports electronics funds transfer and delivers transactions to Xcheck
when account updates are required. Xcash is an on-line system that supports inquiry and
update to the Xcheck VSAM files from dial-up asynchronous terminals on customer
premises. The terminals are typically IBM PCs.

The decision was made that the software supporting the paper processing operation (check
sorting) that occurs before batch processing by Xcheck should be excluded from
consideration. Although this is a core function, it is a front-end, easily isolated module that
contains vendor-supplied code particular to the check sorting hardware. Because our client
had no interest in new check sorters and was happy with this portion of the system, we
ignored it.

As a result, we concentrated exclusively on a migration plan for the 1.7M lines of core
CMS code listed above, ignoring the remaining 6.3M lines of code.

3 . 2 Analysis of the CMS Core

The next step was a detailed analysis of the CMS core. The purpose was to understand the
application structure (i.e., chunks of code that are not dependent on the rest of the system).
A code analyzer would have helped to extract the desired macro structure. In our exercise,
we estimated the required structure by conversations with application experts.

The 1.7M lines of CMS code had the following approximate composition:

Xcash: This system is composed of some 500 modules, each a separate on-line transaction.
There is an average of 1000 lines of COBOL to support each transaction. The actual work
is performed by Xcheck update routines. An immediate conclusion was that this system
should be re-implemented in a 4GL for deployment on a desktop. Compared with COBOL,
a modern 4GL should achieve a factor of 20 code reduction. Hence, there should be around
25,000 lines of 4GL.

Some customers will choose to run the 4GL code on a desktop PC. Others will choose not
to have bank code running on their machines preferring to use their PCs as dumb terminal
emulators. Hence, the bank must supply one or more application servers on which the 4GL
application will run. Such application servers must be multi-threaded, and a variety of low-
cost UNIX servers (jelly beans) make ideal candidates for deployment of this sort of code.

Xtransfer: This system provides a data entry facility for an operator to specify the funds
transfer transactions, an auditing and message tracking facility, and an interface to several
wire service systems. About 15% of this COBOL program is user interface code that
should be rewritten in a 4GL; the remainder should be rewritten or ported to the new
environment.

Xcheck: This system is the ultimate core of CMS. It consists of two portions, one for batch
processing and one for on-line inquiry.



26

The on-line portion consists of 250 on-line transactions for 3270 terminals on the desks of
bank personnel. Each transaction is a separate program, averaging 1000 lines. These
programs call a kernel collection of programs that access and update the VSAM files. The
kernel is a well-structured collection of modules totaling about 32,000 lines of COBOL.
This portion of Xcheck should be rewritten in a 4GL. The bank should ensure that a PC is
on every employee's desk so that Xcheck need only support a GUI interface for a PC.

The batch processing portion of Xcheck consists of 294 modules, performing the
following functions:

• 4 modules access and update VSAM files. These are batch version of the kernel
mentioned above for the on-line portion. They total approximately 40,000 lines of
COBOL.

• 40 modules prepare data for processing. These programs filter data and repair fields
in records.

• 130 programs are customer specific report generating and formatting programs.

• 80 programs write internal bank files for audit purposes.

• 40 other programs produce assorted reports.

We were convinced that 250 of these 294 modules perform basic report generation, and
should be rewritten using the SQL provided by the target DBMS, plus its report writer
(available in all commercial DBMS packages).

As a result, the batch portion of Xcheck consists of about:

• 40,000 lines of kernel code that executes batch updates.

• 40,000 lines of prep code that execute before the batch run.

• 250,000 lines of reporting code that should be rewritten.

Lastly, Xcheck appears to have about 300,000 lines of code that serves no current
function.

 3.3 The CMS Migration Plan

The client was interested in a migration plan for CMS because it was a typical legacy IS.
Since CMS costs around $16M per year in hardware and related support costs,
management was very interested in rightsizing. Moreover, they were eager to move to a
modern DBMS and evolve away from the dependence on a single batch run implementing
an old-master  / new-master methodology. Bank customers are eager to know earlier in the
day how much money will be coming into their account (from deposits or lockboxes) and
how much will be going out (from cleared checks). In effect, customers want an on-line
transaction system rather than a batch transaction system. Such features are incompatible
with the existing batch-oriented system.

The client requested that we construct a migration plan satisfying the following constraints,
which reflect real financial and business responsibilities in the client environment:

• No migration step could require more than 10 person-years of development.
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• No migration step could take more than one calendar year.

• Each migration step had to pay back its cost over a maximum of one year.

We now outline the migration plan that we constructed. Our starting point is the legacy
CMS illustrated in Figure 3.1. Following Chicken Little principles, the migration plan
decomposed the CMS migration into seven incremental migrations, each for a relatively
independent subset of CMS. Each migration applies the migration method for
decomposable legacy ISs described in Section 2.3. We focus the description on the seven
steps and how they intermix the critical database and application migration steps (Steps T7
and T8).
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Figure 3.1: Legacy CMS Architecture

Migration 1: Re-specify Xcash in a 4GL.

Xcash should run on client machines in the customer premises. The new 4GL code must be
able to submit transactions coded in SQL to Xcheck over an LU 6.2 interface, so that the
existing code can perform the actual VSAM inquiries and updates. This requires a forward
gateway, as illustrated in Figure 3.2. This migration step requires less than the 10 man-year
limit. The bank management agreed to this step based on remaining competitive and since it
will substitute cheap jelly bean  cycles for expensive mainframe cycles.

Migration 2: Rewrite Xtransfer in a 4GL.

This would also be deployed on a PC. This step would be sold to management since it will
take less than 5 man years, will lower maintenance costs, and will consolidate the three
versions of Xtransfer that are currently in operation.

Migration 3: Rewrite the on-line portion of Xcheck in a 4GL.

Again, the 4GL must be able to connect to the on-line kernel of Xcheck through LU 6.2.
This step involves 12,500 lines of 4GL code which should be implementable within the 10
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man-year constraint, and would be sold to management based on moving cycles from
expensive machines to cheap machines. The result of this migration is illustrated in Figure
3.3.
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Figure 3.2: CMS After Migration 1

The batch processing code is somewhat more complex to migrate. The on-line kernel and
the batch kernel must be combined, moved to a DBMS; and 250 new reports and feeds
must be constructed. In addition, the prep code must be moved to cheaper hardware. This
process was estimated at considerably more than 10 person-years, so it was broken into
smaller increments.
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Figure 3.3: CMS After Migration 3
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Xcheck performs two services:

• account maintenance

• check reconciliation

After lengthy discussion, it was decided that the migration plan with the least risk entailed
migrating these two functions separately. In general, when a large system performs
multiple functions, it is a useful strategy to migrate the individual functions separately.
Therefore the next migration step was:

Migration 4: Migrate the reconciliation database to an SQL system.

This migration results in a new reconciliation database running in parallel with the legacy
database. It requires reverse and forward gateways and a coordinator, as illustrated in
Figure 3.4.
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Figure 3.4: CMS After Migration 4

Account balances remain in the legacy VSAM files. The coordinator must ensure that some
information in transactions to be diverted to the SQL DBMS must also go into the legacy
VSAM files. This can be done since all the reconciliation activity on each account can be
put into a single, aggregate VSAM transaction that can be inserted into the batch stream.
This is an example of the legacy and target databases running in parallel as described in the
database migration Step D7. The majority of the database is moved from the old to the new
environment. However, the old environment is still the system of record. This is ensured
by the coordinator.

Migration 5: Rewrite the data feeds and reports using SQL and a report writer.

Data feeds and reports that involve both reconciliation and account balances must be
modified to work correctly in the hybrid environment illustrated in Figure 3.4.
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We felt that the fourth and fifth migrations could be accomplished in a 10 man-year period.
Moreover, the project could be sold to management based on earlier availability of
reconciliation information, moving cycles from expensive hardware to cheaper hardware,
and moving a portion of the database from expensive mainframe DASD to cheaper DASD.

Migration 6: Migrate the prep code to the jelly bean environment.

Migrate the 40,000 lines of prep code from the mainframe to the cheaper jelly bean
environment. It is conceivable that the current code could be ported. A more plausible
scenario is that it be rewritten as an on-line application. Even if a total rewrite is required,
this can be easily accomplished in the 10 man-year time constraint. This is the only step in
the migration plan that is difficult to justify on financial grounds. We saw no way to avoid
violating the ground rules for this particular step.

At the end of the sixth migration, the account balances remain in the VSAM system and
only about 72K lines of kernel VSAM update code actually access this data. This remaining
database must be migrated as the last step.

Migration 7: Move the account data from VSAM to SQL

This final step is trivial to justify, because it would allow the mainframe to be retired,
resulting in a large hardware savings.

 3.4 CMS Cut-over Issues

Each step of the above migration plan introduces serious cut-over problems. It is
impossible for CMS to be down for more than a few hours. If the new system fails to work
for any reason, the old system must resume operation immediately. Any failure to
accomplish a smooth transition would be a cause for immediate dismissal of the bank
personnel involved.

Cut-overs that entail rewritten applications are straightforward. Beginning with the old
system, one can migrate users, one by one. Hence, at any given point in the cut-over
process, some fraction is running the legacy application while the rest run the
corresponding target application. IS personnel can move users at whatever rate is
comfortable. Recovery from a catastrophe can be accomplished by restoring the old
application code.

The database migration and cut-over steps proposed for decomposable ISs (Steps D7 and
D10) pose serious problems for CMS. There is considerable overhead in using a forward
gateway to map DBMS calls in the old system to SQL and then a reverse gateway to map
them back to the old DBMS. This would seriously tax the IBM machine currently running
CMS. In addition, distributed DBMS software with these features was not yet widely
available or robust enough for the bank’s requirements.

Because of these problems, we proposed an alternate approach for database migration and
cut-over. To migrate any portion, P, of the database, replicate P in the target database (i.e.,
have P appear in both the legacy and target databases). Identify all transactions that update
P and execute them twice; once on the legacy database and once on the target. Depending
on whether they originate in 4GL code or COBOL, they will execute directly against the
database or use one of the two gateways described in Section 2.

In essence, the target database is brought up in parallel with the legacy database. For a
while, duplicate transactions are performed. Subsequently, P would be removed from the
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legacy database and the duplication of transactions would be turned off. The cut-over of P
is now complete. The replication of P does not require a distributed DBMS or the cascaded
use of a gateway. Hence, it will require less overhead on a crowded mainframe, and
therefore it was chosen as the better alternative. However, the gateway must implement
update consistency.

 3.5 CMS Migration Summary

The CMS migration plan consists of two major steps:

• Incrementally migrate the legacy applications.

CMS is a decomposable IS. Modules can be peeled off one by one and moved to a new
environment in manageable sized chunks.

• Incrementally migrate the legacy database.

The database can be divided into multiple pieces, which can be migrated one by one.
Although cut-over is a problem, it can be accomplished using the brute-force method of
running the two databases in parallel.

After completing these two steps, we were left with a small core that had manageable
complexity and could be moved as the final step. It is our assertion that most complex ISs
can be peeled in this fashion. If CMS’s architecture had been poorly designed (e.g., if
Xcash had performed its own updates instead of calling Xcheck) then the core would have
been larger. In this case, we speculate that the re-engineering of multiple kernels into a
single kernel would have been the appropriate step (e.g., in Step D3).

Lastly, note that our migration plan is an incremental rewrite of CMS and not incremental
re-engineering. Although there has been much interest expressed in re-engineering legacy
ISs, our case study has indicated that virtually all code would be better rewritten using
modern tools, especially 4GLs, report writers, and relational DBMS query languages.
There may be legacy ISs for which re-engineering is a larger part of the migration plan.
However, our experience with CMS did not indicate any significant use of this technique.
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 4. MIGRATING SEMI-DECOMPOSABLE LEGACY ISs

This section presents a migration method for semi-decomposable legacy ISs. The migration
architecture for a semi-decomposable legacy IS contains an application gateway placed
between the interfaces and the legacy and target ISs, as illustrated in Figure 4.1. The
application gateway maps application calls from the interface modules to application calls in
the legacy and target applications. This method applies the reverse and forward migration
methods, described in the previous section, at the application call level.
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Figure 4.1: Semi-Decomposable Legacy IS Migration Architecture

 4.1 Migration Method For Semi-decomposable Legacy ISs

The migration method for semi-decomposable legacy ISs starts with a semi-decomposable
legacy IS, illustrated in Figure 1.2, and produces a target decomposable IS, illustrated in
Figure 2.1. We comment here only on extensions to the migration method for
decomposable legacy ISs. We also separate interface design from application design. This
could be warranted based on the complexity of the legacy and target ISs. This separation
was deferred to this section to simplify the presentation of earlier methods.

Step S(emi-decomposable)1 Iteratively install the target environment. (See Step D1)

Step S2 Iteratively analyze the legacy IS. (See Step D2)

This step is more complex than for decomposable legacy ISs due to the increased
complexity of the architecture.
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Step S3 Iteratively decompose the legacy IS structure. (See Step D3)

Improve the legacy IS structure by eliminating as many dependencies as possible between
applications and between the applications and the database service. This will simplify the
migration that otherwise must support all the dependencies. This step may be too complex
or may introduce too much risk. In the worst case, the legacy IS will remain in its original
form. This will complicate the gateway, increase costs, reduce performance, and add risk.

Step S4 Iteratively design the target interfaces. (See Step D4)

Design the end user interfaces and system interfaces for the target IS. Develop an interface
migration plan from the legacy, through the composite, to the target IS. To ease the
migration of end users, it may be helpful to use an interface gateway since it provides a
single composite IS interface that supports both legacy and target interfaces, and assists
with the migration between them.

Step S5 Iteratively design the target applications. (See Step D4)

Design the target applications based on requirements that result from the analysis (Step S2).
Additional requirements or target functions increase the risk of failure.

Step S6 Iteratively design the target database. (See Step D5)

The less knowledge there is about the database or application structure, the more likely it is
that the legacy and target databases will have to run in parallel. This increases the
importance and difficulty of coordinating the databases and defining and maintaining the
correctness criteria for the composite, operational IS.

Step S7 Iteratively create and install the application gateway. (See Step D6)

This may be the most technically challenging step. It should be left to appropriately skilled
experts. The application gateway captures legacy and target application calls from legacy
and target interfaces and either passes them unchanged to the legacy and target applications
(respectively), or translates them to target and legacy application calls (respectively). It
must capture the corresponding results, translate them if needed, and direct them back to
the appropriate interfaces. The application gateway must coordinate target and legacy
updates when the two simultaneously support duplicate applications or data. Application
coordination could be similar to but more complex than database coordination described for
the database gateway in Step D6.

Step S8 Iteratively migrate the database. (See Step D7)

It may be useful to augment the gateway to assist with database migration since the required
mapping information may be in the gateway’s migration database.

Step S9 Iteratively migrate the legacy applications. (See Step D8)

Step S10 Iteratively migrate the legacy interfaces. (See Step D9)

Step S11 Iteratively cut-over the target IS. (See Step D10)

The lack of structure in the legacy applications and database service may make it difficult to
determine if a legacy component can be retired when the corresponding target component
has been cut-over.
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 5. CASE STUDY 2 MIGRATING TPS

One of the authors participated in developing a migration plan for the Telephone
Provisioning System (TPS) for a large telecommunications company. This was an
opportunity to apply the migration method for semi-decomposable legacy ISs and extend it
for the non-decomposable case. This section describes the semi-decomposable legacy IS,
TPS, and the proposed migration plan.

 5.1 TPS

TPS supports aspects of telephone provisioning. Telephone provisioning involves
allocating and deploying telephony resources to provide a customer with a requested
telephone service. Assume that a customer has called the telephone company to request
telephone service. The telephone company must perform the following tasks:

• Verify the street address.

• Identify an available telephone number and the required equipment (e.g., cable-
pairs, line equipment, location on a distributing wire frame, jumper wires, special
circuits for advanced services, cross connect box) from its available inventory.

• Assign them to the customer and take them out of inventory, deploy them (i.e.,
make the necessary connections, update the telephone switch that will serve the
customer).

• Ensure that it works.

• Inaugurate the service.

Many related functions are initiated directly or indirectly by TPS, including customer credit
validation, account and billing set up, and directory services update. Ideally, service
provisioning is completed during customer contact.

This process is required for any change to a customer’s telephone service. It is invoked
over 100,000 times per day for the current customer base of 20,000,000. If one process
fails, a customer may lose the requested telephone service. If many fail or if TPS goes
down, large numbers of customers can be affected within minutes. Other types of failure
can be costly. If inventory or assignments are not done correctly, equipment may be kept
out of service or may be inconsistently assigned, resulting in poor service or no service at
all. If billing is not initiated correctly, the company may not be able to bill for delivered
services or may bill for services not rendered. TPS is clearly mission critical.

TPS supports four basic functional areas:

• Core functions: cable-pair assignment, inventory management, wire frame
management, switch changes, network planning, central office conversion support,
repair support, performance audits, and related reporting and auditing.

• Street address guide (SAG): manages all valid addresses, counts services provided
at each address, validates customer addresses, and identifies location for equipment
assignment.
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• Dial office administration (DOA): assigning resources that optimally meet the
customer and company requirements. DOA functions include assignment of
telephone numbers and line equipment, load balancing of switching and line
equipment, managing equipment reservations and availabilities, aging telephone
numbers (one doesn’t want the one the local pizza parlor just gave up), equipment
rotation, and related reporting and administration.

• Outside plant management (OSP): managing and assigning telecommunications
equipment (e.g., serving terminals and cross connect boxes) that is not inside a
central office.

TPS’s key resource is the data it uses to run and administer telephone provisioning. Over
forty major ISs require information from, and actions to be performed by TPS. For
example, service order entry systems are the source of most telephone provisioning
requests to TPS. Other major ISs requiring on-line access to TPS include systems for
equipment testing, billing, verification, analysis, reporting, trouble shooting, repair
support, telecommunication network management, and equipment ordering. Over 1,200
small systems (e.g., report writers) also require access to TPS’s data. Hence, a fifth
functional area is the provision of interfaces to many other ISs.

TPS is currently just under 106 lines of FORTRAN code running on a Honeywell
mainframe under a proprietary operating system. Its implementation consists of a massive
program library (i.e., 6,000 source code files, 1,500 executable modules) and an immense
database (i.e., over 106 data files of 900 file types totaling approximately 400 gigabytes of
data). TPS’s transaction rate (105 per day) grows significantly during special operations
(e.g., central office conversions). Data volumes, processing, and accesses grow at 20%
per year. Considering the functions it was designed to perform, TPS has run remarkably
well and reliably, 24 hours a day, for twenty years with high user satisfaction. This
operational reliability is one if its best features. As with most such legacy ISs, there are
several development versions and several operational versions (due in part to regulatory
differences in deployment regions). This complicates the migration since the versions must
all be maintained.

The history and problems of TPS are typical of large legacy ISs. TPS began its life, in
1972, as a small IS for managing data for installation and dispatch administration (e.g.,
installation and repair support) and switching services (e.g., switch changes, wire frame
management). At that time, TPS was ideal for managing data for the then current telephony
technology and business processes and rules. As telephony and related business evolved,
TPS was extended or altered to support these unanticipated, mission critical changes.
Hence, there was seldom a global plan with which to control the evolution or against which
to develop a comprehensive, integrated design. Over its twenty year history, it grew by a
few large extensions and a vast number of enhancements, modifications, and fixes. TPS’s
inflexible and complex structure reflects this history. Applications are neither modular nor
cleanly separable. Files, data structures, and indexes are convoluted, complex, and poorly
structured. Programs and data are highly interdependent and redundant. This makes TPS
hard to modify and renders some applications and data outdated or irrelevant. Under
current conditions, it is difficult to allocate resources or time to fix known problems (e.g.,
pointer chain failures that cause crashes and are costly to fix), let alone to make changes
necessary to meet some current and future requirements. To complicate matters, other ISs
have been built to avoid modifying TPS but require interactions with TPS.

The above concerns for this mission critical system motivated over 25 studies to replace
TPS. The failure of these studies to develop a feasible plan and the failure of at least one
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Cold Turkey effort, led the company to request the study described here.

5 . 2 TPS Analysis and Migration Challenges

This sub-section presents an analysis of TPS, identifies potential problems, and where
possible, proposes means of reducing them in the migration plan.

Analysis was complicated since there is no complete specification or documentation. What
documentation exists is outdated since changes are made so rapidly and so often that the
requirements, specification, and documentation have not been kept current. The system
itself is the only complete description.

As with the CMS case study, it was previously believed that TPS was hard, if not
impossible, to decompose. Our analysis suggests that it could be decomposed into eleven
logical components. As illustrated in Figure 5.1, there are four major functional
components (Core TPS, SAG, TPS DOA, TPS OSP), two minor functional components
(advanced services administration and validation), three interface components for major ISs
(TPS Service Order Entry (SOE), TPS Interface Application (MIA), and TPS Switch
Interface (MSI)), one interface component for minor systems (TPS Access Interface), TPS
utilities (not illustrated), and a database services component that manages TPS data.
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Figure 5.1: TPS Architecture

Through analysis, we also found that the TPS data could be decomposed into seven logical
databases; one each for SAG, OSP, telephone numbers, pending orders, cable-pairs, wire
frames, and inventory (e.g., line equipment and miscellaneous equipment). A large number
of files were found to be artifacts of the implementation (e.g., indexes, output and
administrative files) that need not be replicated in the target IS.

TPS’s critical resource is the data, not the functionality. Hence, the primary goal of the
TPS migration was determined to be data liberation (i.e., migrating TPS data to a modern
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DBMS accessible by other ISs). The target database must be designed to meet the current
and known future requirements and be flexible enough to facilitate change. The lack of
knowledge of the current data structures was not considered a major database design
problem, since the database would not be duplicated, rather its logical requirements would
be met. The logical requirements could be derived from the code, the actual data, the
functions, the current and planned operation, and from TPS experts. Since many known
problems, including redundancy, are artifacts of the legacy design and implementation,
they can be ignored when designing the target database which will be correspondingly
smaller with redundancies removed. A wisely chosen distributed target DBMS could meet
all known requirements, including those for performance.

The major database challenges concern database cut-over, data migration, and copy
consistency. Database cut-over is a challenge due to the sheer volume of TPS data and to
the requirement for non-stop operation. Migrating TPS data to the target database is
complicated by the lack of knowledge of the data structures and the limitations of TPS’s
database services. Following the Chicken Little strategy, we felt that the solution involved
partitioning TPS data into small enough chunks for separate migrations, and sequencing the
migrations. Copy consistency requires that updates to TPS data be reflected in the
corresponding copy in the target database. Defining the corresponding correctness criteria
for coordinating updates is hard and only part of the problem of establishing a mapping
between the two databases. Supporting the required distributed transactions in the gateway
is hard, requiring expert database systems skills. Both of these problems could be
significantly reduced by building the gateway using a distributed relational DBMS.

Through analysis, we found that a significant amount of TPS interface code was redundant
or obsolete and need not be migrated. The IS and user interfaces were redundant and in
need of major improvements. We recommended that all user interfaces be migrated from
the current TTY technology to PC-based GUIs. The user interfaces significantly affect
many clerks. The IS interfaces significantly affect over 40 existing mission critical ISs and
possibly many future ISs. Management was rightly concerned about both of these aspects.
Hence, the benefits of interface improvements were used to sell the interface migration to
management. Two benefits were interface standardization and the “single point of contact”
policy intended to permit clerks to access any information that might be required during the
customer contact.

As with the CMS migration, the user interfaces can be rewritten efficiently using the 4GL
of a relational DBMS. Due to the size of the interface migration, we recommended using
standard user interface development environments and tool kits (e.g., Windows, X, Motif,
Openlook).

In analysis we found that the scope of application migration was less than anticipated.
Many TPS functions were found to be redundant, obsolete, and inefficient or would soon
be so due to modern telephony equipment. Hence, many applications need not be migrated
at all. Those that should be migrated should be correspondingly modified and simplified.
As with the CMS migration, we reduced the application migration problem by focusing on
only those functions that needed to be migrated.

We did not have a good picture of the TPS workload or of what functions and data were
most frequently accessed. We recommended that TPS be instrumented to capture this
information as an aid in designing the target TPS.

The TPS migration gateway was considered to be the greatest technical challenge. As
discussed in Section 4, such a gateway is hard to design, evolve, and maintain throughout
the migration. TPS’s performance and interface requirements potentially add significantly
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to the challenge. We found ways to reduce the problem. First, up to 80% of all TPS
accesses are read only. When data has been migrated to the target DBMS, all read-only
access can be directed there. This will improve performance, simplify the gateway, and
reduce the load on TPS. The copy consistency problem is reduced since not all TPS
functions and data will be migrated. Also, since only 20% of TPS accesses involve
updates, function migration and cut-over chunks should be selected for migration and the
migrations sequenced to further reduce the copy consistency problem. Due to TPS’s
complex structure, it is hard to determine when a migrated function can be retired, since
live TPS functions may still depend on it.

Early database migration permits benefits discussed above and provides a base for
advanced provisioning functions not feasible under TPS. This could be sold to
management based on the related new revenues for the services that could not be
provisioned using TPS. Hence, we recommended that the database migration be
accelerated. Function migration should be planned and sold to management based on
reducing TPS’s running and maintenance costs and on simplifying the gateway.

Most problems identified in the analysis can be reduced by selecting appropriately sized
chunks to migrate and an appropriate sequence for the migrations and cut-overs. Initially,
chunks should be very small and independent. When the TPS migration is well underway
and the risks and solutions are better understood, larger chucks may be reasonable.

The seven logical data chunks and corresponding functions, mentioned in Section 5.2, are
too big for single migration steps given the operational requirements (i.e., migration time
exceeds available down time). Smaller chunks had to be found. The telephone network is
supported by over 4,500 central offices each of which contains one or more telephone
switches and can be treated independently. They are natural units of migration in the
telephone business. Central offices are the traditional units of conversion when upgrading
the telephone network (e.g., upgrade or convert switches). Indeed, TPS itself is designed
to facilitate central office conversion. We proposed a sequence of migrations based on
chunks of TPS functionality, starting with SAG, and portions of TPS data for one central
office. Once a function or data chunk is migrated for one central office, the cut-over can
start in more central offices.

 5.3 The TPS Migration Plan, Part I

This sub-section outlines the first few migrations of the proposed plan. Each migration is
intended to follow the method for semi-decomposable ISs. Due to the mission critical role
of TPS and its unsuccessful migration history, TPS management requested a migration
plan for these first few steps as a basis to study and verify the method. We estimated that it
could take up to eight years to complete a full TPS migration. During that time a detailed
plan developed today would become obsolete. Hence, it was agreed that these first
migrations be considered pilot studies or experiments to better understand the problems,
technologies, and skill requirements as a basis for subsequent migrations.

We found that three portions of TPS, SAG, OSP, and the TPS Switch Interface, were
relatively easy to separate, migrate, and retire after migration. Hence, these are the focus of
the first three migrations.

TPS portions other than SAG, OSP, and the TPS Switch Interface, are not easily
separable. Hence, they are more complex to migrate and cut-over. It may not be possible to
retire the remaining legacy portions once the target portion is cut-over since there may still
be dependencies between the various legacy portions that prevent this. Accordingly, the
gateway must be designed to coordinate updates between legacy portions and their target
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counterparts. All non-update accesses can go to the target portions. Since portions of TPS
may be important enough to keep but not important enough, or too complex, to migrate,
those legacy portions may remain in the ultimate TPS. The corresponding gateway
functions may also be required.

Figure 5.2 illustrates the TPS migration architecture that would result from the first
migration. It includes TPS, as illustrated in Figure 5.1, and a decomposable target IS. The
TPS application gateway manages all user and IS accesses since it encapsulates the legacy
and target versions of TPS. The database component of the gateway will grow and shrink
as the legacy database is iteratively migrated to the target DBMS and the composite IS
evolves. We recommended a distributed DBMS, due to target IS distribution requirements.
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Figure 5.2: TPS Migration 1 Architecture

Migration 1: Migrate The Street Address Guide.

We proposed for the first migration and pilot study that the SAG database and associated
functionality and interfaces be migrated. This was because SAG is the most easily
separable portion and because SAG is required in the target TPS. The SAG migration could
proceed as follows. Decompose TPS by separating the Street Address Guide (SAG)
application module from the other application modules and the SAG data from the legacy
data, as illustrated in Figure 5.2. Create and install the TPS Application Gateway to deal
only with SAG calls. Migrate the SAG interfaces, application, and database. We
recommended that the migration and cut-over be done iteratively, each iteration focused on
one or more central offices, involving less than 100 megabytes of data. If successful, the
iterative cut-over could proceed with increasingly larger numbers of central offices until all
4,500 have been migrated. Once SAG is cut-over, retire the legacy SAG application and
data from legacy TPS.
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Migration 2: Migrate Outside Plant.

We proposed OSP for the second migration, since it was the next easiest to separate.
However, the SAG and OSP migrations could proceed in parallel since they are so similar.
The OSP migration proceeds as follows. Separate the legacy OSP application module and
data from TPS, as illustrated in Figure 5.3. Augment the TPS Application Gateway to deal
with OSP calls. Migrate the OSP interfaces, application, and database. We recommended
an iterative cut-over again focused on central offices. Once OSP is cut-over, retire the
legacy OSP application and data from legacy TPS, as illustrated in Figure 5.4.
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Figure 5.3: TPS Migration 2 Architecture

Migration 3: Migrate TPS Switch Interface.

For many of the reasons cited above, we recommended TPS Switch Interface for the third
migration. It proceeds as does SAG and OSP and has the migration architecture illustrated
in Figure 5.4.

Migration 4: Migrate The TPS Interfaces.

The TPS interface migration is a large, complex process. It is mission critical since all
interfaces must remain operational throughout the migration. This includes interfaces for
over 1,200 minor ISs and 40 major ISs. The TPS interface migration was complicated by a
second factor. Further analysis revealed that the applications yet to be migrated were not
decomposable, as were some of their user and system interfaces. To simplify the
migration, we proposed that the non-separable interfaces be eliminated by altering the
legacy applications to use one of the separable TPS interfaces (i.e., TPS SOE, TPS MIA,
TPS Access Interface). we viewed this as necessary even though it violated our goal of
altering legacy code as little as possible. As a result, there will be a large number of legacy
user and system interfaces to be migrated.
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Figure 5.4: TPS Migration 3 Architecture

We proposed that the TPS interface migration be done using an interface gateway,
illustrated in Figure 5.5. The TPS interface gateway provides the appearance to all existing
ISs and end users that they continue to access the same interfaces. However, the gateway
can redirect the calls and the results appropriately to the current state of the migration. The
organization decided to use the interface gateway to introduce corporate interface standards
and temporary versions of critical features that would not otherwise be in place until much
later. Under cover of the TPS interface gateway, the legacy IS interfaces (TPS SOE, TPS
MIA, and TPS ACCESS Interface) must be migrated to the appropriate target IS interfaces.
We decided to develop one uniform IS interface to replace all three legacy IS interfaces.
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Figure 5.5: TPS Interface Gateway

Although TPS was believed to be semi-decomposable, it was found to be hybrid, as
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illustrated in Figure 1.4. That is, after migration 3, we found that the remaining
applications were non-decomposable, except by significant changes to the legacy IS which
were deemed to be far too risky. Hence, migration 4 ended the semi-decomposable
migration. The remainder of TPS required a migration method for non-decomposable ISs
as described in the next section.
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 6. MIGRATING NON-DECOMPOSABLE LEGACY ISs

This section presents a migration method for non-decomposable legacy ISs, illustrated in
Figure 1.3. This migration method is an extension to the migration method for semi-
decomposable legacy ISs, described in Section 4. Our starting point is a non-decomposable
legacy IS, illustrated in Figure 1.3. Our target is a decomposable legacy IS, illustrated in
Figure 2.1.The migration architecture for non-decomposable legacy ISs, illustrated in
Figure 6.1, includes an IS gateway that combines the non-decomposable legacy IS and the
decomposable target IS to form a composite IS. We focus on the major differences required
to deal with ISs that lack structure and on the key challenges which concern analysis and
partitioning.
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Figure 6.1: Non-Decomposable Legacy IS Migration Architecture

6 . 1 Migration Method For Non-decomposable Legacy ISs

Step N(on-decomposable)1 Iteratively install the target environment. (See Step S1)

Step N2 Iteratively analyze the legacy IS. (See Step S2)

This step can be arbitrarily complex. In the worst case, the legacy IS must be treated like a
blackbox. Its functions and data content must be analyzed from whatever information is
available, such as documentation, people, dumps, the history of its operation and services
provided. It may be useful to conduct experiments to probe the system using the known
interfaces and available tools.

The lack of structure may mean that the requirements must be defined from scratch (i.e.,
distinct applications or functions may not be clear). When appropriately small chunks of
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data or function can be identified but not proven to be independent, they may simply have
to be replicated and the legacy and target copies coordinated until it is demonstrably safe to
retire the legacy versions.

Step N3 Iteratively decompose the legacy IS structure. (See Step S3)

“Peeling the onion” by taking off separable portions may produce a number of
decomposable components and a non-decomposable core. These can be treated separately.
Even if non-decomposable legacy ISs cannot be decomposed, some restructuring could
facilitate the migration.

Step N4 Iteratively design the target interfaces. (See Step S4)

Step N5 Iteratively design the target applications. (See Step S5)

Step N6 Iteratively design the target database. (See Step S6)

Step N7 Iteratively create and install the IS gateway. (See Step S7)

An IS gateway encapsulates an entire IS, as illustrated in Figures 1.6 and 6.1. It is similar
to an interface gateway except that it must provide the coordination function with the
information available at the user and system interface levels. This makes the IS gateway
very difficult to build. It could also include a communications gateway required to migrate
from one communications technology to another (e.g., IBM’s CICS to TCP/IP), thereby
assisting the migration from mainframe to client-server architectures.

In previous methods, the gateway functionality decreases as legacy IS components are
retired. Due to the lack of structure in the non-decomposable legacy IS, it may not be
possible to retire any legacy components until the migration is complete. Hence, the IS
gateway will continue to increase in complexity until the non-decomposable legacy IS can
be retired. Further, it may not be useful to migrate some legacy IS components at all even
though they are still required. For example, they may be required for seldom accessed,
archival information or functions. Hence, the IS gateway may become an integral part of
the ultimate IS.

Step N8 Iteratively migrate the legacy database. (See Step S8)

The difficulty of this step depends on the results of the previous steps. It may be very
difficult or costly to access data in legacy database services in non-decomposable legacy
ISs. This may be due to the legacy database service, the applications, or the structure of the
data. All of these factors applied to the TPS migration, which was a particularly bad case of
non-decomposable legacy database migration. First, there was almost no knowledge of the
internal structure of the legacy database. This was complicated by the fact that the physical
structure was cluttered with implementation artifacts that were hard to distinguish from
application data. As a result, we proposed that the existing legacy applications (e.g.,
database query, report generation, and access routines) be used to extract legacy data. This
significantly lengthened the database migration time.

Step N9 Iteratively migrate the legacy applications. (See Step S9)

Step N10 Iteratively migrate the legacy interfaces. (See Step S10)

Step N11 Iteratively cut-over the target IS. (See Step S11)
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 7. MIGRATING LEGACY ISs (GENERAL CASE)

In this section, we discuss the general case migration method for legacy ISs. The migration
method is a combination of the previous migration methods. This method is the most
broadly applicable of those presented in this paper. It applies to all legacy ISs since each
legacy IS is a special case of the general case illustrated in Figure 1.4. In general, a legacy
IS may have a portion that is decomposable, a portion that is semi-decomposable, and a
portion that is non-decomposable. The migration architecture for this general case is a
combination of the migration architectures for decomposable, semi-decomposable and non-
decomposable legacy ISs, as illustrated in Figure 7.1. A simple combination of the
gateways, illustrated in Figure 7.1 may not be appropriate. For example, it may not make
sense to place the target application modules Ml+1 through Mn above the database gateway.
Alternatively, they could be placed below the gateways directly accessing the modern
DBMS. In this case, the corresponding GUI’s (GUIl+1 through GUIn) would interact
directly with the application gateway. In any case, the migration architecture must be
tailored to the specific requirements of the legacy IS to be migrated.

We now outline the migration method for arbitrary legacy ISs. It is a combination of the
migration methods for decomposable, semi-decomposable, and non-decomposable legacy
ISs. Our starting point is a legacy IS, illustrated in Figure 1.4. Our target is a
decomposable legacy IS, illustrated in Figure 2.1.

Step L(egacy IS)1 Iteratively install the target environment. (See Steps D1, S1, N1)

Step L2 Iteratively analyze the legacy IS. (See Steps D2, S2, N2)

Identify the portions of the legacy IS that are decomposable, semi-decomposable, and non-
decomposable.

Step L3 Iteratively decompose the legacy IS structure. (See Step D3, S3, N3)

Decompose the legacy IS into portions that are decomposable, semi-decomposable, and
non-decomposable.

Step L4 Iteratively migrate the portions identified in Step L3.

Apply to each portion identified in Step L3 the appropriate legacy IS migration method. As
with the previous methods, it is a significant challenge to coordinate the individual
migrations.

 7.1 The TPS Migration Plan, Part II

The TPS migration, described in Section 5, became an example of the general case when
we realized that, for all practical purposes, some applications were non-decomposable.
This understanding led to the following TPS migration plan.

Step TPS L1: Iteratively install the target TPS environment.

Step TPS L2: Iteratively analyze TPS.

This analysis, described above, determined that TPS could be decomposed into: three
separable applications TPS SAG, TPS OSP, and TPS Switch Interface; three separable IS
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interfaces, TPS SOE, TPS MIA, and TPS ACCESS Interface; and the rest of TPS, called
TPS-rest. Further analysis found that part of TPS-rest was semi-decomposable, illustrated
as TPS-rest-S in Figure 7.2. The remainder of TPS-rest, TPS-rest-N was found to be non-
decomposable.
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Figure 7.1: Hybrid Legacy IS Migration Architecture

Step TPS L3: Iteratively decompose and migrate TPS.

Apply the decomposable legacy IS migration method to the decomposable IS components,
as is proposed in Section 5.

Apply the interface migration method to the decomposable IS interfaces, also described in
Section 5.

Apply the non-decomposable legacy IS migration method to TPS-REST-N.

The resulting TPS migration architecture is as illustrated in Figure 7.2
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 8. RESEARCH AGENDA

There are few concepts and almost no adequate tools or techniques to support legacy IS
migration. Those that exist do not scale up to meet the challenges posed in the design,
development, maintenance, or evolution of large scale ISs [BROD92]. This section
comments briefly on technologies and tools that could dramatically help the migration
methods described above. Many of these suggestions require research.

 8.1 Gateways

Gateways are critical to all migration methods and architectures proposed in this paper.
They also pose the greatest technical challenges and can be extremely costly to build and
operate. Indeed, we recommended that they be designed and built by database systems
experts. It would be enormously valuable to develop generic gateway technology to
encapsulate databases, interfaces, communications, or any other major system component.
Gateways are sometimes called surround technology. For example, CMS needs to move
from VSAM files to DBMS technology seamlessly (i.e., the old must gracefully evolve to
the new without a discontinuous break).

Gateways are much more broadly applicable than simply for migration architectures. They
may become major components of future IS architectures. Whenever two systems are
required to interact, some interface is required. If the interactions involve anything more
than simple remote procedure calls, it is often necessary to develop a software interface
component. Such a component is a gateway (i.e., between the two systems). Gateways
have stringent requirements. For example, those between mission critical ISs must be very
reliable, robust, and efficient. They cannot impose a significant performance penalty on the
old IS (say more than 10 percent). It is not clear how to achieve this level of performance.

Requirements for IS interaction (often misleadingly called IS integration) and distributed
computing (e.g., client-server) are growing dramatically. Gateways are a frequently
proposed solution. Indeed, some proposals for next generation computing [OMG91a,
OMG91b, MANO92, BROD92, BROD93] are based on gateways. Research is required to
understand and develop generic gateway technology. There is an increasing number of ad
hoc (i.e., for a small number of specific systems) gateway products currently with minimal
functionality (e.g., no update coordination). General purpose tools are required for
constructing gateways, just as DBMSs are generic tools for constructing data intensive
applications. Ad hoc gateways are extremely complex and costly to construct. This can be
seen in the cost and complexity of gateways provided by DBMS vendors to support
heterogeneous distributed DBMSs, focused on their product.

 8.2 Specification Extractor

Specifications for legacy ISs are nearly non-existent. For both CMS and TPS, the code
itself is almost the only documentation. In narrow domains such as banking, it may be
practical to write a program that extracts specifications from the old code. Such a tool
would help immensely in decrypting modules to be rewritten.

 8.3 Application Analyzer

Current code analyzers are adept at determining statistics for a given application (e.g.,
number of lines of code, call graph). Although this information is valuable, next generation
tools could do much more. A code analyzer could inspect the modules in a large system and
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determine metrics for difficulty of module migration. Such metrics are probably not
statistical in nature, as are the current quality metrics used in software engineering. Rather,
they are more akin to an expert system that knows about the difficulties in porting software
to a new environment. Such a tool could assist the CMS and TPS migrations
immeasurably.

 8.4 Dependency Analyzer

It would be most valuable to have a tool that would inspect two modules, A and B, to
ascertain if one did, or did not, depend on the other. Although it is straightforward to
construct a call graph of a complex application, a powerful dependency analyzer would also
inspect global variables and the reading and writing of auxiliary data structures, such as
files. The best dependency analyzer would be able to guarantee that a module A was not
dependent on another module B, so that the latter one could be replaced by a rewritten one
without fear of application collapse.

 8.5 Migration Schema Design and Development Tools

For both CMS and TPS, the structure and design of the legacy database had to be deduced
largely from the legacy code. Due to legacy design techniques, data descriptions are
distributed throughout the code and are often indistinguishable from application code.
These factors and the lack of documentation make database design difficult. An additional
database design problem is the design of the migration schema. The migration schema must
provide a mapping from the legacy database to the target database. It could be considered to
be a schema that integrates the legacy and target schemas. It would be a great help to have
tools that assist with analyzing data definitions in legacy ISs and designing the migration
schema. This may draw on results from schema integration and conceptual modelling
research and products. Although the motivating problems are critical and some of the
results useful, most results and related products are almost completely inadequate in
providing solutions to real design problems such as those posed by real legacy ISs
[BROD92]. For example, the most that existing products provide for automatic mapping
between two schemas are suggestions that a data element in one schema matches an element
in another schema based on simple text matching of the data element names.

 8.6 Database Extractor

Legacy databases tend to be ill-structured and contain significant problems (e.g., TPS’s
broken pointer chains). They also tend to be vast. In TPS, a considerable amount of data
was solely an artifact of the implementation and need not be migrated. It would be very
effective to have tools that could extract data from legacy database, repair it if necessary,
validate it against the migration database, translate it to the required formats, and load it into
the target DBMS. Since legacy databases contain large amounts of corrupted data, such a
tool should have powerful, automated mechanisms for dealing with exceptions, errors, and
other problems. A growing number of “data scrubbing” products13 that support some of
the above functions are just beginning to be offered.

 8.7 Higher Level 4GL

Our plans included incrementally rewriting most of CMS and TPS in a 4GL. To make this
as financially digestible as possible, the leverage relative to COBOL and FORTRAN must

13 E.g., Apertus Technologies’ Enterprise/Sync product.
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be made as large as possible. Although the current figure of merit (20::1 improvement)
makes rewriting practical, it would be more attractive with higher level tools. What such a
5GL would consist of is an open research question.

 8.8 Performance Tester

Sizing of new hardware has been a back of the envelope exercise in the case studies.
Although it is easy to distribute data and processing over multiple jelly bean systems, it
would be desirable to have a performance analyzer that could predict response time for the
CMS and TPS transaction loads using a new schema on new hardware. Such sizing studies
are time consuming and could be aided by a powerful tool. The old adage “load a large
database early and benchmark your high volume interactions” should be replaced by advice
that is cheaper and easier to follow.

 8.9 Application Cut-over

The CMS and TPS migration require several, critical cut-overs. In a large terminal (or PC)
network, it is unrealistic to move instantly from one IS to another. A graceful way of
moving to a new environment a few users at a time would be very helpful. Research is
required into methods and tools to support smooth, iterative cut-over from legacy to target
IS components while the IS is under continuous operation.

 8.10 Distributed IS Development and Migration Environment

Distributed client-server computing is very popular for which an increasingly large number
of concepts, tools, and techniques are being provided. It would be highly desirable to have
a consistent environment that supports the development of distributed ISs. Since future
distributed ISs will include components of legacy ISs and must be continuously evolved,
the environment should also support the migrations described in this paper.

The environment should support the integration of arbitrary tools. It should provide a
collection of tools to support the design, development, testing, deployment, and
management of databases, applications, and user interfaces that will be distributed over a
target environment. Besides the tools described above, the environment might also include
tools for optimal distribution of code and data, database optimization, and distributed
transaction design.

 8.11 Migration Planning and Management

The composite IS that exists during migration is more complex than its component legacy
or target ISs. This complexity requires careful management due to the mission critical
nature of the ISs and to cost of errors. The key migration challenges involve planning and
managing the process. These include: selecting the increments to be migrated, interleaving
the largely independent steps, and sequencing the steps to diminish risk of failure. These
are currently entirely intuitive decisions. As the many different interfaces, applications, and
database migrations proceed in parallel and are cut-over in stages with both legacy and
target versions, there will be many versions to manage. Migration planning for TPS and
CMS are very complex processes that must be managed, since they are both for mission
critical, operational ISs. CMS and TPS are both so complex that no one person or small
group of people understands the entire system. Due to their critical nature, some aspects of
migration planning and management should be automated. We believe that the
infrastructure for future ISs must support continuous migration (i.e., evolution). Hence,
support for evolution (called migration here) planning, management, and development
(e.g., Section 8.10) must become an integral part of those infrastructures.
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 8.12 Distributed Computing

As mentioned above, legacy ISs should be migrated into computing environments and
architectures that will avoid future legacy IS problems. We believe that in the future, ISs
will interact cooperatively and intelligently, more like humans in organizations interact to
accomplish tasks than is the case with currently independent ISs which we call intelligent
and cooperative information systems (ICIS) [BROD92]. Although this vision goes far
beyond that described above, it illustrates the presence of continual change and aspects of
next generation ISs towards which current (legacy) ISs might be required to migrate.
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 9. CONCLUSIONS AND EPILOGUE

Future IS technology should support continuous, iterative evolution. IS migration is not a
process with a beginning, middle, and end. Continuous change is inevitable. Current
requirements rapidly become outdated, and future requirements cannot be anticipated. The
primary challenge facing IS and related support technology is the ability to accommodate
change (e.g., in requirements, operation, content, function, interfaces, and engineering).
The incremental and iterative evolution of IS, as well as all other software, is being
considered in many related areas such as software systems evolution [HUFF91]
specifications, prototyping [GOLD92], and object-oriented design and development.

IS evolution and migration must be considered to be a dominate factor in IS life cycles.
When ISs cost hundreds of millions of dollars and are mission critical for business
processes that have values that are orders of magnitude greater, it is sheer folly to do
otherwise. An appropriately designed target IS architecture can facilitate future evolution
and integration with other ISs. If the target IS in not appropriately designed, it will become
a next generation legacy IS to be migrated at additional cost.

One of the greatest contributions of database technology [SILB91] is data independence,
the goal of insulating any changes to the database or to the applications from each other
(i.e., ability to change one without affecting the other). We must now extend data
independence to other aspects of ISs. The migration methods presented in this paper have
addressed applications and interfaces in addition to databases. The goals in these areas,
which correspond to data independence, could be called application independence, user
interface independence, and IS interface independence. Research is required into core
technologies (e.g., DBMSs, operating systems, programming languages, object-
orientation, design and development methods and environments) to achieve these goals.
Research is also required into systems architectures that will insulate all aspects of the
systems from each other so that they can be modified independently to meet ever changing
requirements and to take advantage of new technologies. This goal underlies application
architectures (e.g., modularity, object-orientation) and next generation computing
architectures, such as middleware [BROD93].

In this paper, we are attempting to contribute to the support of continuous evolution. We
have proposed the Chicken Little strategy and a spectrum of supporting methods with
which to migrate legacy ISs into advanced target environments. We illustrated the methods
by means of two migration case studies of multi-million dollar, mission critical legacy ISs.
Both migrations are following the proposed plans but are progressing at a very slow rate.
After approximately one year, both migrations are still in the detailed planning phase of the
first migration. This illustrates the extent to which such significant changes concerning
mission critical ISs are only partly technical. Being responsible for the mission critical
books of the bank or the books of the telephone company makes management very
cautious. The reality is that the migration must be essentially risk free, effective in
achieving its goals, and pay back in the short term. There are also psychological and skill
barriers when moving from a well understood to a less understood environment.

The contribution of this paper is a highly flexible set of migration methods that is tailorable
to most legacy ISs and business contexts. Each method consists of five basic steps:

• Iteratively migrate the computing environment.

• Iteratively migrate the legacy applications.



53

• Iteratively migrate the legacy data.

• Iteratively migrate the user and system interfaces.

• Iteratively cut-over from the legacy to the target components.

The critical success factor, and challenge in deployment, is to identify appropriate portions
of the IS and the associated planning and management to achieve an incremental migration
that is feasible with respect to the technical and business requirements.

A Chicken Little migration of a large legacy IS will take years. Before the migration is
complete, unanticipated requirements will arise for further migration and evolution. Hence,
the goal of the proposed methods and technologies is to support continuous, iterative
evolution. We believe that the proposed gateways, whose primary function is transparent
interoperability, will become the key elements in IS architectures that will support
continuous evolution.

The methods and case studies presented in this paper concern incremental rewrites and not
incremental re-engineering. However, it is often optimal not to rewrite portions of legacy
ISs, sometimes impossible. Rather they should be integrated, transparently into the target
distributed IS. Again, gateways are the primary means of such integration via
interoperability (as described in [BROD93, BROD92, MANO92]) and treating them as
attached systems.

Object-orientation was not explicitly addressed in this paper, nor was it considered in detail
in the CMS and TPS migration plans. However, we do not preclude object-orientation.
Rather, it is a real alternative to conventional languages and designs. The migration and
target IS architectures are consistent with object-orientation due to the principles underlying
their design. First, they are distributed, client-server architectures. Second, all components
are intended to be separable (e.g., encapsulated) modules that are defined and used by other
components in terms of interface functions or methods. Third, the gateways and
architecture can and should (regardless of the use of object-orientation) facilitate
communication between components by some form of message passing. With these
principles and an appropriate choice of technologies, it may not matter what the internal
design or implementation may be; hence object-orientation could be used as well. If object-
orientation is not used initially, the migration architecture and the above principles are
appropriate steps toward future conversion to object-orientation and a distributed
computing architecture.
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