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ABSTRACT
In [STON93] we proposed a visual program-

ming system called Tioga. The Tioga system
applies a boxes and arrows programming notation
to allow nonexpert users to graphically construct
database applications. Users connect database pro-
cedures using a dataflow model. Browsers are
used to visualize the resulting data.

This paper describes extensions to the Tioga
browser protocol. These extensions allow sophisti-
cated, flight-simulator navigation through a multi-
dimensional data space. This design also incorpo-
rates wormholes to allow tunneling between differ-
ent multidimensional spaces. Wormholes are
shown to be substantial generalizations of hyper-
links in a hypertext system.

These powerful mechanisms for relating data
provide users with great flexibility. For example,
users can create magnifying glasses that provide an
enhanced view of the underlying data.

1. INTRODUCTION
The design of user interfaces for database

systems is an area in need of more attention
[BERN89, STON93b]. Existing database user
interfaces are often unfriendly and difficult for
nonexperts to use. Most database interfaces take
the form of textual programming languages or
forms-based interfaces oriented towards business
applications. In [STON93], we presented Tioga, a
new paradigm for user interaction with a database
management system (DBMS). Tioga is motivated
by the needs of scientific DBMS users in the
SEQUOIA 2000 project [DOZI92, STON92,

STON93a]. Tioga uses theboxes and arrows
notation popularized by scientific visualization sys-
tems such as AVS [UPSO89], Data Explorer
[LUCA92], and Khoros [RASU92]. Tioga
improves upon these systems by providing sophis-
ticated data management using the POSTGRES
DBMS [STON91]. In the Tioga programming
model, boxes represent user-defined database
queries, and edges between boxes represent flow of
data. This paradigm allows nonexperts to build
visual programs calledrecipes by interactively
connecting boxes together using a graphical user
interface. The underlying data manager is able to
optimize and efficiently execute recipes. Figure 1
shows a typical recipe as constructed by a user.
The flow of data in this figure ends at a browser
which displays the data. A browser is simply

Figure 1
A Tioga Boxes and Arrows Diagram
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another type of box that can be attached to a recipe
wherever data needs to be visualized.

The Tioga browsing paradigm allows users
to visualize data results in a multidimensional
space. The browser protocol uses aflight simula-
tor interface. A browser gives end users ajoystick
which they use to navigate through their data.
Each browser expects data in some multidimen-
sional coordinate system and fetches spatial sub-
sets of this multidimensional space efficiently. The
purpose of a recipe is to specify the data to be visu-
alized, access the data through a database manage-
ment system, and then locate the data in a multidi-
mensional viewing space.

The existing Tioga implementation provides
one type of browser. Additional browsers may be
implemented by advanced users. In the current
Tioga browser, the user chooses two dimensions to
be displayed on the screen. Remaining dimensions
appear assliders which restrict the objects in the
display to those which have values matching the
constraints indicated by the sliders. Figure 2
shows a browser displaying objects in a lati-
tude/longitude viewing space that contains Califor-
nia. The current navigational interface allows the
user to pan over the two dimensions of the display
or to zoom by enlarging a certain portion of the
display. Clearly, more sophisticated navigation is
desirable.

In [STON93], we explored the basic con-
structs of Tioga, and provided a query execution
model. In [CHEN93], we expanded the Tioga
model to interface to foreign systems and provided
a notion of transactions for the Tioga environment.
In this companion paper, we explore navigation in
multidimensional space.

Our extensions to Tioga include:

• enhanced detail. Our system must be able to
provide enhanced detail as a result of a zoom
operation. For example, the Kodak photoCD
representation for digital images supports a
2K by 3K by 8-bit color image format, and
in addition provides four other images of
lesser resolution culminating in a 128 by 192
by 8-bit abstract [EAST92]. A user would
like the ability to see abstracts on the screen
and then zoom in to view the images at a
higher resolution. A similar feature was pro-
vided by SDMS [HERO80], but it was hard-
coded into that execution engine. Hence,
retargeting SDMS required a considerable

Figure 2
Data Displayed in the Tioga Browser

amount of customization.

• changing multidimensional spaces.
Enhanced detail implies a change in perspec-
tive within a multidimensional space. Users
also want the ability to switch to a new mul-
tidimensional space. For example, a user
could zoom in on a map of Berkeley to find
the Computer Science building. Additional
levels of detail could yield documents corre-
sponding to Computer Science technical
reports. These documents should be dis-
played in a different context than the lati-
tude/longitude coordinates appropriate for
the map of Berkeley. When a document is
being viewed, a further zoom could yield the
image of the author or the layout geometry
of his or her office. Again, a different multi-
dimensional space should be used.

• multiple browsers. Our system must support
multiple levels of detail in the same display.
For example, it should be possible to place a
magnifying glasson a portion of the display
and have a zoom operation performed only
for the objects under the glass. The remain-
ing objects in the display do not change and
remain a context for the magnified data.
Because the objects in the magnifying glass
are shown with enhanced detail, this
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function is considerably more complex than
simply changing the number of pixels used
for display. Support for magnifying glasses
requires that browsers be allowed to share
windows.

In the rest of this paper, we explore our
design in detail. Specifically, in Section 2 we
define a zoom capability that allows enhanced
detail. We proceed in Section 3 to define worm-
holes that allow users to change multidimensional
spaces. We then turn in Sections 4 and 5 to our
design for coordination of multiple browsers. In
Section 6 we summarize our findings.

2. SHOWING ENHANCED DETAIL
To eliminate clutter in the display and to ori-

ent the user, data should have different representa-
tions when seen from different distances in multi-
dimensional space. Intuitively, we wish to extend
Tioga with the possibility ofzooming into data to
display more detail about screen objects. In our
design, specific browser boxes within recipes are
defined to be valid at certain distances from
objects. These browser boxes are connected
through anelevation map. The elevation map
specifies all recipes containing browsers that show
objects at different levels of abstraction. The map
is used to control the invocation of different recipes
as the user zooms in and out through the data
space.

Specifically, we begin by associating with
any browser in any recipe anelevation range,over
which the browser displays data from this recipe.
A browser is associated with a multidimensional
coordinate system as noted above. In this presen-
tation, we assume N dimensions which we denote
A1, ..., AN . We add an N+1st dimension, desig-
nated elevation, which is used to indicate the
user’s perspective. This does not represent a physi-
cal elevation, but is rather a logical representation
of a user’s viewing distance from the N-
dimensional space.

The current Tioga implementation displays
two user-selected dimensions,AX and AY, on the
screen. In the original browser implementation,
the user can change the range of these dimensions
by resizing the window. The range is adjusted pro-
portionally to the change in window size. There-
fore, if XWINI is the number of pixels in the X
dimension in the initial window andXWINW is the
number of pixels in the X dimension after the
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Figure 3
Changing Viewing Angle and Elevation

window has been resized, the range of dimension
AX may be recalculated as follows:

RANGEW = RANGEI ×
XWINW

XWINI

Note that resizing the window has no effect on ele-
vation, as Figure 3 illustrates. Assume that the
user’s initial position in a displayed dimension is
ELEVI with viewing angle θ I , as shown in
TRIANGLEI . Adjusting the window size while
remaining at a constant elevation is analogous to
changing the user’s viewing angle, as shown in
TRIANGLEW.

In the new system, the user is also allowed to
adjust the elevation. When the user zooms to
ELEVZ, θ I remains constant, resulting in
TRIANGLEZ. BecauseTRIANGLEI and TRIAN-
GLEZ are congruent,RANGEZ can be recalculated
as follows:

RANGEZ = RANGEI ×
ELEVZ

ELEVI

Adjusting the window size or zooming may
select the same range for display. Howev er, the
two operations may have very different results.
Adjusting the window size does not change the
recipe providing input to the browser. Conversely,
zooming may place the user in the elevation range
of a different recipe. In this case, the recipe pro-
viding input to the browser is changed. The recipe
valid at a specific elevation is chosen with an
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Figure 4
An Example Elevation Map

elevation map.

Figure 4 shows an elevation map containing
four recipes, R1 ("State outline"), R2 ("Census
tracts"), R3 ("Rivers"), and R4 ("Highways").
Each of these is valid in different elevation ranges.
The intended semantics is that recipe R1 produces
output for the browser at high elevations. Upon
zooming in to elevationE1, R2 starts being over-
laid on R1 to produce a composite output. Further
inward atE2, R1 stops output and only R2 is visi-
ble. Further zooming will display output from
recipes R3 and R4.

The recipes in an elevation map must have
the following properties:

• A browser with the same name must occur in
each recipe.

• Each browser expects instances in a common
multidimensional coordinate system.

When more than one recipe at a given elevation
may provide output to the browser, the elevation
map also specifies theoverlay priority of the
recipes, which is shown on the horizontal axis.
When conflicts occur in allocation of display

space, objects from recipes with higher priority are
visible on the screen in preference to those from
recipes with lower priority.

The elevation map also contains a collection
of semantic restrictions on the display of recipe
output. Each recipe in an elevation map can be:

• required. In this case, recipe output must be
displayed if the browser is at an elevation
within the elevation range.

• optional. In this case, when the browser ele-
vation first becomes contained in the ele-
vation range of the recipe, the user is
prompted as to whether he or she wishes to
see output from this recipe. This behavior
occurs if the user zooms into the elevation
range from above orzooms out from below.
At any giv en elevation range, a mechanism
must allow users to turn on or off optional
recipes valid at the current elevation. Using
this construct, a user can change his or her
mind about seeing (or not seeing) the objects
from optional recipes.

• exclusive. A user can specify aradio button
behavior for recipes that are valid at com-
mon elevations. With this behavior, then at
most one of the recipes can be activated, and
the user is presented with a menu of radio
buttons to indicate which one.

Figure 4 illustrates these constructs in an
example. First the user sees the outline of Califor-
nia. Upon zooming, he or she has the option to
also see the census tracts in the state. At the next
transition point, the outline of the state is no longer
visible and the census tracts are optionally visible.
Further zooming shows either the rivers or the
highways of California, but not both.

Elevation maps allow a user to specify easily
the semantics of the zoom operation, assuming that
all recipes produce data in the same multidimen-
sional space. We now turn to a mechanism for
changing from one multidimensional space to
another.

3. CHANGING MULTIDIMEN-
SIONAL SPACES

Consider the following example in which
Tioga presents information about the residents of
Berkeley. Initially, the application displays a map
of Berkeley. Zooming inward gives more detail
about geographic objects, culminating with the
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outline of each individual residence. At this point,
the user may invoke a new type of browser, defined
for each residence, that displays an image of the
people living there. Requesting detail on the resi-
dence therefore causes a different multidimen-
sional space to be explored.

Intuitively, the user proceeds through a
wormhole into a new multidimensional space. On
the far side of the wormhole, objects have a spatial
relationship that is unrelated to the relationship in
effect on the near side. This behavior should be
distinguished from a zoom operation where the
same spatial relationship is present before and after
the zoom. Therefore, we denote this operation of
changing from one multidimensional space to
another astunneling through a wormhole, to dif-
ferentiate it from zooming.

When the user tunnels through a wormhole,
a new application is invoked taking in a run-time
parameter, which is the identifier of the object or
objects associated with the wormhole. In the
example given above, the object identifier of the
house would be passed to the new application to
allow it to display only the people living there. It
is also possible to define the wormhole over a  col-
lection of object identifiers. Specifically, we allow
an arbitrary function to identify the objects for
which the wormhole is defined. One such function
could be:

retrieve (House.oid)
where House.architect = "Wright"

in which case the wormhole would be defined only
for houses designed by Wright.

To construct a wormhole, the user must
specify the following information:

• the wormhole location. We associate the
wormhole with objects displayed by some
recipe in some browser. Hence, the location
is indicated by the three-tuple:

(recipe name, browser name, query)

• the new application that should be run on
the other side of the wormhole.

• a tag associated with the wormhole.
Because there may be multiple wormholes
for a given object in a given recipe, we
require the tag field to allow a user to specify
which wormhole should be followed.

In practice, a user-interface gesture indicates
the user’s desire to tunnel through a wormhole.

The user then chooses a wormhole from the list of
tags associated with the object(s) selected. At this
point, a new application is invoked.

Using the concept of wormholes, a user can
move from one multidimensional space to another.
The reader can readily observe that wormholes are
a substantial generalization of hyperlinks in a
hypertext system [NIEL90, MARC88]. A hyper-
link is a wormhole in which there is a prespecified
object or collection of objects on each side of the
hole. Wormholes allow a run-time specified set of
objects to be on each side.

4. SLAVING AND CLONING
BROWSERS

Tw o browsers in the same recipe can be
independent of each other. In this case, when
either browser moves in multidimensional space or
zooms in elevation, then nothing automatically
happens to the other browser. This behavior is
appropriate when the browsers are displaying inde-
pendent objects.

On the other hand, one browser can be
slavedto amaster browser. In this case, whenever
the user changes the master’s position in N-
dimensional space, the slave’s position in M-
dimensional space automatically changes as well.
More specifically, during the recipe definitions, the
user defines a function, LOC_CALC, that trans-
lates requests in the master into requests to the
slave:

LOC_CALC (N-space-region) --->
M-space-region

When the master is moved toRegion1, the slave
will be instructed by Tioga to move to
LOC_CALC (Region1). Both browsers must
recalculate their visible rectangles and execute
commands to retrieve the objects which will be
displayed.

Further, when the master changes elevation,
the slave must automatically change elevation at
the same time. Usually slaved browsers will be
constrained to have the same elevation as their
master; however, we allow the user to specify
optionally a second function, ELEV_CALC:

ELEV_CALC (elevation) ---> elevation

In this way, the slaved browser can be constrained
to operate at a second elevation that is a function,
ELEV_CALC, of the elevation of the master.
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There are four interesting ways in which
slaved browsers may be constrained:

• Slaved browsers may display data from dif-
ferent regions in a multidimensional space.
For example, a user may need to examine all
areas 5 miles north of a pipeline to ensure
that a toxin carried by the pipeline has not
affected these areas. In Tioga, the pipeline
could be viewed in one browser. A second
browser could be slaved with a function
LOC_CALC that maps an N-space-point to
a new point 5 miles north.

• Slaved browsers may display the same data
seen from different elevations. For example,
the slave could show a detailed representa-
tion of what is seen in the display of the
master. In effect, the slave would show the
data of the first browser through a magnify-
ing glass.

• Slaved browsers may display different data
from the same points in a multidimensional
space. For example, one browser could
show color-coded precipitation data for an
area while its slave displays temperature data
for the same area.

• Slaved browsers may display related data in
different multidimensional viewing spaces.
For example, a master browser could show a
map of California while a slaved browser
displays a list of all seismographic sensor
stations that are located in the area shown in
the master browser. As the user looks at dif-
ferent parts of California, the slaved browser
automatically adjusts the list of stations.

The four examples above assume the exis-
tence of two browsers in the same recipe. If only
one browser exists, it may be more convenient to
clone it rather than to place explicitly a new
browser in the recipe graph. Cloned browsers can
be slaved or independent. The examples above
demonstrate possible uses for slaved clones. For
instance, to display the same data at different levels
of detail, the user could clone and slave a viewer to
act as the magnifying glass.

Independent clones are appropriate in other
situations. For example, it is easy for a user to "get
lost" when moving around in a multidimensional
space of varying elevation. Hence, the user would
like to mark the position of something of interest
and return to it at a later time. Cloning a browser
allows one browser to remain stationary at the

object of interest while the second one continues to
browse the multidimensional space.

To support this functionality, we propose the
following design. The original browser becomes
the originator and the new browser becomes the
clone. The originator and the clone have exactly
the same elevation map. During the cloning opera-
tion, the user must specify if the clone is to be
slaved to the originator, and if so must specify
LOC_CALC and ELEV_CALC.

If the originator and the clone are indepen-
dent (i.e. not slaved), then the second browser is
initially assigned the same elevation and spatial
location in multidimensional space as the first
browser. The joystick of either browser can be
moved arbitrarily, and the displays of the two
browsers will typically diverge.

If the clone is slaved to the originator, then
the clone is constrained to operate at an elevation
and location offset relative to the originator; these
offsets are determined by LOC_CALC and
ELEV_CALC. In this case, the slaved browser
operates at an elevation of

ELEV_CALC (elevation of originator)

and at a location given by

LOC_CALC (N-space-region of originator)

If LOC_CALC is the identity function, and
ELEV_CALC specifies a zoom, then the clone will
provide an automatic magnifying glass, without
requiring the user to perform the zoom manually.

Using slaving and cloning, a variety of offset
displays and magnifying glass effects can be con-
structed. The next section describes mechanisms
that allow two browsers to share the same screen
area, thereby permitting a true magnifying glass
effect to be implemented.

5. SHARING WINDOWS
We would like to allow the user to place one

browser inside another. For example, the user
could place a magnifying glass browser inside
another browser displaying a map of California.
This is analogous to reading a map of California
with the aid of a physical magnifying glass. To
provide this functionality in Tioga, we require that
browsers optionally be allowed to share their win-
dows. This section explores this construct in detail.

If two browsers share the same multidimen-
sional space, then it is permissible for them to
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share a browser window. Since a clone and its
originator automatically share the same multidi-
mensional space, they are automatically able to
share a window.

When two browsers are declared to share a
window, they are referred to as theouter browser
and theinner browser. Each browser has separate
slider bars that determine the content of its display.
The outer browser uses the complete window to
display its objects. The display of the inner
browser is overlaid on the display of the outer one,
thereby creating a single composite display which
can be rendered on the screen by the window man-
ager.

To create this composite, Tioga finds the
center of the inner browser’s current viewing
region, and then locates this point in the outer
browser’s window. Next, Tioga positions the inner
browser’s viewing region at this location within the
outer browser. There are three cases of interest:

• Case 1: the inner viewing region is com-
pletely inside the outer viewing region. In
this case, the two regions are overlaid and
displayed.

• Case 2: the inner viewing region is com-
pletely disjoint from the outer viewing
region. In this case, the inner viewing region
cannot be seen, and only the outer viewing
region is visible.

• Case 3: the inner viewing region overlaps
the outer viewing region. In this case, Tioga
must clip the inner viewing region and then
overlay the two displays as above.

These behaviors can be illustrated in the fol-
lowing examples. The user can clone a browser
and run both the originator and the clone in a com-
mon window. A zoom operation on the inner
browser will allow the user to observe a magnify-
ing glass effect, whereby one browser is providing
a detailed blowup of the region displayed by the
other. Figure 5 shows a magnifying glass (the
inner browser) positioned above a window (the
outer browser) which is in turn positioned above a
map (the multidimensional space).

Consider the case in which the inner and
outer browsers are independent. In this situation,
the position and elevation of each browser can be
changed independently. Moving the inner browser
will change its position above the map, and there-
fore, its contents. Because it moves independently,
moving it will also change its position relative to

Inner Browser

Outer Browser

Multidimensional Data Space

Figure 5
Viewing Regions of Nested Browsers

the outer browser. This will allow the user to mag-
nify various areas of the map. If the user moves
the magnifying glass completely out of the region
displayed by the outer browser, then Case 2 above
applies and the detail will not be shown. If the
magnifying glass is partly outside this region, then
Case 3 above applies and only a portion of the
inner browser is displayed. Similarly, if the user
moves the outer browser, the content of the inner
browser does not automatically change, although
its position relative to the outer browser changes.

To achieve different behavior, we can slave
the clone to the originator. Since the inner browser
is slaved to the outer browser, moving the outer
browser will change the area displayed in both
browsers. However, the position of the magnifying
glass within the outer browser remains constant.
Moreover, if the user zooms the outer browser to
blow up the map of interest, say to a map of a spe-
cific county, then the magnifying glass also zooms.

The definitions presented above may be
recursively extended so that an inner browser may
in turn serve as an outer browser. This allows an
arbitrary number of browsers to share a window,
with a pairwise inner-outer relationship between
them. Thus, a hierarchical collection of browsers
can be defined. For example, a user may choose to
have a magnifying glass on top of another magni-
fying glass, providing even more detail.
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6. CONCLUSIONS
In this paper we have detailed mechanisms

that allow navigation in multidimensional space.
We first outlined a zoom capability that allows
users to view data at different levels of detail. We
next introduced the concept of wormholes. Tun-
neling through a wormhole allows users to view
their data in the context of a new multidimensional
viewing space. We then proposed mechanisms for
linking browsers together as well as for creating
new browsers. Finally, we detailed the behavior of
multiple browsers sharing a portion of the screen.
In combination, these constructs allow users to cre-
ate effects that simulate magnifying glasses. We
are currently extending the existing Tioga system
to incorporate the features discussed in this paper.
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