Design and Implementation of DDH:
A Distributed Dynamic Hashing Algorithm

Robert Devine

University of California at Berkeley
EECS Department, Computer Science Division
devine@cs.berkeley.edu

Abstract. DDH extends the idea of dynamic hashing algorithms to dis-
tributed systems. DDH spreads data across multiple servers in a network
using a novel autonomous location discovery algorithm that learns the
bucket locations instead of using a centralized directory.

We describe the design and implementation of the basic DDH algorithm
using networked computers. Performance results show that the prototype
of DDH hashing is roughly equivalent to conventional single-node hashing
implementations when compared with CPU time or elapsed time. Finally,
possible improvements are suggested to the basic DDH algorithm for
increased reliability and robustness.

1 Introduction

Rapidly plunging hardware costs and increasing performance of CPUs and net-
works mean that future file and database systems are likely to be constructed as
networked clusters of nodes. Algorithms should be devised to work in these envi-
ronments. This paper describes the design and implementation of a distributed
hashing algorithm.

Quick record retrieval is obviously crucial to overall file and database perfor-
mance. The design of efficient retrieval algorithms has been a rich research area
in computer science since the earliest days. Hashing algorithms can be classified
as either static or dynamic. A static hash algorithm uses an constant sized hash
table. A dynamic hash algorithm differs from a static hash algorithm because
the table can grow and shrink from its initially allocated size to accommodate
the continued insertion and deletion of records.

DDH (Distributed Dynamic Hashing) is an algorithm that gracefully expands
and contracts without a central controller. A variable number of clients and
servers participate in the

The performance of conventional, single-node hashing is determined by its
CPU processing time and the number of 1/Os needed. However for distributed
hashing, the performance of messages must also be considered. Misdirected mes-
sages in DDH are possible but are shown to be minor if a local “hint” directory
is used to provide a mapping of hash buckets to servers.

The paper is organized as follows: we present the design and implementation
of DDH in sections 2 and 3, show the performance results in section 4, and
conclude in section 5.

2 Goals for Distributed Hashing

The goals desired for distributed hash algorithms are listed below. High per-
formance is of course a general goal. Other goals are certainly possible; Section
5 suggests several others. The above goals are used to evaluate and develop
distributed algorithms. Section 3 tells how these goals are realized in DDH.

1. Location of distributed buckets and servers
Two location requirements must be met. First a method is needed for locat-
ing candidate nodes that are eligible to participate in the distributed hash
structure. The second requirement is to map a hash bucket to a server at
run-time.
If we restrict the selection of nodes to those that are within a few multi-
ples of an access to a locally mounted disk, then all nodes that are within
50 milliseconds average network time away can be used. Nodes not on the
same LAN can be used. From [3] it is shown that even many computers
on the Internet wide area network have a mean response latency of under
50 milliseconds. While this fact argues for having a widely distributed hash
tables, the concerns of administration boundaries and network overload (es-
pecially during bucket splits and merges) argue against extending a hash
table distributed beyond the locally administered boundaries.
A directory service can be used to identify which nodes can participate and
converting their names to a network address. This information is relatively
static because changes happen on a human time-scale as nodes are added or
removed.
Simple directory services are ill suited for dealing with the second require-
ment of tracking the rapidly changing bucket location information. Moreover
if multiple directory services are used they must provide a consistent view
of the bucket mappings. Because bucket splits and merges are happening at
execution speed, the bucket directory problem must be handled dynamically.

2. Collision resolution
There are several possible policies for handling filled buckets. The bucket
could be temporarily expanded; records could overflow to an overflow bucket
or a “buddy bucket” or the bucket can be immediately split.
The effect of choosing one of the collision resolution methods is reflected in
the overall performance and efficiency of the algorithm. When overflows are
employed for a bucket that has a high rate of collisions, that bucket becomes
unbalanced with respect to the average bucket. Alternately the policy of
splitting evens out the load but may cause an imbalance in other ways such
as an increased load on a single server.
Expanding the bucket size is undesirable because it leads to more complex al-
gorithms. Requiring permission before splitting means that agreement must
be achieved using non-local information. Splitting immediately, while sim-
pler, may cause complication in other areas, notably in the bucket location
algorithm.

3. Load balancing across servers
Ideally, no server is responsible for more than its proportional share of the
total data size. This principle can be enforced by actively checking the local
load level against the global load level and then performing adaptive load
balancing to ameliorate hot spots. A naive approach would be to designate
a load controller that partitions work among servers according to fairness
criteria.
The need for scalability obviates the naive approach. Any centralized solution
would soon become a bottleneck as the hash table grows in size.

4. Parallel insertion and retrievals
It is desirable to support multiple concurrent accesses to the same distributed
hash table. Multiple readers can be easily supported because no changes are
occurring. However, in a mixture of multiple readers and writers, the servers
must institute a consistency control, such as locking to serialize access to its
portion of the hash table.
Each individual server should use the necessary consistency protocols to
guarantee correctness when multiple clients are inserting records. In addi-
tion, if an insertion causes a split, the affected servers must mutually ensure
consistency of their parts of the distributed table.

2.1 Previous Work

Multiple dynamic hashing methods have been proposed for single nodes with
either a single processor [b, 2, 6] or with multiple processors [10].

LH* [7] is one proposal for a distributed hashing algorithm. It extends the
notion of linear hashing [6] to allow multiple nodes in a network to participate
in the same distributed data structure.

LH* is a directoryless algorithm like the single node version of linear hashing.
It locates buckets through one of two algorithms based on the current split level
and the bucket number. A client maintains what 1t thinks is the current split
level and highest numbered bucket. Because the table can grow or shrink without
the client knowing, the actual bucket may be located elsewhere.

As proposed in [7], LH* has some drawbacks:

First, each server has only one bucket. The limit is required for bucket loca-
tion calculations. However, this can be easily overcome by using a logical server
numbering scheme that maps to the actual server number (a round robin as-
signment would work fine). The larger problem is that a single bucket per server
implies large buckets that result in a high cost to split a single bucket so each
server should hold multiple, small buckets that are less expensive to split.

Second, splits must be ordered for the clients. Because the clients have no
directory to allow unbalanced splitting, all splits are required to follow the bucket
numbering order within each level. The bookkeeping of this ordering requires
that a server send at least one more message than needed to just convey the
split records. While the overhead of sending agreement messages with every
split, the problem becomes most acute when dealing with failures. If the message
controlling the ordering is lost or the server that owns the current split token

crashes, all other servers are affected because they can not split until a new
token is regenerated. This is analogous to the complexity of token ring networks
compared to Ethernet.

Third, when multiple clients are inserting records there exists a timing win-
dow where it 1s possible that a client requires more than the expected maximum
of two forwarding messages. If the client is slower than the rate of bucket split-
tings, the client’s view of the LH* hash table will lag the actual configuration.
While it is true that only two hash levels can exist at a single time, client actions
are not time synchronous. Therefore it may see more than two versions of the
hash table as it evolves. Each version may cause client addressing errors.

Fourth and most important, determining when a bucket can be split is not
an autonomous decision that can be made by the affected server. The ordering
of splits is imposed on the buckets to support the directoryless character. This
restriction in inherent in LH* because of the need for all buckets to be determined
from one of two bucket location functions. Several undesirable characteristics
result from this. First, to strictly order the splits, the paper proposes a special
split coordinator that participates in the bucket split operation. This is contrary
to the goals of no load balance and high availability. Second is that buckets that
are not allowed to immediately split must handle overflows locally. This leads to
poorer performance and hot spots. Finally, because all buckets on a level must
split before the next level can start to be split, this causes premature splitting
of non-full buckets.

3 Distributed Dynamic Hashing

In this section, we introduce the design of DDH. The guiding philosophy for
DDH is local autonomy. No changing global information guides the actions of
individual servers; each server decides for itself when to split or merge buckets.
Clearly some common, constant policy must be shared by all serves to avoid
anarchy but the policy is constant can be easily coded into all servers. An in-
teresting research question is what minimum level of shared policy 1s required
vet still preserve a collaborative effort that is necessary for a distributed data
structure.

A DDH server program runs at every server node that is participating in
the distributed hash algorithm. It is responsible for controlling the storage of
its portion of the entire table. Each server maintains the following information
about each bucket: the bucket number, its split-level and the contents of the
bucket. The server is responsible for handling all of the messages that a bucket
may receive. This includes forwarding requests to another server, sending the
appropriate response to a request and analyzing the replies to its own requests
from other servers. Each DDH servers maintains a small local directory to store
the bucket to server mapping. However, all DDH clients do not need to use such
a directory but it is advantageous if they use one (performance results given in
Section 4 show why).

A client calls the DDH library routines to do the insert or retrieve operation.
A client program computes the hash key for the record, locates the likely bucket
for that hash key, and then sends the request to the server that owns the bucket.

Each server maintains a directory containing location information about
other server’s buckets. The directory is not exact for remote buckets but gives
likely location. Upon receiving any request concerning a data item from a client,
the server determines if it is the correct recipient of the message by comparing
the data item’s key to the key range for its buckets. If the server discovers that
it is not the right one, then it forwards the message to the correct recipient.
Otherwise the operation is performed locally. A reply is sent from the server
to the client indicating whether or not the operation was successful. The reply
contains the current hash level of the bucket at which the operation was even-
tually performed. This allows the client to apply the DDH algorithm to update
its local perception of the hash table.

3.1 Distributed Hash Table

The distributed hash table in DDH is a distributed main memory data structure
composed of buckets spread over one or more servers. Each bucket holds up to
some fixed number of records. It is not required that all servers use the same
bucket size although There is one or more server processes per node, although
it is expected that the usual arrangement is one server per node for the best
performance. Client processes send requests to servers to insert or retrieve a
record.

Bucket addressing is based upon binary radix trees, or tries. At split level
N, the lowest order N bits are used to form the bucket number. As an example,
suppose a record’s key hashes to the value 0x81F0639C. Since ‘C” hex 1s 1011
binary, if the current level is 1 then the bucket number is 1. If the level is 2 or 3,
the bucket number is 3. And if the level is 4, the record must be in the bucket
number 11 (= ’C’ hex).

The syntax of bucket numbering is written as the pair (level, bucket number).
When the algorithm begins there is a single bucket, numbered as bucket (0,0),
that matches all hash values. When it fills, 1ts contents are split into two buckets
by using bit 0 of the hash value; these are then buckets (1, 0) and (1, 1). In
general, a level L bucket split uses bit L of the hash value to move records into
its child buckets. When bucket (L, N) splits, it forms the children buckets (L+1,
N)and (L +1, N +25).

Bucket and Server Location: Bucket location is described by the tuple (num-
ber of servers, server distribution function, hash function, key, current hash table
configuration). The first two items are defined for the entire table and must be
known by all servers and clients. A client chooses the hash function that gen-
erates a key for each record. The fifth field, current hash table configuration, is
changed with every insert or delete operation so it is known definitively only by
the client and servers that were involved in the operation; all other nodes must
discover the configuration.

A server when starting, knows its logical server number and the total number
of servers. A fresh client without any location knowledge starts with the server
for bucket (0, 0) because that is the only bucket whose existence is guaranteed.
Thereafter a client progressively learns the current configuration by making re-
quests that are either correct or are wrong but come back with the correct
location information. The client sends requests to the server it believes owns the
bucket but will adjust its directory if told that the guess was incorrect.

Two approaches are possible for the client to use the bucket-to-server map-
pings it has learned. First, a client can maintain a directory of mappings that it
has learned from previous messages. Then future messages use this directory to
select servers. Second, a client can use heuristics to guide guesses. For example,
based upon the current average split level information a client has gleaned from
previous message replies, a client can produce a reasonable guess by using that
level for the next message. Performance trade-offs are compared in Section 4.

Likewise two approaches are possible to implement the address correction
protocol. The client can have its incorrect guesses returned to i1t so that it has
to retry a different server or the server can silently forward the message to the
correct server. If it is the case that the client expects a reply within a bounded
time else it will time-out and resend the message, then it i1s better for the client
to retry to avoid time-outs caused by too long server forwarding. DDH chooses
the method of requiring the server to forward misdirected messages.

Collision Resolution: When a bucket is filled, whether to split the bucket is
entirely a local decision. Unlike Linear Hashing [6], no order of bucket splitting
is necessary. Unlike Extensible Hashing [2], the entire table is not split as one
operation. Splitting 1s an autonomous operation that does not require global
knowledge. Skewed data can therefore be efficiently handled with the minimum
number of split buckets and no special overflow areas.

The implementation of DDH practices an uncontrolled splitting policy. The
splitting server sends a message to the new site server that will manage the
new bucket. If this server accepts it, a series of messages are sent to the server
with the split records. Multiple records are sent in the same split message as a
performance optimization.

Load Balancing: There are only data servers in DDH unlike LH* that used
an index or split manager. Because its buckets can be small, DDH achieves a
fine-grained load sharing across servers. When starting, all requests go to bucket
0 but as the number of buckets increases, all servers soon get roughly the same
number of buckets.

Parallel Operations: Multiple clients can insert and retrieve records in paral-
lel with each other. From the viewpoint of message reception, all servers operate
atomically. Clients do not see the internal state of servers where inconsistent op-
erations may result. Rather, the consistency points are defined by servers as they

send and receive messages. All server operations are locally serialized through
complete processing of a message before starting another. Multiple servers syn-
chronize their behavior when dealing with page splits.

3.2 DDH Networking Implementation

The three basic services offered by the DDH session layer implementation are
packet encoding/decoding, retransmission, and response matching. As only sim-
ple data types are used, the packet is rebuilt each time it is sent.

Because it 1s unlikely that purely homogeneous clusters of systems would be
using DDH, it was implemented as a portable session level service. All commu-
nication to the DDH servers uses the Internet User Datagram Protocol (UDP)
[8] datagram service and messages are encoded in network byte order.

The DDH network protocol is designed to the request / response model.
Requests messages are sent by clients to servers, and also by servers to other
servers during bucket splits and merges. If the request is sent to the wrong
server, the server puts the network address of the requester inside the packet
and forwards it to the correct server. The receiving server uses this address to
send back a reply directly to the requesting client. As network failures may cause
one or more packets to be lost, all operations are self-contained and idempotent.
Messages are retransmitted if no reply is received before a time-out.

Each packet consists of a fixed format header followed by a specified num-
ber of (key, value) pairs. Both the key and value are preceded by a short word
containing the length. All integer values are converted if necessary before trans-
port to the network byte order. The following request messages are supported:
RETRIEVE, INSERT, DELETE, and SPLIT BUCKET. Only servers send SPLIT BUCKET
requests other servers before performing a split or merge operation and to pre-
pare it for a bulk data transfer using INSERT messages. These requests result in
one of these responses: DUPKEY, ERROR, NOTFOUND, and SUCCESS.

4 Performance Experiments

To show the implementation of distributed hashing, the application of a phone
service “white pages” lookup for finding a phone numbers is used. Given one of
a large number of names, the phone number is returned. Up to 50,000 pairs of
names and phone numbers were used. Each name was less than 32 bytes long
and served as the key field.

We compare the performance of the following hashing packages:

. DDH - the distributed hashing algorithm introduced in this paper

. NDBM - the single node hashing package from AT&T [1]

. SELYIT - the single node linear hashing package from [9]

. GDBM - the single node dynamic hashing package from GNU freeware

H~ o DN —

4.1 Environment

Multiple DECstation 5000/133 workstations, an approximately 20 SPECmark
machine, with ample memory (at least 16 megabytes) were used. The systems
were running ULTRIX 4.2a, a variant of BSD UNIX. Each workstation com-
municated with either a 10 megabits/second Ethernet or a 100 megabits/second
FDDI LAN.

Program execution was timed using the operating system’s getrusage()
system call to record actual resources used. The timer was started before any
calls were made to the hash packages and stopped immediately afterwards to
remove from consideration all of the normal process initialization overhead from
the performance measurement. Tests were run twice to allow all code pages to be
fetched from the disk so that no start-up overhead affected this area. and were
run on idle systems at off hours to minimize any possible interference from the
network. However, testing ran at the “multi-user” level rather than “single user”
so that some interference from system level daemons running in the background
was possible. It was necessary to run at the normal level so that the network
could be used.

4.2 Time to Insert and Retrieve N Records

Records were loaded using the different hash packages. During the first phase
of the test, every record in the test was read from an on-disk file, hashed, and
inserted into the table. During the second phase, the records is reread and every
record is retrieved. Note that there is a high probability of finding the record in
memory for each of the single node hashing packages.

All times given below are the total time to insert and retrieve the same N
records. The elapsed time needed to run the tests is the complete time needed to
run the program from the shell prompt. The values for 30K, 40K, and 50K are
not shown for GDBM because those times became quite large and would have
dominated the graph.

The graph in Figure 1 shows that DDH is comparable to other hashing
packages that operate in a single process on the same node. This experiment
presented the disk-based hashing package in the best light because all disk blocks
were likely to be in memory. Hence the only I/Os performed were during the
flushing of blocks to disk. In contrast, the DDH numbers are both the best and
the worst because the messages have to be sent to a remote node in either case.

There were several surprises in the performance results. First, the widely
different elapsed times between the SelYit and the GDMB package are because
the SelYit package did not flush its dirtied pages while the GDBM explicitly
called sync() system call to flush its directory pages from the ULTRIX file
system buffer cache to disk. In addition, the GDBM package used an extensible
hashing algorithm [2] that doubled its directory size periodically. This explains
the “knee” in the curves above the 10,000 name pairs point for GDBM. Finally,
the user time for DDH is dwarfed by the system time with the ratio being roughly
1:4. If DDH were run on a system with operating system with higher performing
messaging, the elapsed level would be lower.

Elapsed Time (seconds)

0.00 :

0.00 10.00 20.00 30.00 40.00 50.00
Thousands of Name/Phone Pairs

Fig. 1. Elapsed Time to Insert and Retrieve N Records

4.3 Bucket Location Strategies

The question of whether the DDH method of autonomous splitting causes the
clients to make frequent addressing mistakes was examined. The experiments in
this paper used a round-robin distribution to map buckets to servers but others
are possible.

The number of server messages caused by addressing errors is also related to
the number of split levels — i.e., because each bucket may have split to a new
server, its current state is unknown unless a probe i1s made.

Three server locating strategies were compared. Table 1 shows the number of
messages that result from addressing errors for a fresh client retrieving records
from a 249 bucket hash table (9000 records stored in buckets holding a maximum
of 64 entries) on 3 servers. The experiment used 3 servers because the value 3
a non-multiple of 2 and therefore causes every bucket split to send records to a
different server.

The heuristic algorithms are based on a guess of the bucket’s split level. The
simple heuristic just uses the previous reply’s split level to guess the next re-
quest’s split level. The complex heuristic uses a moving average of all previous

Table 1. Bucket Addressing Errors

Strategy Extra Messages for 249 buckets
Heuristic (simple) | 1063
Heuristic (complex)| 627

Incremental 62
Quick Start 9

replies so that the average would gradually converge on the actual size. Both
heuristics assume that the hash table is reasonably well balanced. Like Linear
Hashing [6], these are directoryless and neither store definite information about
the whole hash table. Therefore they constantly makes the same mistakes and
produce more errors than do the directory based strategies. Moreover, the mis-
takes made are more often because they result from individual record access
unlike the directory strategies that use bucket granularity.

A client using the Incremental Convergence algorithm maintains a directory
of definitive bucket locations the client receives from servers. Additionally, the
location of a bucket can be inferred from the definitive knowledge of a sibling
bucket. This strategy will incorrectly guess the bucket addresses about 25% (in
the above table, 62/249 is approximately 25%) because of the four cases, it can
correctly deduce two. When a bucket is authentically determined, it and its
sibling are now known. That accounts for 50%. For remaining 50% buckets that
it doesn’t know about, in the worst case half will be located at the same node
and half will be at a different node.

The Quick Start algorithm is similar to incremental convergence but a special
probe message returns statistics about server 0’s hash table when the client
starts. The statistics are used to construct a complete directory so that the slow
learning of the incremental strategy is avoided. While the resulting directory
might not be completely accurate, it has the advantage of being mostly accurate
and should some errors. This strategy made only a few bucket addressing errors
because is able to completely guess the majority of the current directory by
constructing a directory of the current depth. It is only wrong on the fringes
where i1t had incorrectly assumed a higher split level.

For each of the above strategies, it is possible to propose examples that pro-
duce poor results. There are timing windows that would invalidate any previous
knowledge and result in a miss on every bucket except bucket 0. However, real-
world cases are unlikely to cause degenerative performance. Therefore the ability
of a simple client directory produces very good results.

4.4 Number of Messages

Just as a main memory hashing i1s judged on the number of memory accesses
and a disk based hash algorithm is judged on the number of I/Os it uses, a
distributed hashing algorithm must show how many messages were used. This

experiment found the average number of messages needed to insert or retrieve
all records. DDH comes very close to the optimal of only two messages.
The number of messages is calculated as:

messages_per_request = request + reply +¢c+ 3+ (1)

The request and reply messages are the 2 normal user visible messages. The
DDH message protocol requires an acknowledgment by the server for every client
message received. Algorithms that assume reliable messages and only count the
user visible messages fail to account for the low level acknowledgments used
to enforce message reliability. Any low-level network messages are represented
as € and includes the messages invisible to user code such as low-level flow
control, network name resolution messages, and message retransmissions. Since
¢ is unmeasuraable at the user level, it is not counted although it does affect
performance. The effect of bucket splits is given by the § term which counts
the number of bucket splits that occur between servers when a bucket fills. It
is an inverse function of bucket size therefore it is advantageous to have the
message size be slightly more than roughly half of the bucket size so that all of
the migrated records can fit into one message.

Finally the v term counts the addressing errors which are occurrences of
forwarded messages between servers when a client asks the wrong server due
to a change in the configuration of the distributed hash table. This is a non-
linear function of number of servers and amount of data because a server can
autonomously decide to split bucket while multiple clients are inserting or re-
trieving records means that clients will have addressing errors. There are also
addressing errors resulting from the period that a client is learning the current
hash table. Section 4.3 measured these. Table 1 shows actual counts of address-
ing errors. They are less than 1% of all messages when using the Quick Start
algorithm.

The measured number of messages sent on average for every DDH request is
2.02 which is very close to the optimal message total of 2.

4.5 Network Performance

DDH used a synchronous request /response protocol for all of its communication
using UDP messages. As a result, the network was the bottleneck. All perfor-
mance monitoring showed that the CPU utilization rate was always in the low to
mid 40% level for the client side. Of this amount, approximately 75% of the time
was spent in system time as the kernel sent and received the UDP messages.

There is a common belief that because the raw speed of FDDI is 100 Mbps,
it 1s 10 times faster in all dimensions than a 10 Mbps Ethernet. We found that
FDDI produces only about 25% better response time. The proportion of user to
system time was about 1:3 for FDDI as it was for Ethernet. This suggests that
the network software layer is quite heavyweight.

To discover how the network performance affected the DDH performance, a
comparison measurement was done using the ttcp network performance analysis

tool. For the UDP protocol, by sending 80 byte packets to imitate the average
message size used for DDH in the study, the CPU is nearly 100% busy. The
workstations used in this study can send slightly under 800 UDP packets per
second at its maximum. The ULTRIX kernel has a much higher code length
for networking calls than it does for file system calls. By comparison, several
thousand read and write calls per second are possible. Some modern microkernel
OSs can perform a small-message RPC call in about a millisecond.

4.6 Multiserver Performance

One very strong advantage with distributed hashing is the ability to involve
multiple servers to share the work load. A series of experiments were conducted
to test the effect of adding more servers.

The first group of experiments quantify the speed-up of adding more servers.
Speed-up means that increasing the available performance by N while keeping
the workload constant should yield an N times speedup. Each record was inserted
and then retrieved.

Table 2. Speed-up performance (elapsed time)

Records||1 Server / 1 Client|2 Servers / 1 Client|3 Servers / 1 Client
1000 || 6.2 seconds 5.5 seconds 7.0 seconds
2000 13.3 11.7 14.0
3000 19.1 16.8 20.1
4000 24.6 22.4 27.1
5000 30.5 28.5 33.6
6000 37.6 33.2 40.6
7000 44.0 38.7 46.3
8000 51.8 44.2 53.7
9000 56.8 50.9 63.0

Table 2 does not exhibit an increase of speed as one client uses one, two,
or three servers. There is only marginal speed-up when using a second server.
The most like explanation for the minimal speedup is that all messages are
synchronous. Message throughput is still the bottleneck so that any added server
capacity i1s unusable if the client waits.

The second group of experiments looked at the scale-up of increasing the
workload commensurate with the increased available performance. Table 3 lists
the resultant scale-up.

Table 3 shows that DDH has very good scalability when the load and ca-
pacity re both doubled. Based upon the DDH design, it seems very likely that
scale-up exists when using higher multiples of server/client pairs. However those
experiments where not performed so this remains unproven.

Table 3. Scale-up performance (elapsed time)

Records||1 Server / 1 Client|2 Servers / 2 Clients

1000 || 3.1 seconds 3.2 seconds

2000 5.9 6.1

3000 8.9 8.8

4000 13.9 12.8

5000 15.0 14.8

6000 19.1 19.0

7000 21.5 21.2

8000 25.8 24.4

9000 27.4 27.3

5 Conclusions and Future Work

With the growing number of networked systems that share information in a dis-
tributed manner, the argument for a distributed data structure is compelling.
Freedom from single node limitations, easy scalability, and better overall perfor-
mance are the goals. In comparison to a single-node hash table, a distributed
table theoretically allows growth of the table to the composite size of all the
workstation’s memory before the hash table is forced to reside on disk.

DDH, a distributed dynamic hashing algorithm, was implemented on a group
of workstations to quantify the benefit of using a distributed solution. The best
environment for DDH is a group of servers under the same administrative con-
trol (either directly or indirectly) and have a “shared-nothing” architecture so
that there i1s no interference between systems to diminish performance. Systems
organized into workstation farms are likely the best match to the needs of DDH
if they can provide network communication protocols with low latency.

Performance results show that it is comparable to other current implemen-
tations when measured with using CPU time or elapsed time. However, because
DDH sends messages between systems, the network becomes the bottleneck.
In our largest test that used 50,000 records, the test required approximately
200,000 network messages to insert and then retrieve all records. Because a sin-
gle network message takes about 2 milliseconds elapsed time, even between fast
workstations on the same Ethernet segment, the cumulative elapsed time is quite
high. The cost of distributed access is better than a disk access, but far worse
than a memory access.

The area of distributed data structures introduces several challenging re-
search problems in the areas of concurrency control algorithm, server failure,
and supporting variable number of servers. Since servers can fail, some method
of using data redundancy or server redundancy should be employed [4]. How-
ever, the drawback is the increased complexity of dealing with replication or
data consistency. The actual case may be more complex due to server failures
that are not independent. Dynamic hashing freed hashing from the fixed sized
hash tables. Distributed hashing expands hashing from a single node. The next

logical step beyond is to allow for varying number of servers. The question is
whether this is possible and still preserve retrieval using one message.

In summary, we find that DDH offers a useful approach for structuring dis-
tributed storage systems. DDH can prove to be useful when the data to be stored
exceeds the size of a single system’s memory. Because the network latency is less
than the latency of a disk request, huge single table can be accessed from multi-
ple servers with better performance. DDH is also more tolerant of skewed data
than other dynamic hashing methods because it allows for bucket splitting on
demand.

References

1. AT&T, DBM(3X), Uniz Programmer’s Manual, System V.3, pp. 506-8, 1985.

2. Ronald Fagin, Jurg Nievergelt, Nicholas Pippenger, and H. Raymond Strong, “Ex-
tensible Hashing — A Fast Access Method for Dynamic Files”, ACM Transactions
on Database Systems, Volume 4, No. 3, pp. 315-34, September 1979.

3. Richard Golding, “Accessing Replicated Data in a Large-Scale Distributed System”,
University of California at Santa Cruz technical report, June 1991.

4. H.I. Hsiao and David DeWitt, “Chained Declustering: A New Availability Strat-
egy for Multiprocessor Database Machines”, Proceedings of the 6th International
Conference on Data Engineering, February 1990.

5. Per Larson, “Dynamic Hashing”, BIT, 1978 Vol. 18(2), pp. 184-201.

6. Witold Litwin, “Linear Hashing: A New Tool for File and Table Addressing”, Pro-
ceedings of the 6th International Conference on VLDB, October 1980.

7. Witold Litwin, Marie-Anne Niemat, and Donovan Schneider, “LH* — Linear Hashing
for Distributed Files”, Proceedings of the 1993 ACM SIGMOD. May 1993.

8. John Postel, “User Datagram Protocol”, USC/Information Sciences Institute, In-
ternet RFC 768, August 1980.

9. Margo Seltzer and Ozan Yigit, “A New Hashing Package for UNIX” USENIX
Conference Proceedings - Winter ‘91, January 1991.

10. C.Severance, S. Pramanik, and P. Wolberg, “Distributed Linear Hashing and Par-
allel Projection in Main Memory Databases”, Proceedings of the 16th International
Conference on VILDB, Brisbane, Australia, 1990.

This article was processed using the INTpX macro package with LLNCS style

