
1

1. Introduction

As database management systems evolved, users have made ever-increasing

demands on the number, type and speed of the services provided by the DBMS

implementations. Relational database systems have provided many users with the

primitives they need to interact productively with their data, and recent implementa-

tions have provided them with acceptable performance. New research projects —

among them, POSTGRES [STON86c] and XPRS [STON88] — have begun to address

the next round of function and speed demands. This thesis describes some of the

query processing techniques used in the POSTGRES database management system to

meet these demands.

The organization of the thesis is as follows. Section 1 presents an overview of

POSTGRES, XPRS, and related research efforts. Section 2 describes how the

POSTGRES query optimizer supports several features that provide function beyond

that provided by standard relation database management systems. Section 3 is a

design sketch for a set of extensions to the POSTGRES query processing system that

will enable POSTGRES to exploit features of the XPRS database machine in order to

increase performance, as well as some experimental results that support the assump-

tions made in the design. Finally, Section 4 gives some directions for future work.

1.1. Overview of POSTGRES and XPRS

POSTGRES (POST inGRES) [STON86c, WENS88] is a database management

system under development at the University of California at Berkeley. The original

INGRES project [STON76] helped to prove that relational database management sys-

2

tems are practical and useful. However, existing RDBMS implementations and

semantics have proven deficient in certain applications. As the follow-on to

INGRES, the POSTGRES project has had the dual goals of providing additional func-

tion that the relational model alone lacks, as well as speed beyond that provided by

current RDBMS implementations. Among the advanced features provided by

POSTGRES are a rules system capable of supporting data integrity enforcement and

artificial intelligence applications, query-language procedures for modelling complex

data, and a powerful and extensible data model (including a data structure and

method inheritance mechanism). The POSTGRES design includes interfaces for pro-

grammers to access system internals at different levels, enabling those who wish to

sacrifice some safety and abstraction for raw speed to do so.

XPRS (eXtended Postgres, Raid and Sprite) [STON88] is a database machine in

construction at Berkeley. The goal of the XPRS project is to build a high-

performance transaction-processing engine with as few full-custom parts as possible;

that is, the general philosophy is that as much as possible should be done in software

and relatively inexpensive off-the-shelf hardware. Cost-effective transaction-

processing performance requires a balance of I/O and computational power. XPRS

will achieve its I/O performance goals by exploiting the parallelism available through

use of redundant arrays of inexpensive disks (RAIDs) [PATT88] and a new log-based

file system [DOUG89] built into the Sprite network operating system [OUST88].

The CPU power will be provided by a commercially-available shared-memory mul-

tiprocessor computer and a version of POSTGRES modified and tuned for this kind of

tightly-coupled parallel architecture.

3

Since the current POSTGRES prototype has been constructed solely as a unipro-

cessor system, a great deal of the high-level query processing code will have to be

restructured to deal with the control of multiple processors. In particular, the query

optimizer and query execution modules must be modified to take parallelism into

account.

1.2. Query Optimization

A database management system might require its users to query the data in a

manner which they know to be efficient. For example, if a file has an indexing struc-

ture built over it which allows the file to be probed efficiently, the user could be

forced to refer explicitly to the indexing structure in order to achieve good perfor-

mance. Data models which allow queries to be expressed in a manner independent

from the physical data layout, such as the relational model, do not have this ‘‘lux-

ury.’’ Such systems must have a query optimization module, which, given some

representation of the user’s query (which refers only to entities described by the data

model), returns some representation of an efficient scheme for accessing the physical

data that underlies the data model. In short, in order to save the user from having to

understand the physical data layout and provide efficiency hints, the system itself

must be able to figure out the equivalent information.

A general introduction to query optimization techniques in relational database

systems can be found in [JARK84]. Briefly, a typical approach is for the query

language parser to generate some kind of binary query tree structure that represents

the user’s query and pass this to the query optimizer, which generates another tree of

4

query processing operators (scans of individual relations and joins between two rela-

tions). This query plan tree is then either interpreted at runtime or compiled into

machine-language instructions that can be directly executed. The selected plan tree is

chosen by applying some kind of cost function to each tree in the search space of pos-

sible trees. The cost functions typically take into account an estimate of the number

of disk I/Os and processor cycles required to evaluate the query using the given plan

tree.

Picking out the optimal tree from the entire space of tree topologies, node types,

and node labellings is known to be an NP-complete problem. Hence, query optimiza-

tion is a matter of choosing a set of heuristics that work for the expected workload.

Consider the RTI INGRES optimizer [KOOI82] and its predecessor from the Univer-

hhh

(b) ‘‘full’’ or ‘‘bushy’’(a) ‘‘left-deep’’

DCBA

D

C

BA

A

join

scan

Figure 1. ‘‘Left-deep’’ vs. ‘‘bushy’’ query plan trees.
hhh

5

sity of California version of INGRES [WONG76]. Both INGRES optimizers pro-

duce full or bushy query plan trees; that is, no arbitrary set of tree topologies is

ignored. However, because of the intractability of searching the entire topology

space, both systems limit the search time. University INGRES uses a greedy search

heuristic known as ‘‘decomposition’’ and commercial INGRES uses a (varying) limit

on the time spent optimizing the query. As another example, consider the System R

optimizer described in [SELI79]. Unlike the INGRES optimizers, the System R

optimizer reduces the topology space by considering only left-deep query plan trees,

that is, trees in which the right subtree is always a leaf node representing a base-

relation scan. Limiting the tree topologies in this way reduces the query plan search

space (and hence optimizer execution time) from O (8N) to O (2N) in the number of

relations being joined [GRAE87]. While this strategy seems highly restrictive,

experimental evidence from [GRAE87] suggests that planning left-deep trees is

nearly as effective as planning bushy trees for a small number of join relations (e.g.,

10 or less) but that this heuristic becomes much less effective as the number of rela-

tion (and, of course, the optimization search space) increases. Examples of trees with

the two topologies may be seen in Figure 1. The leaf (labelled) nodes represent scans

of the base relations and the internal (unlabelled) nodes represent joins.

The degree to which other database management systems can take advantage of

underlying system parallelism varies a great deal. The simplest kind of system runs

multiple copies of the data manager process and uses a central transaction manager to

ensure data integrity. This technique allows multiple queries or transactions to run in

parallel (interquery parallelism) but does not of itself speed up single queries. An

6

example of this is Tandem’s NonStop SQL1 systems as described in [BORR88].

Another class of machines tries to exploit intraquery parallelism by breaking query

plans into multiple parts that can be executed concurrently. We will no longer con-

sider the first class of systems, since our goal is improved response time for indivi-

dual queries.

While there are many papers that propose query processing algorithms, there is

a remarkable dearth of literature on real query optimizers. This dearth is even more

acute in the area of parallel database machines. In fact, only the Gamma project

appears to have published any details of its query optimization techniques. Gamma

[DEWI86] employs a query optimizer that is limited in two significant ways. First,

the optimizer appears to have only one join tactic, hash join, which makes the system

incapable of handling anything but equijoins. Second, according to [GRAE87], the

Gamma optimizer produces left-deep query plan trees. In addition, the Gamma pro-

totype appears to be essentially a single-user system, so considerations of resource

allocation and scheduling (e.g., memory usage, processor load balancing between

queries) appear to be largely ignored.

1.3. The POSTGRES Query Optimizer

The version of the POSTGRES query optimizer described in [FONG86] is basi-

cally an adaptation of the design from [SELI79] with the following extensions:

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
1 Tandem, NonStop, and NonStop SQL are trademarks of Tandem Computers, Inc. As a side note,

Tandem’s NonStop systems do in fact have a parallel sort operator [TSUK86], but the system was not designed
with intraquery parallelism as a design goal.

7

(1) Incorporation of improvements in query optimization technology since 1979
(e.g., the use of multiple index scans on OR clauses [CHAM81])

(2) Support for user-defined data types, functions, and access methods

(3) A design for procedure support [STON86a]

Since then, we have added code to support a number of additional features as well as

parallelism and main-memory. These are described in the sections that follow.

In the text that follows, we will refer to the existing set of code as the

‘‘POSTGRES optimizer’’ and to the proposed design as the ‘‘XPRS optimizer’’.

2. High Function

In terms of new functionality, the recent additions to the repertoire of the

POSTGRES query optimizer are support for:

hash join method
functional access methods [LYNC88]
inheritance/union/version queries [ROWE87]
rules [STON87b]

Most of the work described in this section involves simple extensions to the optimizer

prototype that existed in early 1987. The chosen solutions were often not the one that

would have resulted in the minimal amount of optimization time. For example, two

cases involve preprocessing of query (parse) trees and multiple runs of the base

optimization engine. These were software engineering decisions. The current

POSTGRES system is a prototype, and minimizing the changes to the current stable

code sped up implementation and reduced the debugging time required. Further-

more, the query optimization and query processing modules are to be rewritten in C

in the near future, affording an opportunity to optimize the optimization code.

8

Support for hash join is well-understood, so we will skip on to discuss the

optimizer support for the other POSTGRES features mentioned above.

2.1. Supporting User-Defined Extensions

The POSTGRES optimizer prototype described in [FONG86] contained code to

support user-defined functions, operators and access methods. However, the model

assumed in that code (and in [STON86c]) does not work for all possible user exten-

sions. As an example, consider the access method proposed in [LYNC88], a general-

ization of the extended user-defined indexing as described in [STON86b]. Query

optimizers will usually recognize query qualification clauses of the form

variable OPERATOR constant

(clauses of this form are called ‘‘sargable clauses’’ in [SELI79]) can be used with

indexes. The new access method indexes the precomputed result of functions on the

index keys rather than the index keys themselves; hence, to support this new access

method, the optimizer must be able to recognize that query qualification clauses of

the form

FUNCTION(variable, ...) OPERATOR constant

can also be used with this type of index. A more detailed account of the actual imple-

mentation may be found in [AOKI88]. Although some changes had to be made to the

POSTGRES system catalogs and the associated lookup code, the total optimizer

change was a matter of about 40 lines of code.

9

2.2. Supporting Union Operations

Several POSTGRES features require the ability to treat multiple base-relation

scans as a single virtual base-relation scan; in the discussion that follows, we will call

such scans ‘‘multiscans’’ for convenience. For example, consider Figure 2. One can

create a group of relations that inherit attributes and methods using a standard

multiple-inheritance hierarchy. In this case, the tuples in all four relations are

instances of ‘‘PERSON’’. When relations in an inheritance hierarchy are accessed,

the base class and its descendants must be scanned; when archival data is accessed,

the base relation and the archive relation must be scanned; when a version relation is

accessed, the base relation and all intervening version relations must be scanned; and

when relations are formed using the POSTQUEL set operations (e.g., ‘‘union’’) both

relations must be scanned. Figure 3 gives some examples of queries that require mul-

hhh

PERSON

EMP STUDENT

STUDENTEMP

Figure 2. An example of a multiple inheritance hierarchy.
hhh

10

tiscan support. In summary, inheritance queries require one scan per inheriting rela-

tion, archival queries require two scans, version queries require N +1 scans for a ver-

sion with N parent relations, and set operations require one scan per relation operated

on.

The general idea of the solution is as follows. The query optimizer constructs

subplans for each scan within the multiscan and links them together with a ‘‘union’’

plan node which instructs the executor to skip from subplan to subplan, changing tar-

get lists, range tables, result relations and other structures at runtime. This is neces-

sary because the different relations have different tuple structures (attributes and attri-

bute numbers), and these executor data structures are, unfortunately, global.

hhh

create person (name = text)
create emp (empid = int4) inherits (person)
create student (stuid = int4) inherits (person)
create studentemp (sponsor = text) inherits (emp, person)

/* inheritance query - scan "person" and its descendants */
retrieve (p.name) from p in person*

/* archival query - scan "person" from the present back to epoch */
retrieve (p.name) from p in person[,]

/*
* version query - scan version person2 (implicitly, scan "person1"
* and "person" as well
*/
retrieve (p.name) from p in person2

/* set union query - scan "emp" and "student" as one relation */
retrieve (p.name) from p in emp union student

Figure 3. Examples of queries requiring multiscan support.
hhh

11

hhh

union

scanscanscanscan

PERSON*

STUDENTEMPSTUDENTEMPPERSON

union

scanscanscanscan

PERSON*

STUDENTEMPSTUDENTEMPPERSON

(a)

(b)

Figure 4. Query plans resulting from two methods of evaluating multiscans.
(a) Reoptimize query for each scan.
(b) Optimize multiscan as an aggregate of scans.

hhh

Within this general context, there are two ways to solve the optimization prob-

lem. One can use a frontend to the entire optimizer and replan the entire query N

times with just the scan relation information changed each time. This means that

each multiscan within a query generates a cross product for optimization (e.g., an

archive scan of the example inheritance hierarchy would cause the optimizer to run

eight times). A plan that might result from this method is shown in Figure 4(a). The

query is a join with the inheritance relation person*, and the resulting plan is simply

12

four separate join plans connected by a ‘‘union’’ node. The inner join relation is the

same in all cases. Another way to solve this problem would be to try to optimize

common subexpressions once. That is, if an inheritance relation is at the bottom of a

twenty-way join, why reoptimize the join several times? This is the approach shown

in Figure 4(b). In this case, the inner join relation is joined to the inheritance rela-

tions after they have been unioned together. This would mean really optimizing

scans as one multiscan, with all scans producing a single ordering/partitioning, so

where the system currently keeps track of each scan path and the ordering it provides,

it would have to keep track of the aggregate multiscan. The latter option can be more

efficient, in terms of both optimization time (less redundant planning) and execution

time (e.g., fewer scans and joins are activated in Figure 4(b) as compared to Figure

4(a)), but there are implementation problems. First, there is the problem of dealing

with the multiscan as an aggregate. Second, the scans generate tuples with different

structures (attributes, attribute numbers), and the optimizer would have to decide on a

common structure for the executor to restructure them into. In any case, the current

system is implemented in the first way because it was easier. If queries with multiple

multiscans become common, retrofitting true multiple-scan code would not be hard.

2.3. Supporting the POSTGRES Rules System

The query optimizer was equipped with yet another query tree preprocessing

module to support the POSTQUEL ‘‘define rule’’ query. As proposed in

[STON87a], multiple plans are generated and stored in system catalogs, to be used if

rule locks in the database are set off. There are several types of rule locks (one write,

13

W, and three read, R1, R2, R3).

Consider the following example:

define rule r1 is always
replace x (a = y.z, b = 1) where x.c < 5

In the following discussion, we will call the ‘‘replace’’ query in this example the

subquery of the ‘‘define rule’’ query. Besides optimizing the subquery itself, the

preprocessor causes the generation of a number of query plans by repeatedly calling

the optimizer on modified versions of the subquery. When the preprocessor runs,

locks are placed on particular attributes referred to in the subquery (the criteria for

placing the locks are listed below). During the repeated invocations of the optimizer,

the query plan tree nodes corresponding to these attributes are replaced with parame-

ter nodes. When the rule lock on a particular tuple is set off, the plan corresponding

to the lock is pulled from the catalogs, the parameter nodes are replaced at with attri-

butes extracted from the tuple, and the plan is executed. Plans and locks are gen-

erated as follows:

(1) The subquery is first optimized normally; this plan is not ‘‘parameterized’’
and is used by the executor to place the locks.

(2) For W locks, a parameterized plan for a ‘‘retrieve’’ query (with what is
essentially the same target list as the original subquery) is generated. A W
lock is generated per update relation variable, e.g., W locks would be placed
on x.a and x.b.

(3) For R1 locks, a parameterized plan for the subquery is generated. A R1 lock
is generated per variable assigned to a targetlist variable, e.g., R1 locks would
be placed on y.z.

(4) For R2 locks, the query to be optimized is always ‘‘retrieve (x = 1)’’. A R2
lock is generated per relation read in the query, e.g., R2 locks would be
placed on x.c.

(5) No plans are generated for R3 locks.

14

The preprocessor/frontend simply finds what locks are required, performs some query

modification, and then calls the optimizer for each plan. Again, no common-

subexpression optimization is done, but since this is only done at rule definition time

performance is much less likely to become an issue than with union queries.

3. High Performance

As previously described, the XPRS query processing system attempts to achieve

high performance by exploiting two features of the XPRS database machine, large

main memory and parallel processors. In the following chapter we describe how the

XPRS query optimizer takes advantage of these features.

3.1. Exploiting Large Main Memory

The explicit and straightforward consideration of main memory (in the form of

buffer space) would simply add another variable to the already-intractable query

optimization problem. Hence, some simplifying assumptions must be made in order

to prevent disastrous optimization run times, at the cost of possible plan non-

optimality. With respect to main memory, the XPRS optimizer assumes that plan

structure (tree topology, join order, choice of join and scan operators) is essentially

invariant over memory changes.

This assumption essentially eliminates main memory as an optimization

degree-of-freedom, although it is still important as a means of choosing between

query plan operators. Hence, a single plan, optimized with the expectation of having

some large amount of main memory, should suffice for all reasonable amounts of

memory. This has a certain intuitive appeal. With respect to the query plan operators

15

used, the expected-case differences between sequential and index scans and nested-

loop and hashed joins are so clearcut that the choice of operators seems unlikely to

change at all between trees optimized for two given amounts of memory.

In order to test this intuitive argument, we modified the POSTGRES optimizer to

consider main memory usage as a cost function factor and examined the output of

this modified optimizer as the amount of available buffer space changed. Hash joins

were assumed to follow the execution model of [DEWI84] (as will be described later

in an example).

Random queries were generated assuming the following parameters: 3- to 8-way

joins, 1 to 10 million tuples per relation, 80% equijoins (20% other POSTGRES opera-

tors besides bit-equality), 50% 4-byte integers (50% other data types) with all integer

columns indexed, 80% conjunctive connectives (20% disjuncts; no pure relational

products were generated). No actual tuples were generated, but appropriate statistics

were fabricated and loaded into the catalogs to make the join and qualification clause

selectivities more realistic. One hundred of these random queries were optimized for

each of four test databases assuming buffer pools ranging from 16 to 16384 buffers of

8KB each (the default size of a POSTGRES disk buffer) — that is, 128KB to 128MB.

The databases differed in the number (10-12) and composition (number of tuples,

number and types of attributes) of relations.

The results of the tests are unsurprising. The plans generated by the POSTGRES

optimizer were structurally identical, with the exception of six plans that inter-

changed the join order of two leaf scans (i.e., a join between two scan nodes, as

16

opposed to, say, a scan node and a join result). In other words, the only differences

seen did not affect plan cost at all — a join between a sequential scan of relation A to

a sequential scan of relation B has the same cost as a join of B to A. Hence, at least

for the POSTGRES optimizer, the memory-invariance assumption appears to be a rea-

sonable one.

3.2. Exploiting Parallelism

Assume the main-memory model just given. Once a conventional query plan

tree has been constructed, individual query plan operators can be parallelized. In

addition, the query plan can be subdivided into subplans which can be run in parallel.

We term these two types of parallelism intrafragment parallelism and interfragment

parallelism for reasons that will become apparent in the discussion that follows.

hhh

process 1 process 2 process 3

SCAN 1

scan 1 scan 2 scan 3 scan 4

hash join 1 hash join 2

hash join 3

(a) (b)

Figure 5. Two kinds of parallelism.
(a) Intrafragment parallelism. One scan is broken up into three subscans.
(b) Interfragment parallelism. A tree is broken up into independent subtrees.

hhh

17

Figure 5 shows examples of the two types of parallelism. For now, we define frag-

ment as a unit of multiple-operator parallelism.

3.2.1. Intrafragment Parallelism

The individual query plan operators (plan nodes) can be parallelized using tech-

niques adapted from [BITT83, MENO86, RICH87]. The operators used in XPRS

(sequential and index scans, nested-loop and hash joins) are exactly those that can be

trivially decomposed into an arbitrary number of independent threads or processes.

There may be several operators within a given fragment, and each operator

within a fragment is decomposed into the same number of processes. This has

several advantages over allowing operators with differing numbers of processes.

First, no mux/demux ‘‘plumbing’’ is required, as would be required to interface

operators with differing numbers of processes. Second, in terms of plan data struc-

tures, each thread within a fragment basically corresponds to a separate query tree.

As a pragmatic matter, this convention permits the adaptation of the existing

POSTGRES executor code, essentially eliminates the overhead of process/thread

switches, and simplifies the processor scheduling problem.

As an example, we describe a parallel hash join algorithm consistent with our

memory and processor models. It is basically the algorithm from [DEWI84] with

each set of hash buckets handled in NPROC parallel parts by NPROC different

processes (where NPROC is a tuning parameter). The following phases are illustrated

in Figure 6.

18

hhh

in-core hash table

output buffer

tuple streams
from left subtree

bucket 1

bucket 2

bucket 1

bucket 2

tuple streams
from right subtree

hash

hash

hash

hash

1

2

2

1

1

2
1

2

(a)

bucket 1

bucket 2

hash
1

2

(c)

bucket 1

bucket 2

hash
1

2

(b)

Figure 6. A shared-memory parallel hashjoin algorithm.
(a) Initial build phase (first batch hashed).
(b) Initial probe phase (first batch joined).
(c) Subsequent build and probe phases (i th batch joined).

hhh

19

(a) Initial build phase:
The NPROC tuple streams from the left child of the hash node are hashed into
NBATCH ‘‘batches.’’ As in [DEWI84], batches are sized such that one batch will
essentially fill the available buffer space. The first batch is immediately
rehashed into the buckets of a main-memory hash table; the other NPROC −1
batches are spooled into buffers and written out to disk.

(b) Initial probe phase:
The NPROC tuple streams from the right child of the hash node are hashed into
batches using the same hash function as in step 1. Tuples hashed into the first
batch are rehashed into the buckets of the main-memory hash table and joined
with the first-batch tuples of the left-subtree immediately. Tuples hashed into
the other NPROC −1 batches are spooled.

(c) Subsequent build and probe phases:
For each batch i > 1, The i th left-subtree batch is read in NPROC tuple streams
into the buffers allocated for the main-memory hash table. Once the hash table
is built, the i th right-subtree batch is read in NPROC tuple streams. As tuples
come in, they are joined with the left-subtree tuples and piped up.

The key points are as follows. First, main memory is used to hold the first batch and

keep it from being written out to disk; this caching saves a number of I/Os propor-

tional to the memory allocated for this purpose (i.e., to the size of the main-memory

hash table). Second, all NPROC processes allocated to the fragment are kept as busy

as possible.

3.2.2. Interfragment Parallelism

Two key problems must be solved if a system allows multiple portions of a

query plan to be run at once. The first is activation of the portions, and the second is

scheduling among them.

A system which uses left-deep query plans, e.g., GAMMA, can simply activate

its operators bottom-up. XPRS must solve the activation problem in a more general

way, since XPRS allows bushy query plan trees. The rules for forming fragments are

as follows:

20

F1. A node belongs to up to two fragments, one for each (left and right) subtree.

F2. The left subtree of a node that forms a temporary (e.g., a hash join) forms the
top node of a new fragment.

The basic rationale for this is the obvious one. Forming a temporary places a large

bubble in the upward stream of tuples. Hence, it does not make sense to place opera-

tor nodes on either side of one that forms a temporary in the same fragment, since the

two sets of non-temporary-forming operator nodes cannot run concurrently for the

duration of their activation.

The rules for activating fragments are equally simple. They are:

A1. A given fragment may not be started if a fragment containing a node below the
given fragment in the query plan tree has not been started. Hence, fragments are
activated bottom-up.

A2. The left subtree of a hash join node must have run to completion before the hash
join node itself can run, since the main-memory hash table must be formed
before tuples from the right subtree can be hashed into it.

Again, the reasoning is that of dataflow dependency.

A sample left-deep query plan and its fragmentation is shown in Figure 7. The

query

retrieve (CHILD.name)
where CHILD.parent = EMP.name
and EMP.dept = DEPT.dname
and DEPT.floor = 1

might result in the plan shown in the top of the figure and then be broken up into

three fragments according to rules F1 and F2. Following rules A1 and A2, the frag-

ments are then activated in the left-to-right order shown. When the first fragment is

activated, node 3 constructs a hash table from the DEPT tuples streaming up from

node 1. In the second fragment, node 3 hashes the tuples from the scan of EMP

21

hhh

scan DEPT
restricted

hash join

hash join

scan EMP

scan CHILD

1 2

3 4

5

Figure 7. A sample left-deep query plan tree and its fragments.
hhh

(node 2) into its table (performing the equijoin with DEPT) and node 5 begins forma-

tion of its hash table. Finally, when the third fragment starts, tuples from the scan of

CHILD (node 4) are hashed into node 5’s table (performing the equijoin with EMP)

and the results are returned to the user.

The previous example, being of a left-deep tree, can contain intrafragment

parallelism but cannot contain interfragment parallelism. We now consider a slightly

more complicated example that does require consideration of interfragment parallel-

ism. Say the optimal query plan for

22

hhh

hash join

hash join hash join

restricted
scan DEPT

restricted
scan EMP1

scan EMP scan EMP

1 2

3

4 5

6

7

Figure 8. A sample bushy query plan tree and its fragments.
hhh

retrieve (EMP.name) from EMP1 in EMP
where EMP.dept = DEPT.dname
and DEPT.floor = 1
and EMP.salary > EMP1.salary
and EMP1.age > 30

is as shown in the top of Figure 8. This plan is fragmented as shown in the bottom of

the figure. In this case, the third fragment depends on the results of the first, and the

fourth depends on the results of the first and third; however, the first and second frag-

ments do not depend on any other fragments and can be run concurrently. Hence, the

execution of this query plan would proceed in a manner slightly different from the

previous example. If there are sufficient resources (i.e., memory and processors), the

23

first and second fragments are activated simultaneously, hashing the DEPT and

EMP1 scan tuples from nodes 1 and 4 into tables constructed by nodes 3 and 6. The

third fragment is then activated, hashing the tuples from the EMP scan (node 2) into

the table controlled by node 3 and placing the results at the disposal of the hash

operator in node 7. Finally, the fourth fragment can be activated, hashing the EMP

tuples from node 5 into the node 6 hash table and then hashing these results into the

hash table in node 7.

The algorithms to control this fragmentation and activation are relatively sim-

ple. Sample data structures and code for this process are shown in Figures 9 and 10.

The code samples show that in order to fragment, we need only perform a simple

depth-first traversal of the query plan while keeping track of the fragment numbers of

the current node, its children, and the highest fragment number generated so far (in

order to generate fragment numbers for the next new fragment). In addition to keep-

ing track of the fragment numbering, the function new-frag also keeps track of

dataflow dependencies; these dependencies are used to create the partial ordering of

hhh

(defstruct (fraginfo (:type :vector))
number ; fragment id for this fragment
prereqs ; fragment ids of fragments which must run before this one
head) ; top node of this fragment

(defstruct (fragment (:type :vector))
left ; fragment id for the left
right ; and right children of this node
max) ; highest fragment id in this node or its children

Figure 9. Fragmentation data structures.
hhh

24

hhh

;;; fragment-plan
;;; Destructively marks ’node’ and its subnodes with their fragment
;;; memberships ("fragment" nodes). Returns a dependency list (list of
;;; "fraginfo" nodes).
(defun fragment-plan (node)

(let ((frags
(vector (list (make-fraginfo :number 1)))))

(fragment-subplan node frags 1 1)
frags))

;;; fragment-subplan
;;; The left and right subnodes are always in fragment ’current’ unless
;;; ’node’ is a hashjoin, in which case ’node’ and its left subnode become
;;; members of a new fragment. Returns the highest fragment number used
;;; in this node or its children.
;;;
;;; ’node’ is the plannode to be marked.
;;; ’frags’ is a structure containing the current dependency list.
;;; ’current’ is the current fragment number.
;;; ’max’ is the highest fragment number known (used to generate new
;;; fragment numbers).
(defun fragment-subplan (node frags current max)

(assert (plannode-p node))
(let* ((left-fragment

(if (get_lefttree node)
(cond ((hashjoin-p node)

(let ((new-max (1+ max)))
(new-frag (get_lefttree node) frags current new-max)
(fragment-subplan (get_lefttree node)

frags
new-max
new-max)))

(t
(fragment-subplan (get_lefttree node)

frags
current
max)))))

(right-fragment
(if (get_righttree node)

(fragment-subplan (get_righttree node)
frags
current
(if left-fragment

(fragment-max left-fragment)
max))))

(fragment
(make-fragment :left (if left-fragment

(fragment-right left-fragment)
current)

:right current
:max (max max

(if right-fragment
(fragment-max right-fragment)

max)
(if left-fragment

(fragment-max left-fragment)
max)))))

(set_state node fragment)
fragment))

;;; new-frag
;;; Adds a fraginfo node for fragment number ’new-number’ to the list
;;; of fraginfo nodes kept in ’frags’. In addition, fragment number
;;; ’new-number’ is added to the dependency list of its parent.
(defun new-frag (node frags parent-number new-number)

(let* ((parent-frag
(find parent-number (vref frags 0)

:key #’(lambda (x) (fraginfo-number x)))))
(assert (not (null parent-frag)))
(push new-number (fraginfo-prereqs parent-frag))
(setf (vref frags 0)

(push (make-fraginfo :number new-number
:head node)

(vref frags 0)))))

Figure 10. Code for fragmentation and generation of dependency information.
hhh

25

fragments which are, in turn, used to generate the activation order. Hence, both the

fragmentation and determination of activation order are performed at once in func-

tions that perform only one traversal of the query plan tree.

3.3. Scheduling Problems

Up to this point, we have implicitly or explicitly assumed unlimited resources.

In practice, the number of processors and buffers available may be severely limited.

Hence, we now turn to algorithms for the allocation and scheduling of system

resources.

Note that the availability of system resources is known only at the time at which

the query is run, and is not known at query optimization time. One result of the query

optimization algorithms described above is that resource allocation and scheduling

can be practically ignored during the optimization phase; hence, the running time of

the XPRS optimizer is basically what it would be in a system using a conventional

optimizer, since all allocation and scheduling problems are left for the executor.

3.3.1. Number of Concurrent Processes Per Fragment

Because operating system processes have certain types and amounts of overhead

associated with them, it is clear that there should be some control over the number of

threads or processes into which the operators of a given fragment are divided. The

following factors should be considered in calculating the number of processes into

which a fragment should be divided:

26

Disk parallelism

If there are Ndrives disk drives and each drive can handle NI /Os_per_drive I/O requests

(e.g., a drive with two sets of heads running under an operating system that per-

mits only synchronous I/O can be assigned 4 simultaneous I/O requests), then

the maximum number of useful processes considering only the number of drives

is

MAXPROCdisk = NI /Os_per_drive Ndrives

Limiting process overhead

Say the time spent starting, controlling, and terminating a process within a frag-

ment is Tprocess and the total runtime of a fragment is Tfragment . If we put a ceiling

on the process overhead time by limiting the number of processes to no more

than MAXPROCCPU , the total time wasted will be

fragment overhead = MAXPROCCPU Tprocess

so in order to limit process overhead to some fraction Poverhead of the fragment

runtime, we should limit the number of running processes to no more than

MAXPROCCPU =
Tprocess

Poverhead Tfragmenthhhhhhhhhhhhhh

Limiting I/O overhead

Similarly, since each I/O has some amount of overhead, it makes little sense to

start a huge number of processes each of which do one or less I/Os. If there are

an estimated NI /Os in the fragment, additional processes should only be started if

each can get at least PI /Os_per_process I/O requests.

27

MAXPROCI /O =
PI /Os_per_process

NI /Oshhhhhhhhhhhhh

Current load

In order to smooth the degradation of system performance, the current system

load should be considered before starting more processes. In BSD UNIX, the

available metric for system load is the load average, or average number of

processes in the run queue. We will refer to this number as avenrun .

Considering all of these factors, one equation for the number of processes to start for

a given fragment is:

MAXPROC = min (MAXPROCdisk ,MAXPROCCPU ,MAXPROCI /O)

NPROC =
(

processors
avenrunhhhhhhhhhh + 1)2

MAXPROChhhhhhhhhhhhhhhh

Again, all operators in the fragment are divided into NPROC parallel portions and so

NPROC copies of the runtime data structures must be created.

3.3.2. Number of Concurrent Fragments

In queries where interfragment parallelism is possible, it may turn out that

NPROC ≤ MAXPROC . In this case, XPRS immediately attempts to find fragments that

are (1) independent of the currently-running fragment and (2) capable of being run

given the available amount of buffer space.

3.3.3. Buffer Space

In the ideal memory case, which we have assumed until now, there is always

enough memory to run whatever query plan operator method or number of processes

desired. This, of course, will not always be the case. If fragments with arbitrary

28

buffer usages are started, they will compete for buffers and buffer-pool thrashing may

result. This subsection describes how XPRS manages its buffer space and attempts to

prevent thrashing.

Memory usage calculations are of course totally dependent on the implementa-

tion of the query plan operators. For the sake of concreteness in the following discus-

sion, we will assume that query plan operators use essentially no buffer space with

the exception of hash join, which will behave as described in the hash join example

given above. That is, in the initial phases, hash join requires space for the main-

memory hash table as well as a spool buffer for all batches but the first. Subsequent

phases require enough memory for the hash table and for a buffer to pull tuples from

the current spooled batch. Hence, the minimum memory requirement for this hash

join algorithm if a total of MAXBUF buffers are available is

NBATCH
MAXBUFhhhhhhhhh + NBATCH

The following algorithms make no particular assumptions about the basic buffer

manager replacement mechanisms, although we expect to replace the current

POSTGRES buffer manager with a more intelligent buffer manager along the lines of

[CHOU85] On top of the basic buffer manager, we implement a buffer reservation

system. That is, before running, a fragment must be able to reserve an amount of

buffer space appropriate for its expected needs, and after running, it must remove its

reservation for the buffer space. If the buffer manager cannot provide this amount of

space from the buffers that are still unreserved, the fragment cannot run. Note, how-

ever, that the reservation is in fact a hint for the buffer manager rather than a memory

29

usage quota for the fragment. Hence, thrashing may still occur if the executor

grossly underestimate the memory usage of some fragment(s).

If a fragment cannot run, the query executor has two options. It will first

attempt to change the original fragment’s resource requirements so that it can run;

tactics for doing so are described below. Should these tactics fail, the executor must

simply go on and try to find a fragment that it can run in the amount of memory it has

available to it.

How can one reduce the memory usage of a fragment? Since hash joins are

assumed to be the only operators that use nontrivial amounts of memory in XPRS, the

tactics used simply concentrate on reducing the memory usage of hash joins in dif-

ferent ways.

The first tactic is simply to break the fragment into two subfragments. If a frag-

ment contains multiple hash join nodes, the executor can insert a spool node just

below the topmost hash join node in the fragment. Everything above this spool node

becomes part of a new fragment. The memory requirements of the (newly beheaded)

original fragment can then be reevaluated and re-passed to the buffer manager, given

that the memory requirement of supporting one of the fragment’s large main-memory

hash tables has just been eliminated.

The second tactic assumes that the first tactic has been applied until there is only

one hash table in the current fragment. Now the problem may simply be thought of

as trying to reduce the amount of memory used by a particular hash join. This can be

accomplished by increasing NBATCH , thereby reducing the effectiveness of the batch

30

cache and slowing down the join.

Again, it must be noted that the tactics used to reduce memory usage are depen-

dent on the implementation of the query plan operators. In the original proposal

found in [STON89], it was assumed that each process in a hash join would require its

own bucket. This created a further memory-usage opportunity, i.e., reducing the

fragment parallelism. By simplifying the hash join algorithm and reducing its buffer

usage, this optimization has been eliminated.

4. Conclusions

4.1. Summary of Design Points

In this thesis, we have discussed some of the techniques used in the POSTGRES

query processor that are used to support new functionality and exploit the features

(multiple processors, large main memory) of the other components of the XPRS data-

base machine. In terms of increased functionality, we described the algorithms for

handling generalized extended user-defined indexing, union relations and the

definition of rules. We have also described the modifications made to increase per-

formance, which include algorithms for fragmentation and activation of fragments,

control of fragment parallelism, control of fragment memory usage, and (an example

of) parallel hash join.

4.2. Current Status and Future Work

The functionality extensions are in place and have been tested over the course of

the last year. The implementation of union relations in particular has recently been

31

made more robust (if no more efficient). Implementation of the XPRS extensions is

awaiting completion of other features of POSTGRES. Hence, it is likely that the

design proposal described here will be reworked yet again in order to reflect the inter-

face and architectural changes pending to the base POSTGRES system.

There are still a number of features yet unimplemented in POSTGRES that will

require extensive changes to the optimizer. The most significant of these is query-

language procedures, which will almost certainly require a great deal of rewriting. In

addition, making the optimizer generate bushy query plan trees will likely require a

significant amount of time (though not coding) since the assumption that the inner

join relation is a scan result is implicit throughout the optimizer code. The more

efficient implementation of union relations explained in Section 2 should be carried

out if archival, version, or inheritance queries are expected to be heavily used.

Finally, when a hashjoin algorithm is settled upon, the cost functions, catalog entries,

and hashjoin-handling code in the optimizer will probably have to change.

32

References

[AOKI88] P. M. Aoki, ‘‘Implementation of Generalized Extended User-Defined
Indexing in POSTGRES’’, CS292N Project Report, Univ. of California,
Berkeley, CA, Dec. 1988.

[BITT83] D. Bitton, H. Boral, D. J. DeWitt and W. K. Wilkinson, ‘‘Parallel
Algorithms for the Execution of Relational Database Operations’’,
Trans. Database Systems 8, 3 (Sep. 1983).

[BORR88] A. Borr and G. Putzolu, ‘‘High Performance SQL Through Low-Level
System Integration’’, Proc. 1988 ACM-SIGMOD Conf. on Management
of Data, Chicago, IL, June 1988.

[CHAM81] D. D. Chamberlin, M. M. Astrahan, M. W. Blasgen, J. N. Gray, W. F.
King, B. G. Lindsay, R. A. Lorie, J. W. Mehl, T. G. Price, G. R. Putzolu
and B. W. Wade, ‘‘A History and Evaluation of System R’’, Comm. of
the ACM 24, 10 (Oct. 1981).

[CHOU85] H. Chou, Buffer Management of Database Systems, Ph.D. Thesis, Univ.
of Wisconsin, Madison, WI, May 1985. (Also available as Computer
Sciences Tech. Rep. 597).

[DEWI84] D. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stonebraker and
D. Wood, ‘‘Implementation Techniques for Main Memory Database
Systems’’, Proc. 1984 ACM-SIGMOD Conf. on Management of Data,
Boston, MA, June 1984.

[DEWI86] D. J. DeWitt, G. Graefe, K. B. Kumer, R. H. Gerber, M. L. Heytens and
M. Muralkrishna, ‘‘Gamma: A High-Performance Dataflow Database
Machine’’, Proc. 12th VLDB Conf., Kyoto, Japan, Aug. 1986.

[DOUG89] F. Douglis and J. Ousterhout, ‘‘Log-Structured File Systems’’, IEEE
Spring Compcon 1989, San Francisco, CA, Feb. 1989, 124-129.

[FONG86] Z. Fong, ‘‘The Design and Implementation of the POSTGRES Query
Optimizer’’, M.S. Report, Univ. of California, Berkeley, CA, Aug. 1986.

[GRAE87] G. Graefe, Rule-Based Query Optimization in Extensible Database
Systems, Ph.D. Thesis, Univ. of Wisconsin, Madison, WI, Nov. 1987.
(Also available as Computer Sciences Tech. Rep. 724).

[JARK84] M. Jarke and J. Koch, ‘‘Query Optimization in Database Systems’’,
Computing Surveys 16, 2 (1984).

[KOOI82] R. Kooi and D. Frankforth, ‘‘Query Optimization in INGRES’’, IEEE
Database Engineering, Sep. 1982.

[LYNC88] C. A. Lynch and M. Stonebraker, ‘‘Extended User-Defined Indexing
with Application to Textual Databases’’, Proc. 14th VLDB Conf., Los
Angeles, CA, Aug. 1988.

[MENO86] J. Menon, ‘‘Sorting and Join Algorithms for Multiprocessor Database
Machines’’, IBM Research Report RJ5049, IBM Research Laboratory,

33

San Jose, CA, Feb. 1986.

[OUST88] J. K. Ousterhout, A. Cherenson, F. Douglis, M. Nelson and B. Welch,
‘‘The Sprite Network Operating System’’, Computer 21, 2 (Feb. 1988).

[PATT88] D. Patterson, G. Gibson and R. H. Katz, ‘‘A Case for Redundant Arrays
of Inexpensive Disks (RAID)’’, Proc. 1988 ACM-SIGMOD Conf. on
Management of Data, Chicago, IL, June 1988.

[RICH87] J. P. Richardson, H. Lu and K. Mikkilineni, ‘‘Design and Evaluation of
Parallel Pipelined Join Algorithms’’, Proc. 1987 ACM-SIGMOD Conf.
on Management of Data, San Francisco, CA, May 1987.

[ROWE87] L. A. Rowe and M. R. Stonebraker, ‘‘The POSTGRES Data Model’’,
Proc. 13th VLDB Conf., Brighton, England, Sep. 1987.

[SELI79] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie and T. G.
Price, ‘‘Access Path Selection in a Relational Database Management
System’’, Proc. 1979 ACM-SIGMOD Conf. on Management of Data,
Boston, MA, June 1979.

[STON76] M. Stonebraker, E. Wong, P. Kreps and G. Held, ‘‘The Design and
Implementation of INGRES’’, Trans. Database Systems 1, 3 (Sep. 1976).

[STON86a] M. Stonebraker, ‘‘Object Management in POSTGRES Using
Procedures’’, UCB/ERL Tech. Rep. M86/59, Univ. of California,
Berkeley, CA, July 1986.

[STON86b] M. R. Stonebraker, ‘‘Inclusion of New Types in Relational Data Base
Systems’’, Proc. 2nd IEEE Data Engineering Conf., Los Angeles, CA,
Feb. 1986.

[STON86c] M. R. Stonebraker and L. A. Rowe, ‘‘The Design of POSTGRES’’,
Proc. 1986 ACM-SIGMOD Conf. on Management of Data, Washington,
DC, June 1986.

[STON87a] M. Stonebraker, E. Hanson and S. Potamianos, ‘‘A Rule Manager for
Relational Database Systems’’, UCB/ERL Tech. Rep. M86/85, Univ. of
California, Berkeley, CA, June 1987.

[STON87b] M. Stonebraker, E. Hanson and C. Hong, ‘‘The Design of the
POSTGRES Rules System’’, Proc. 3rd IEEE Data Engineering Conf.,
Los Angeles, CA, Feb. 1987.

[STON88] M. Stonebraker, R. Katz, D. Patterson and J. Ousterhout, ‘‘The Design of
XPRS’’, Proc. 14th VLDB Conf., Los Angeles, CA, Aug. 1988.

[STON89] M. Stonebraker, P. M. Aoki and M. Seltzer, ‘‘Parallelism in XPRS’’,
UCB/ERL Tech. Rep. M89/16, Univ. of California, Berkeley, CA, Feb.
1989.

[TSUK86] A. Tsukerman et al., ‘‘FastSort: An External Sort Using Parallel
Processing’’, Tandem Tech. Rep. TR86.3, Tandem Computers,
Cupertino, CA, 1986.

34

[WENS88] S. Wensel, editor. ‘‘The POSTGRES Reference Manual’’, UCB/ERL
Tech. Rep. M88/20, Univ. of California, Berkeley, CA, Mar. 1988.

[WONG76] E. Wong and K. Youssefi, ‘‘Decomposition: A Strategy for Query
Processing’’, Trans. Database Systems 1, 3 (Sep. 1976).

