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Abstract

1/0 numbers. This paper presents an analysis framework for AMs
that defines performance metrics which are more meaningful than
bottom-line numbers and thereby allow the AM designer to de-
tect and isolate deficiencies in an AM design. The analysis pro-
cess takes a workload—a tree and a set of queries—as input and
provides metrics that characterize the performance of each query
as well as that of the tree structure and the structure-shaping as-
pects of the AM implementation. Central to the framework is the
use of the optimal behavior—which can be approximated relatively
efficiently—as a point of reference against which the actual ob-
served performance is measured. The performance metrics them-
selves reflect the fundamental performance-relevant properties of
the input tree. The framework applies to most balanced tree-structured
AMs and is not restricted to particular types of of data or queries.
It is implemented irmmdb, a comprehensive graphical design tool
for AMs that are constructed on top of the Generalized Search Tree
abstraction. Amdb complements the analysis framework with vi-
sualization and debugging functionality, allowing the AM designer
to investigate the source of those deficiencies that were brought to
light with the help of the analysis framework.

1 Introduction

Despite the large and growing number of access methods (AMs)
that have been produced by the research community—and also de-
spite their increasing importance, considering the explosion of data
users find worth querying—the design and tuning of AMs has al-
ways been more of a black art than a rigorous discipline. Tradi-
tionally, performance analyses are presented in terms of aggregate
runtime or page access numbers. The drawback is that these num-
bers do not allow the contributions of individual design ideas to be
quantified. As aresult, itis hard to explain performance differences
between competing AM designs, if those deviate in more than one
design aspect. Also, aggregate runtime or access numbers do not
allow AMs to be assessed on their own, because competing AM
designs are needed to put the numbers into perspective.

Mehul Shah
U. C. Berkeley
mashah@cs.berkeley.edu

Joseph M. Hellerstein
U. C. Berkeley
jmh@cs.berkeley.edu

In this paper we present an analysis framework for tree-struc-

tured, height-balanced AMs that provides more meaningful perfor-
Designing and tuning access methods (AMs) has always been moremance metrics than just aggregate numbers and can be applied to
of a black art than a rigorous discipline, with performance assess- any workload, regardless of the type of data or nature of the queries
ments being mostly reduced to presenting bottom-line runtime or involved. Its salient features are:

The workload—a tree and a set of queries—is an input pa-
rameter of the analysis and the metrics characterize the per-
formance of an AM specifically in the context of that work-
load. This allows the framework to be used to tune an AM
for a specific workload and to compare workloads by running
them against the same AM.

The performance metrics directly characterize the observed
performance of the workload execution, namely the page ac-
cesses. They are not stated in terms of data or query seman-
tics, and thus reflect performance objectively. On the other
hand, metrics that express performance in terms of semantic
properties require the designer to understand their correlation
with page accesses. Since such an understandingdalaf

the analysis process, any apriori assumptions are often incor-
rect and misleading.

Central to the analysis is the comparison of observed per-
formance with optimal performance, i.e., performance that
would have been obtained with a tree that is optimal for the
input workload. The performance metrics are derived from
this comparison and express performance loss. With such a
point of reference, the observed performance can be put into
perspective without having to compare with a competing AM
design. Moreover, this particular point of reference shows
the potential for performance improvement, which cannot
necessarily be discovered by comparing two alternative AM
designs.

The framework defines performance loss metrics for each
query of the workload, for the nodes of the input tree and
for the structure-shaping aspects of the AM implementation.
Furthermore, those metrics are broken down to reflect the
fundamental performance-relevant properties of tree-struc-
tured AMs. Such a breakdown is more useful than aggregate
numbers, because it facilitates assessing the performance ef-
fects of AM design aspects individually.

The analysis framework is implemented amdb, a compre-

hensive visual design tool for AMs built on top of the Generalized
Search Tree (GiST) abstraction ([HNP95]). Its features include:

interactive execution of search, insert and delete operations; sup-
port for breakpoints and single-stepping through operations; visu-
alization of the tree structure and node contents (the latter being



user-extensible); execution of query workloads, gathering of trac- an area of interest by clicking on it. Subsequently, a path from the
ing information and visual presentation of performance metrics and root node to a node in the neighborhood of the specified point will
tracing information. In order to compute performance loss metrics, be shown in the tree view, a lower-level view which shows more
amdb approximates part of the workload-optimal tree, namely the detail.

optimally clustered leaf level. This is achieved by modelling the in- The tree view shows the structure of the search tree (Fig 1: 3).
put workload as a hypergraph and approximating the optimal clus- It offers an intuitive point-and-click interface for browsing the tree
tering via a heuristic hypergraph partitioning algorithm. while improving on conventional tree navigation interfaces which

The rest of the paper is structured as follows. Section 2 gives become cumbersome for high fanout trees. In this view, the tree’s
an overview ofamdb and describes the integration of the analysis nodes are represented by boxes and labeled with a unique number
framework into a graphical development environment. Section 3 for reference. Each node is enclosed in a scrollable and stretchable
briefly introduces GiST. Section 4 contains a discussion of the anal- container which displays its direct siblings. This container (Fig 1:
ysis framework, along with illustrative examples, among them a 4) allows users to focus on nodes of interest while bounding the
test for unindexability. Section 5 discusses related work and Sec- amount of detail displayed. Any node can be expanded or con-

tion 6 contains the conclusion and an outline of future work. tracted by clicking on it. When a node is expanded, the container
holding its children is displayed below it with a line linking the
2 Amdh A Design Tool for Access Methods two; when contracted, the entire subtree below the node is removed.

Like the global view, the tree view represents a user-selected tree
statistic or performance metric by coloring the nodes. With these
features, a user can simultaneously focus on several paths and sub-
trees of interest without being overwhelmed by the width of the
search tree.

The goal of the development amdb' was to provide the AM de-
signer with a comprehensive tool that would cover the entire design
process, ranging from debugging the initial implementation to fine-
tuning of an AM for a specific workload. At the core amdbis - . .
the analysis framework that is the topic of this paper; itis integrated ___After drilling down from the global view and tree view, the user
with a collection of modules in an interactive, easy-to-use graphi- Can investigate the contents of specific nodes uaimgb's node

cal environment. Those modules are: a visualization component VieW (Fig 1: 5). Since tree nodes contain arbitrary user-defined
for the tree structure and its contents (the latter user-extensible); K€yS: the access method designer must provide a module which
a facility for interactive execution of tree searches and updates asdiSPlays the node given its contents. Currerdlydb contains a
well as breakpoints and single-stepping through those commands Suite of modules which visualize two-dimensional projections of
similar to functionality found in programming language debuggers; spatial data. One convenient feature of the node view is that it high-
browsers for viewing performance numbers derived from the anal- lI9hts the current path in the tree view. The node view also allows
ysis framework. the user to simulate a spliand visualize the results by separating

Amdbsupports access methods developed using the public do_the ite_ms_with contrasti.ng colors. In additi_on_ to user-defined data
main libgist package which implements the GiST abstraction. v!suallzatlonamqbprowd_es a textual description of the keys, their
Amdbandlibgist  are written in Java and C++ and are portable SiZ€S, and associated pointers.
across many versions of UNIX as well as Microsoft Windows NT.

The packages can be downloaded fitoitp://gist.cs.ber- 2.2 Debugging Functionality
keley.edu/ . - .
'this section describes the visualization and debugging features.The behavior of an AM can be difficult to understand without be-

and gives an overview of how the analysis framework is presented "9 @ble to observe its mechanics. Previously, only standard pro-
to the user. gramming language debugging tools were available for examining

libgist AMs. Because these tools are designed for analyzing
L L low level actions, such as a single line of source code, they are
2.1 Visualization Functionality too cumbersome for gaining an understanding of how search and

Understanding flaws in an AM design requires inspecting the cor- UPdate operations behave and interact with the tree.

responding tree; thusmdb provides interactive graphical views Amdballows a designer to single-step through tree search and

of the entire tree, paths and subtrees within the tree, and content/Pdate commands. Those commands generate events for various

of nodes within the tree. These are the global view, tree view, and N0de-oriented actions, such as node split, node travetsalyhich

node view, respectively (Fig 1). These views not only help visualize PE'MIts users to step from event to event. Since manual stepping

the tree structure and its contents, but also help visualize profiling €@n become tedious, it also supports breakpoints. Breakpoints can

data and performance metrics by associating them with nodes inP€ defined on generic events, e.g., node update, or can be tied

the tree (discussed in detail in Section 2.3). Finally, they provide [0 @ Specific tree node, e.g., update of node 227. When a break-

navigation features, which enables designers to drill down to the POINt eventis encountered, execution is suspended, and the user has

source of a deficiency. an option to smg_lg-step through events or continue until the next
The highest-level, global view provides a manageable aggre- breakpoint. Additionallyamdb allows batch execution of com-

gate view of the entire index (Fig 1: 1). This representation factors Mands via scripts so users can conveniently restore state.

out much of the tree structure by mapping it onto a triangle with

an adjustable baseline and height. The purpose of this view is t02.3 Overview of the Analysis Process

project a user-selected tree statistic or performance metric onto this

abstract display and depict the variation of the statistics across the - .
total tree. The user can choose both a color map (or palette, Fig 1:metrics for each query of the_ owrklc_)ad, n_ode of the_lnput tree and
‘ for the structure-relevant split and insertion strategies of the AM

2) and a statistic; the global view assigns colors to the statistical : . . AN
values and renders the nodes accordingly. Nodes are visually COn_deslgn. These metrics point out deficiencies in the AM and tell the

catenated and m'erged if _necessary V‘_/ith other nodes 0'_" the s?me 2The GIST abstraction, described in more detail in Section 3, factors out structural
level. Thus, the pixel density of nodes increases geometrically with and algorithmic aspects that are common to most balanced tree-structured AM.

the level. The user can also perform an approximate drill-down into 3This is achieved by calling theickSplit()extension function, which will be intro-
duced in Section 3.

The analysis framework described in Section 4 defines performance

1 An initial implementation is briefly described in [KSH98].
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Figure 1: Amdb User Interface

designer which parts of the input tree or which of the queries to fo- 3 Generalized Search Trees
cus on. The visualization and debugging features complement the
performance metrics by giving the designer the means to investi- A GiST is a balanced tree which provides “template” algorithms
gate and understand the source of the deficiencies. for navigating the tree structure and modifying the tree structure
The per-query metrics show the performance loss for each querythrough node splits and deletes. Like all other (secondary) in-
and pinpoint badly performing queries. These metrics are comple- dex trees, the GiST storgkey, RID)pairs in the leaves; the RIDs
mented with tracing data gathered during query execution, includ- (record identifiers) point to the corresponding records on the data
ing traversal paths, CPU execution time, the amount and specific pages. Internal nodes contdjredicate, child page pointegairs;
location of data retrievedtc. This tracing data gives the developer the predicate evaluates to true for any of the keys contained in or
a very detailed view of the behavior of each query and is instru- reachable from the associated child page. This captures the essence
mental in understanding poorly performing queries. of a tree-based index structure: a hierarchy of predicates, in which
Per-node metrics show which nodes in the tree contribute to each predicate holds true for all keys stored under it in the hierar-
performance loss; they are computed for each query and for thechy. A Bt-tree ([Com79]) is a well known example with those
aggregate workload. The performance numbers are visualized viaproperties: the entries in internal nodes represent ranges which
coloring of nodes in the global and tree view, so that ill-behaved bound values of keys in the leaves of the respective subtrees. An-
parts of the tree can be identified easily. The navigation and data vi- other example is the R-tree ([Gut84]), which contains bounding
sualization features of these views let the developer examine thoserectangles as predicates in the internal nodes. The predicates in the
parts of the tree structure and the data contained therein. Asideinternal nodes of a search tree will subsequently be referred to as
from performance numbers, these views also visualize per-query subtree predicates (SPs).
tracing data; for example, traversal paths and per-node CPU execu-  Apart from these structural requirements, a GiST does not im-
tion times can be visualized very effectively through node coloring. pose any restrictions on the key data stored within the tree or their
AM implementation metrics show how workload performance organization within and across nodes. In particular, the key space
is affected by splits and insertions. This gives the developer direct need not be ordered, thereby allowing multidimensional data. More-
feedback about the quality of the AM design and points out cases over, the nodes of a single level need not partition or even cover the
where the design fails. The actual splits and insertion paths that entire key space, meaning that (a) overlapping SPs of entries at the
deteriorate workload performance can be visualized with the node same tree level are allowed and (b) the union of all SPs can have
and tree view, respectively. “holes” when compared to the entire key space. The leaves, how-
Performing an analysis of an existing tree requires very lit- ever, partition the set of stored RIDs, so that exactly one leaf entry
tle user interaction. Essentially, the developer only needs to pre- points to a given data recofd.
pare a script containing the queries of the workload (and a file A GIST supports the standard index operationsASCH, which
with keys for the insertion strategy analysigmdbexecutes this takes a predicate and returns all leaf entries satisfying that predi-
script against the input tree, collects the required tracing data, andcate; NSERT, which adds gkey, RID)pair to the tree; and BLETE,
computes the performance numbers, which are then shown in di- which removes such a pair from the tree. It implements these op-
alog boxes for easy browsing. The tracing data and performanceerations with the help of a set of extension methods supplied by
numbers are stored in a file to avoid recomputation for subsequentthe access method developer. The GiST can be specialized to one
amdb sessions. of a number of particular access methods by providing a set of ex-
tension methods specific to that access method. These extension

4This structural requirement excluded Rrees ([SRF87]) from conforming to the
GIiST structure.



methods encapsulate the exact behavior of the search operation as
well as the organization of keys within the tree.

We now provide a sketch of the implementation of the opera-
tions and how they use the extension methods. For a more detailed,
description, together with examples of B-tree and R-tree extension
methods, see the original paper ((HNP95]).

to visit more than the minimum number of pages determined
by the clustering and page utilization.

Analysis Framework

The goal of the analysis framework is to explain the observed per-
formance of an AM running a user-supplied workload. The single
ultimate performance number is the total execution time of the en-
tire workload. This total depends on the number and nature of page
accesses, the buffering policy and the CPU time spent examining
pages. We will for now concentrate on explaining observed page
INSERT Given a new(key, RID)pair, we must find a leaf to insert ~ accesses and ignore the other components of the performance equa-
it on. Note that because GiSTs allow overlapping SPs, there tion. Section 4.5 addresses these issues.
may be more than one leaf where the key could be inserted. Instead of simply measuring the number of page accesses, a
A user-supplied extension methpénalty()compares a key ~ more meaningful performance metric is the difference between the
and predicate and computes a domain-specific penalty for in- number of page accesses in the actual tree and the optimal tree; we
serting the key within the subtree whose bounds are given by call this difference the thperformance loss The optimal tree is
the predicate. Using this extension method, we traverse a sin- defined as minimizing the total number of page accesses over the
gle path from root to leaf, following branches with the lowest entire workload. Having knowledge of the execution profile of the

SEARCH In order to find all leaf entries satisfying the search predi-
cate, we recursively desceall subtrees for which the parent
entry’s predicate is consistent with the search predicate (em-
ploying the user-supplied extension mettommsistent()

insertion penalty.

If the leaf overflows and must be split, a extension metho
pickSplit() is invoked to determine how to distribute the keys
between two leaves. If, as a result, the parent also overflows,

the splitting is carried out bottom-up.

workload, in particular the result sets of the queries, allows us to

d approximate the optimal tree relatively accurately.

The analysis framework defines performance metrics that are
based on the performance loss and fall into three groups:

Query Metrics A query will experience a performance loss if the

If the leaf's ancestors’ predicates do not include the new key,
they must be expanded, so that the path from the root to the
leaf reflects the new key. The expansion is done with a ex-

actual tree has inferior clustering, page utilization, or SPs
relative to the optimal tree. In order to understand the nature
of the loss, we break down the total loss to reflect each of

these shortcomings. The breakdown reveals how much of
a query’s performance loss is due to suboptimal clustering,
page utilization and SPs.

tension methodinion(), which takes two predicates, one of

which is the new key, and returns their union. Like node
splitting, expansion of predicates in parent entries is carried
out bottom-up until we find an ancestor node whose predi-

cate does not require expansion. Node Metrics Similar to the query metrics, the framework defines

node metrics that express an individual node’s contribution to
aggregate workload performance loss, broken down to reflect
the losses cause by the node’s clustering, utilization and SP.
Such metrics are valuable because they help the AM designer
identify anomalies in the tree structure.

DELETE In order to find the leaf containing the key we want to
delete, we again traverse multiple subtrees asEARCH
Once the leafis located and the key is found on it, we remove
the (key, RID)pair and, if possible, shrink the ancestors’ SPs.

Although the GiST abstraction prescribes algorithm for search- Implementation Metrics The extension methodsickSplit() and
ing and inserting, the AM designer still has full control over the penalty()directly control the tree structure and their perfor-
performance-relevant structural characteristics of the AM. These mance metrics should express to what extent they are respon-
structural characteristics are: sible for the structural deterioration that causes performance
loss. Unlike query and node metrics, the implementation
metrics cannot be derived from the tracing information gath-
ered during workload execution. Instead, we execute addi-
tional splits and insertions and observe how workload per-
formance changes. Like query and node metrics, the imple-
mentation metrics reflect a comparison to an optimum, in this
case the optimal split and insertion.

Clustering The clustering of the indexed data at the leaf level and
of the SPs at the internal levels determines the amount of
extra data that a query needs to access in order to retrieve its
result set. An AM design controls the clustering through the
pickSplit()andpenalty()extension methods.

Page Utilization The page utilization determines the number of

pages that the indexed data and the SPs occupy and there-  The following subsection discusses the optimal tree and how

fore also influences the number of pages that a query needstg construct it. Section 4.2 derives the query performance metrics,

to visit. Similar to the clustering, the page utilization is con- fjrst for the leaf level, then for internal levels, and presents exam-
trolled by thepickSplit()andpenalty()extension methods. ples of analyses conducted with these metrics. Section 4.3 derives
Subtree PredicatesWhile the size and shape of the indexed data "€ metrics based on the query metrics. Section 4.4 discusses the
optimal split and insertion and derives metrics for iekSplit()

is part of the input (if the data can be compressed, this should ; ) ;
be done in any case), the size and shape of the SPs are paramz_a_ndpenalty()extensmn methods; an example illustrates these met-

eters of the design and considerably influence performance. rics and completes one of the analyses begun in Section 4.2.

A SP’s task is to describe, or cover, that part of the data space f Thle p:jeseptaﬂon_o;‘ the metrlcsl |n.th|s ?el(t:ttlr?'n IS pligp_osely in-
which is present at theaflevel of its associated subtree (i.e., ormal and relies mainly on examples,; we Ielt this would Improve

; ] dability. The input variables and metrics are defined and sum-
the perfect SP would simply enumerate all the data items read X . . :
contained in the leaves of its subtree; of course, this is prob- ma_rlzed in Table 1 and_ _Table 2, respectlv'élyarlables with sub-
lematic with regard to the size of the SPs). We speak of SP scriptq are query-specific and variables with subscpipire page-

excess coveragéthe SP covers more of the data space than specific.
is needed in orde_r to represent the data _Coma'ned in the Sl_Jb' 5We leave out the definition of the split and penalty metrics, because these are
tree. If a SP exhibits excess coverage, it may cause queriescumbersome and can be derived from the descriptions in Section 4.4.




~NNO

C [bytes]
R, [bytes]

up [%]
uq [%]

Qp
Qp

T'q

R, 4 [bytes]
Q3. [bytes]

Q3 [bytes]

Table 1: Input Variables (Profiling Data, Tree Statistics and Derived

Variables)

clustering loss
leaf-level excess coverage loss
leaf-level utilization loss

CL? = uq/ut|L;’| — |Lg|
EL) = |L,| - |L|
UL, = |L¢I|(1 - uq/ut)

0 if p eI
internal-level excess coverage lossonppge EL,, =< 1 ifpe Ié
up/us  Otherwise

internal-level excess coverage loss

internal-level utilization loss on page

internal-level utilization loss

BLy =Y i BLb

1-EL,, ifpel,\I,
1—up/us otherwise

ULtlz = Epgq UL;J,q

. . .
remainder of internal-level accesses I, = Epel,’, Up /Ut

clustering loss

leaf-level excess coverage loss
leaf-level utilization loss

internal-level excess coverage loss
internal-level utilization loss

remainder of internal-level accesses

CL, = quQ;, (up = Q7,4/C)/ue
BLL = 1Q,\ @)

UL, = quQp 1—up/ue

EL, =|{qlpe I;}|

UL, = Z{QEQ;,\MEI},} 1—up/ue

Q= E{qup\pel,’,} Up /Uy

Table 2: Performance Metrics

set of querieg in workload

set of leaf nodes in tree

set of internal nodes in tree

page capacity

size of result set

set of accessed pages in optimal clustering
set of accessed leaves in actual tree

set of relevant leaves in actual tree (leaves that
contain items of’s result set)

utilization

average utilization seen by querywy, =

> per: un/IL]

set of accessed internal nodes in tree

set of accessed internal nodes on paths;to
internal “leaves” of traversal paths[é =
{P|P € Iy \ I; A = (child(p) € I, U Lq)}

set of queries that accegs

set of queries for whicl is relevant leaf

optimal ratio of accessed to retrieved data,
rq =|Lg| *C % ut/Ry

size of fraction ofy’s result set found op
optimal amount of accessed dafg, , = r, *
Rpq

optimal amount of accessed data aggregated

over workloadQj =3 o g * Rpq
P

4.1 Construction of the Optimal Tree

The optimal tree is defined by the following characteristics:

no excess coveragewhich eliminates page accesses due to overly

general SPs;

target page utilization, which would ideally be 100%, but this is

unattainable in practice. For that reason, the AM designer

target page utilization does not affect the significance of the
performance metrics.

optimal clustering, which minimizes the total number of “rele-
vant” page accesses (at the leaf level, those are accesses to
pages containing items of the result set of a query, see Ta-
ble 1) for the entire workload.

A tree with these properties will execute the investigated work-
load with the minimal number of page accesses. This tree is only
a theoretical construct, since it is generally impossible to create
reasonably-sized SPs with no excess coverage. Nevertheless, it is
possible to approximate this tree well enough to be able to infer the
page access pattern of the workload queries.

To construct the optimal leaf level, we partition the indexed data
items so that the total number of leaf accesses is minimized over the
workload® and the partition size is equal to the target page capacity.
This task can be converted into a hypergraph partitioning problem
by modelling the workload as a hypergraph (each indexed data item
is a node with a weight that is equal to its size in bytes; each query,
identified by its result set, is a hyperedge). Hypergraph partition-
ing is provably NP-hard ([GJ79]), but existing approximation algo-
rithms work reasonably well in practice (Section 4.6 discusses the
implementation, in particular the hypergraph partitioning, in more
detail).

To construct the optimal internal levels, we need to create reasonably-

sized SPs with no excess coverage, which is generally not possible.
Nevertheless, it is still possible to report utilization and excess cov-
erage loss metrics for those.

Figure 2 serves as a running example throughout the rest of this
section. It shows the traversal tree of a query (its traversal paths
in the index, which form a subtree of the index) that retrieves five
data items, for which it needs to access four leaves in the actual
tree and two leaves in the optimal tree. The page capacity is four
items (to keep the example simple, data items and SPs are assumed
to have the same size) and the target utilization is 75%. Occupied
slots are shaded, and the pages in the actual tree are enumerated for
reference.

5 Note that clustering to minimize the number of leaf accesses oventirework-

can specify a desired target page utilization, which serves as load will generally not minimize the number of leaf accesses for each doimidu-
a point of comparison for nodes within the tree structure. The ally. The minimum number of leaf accesses for a single query is the size of its result

value we often used in practice was the average workload
page utilization. We will see that the absolute level of the

set divided by the page size. This usually cannot be achieved for the entire workload,
because the individual queries’ clustering requirements are contradictory.
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Figure 2: Traversal Paths and Optimal Clustering for Example Query
4.2 Query Performance Metrics tightly packed leaves. The difference between that and the two leaf

. accesses in the optimal tree2i3, the clustering loss.
The per-query performance metrics express performance loss due

to suboptimal clustering, page utilization and SPs in the index. At . . .

the leaf level, these numbers are derived by comparing the page To summarize the Ieaf-leve_l metrlp_s establlshed for the example
access pattern in the actual tree with the corresponding pattern induery: excess coverage loss is 1, utilization loss/Bsand cluster-

the optimal tree. At the internal level, the corresponding optimal iNg10ss2/3. The sum is 2 accesses, which is the total performance
structure is not available for comparison, but we can still derive a 0SS that the example query experiences at the leaf level.

reduced set of the metrics, namely excess coverage and utilization

loss. The next two subsections in turn describe how the loss metrics4.2.2  Internal-Level Performance

are derived for the leaf level and the internal levels. . . . .
Although it is not possible to construct the optimal internal levels

. for the workload in a manner similar to the leaf level, the charac-
4.2.1 Leaf-Level Performance Metrics teristics of the accessed internal nodes in the actual tree still allow
For each query, the performance loss at the leaf level—actual minusUS t0 derive two of the three metrics, namely excess coverage loss
optimal leaf accesses—is divided up into utilization, excess cover- and utilization loss. The remaining internal-node accesses cannot
age and clustering loss. More formally: be subdivided any further. More formally:

\L,| = |Lo| + EL} + UL, + CL,. (ol = I; + ELy + UL,

In the example, the query experiences a performance loss of Excess coverage loss Similar to the leaf-level metric, accesses
two leaf accesses when compared against the optimal tree. Weto internal nodes without any matching entries are counted as ex-
show how to compute the losses for this example. cess coverage loss. In addition, we also count internal pages that

do not lead to any leaves containing retrieved data; these internal
Excess coverage loss When accessing a leaf during query exe- Pages are accessed due to excess coverage of SPs in the subtree. In
cution that does not contain any items of the result set, the leaf ac-th€ example, page 6 does not carry any matching SPs and its access
cess is due to excess coverage in the leaf's SP. Even if those page!$ fully counted as excess coverage loss. Page 4 has a matching SP,
are underutilized do they not count toward utilization loss, because Put it only matches because of excess coverage in page 0's SP, so
packing them more densely would not lower the total number of We count its utlllzat!on2/3 of the target utlll;atlo_n, as excess cov-
leaf accesses (unless retrieved data were added, but then the a&'age. The remaining/3 are counted as utilization loss, because,
cesss would not count as excess coverage to begin with). For theunlike the Iea_ves of thg traversal tree, the propgrty pf relevance of
same reason, the access cannot count as clustering loss, because tHi¢Se nodes is not their SP but the SPs of their children, the
feature of that node relevant to the query is its SP, not its page uti- data contained in this node.
lization or clustering. In the example in Figure 2, leaf 0 is accessed
but contains no matching items, and therefore the access counts adltilization loss Similar to the corresponding leaf-level metric,
excess coverage loss. the sum of the deviations from the target utilization is the utiliza-
tion loss, excluding from consideration leaf nodes of the traversal
Utilization loss Deviation from the target utilization in the re- path of the query. In the example, only page 4 causes the query
maining leaves is summed up as utilization loss. In the example, {0 €xperience utilization loss at the internal levels in the amount of
leaf 2 has a utilization of 50%, which 73 of the target utilization
of 75%, resulting in aloss df—0.5/0.75 = 1/3. The idea behind
this accounting is that if the pages had been packed more densely, To summarize the preceding observations: offfpage accesses
part of the accesses could have been avoided. Note that a pageo internal nodes}/3 are caused by excess coverage &gl by
utilization in excess of the target utilization counts as a negative underutilization. The remaining 2 accesses to n@dmsd7 cannot
performance loss, i.e., a performance gain. be subdivided any further.

Clustering loss Clustering loss is the difference between the 4.3 Node Performance Metrics
conceptually “tightly packed” leaves in the index and the corre- .

sponding leaves in the optimal tree. The accessed leaves in thel N€ Per-node loss numbers are derived from the per-query loss
index become “tightly packed” by subtracting the utilization loss. NUmPers and show which parts of the tree contribute to perfor-

In the example, the result set is spread over three leavesy|3or mance deterioration. More specifically, these metrics show how
' ! a node’s utilization and clustering properties as well as its SP affect



workload performance. Generally, we sum up the per-query loss query established in Section 4.2.1. The total per-node clustering
metrics across the nodes to arrive at per-node metrics. Similar toloss is simply the sum of the per-node losses over the queries.
per-query metrics, we subdivide the accumulated performance loss

of a leaf page into excess coverage, utilization and clustering loss. 4 3 1 Example 1: Comparison of R- and R*-Trees

More formally:
This example illustrates how to make an initial performance assess-
|Q»| = Q5 + EL; + UL; +CL,,p€ L. ment with the help of the per-query and per-node metrics. We com-
pare R- and R-trees for range queries over 8-dimensional point
At the internal levels, we can only identify excess coverage and data; we purposely chose to compare two well-known data struc-
utilization loss; the remaining accesses cannot be subdivided anytures, because knowing how they work will make the results of the

further. More formally: analysis easier to follow.
. . The data set used in the experiment consists of 40000 8-dimen-
|Qol = Q)+ EL, +UL,,p€e . sional points, with each dimension limited to the interfféal100),
) ) ) . arranged into clusters of 100 points each. The clusters are box-
Figure 2 will again be used as our running example. shaped and have a diameter of 10; the center points of the clusters

are distributed randomly. The trees were produced by bulk-loading
Excess coverage loss A node’s excess coverage loss is simply 20000 randomly selected data items and individually inserting the
the number of times the node was accessed but no matching dataemaining 20000. This ensures that the split and insertion strategies
was found. This does not take into account accesses to internalare reflected in the resulting trees. Bulk-loading was done using the
nodes that are caused solely by excess coverage in the children’s SF’STR technique ([LLE97]), which partitions the data points into iso-
which are also classified as excess coverage loss. In this particulaoriented tiles. We ran 20000 square range queries over the trees,
case itis the shared responsibility of the children, and it needs to beeach with a side length of 12. The center points of the queries
apportioned to them in some way. Itis not clear how that should be were randomly selected items from the data set, so that every query
done, so this type of excess coverage loss is presently not accountedntersected with a cluster. On average, each query retrieved 20.6
for in the node metricS. items.

In the example, we have pages 0 and 6 with excess coverage The aggregate results of this analysis are summarized in Ta-
loss of 1 each. The excess coverage loss of page 0 should alsdle 3. We only report leaf-level performance numbers, since for
include the data accessed in page 4, but apportitioning this excesghis type of workload, R- and Rtrees are relatively short and the
coverage loss to the children is not generally possible, as explainedupper levels can be buffered. Section 4.5 talks more about how to

in the preceding paragraph. account for buffering.

Utilization loss A node’s utilization loss is the product of its R*-tree R-tree

traversal count (minus those accesses caused by excess coverage) ~actual tree, total 72,044 97,414

and its deviation from target utilization. In the example, pages 2 optimal clustering 23,262 23,224

and 4 both have a utilization of 50%, a deviationlg from the utilization loss 4,650 3,906

75% target utilizatiori. If each of these were traversed 100 times excess coverage loss 16,895 30,171

across the entire workload, each one would contriBatgaccesses clustering loss 27,237 40,113
sum 72,044 97,414

to the entire workload performance.

Clustering loss Each query’s clustering loss needs to be dis- Table 3: Comparison of leaf-level performance in R- arietiees

tributed according to how much each accessed, non-empty leaf
contributes to total clustering loss. We use as the guiding princi- C . o .
ple the quality of the clusteri%g in a nodier the particglar ql?err)y trees, which is what is expected, but that there’s is still room for
in question.The quality of clustering can be expressed as the ratio improvement. I T
of accessed to retrieved data, and the optimal clustering establishe LovLutlllzatlon losses indicate that uno!)erutlllzatlon Is not a prob-
a benchmark ratio against which the accessed leaves in the actuajg?d J;mi ;f}ggnest eltjrtle“izla(t)lgen t‘giﬁ;ﬁ&%gg{??ﬁgéy g}’%‘;ﬁ%g"ork'
tree will be measured.In the example, the query accesses 2 leaves and 75.75% for the R-tree) 070
in the optimal tree to retrieve 5 data items, which fillif8 pages, 1970 . ’ . . _—
resulting in a benchmark ratio af2. At leaf 3, the example query Comparlng clusterl_ng_losses Wlt_h th_ose in the initial bqu-I_oaded
accesses 1 page worth of data in order to re'trldmd of the page tree confirms that the initial clustering is deteriorated by splits and
page L page, insertions, although only to a moderate extent in the case*of R
although according to the benchmark ratio it should only have ac- Thi f he ol . .
cessed /3 x 1.2 = 40% of a page. The difference of 60% is the trees. This can be deduced from the clustesgrhead which
clustering loss that the node contributes to this query. The corre- Is the ratio of optimal accesses plus clustering loss to optimal ac-

sponding numbers for pages 1 and 2 afe2 and4/15. The sum gels;esa rorﬂ:he?rﬁz, ﬂzlf r%“% 15(23%6521&122722;2){;233811;_
across these leaves2g3, which is the total clustering loss for the 1' and forthe initial bulk-loaded tree | ( L2+ )/- .
.86. A possible reason for the relatively high clustering loss in
7In the experiments conducted so far, those accesses played an insignficant role inthe bulk-loaded tree is that by creating equi-distant partitions along
comparison to the workload total. Note that the teph also includes excess coverage  each dimension, the STR algorithm cuts through clusters that ex-
loss created by child nodes that cannot be apportioned to the child nodes themselves. ist in the data; since the queries are centered on the data points,
_|_8C$nversr_sly,sif_ the tatl_rlgett_utilizatito_n is 45(;’:; t_hc:_se fpages woul? h?vehrecqrded a preaking up clusters will also cause more page accesses.
utilization gain. Since utilization metrics recodeviationfrom a constant, changin ; ; : ;
this constagnt does not affect performance difference between any two nodes.gI ’ Usmgamdb, we can see that .m both cases the CIUSte“ng !OSS IS
9More formally: the pages inL; cause aloss af’ L, that needs to be distributed not spread evenly f’:\C_I’OSS the gntlre leaf leve.l’ but m_OStl_y confi n_Ed to
according to how much each pagelir} contributes. GiverL¢, we define a bench- a few h_Ot spots (th'5_|5 shown in the glOba_l view, which is des_cnbed
mark overhead ratio, = |L9| * C = u; /R,. Given that ratio, we expectto access N Section 2; we omit a screen shot of this particular scenario here
rq * Rg,p On each page if clustering in the actual tree were as efficient as in the  for brevity). The difference is that for the R-tree, these hot spots

optimal tree. The difference, * C' — rq * Ry, is p’s contribution to queryy’s are more frequent and more stretched out.
clustering loss.

The performance numbers indicate thattRees outperform R-




Looking at per-node excess coverage loss, we can see that thist.3.3 Example 3: Unindexability Test

is roughly co-located with clustering loss. This seems to suggest
that the SP design works well for the clustering requirements of

the workload, because we do not experience excess coverage 10s

where clustering loss is low. Intuitively, this is what we expect for
minimum-bounding rectangles, because good clusters are rectan

As part of constructing the optimal leaf level, we can perform a
simple test that will tell us if a workload is not indexaBfeeven if

It were possible to construct an optimal tree for it. This test is not
limited to GiST-compliant AMs, but applies to all index structures

that store indexed data on fixed-size pages.

The test can be stated as followsin the optimal tree the ag-
gregate number of leaf access for the entire workload takes longer
than sequentially scanning the leaf level for each query, the work-
load should be considered unindexabkhe aggregate number of

This example illustrates how to evaluate and compare different Sp |€af accesses in the optimal tree is a lower bound on the total num-
designs independently of the remaining AM design aspects. We ber of page accesses for the entire workload, because minimally
compare three different SP designs for a popular type of workload, each query needs to access its result set. If this lower bound takes
nearest-neighbor queries on multidimensional point data. The threelOnger to execute than a sequential scan of the leaf level for each
types of SPs are: minimum bounding rectangles, as employed in 9Uery, no actually constructed tree can be expected to outperform
R*-trees ([BKSS90]); minimum bounding spheres, as employed in sequential scans. Since index accesses usually result in random
SS-trees ([WR96]); a combination of the two, which is used in SR- 2CCesses, a relatively small number of leaf accesses will take as

trees ([KS97]). The latter two AMs were specifically designed for long asa sequential scan of the entire level. T_he exact ratio of se-
the type of workload that underlies our comparison. guential to random accesses depends on the disk drives and the OS

The data set used in the experiment consists of 40000 8-dim overhead, and we will assume a ratio of 14:1 as a conversion ratio
points, with each dimension limited to the interval 100), ar- representative of current technoloy.Note that this test cannot
ranged into (uniformly distributed) clusters of 100 points each. The Pe€ réversed: failing this criterion does not necessarily mean that a
clusters are box-shaped and have a diameter of 10. The query seyvorkload is indexable, because it might not be possible in practice
consists of 20000 nearest-neighbor queries, each centered on a rari® ome close enough to the optimal clustering and SPs to achieve
domly selected (without replacement) data point and retrieving 20 Performance that will on average be better than a sequential scan.
items. In order to eliminate the effects of page utilization and clus- Also note that this test does not constitute a proof of unindexabil-

gular, which results in tightly-fitting MBRs.

4.3.2 Example 2: Comparison of SPs for Nearest-Neighbor
Searches on Multidimensional Points

tering, we built the R-, SS- and SR-trees by bulk-loading the leaf ity, sinqe in practice we can only approximate the optimal Igaf-level
clustering. Rather, the test should be seen as a strong hint, which

becomes particularly compelling if one is unable to improve on the
generated clustering by hand.

To illustrate the usefulness of the test, we look at two differ-
ent kinds of workloads: nearest-neighbor queries on both uniform
and clustered synthetic point data of moderate dimensionality (16
and 32). Such datasets are very popular for performance stud-
ies of access methods for high-dimensional data such as feature
vectors ([BBK98] is one example). The datasets we use for the

level, so that only their internal levels differ.

Leaves Internal Total
R* 15061 51486 66547
SR 15003 61699 76702
SS 134094 173350 307444

Table 4: Comparison of SPs of R SS- and SR-trees

The measured excess coverage losses for the entire workloa
are shown in Table 4. Essentially; Rand SR-tree SPs cause about
the same amount of excess coverage loss, whereas the spheres
the SS-tree have about 10 times as much excess coverage loss. T
reason is that the point sets in the leaves form clusters for which
the MBRs have an aspect ratio that significantly deviates from 1.
The corresponding spheres, which have a similar diameter as th
MBRs, suffer from a much higher volume. The higher excess cov-
erage loss of the SR-tree in comparison to there is due to the
increased storage requirements of their SPs, which decreases th

fanout of internal nodes. Reducing the fanout leads to an increase

in the number of nodes, which also increases the number of traver-
sals caused by excess coverage.

The bad performance of spherical SPs in this example may well
be an artifact of bulk-loading, which produces clusters that are of-
ten skinny along one or more dimensions. If the clusters would

have a spherical shape, the result of the comparison might even fa-
vor spherical SPs. Intuitively, though, spherical SPs are less robust

regarding the shape of the clusters, because, unlike rectangles, the
have the same extent in all dimensions.

This example illustrates the value of the excess coverage met-
ric and the importance of separating individual aspects of an AM

€

Ganalysis contain 10000 points each (experiments with 20000 and

40000 points give identical results for appropriately scaled result
&et sizes). When applying the unindexability test, the average result

hseet size of the workload queries is important: if the average result

set contains fewer items than the number of leaf pages divided by

the conversion ratio, unindexability cannot be established. For the

16-dimensional data set, with with a target page capacity of around

40 points and 250 leaves, the threshold result set size is 18 points, or
0.18% of the data set. There is also a corresponding upper bound
gor the result set size, beyond which unindexability is ensured: a

result set size in excess of the size of the data set divided by the
conversion ratio. For the preceding example, this upper threshold

is at around 7% of the data set.

Figure 3 plots the leaf accesses as a function of the result set
size for the example data sets. To establish unindexability, it is suf-
ficient for a workload to access more than 7% of the leaves. For the
uniform 16-dimensional workload, this threshold is reached when
result set sizes exceed abdu% of the data set size, a surpris-
ingly small number. For the uniform 32-dimensional workload, the

ituation is a little better, because doubling the number of dimen-
sions also doubles the storage size. Note, though, that the threshold
result set size does not double as well. In contrast to uniformly

design. Another performance study that compares sphere and rect- 10hs test assumes that total execution time of the workload under consideration is

angle SPs ([KS97]) comes to a conclusion contrary to ours, namely

dominated by page access cost.

that spheres result in smaller-diameter SPs, because three separate ' Using Seagate Barracuda ultra-wide SCSI-2 drives, [Rie98] measures a through-

elements of AM designs were evaluated together: by comparing
insertion-loaded SR- and*Rrees, the insertion and split strategies
also come into play and mask the performance effects of the SP
design.

put of ca. 9MB/s under Windows NT. The average seek time and rotational delay for
this drive are 7.1ms and 4.17ms, respectively. For 8KB transfers, this results in a ratio
of 14 sequential I/Os for each random 1/O. In the past years, raw drive throughput has
increased faster than seek times and rotational delay have decreased, so the conversion
ratio is likely to increase in the future.



distributed data sets, unindexability cannot be established for cor- and observe the changes in workload performance; the splits and
responding workloads involving clustered data sets, even for much insertions are not carried to avoid actually deteriorating the tree
larger result set sizes. during the evaluation process. Similar to the query and structural
metrics, the implementation metrics should reflect the performance
loss in comparison to the optimum, which we obtain by comparing
the effects of a split of a particular node or insertion of a particular
— 16-d, uniform data item with the effects of an optimal split or insertion. The fol-

op e 1 lowing two subsections in turn derive the split and penalty metrics.

32-d, clustered

441 Split Performance Metrics
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We evaluate a split of a particular leaf node by comparing the ac-
P tual split as produced by thgickSplit() extension method to the
- optimal split. The optimal split minimizes the total number of page

- accesses to the two post-split nodes by (a) producing perfect SPs
- with no excess coverage and (b) optimally partitioning the items

7 unindexability threshold on the leaf node so that non-empty accesses to the successor nodes
- are also minimized. Like the optimal tree, the optimal split is a
51 . ] theoretical construct, because partitioning the leaf items optimally
- will generally not result in SPs that completely eliminate excess
e coverage loss.

...... —mmm TS This definition of an optimal split actually ignores the effects of

0 : : : ; : ; page utilization or the balance of the page utilizations produced by

0 0.2 0.4 0.6 0.8 1 1.2 . .

Result Set Size (% of Data Set Size) the split. The balance of a split clearly has an effect on the perfor-

mance of a dynamic tree structure, since a perfectly balanced split

Figure 3: Unindexability Test: 16- and 32-dimensional uniformly is usually better at maintaining overall higher page utilization (in an

distributed and clustered data unbalanced split, the fuller node is more likely to be the next node
to be split again—assuming subsequent insertions are not biased

Unindexability of uniformly-distributed high-dimensional point  toward the less utilized node—which will result in an overall low-
data is confirmed by a recently published theoretical analysis of ered page utilization). On the negative side, a perfectly balanced
nearest-neighbor queries([SBGR99]), which notes that for this type split might have less desirable clustering properties. Unfortunately,
of data, increasing the dimension decreases the distance betweethe effects of the degree of balance of a split cannot be quantified,
the nearset and the farthest points. This implies that a given point at |east not in the workload context we consider. For that reason,
is more likely to be a “nearest neighbor” for any query point in we leave page utilization our of our split analysis and simply stipu-
higher dimensions than in lower dimensions. As a result, a given |ate that the optimal split should be at least as balanced as the actual
point can be co-retrieved with a larger variety of points, making it split. This way, both the utilization properties and the clustering of
more difficult to co-locate with all co-retrieved points. Note that the optimal split are at least as good as that of the actual split.
our unindexability test is able to reach the same conclusion without
knowledge of the data domain or the particular indexing problem.
It can therefore be used as an automated first step in the AM design
process.

Even if unindexability cannot be established, it is still instruc-
tive to look at the ratio of the number of workload leaf accesses
in the optimal clustering to the number of pages needed to store
the result sets. This ratio, which we will call the workload-optimal
access overhead, is a measure of the inter-query “tension” in the
workload: the higher this overhead, the more extra data must be
accessed, even if the index achieves optimal clustering and is able
to construct SPs without excess coverage. For example, the opti-
mal access overhead of B-tree workloads is never worse than 2, and ) o
that of 2-dimensional uniform point dataiss on average for 20-  Clustering loss The quality of clustering is expressed by the ra-
item result sets. On the other hand, that of 16-dimensional uniform tio of accessed to retrieved data: the higher the ratio, the more data
point data is12.2 and for 32 dimensions the corresponding ratio @ query needs to access in order to retrieve its result set and the

is 16.3. A correspondingly defined query-optimal access overhead Poorer the clustering from that query’s perspective. The amount of
can be used to find “atypical” queries in a workload, for which the data that is accessed but not retrieved expresses clustering-related

overhead deviates noticeably from the average. overhead, which the optimal split minimizes. The clustering loss
of a split therefore is the difference in overhead data—lIimited to
the left and right nodes of a split—between the actual and the op-
timal split. This is the same as the difference in the total amount
In addition to analysing existing tree structures, we also want to as- of accessed data, because the volume of retrieved data remains un-
sess the performance of the structure-shaping extension methodsghanged by the splits. Note that the total amount of accessed data
pickSplit()and penalty() Our goal is to measure how these func- on a node cannot go up after a split: even if each query in the
tions deteriorate the tree structure, expressed by the derioration ofworkload that visits the original node would have to visit both suc-
the workload performance caused by splits and insertions. This cessor nodes. We call the amount by which data access decreases
cannot be derived from the tracing information, because the work- clustering savings The ratio of actual clustering savings to opti-
load only contains queries, and the effects of structure changes canmal clustering savings serves as a “success’ metric of the split that
not be inferred indirectly. Instead, we simulate splits and insertions

Page Accesses (% of Leaf Level)
5
T
A\
\
I

Excess coverage loss Assuming that the optimal split elimi-
nates excess coverage, the excess coverage loss of the actual split is
the combined excess coverage in the left and right post-split nodes.
A split is also an opportunity to improve SPs: describing data that
previously resided on a single node with two SPs allows the de-
scription to be more specific. The success metric is the ratio of the
decrease in excess coverage loss to the pre-split excess coverage
loss, which constitutes the maximal improvement. Note that this
ratio can drop below, if the split produces SPs with more excess
coverage loss than the original SP.

4.4 Implementation Performance Metrics



expresses to what extent the split realizes the potential for improve- R*-tree R-tree

ment of clustering. Splits
g pre-split accesses 75.44

. post-split accesses 40.04 44.62
4.4.2 Penalty Performance Metrics pre-split exc. cov. loss 26.6
We compare a penalty-guided insertion of a particular data item post-split exc. cov. loss 208  33.0
with the corresponding optimal insertion. The optimal insertion is Insertions
defined as: (a) not adding to the excess coverage of the optimal clustering loss 128 188
target leaf and (b) choosing as the target the leaf which causes the excess coverage loss 8.74 8.8

smallest number of additional accesses in the workload. Note that ) )

the optimal target leaf does not correspond to the one that, if the Table 5: Performance numbers for R- antiiRee split and inser-

data item were inserted and the SP actually updated, would resulttion strategies

in the smallest number of total additional page accesses, including

those due to excess coverage. Rather, it represents the true theoret- ) ) L )

ical optimum, which optimizes each performance factor indepen- buffering, and comparison with approximations). We will now ad-

dently. dress these components individually and also comment on the use-
Performing a top-down, penalty-guided insertion has the disad- fulness of approximation numbers as the basis for our comparisons.

vantage of accumulating the effects of multiple penalty computa-

tions. This could be avoided by scanning directly the level above CPU Time Although CPU time can play an important role in

the leaves for the minimum penalty leaf. However, a top-down the overall performance of an AM, we excluded it from the analy-

traversal is more realistic and also reflects the quality of internal sis framework. Since CPU time is not amenable to the same type

SPs. of analysis as page accesses, it is unclear how to construct a model
In our analysis of the penalty function, we will again ignore the of optimal CPU time behavior. This is exacerbated by the fact that

effects on page utilization. In the GiST framework, the shape of the underlying GiST framework has no knowledge of the internals

the SP cannot take the page utilization into account—ttien() of the stored data and the associated extension functions. Another

method is not informed of it—so thagenalty() cannot direct an drawback of CPU time is that it depends on the quality of the im-

insertion based on the page utilization at the leaf level. For that plementation and the particular hardware platform on which the

reason, we assume change in the page utilization in response tanalysis is run. This implies that these metrics are less general than

insertions to be more or less random. page access-related metrics. Since CPU time can play an impor-

tant role in overall execution cost, we suggest that an AM designer

Excess coverage loss This is the number of additional excess Weigh it judiciously against the page access metrics of our frame-
coverage accesses to the actual target leaf after the insertion, aswork when deciding which aspects of the AM implementation need
suming that optimally no additional excess coverage would be pro- to be improved.
duced. When determining pre-insertion excess coverage, those queries
that intersect with the new key need to be ignored, because theyBuffering Buffering has been shown to reduce the number of
would falsely show up as a reduction in excess coverage. 1/Os for AM queries ([LL98]) and its presence—a standard feature
in all commericial DBMS—uwiill therefore change observed work-
Clustering loss The change in clustering quality in response to 10ad performance. We will outline several ways of taking buffering
an insertion is reflected by the change in overhead data that theiNto account in the context of our analysis framework. A popular
workload queries need to access. By definition, the optimal inser- buffering technique for tree-structured AMs is to pin the first few
tion minimizes additional overhead data access. The clustering losslevels of the tree ([LL98] mentions that in their experiments, this

is the difference in overhead data access between the actual and thEechnique never performed worse than LRU replacement). Modify-
optimal split. ing the analysis metrics to take this into account is straightforward:

the observed page accesses to those upper levels can simply be sub-
tracted. For other buffering techniques, we can estimate an average
hit rate and reduce the performance metrics uniformly by that rate.
Either way, buffering can be dealt with separately and need not be

This example continues the analysis begun in Section 4.3.1. Weintegrated into our framework. Note that in order to integrate a re-
compare the split and insertion strategies of R- arietr@es on a a_Iistic view of buffering into the framework, it is not sufflc_lent to
workload similar to that used in the previous example. For the im- Simulate a buffer pool/replacement strategy against a serial execu-
plementation analysis, we use the intial bulk-loaded tree containing tion of the queries. In real DBMSs, queries are typically executed
20000 data items, and a correspondingly scaled back set of onlyconcurrently and index access is most likely interleaved.
10000 queries. Using identical input trees for both the R-tree and
R*-tree analysis simplifies the comparison, because the metrics re-Comparison with Approximation Numbers The performance
flectchangesn workload performance due to splits and insertions. metrics use the optimal tree as a point of reference. Unfortunately,
Table 5 summarizes the split and insertion performance num- in practice we can only approximate the optimal tree, which ques-
bers. As expected, the*Rree strategies are superior to those of tions the usefulness of reported performance numbers. First, note
the R-tree. The Rtree split produces a better clustering and is that in the optimal tree, only clustering is approximated. Page uti-
also more effective at eliminating excess coverage than the R-treelization and SPs are stipulated to be perfect, and therefore the cor-
split; the R'-tree insertion strategy also creates better clusters and responding numbers accurately reflect the true performance loss.

4.4.3 Example 4: Comparison of R-tree and R*-tree Split
and Insertion Strategies

marginally better SPs. However, since no bounds on clustering quality are known for the
heuristic algorithm we use for optimal clustering, the reported clus-
45 Other Performance Factors tering loss numbers are only with regard to a “good” clustering

) ) rather than the optimum. Nevertheless, those numbers are still use-
In the analysis framework presented so far we completely ignored fy| information for the AM designer: if the reported clustering loss
a number of components of the performance equation (CPU time, js positiv, clustering in the actual tree cannot be optimal and should



therefore be a target for performance improvement. The number  The literature is rife with performance studies of various in-
of cases in which negative clustering loss will be reported depends dex structures, especially for multidimensional querying. Gaede
on the effective quality of the clustering algorithms. With the al- and Ginther survey over 50 different multidimensional index struc-
gorithm currently in use, we have not seen a single workload for tures ([(GG98]), most of which were introduced with a performance
which negative clustering loss was reported. study to demonstrate their efficacy. [GG98] also surveys a number
of comparative studies of multidimensional indexes, and attempts
to unify the results into a partial ordering of quality; this is compli-
cated by the variance in the workloads that the studies examine.
During the execution of the workloadmdb collects profiling data Most of the studies in the literature do not analyze performance
for each query individually, consisting of query result sets (refer- results beyond comparing the number of page accesses on a given
ences to retrieved items), visited pages, the number of bytes re-workload. Some studies provide analyses or intuitions of vary-
trieved per page, etc. The burden this puts on the workload execu-ing complexity to justify the page access measurements, often with
tion is proportional to the cost of the execution itself, i.e., profil- domain- and workload-specific arguments. As an example, [BKSS90]
ing a single page access or item retrieval incurs a small, constantexplains (and visually illustrates) the efficacy of their node split
cost, and is negligible. For example, 2500 nearest-neighbor queriestechnique with arguments about the virtues of square bounding
on 5000 2-dimensional points took 12.3 seconds without profiling boxes, which are not clearly translatable to other data domains, or
and 13.06 seconds with profiling on a Dell Dimension Workstation to workloads of queries with high aspect ratio.
333MHz Intel Pentium Il processor. The size of the stored profiling There is also a body of work on describing or predicting multi-
data and performance metrics depends on a number of factors, suchlimensional index performance using formal models ([FK94, PSW95]
as the size of the result sets, tree size and excess coverage preseate two examples). These papers provide insight into the perfor-
in the tree, so it cannot be stated as a simple percentage of themance of different indexing techniques on various synthetic work-
tree size. Informally speaking, the sizes are fairly moderate. For loads of queries and data. They often make rather strict assump-
example, the profile sizes for the workloads used in the unindex- tions about the workloads they model (e.g., many study only square
ability tests in Section 4.3.3 range from 1.4MB (for 5000 queries queries). These models shed light on the challenges of multidimen-
retrieving 21 of 10000 16-dimensional points) to 40MB (for 20000 sional indexing in general, but are not necessarily helpful to a user
queries retrieving 120 of 40000 16-dimensional points). studying a particular workload of queries and data. Mapping from
Hypergraph partitioning is used to construct the optimal leaf a user’s workload to one of these models is not generally possible.
level used for the query and node analysis, the optimal tree used
for the implementation analysis and the optimal split used for the g 5
pickSplit()analysis. This task is performed by the public domain
packagenMetis from the University of Minnesota ([KAKS97]). To our knowledgeamdb is the first tool of its kind to allow index
HMetis employs heuristics to approximate the optimal partition- developers to debug and analyze their implementations. Naturally,
ing (which itself is NP-hard). Although designed primarily with its various visualization and debugging components have prece-
VLSI applications in mind, we nevertheless found it to produce dents in the literatureAmdb significantly extends many of these
high-quality partitionings. As an example, we compared an R- approaches, and unifies them into a single framework for index de-
tree bulk-loaded with 2-dimensional, Hilbert-value-sorted points velopers.
with the equivalenhMetis -partitioned leaf level. The latter even There are a number of tools for visualizing and animating search
slightly improved the clustering of the Hilbert-sorted leaf level (one tree data structures and algorithms; a compendium of references is
has to keep in mind that even a perfectly square grid partitioning maintained on the World-Wide Web?> Most of these tools fo-
might be suboptimal for a given set of queries, because the queriescus on displaying tree structures, typically in a “nodes and arrows”
might prefer a different grid origin or a different aspect ratio). We visualization. This is useful only for pedagogical purposes, since
also found cases where thd/etis -produced clustering was in-  such diagrams do not scale to the size of database indexes.
ferior to space-partitioned ([LLE97]), bulk-loaded leaf levels, but Brabec and Samet provide a suite of Java applets for a variety
the performance difference was minuscule and the two clusteringsof 2-dimensional spatial database search trees, including R-trees
were practically identical. Using hypergraph partitioning to arrive and a host of quad-tree variants [BS98]. The visualizations focus
at a clustering of the data items requires that each data item be cov-on a geographic, 2-dimensional view of ttata domain akin to
ered by a sufficiently large number of queries, and furthermore that amdb's “node view” but spanning all nodes of one or more levels.
the queries themselves are sufficiently diverse (where establishingUsers may observe SPs and data items during insertion, deletion
“sufficiently” is an area of future work). For the experimental re- and splitting, with a large but fixed set of split algorithms. Some
sults presented earlier, we tried to be conservative and executedsimple domain-specific statistics are displayed per level. Again,
half as many queries as there were data items. The queries themthe focus of these tools seems to be pedagogic; the authors note
selves were centered on uniformly selected data items so that everthat the visualizations do not scale to the fanouts typical in most

4.6 Implementation

Index Visualization and Animation

coverage was ensured. trees. DEVise [LRB 97] is a general-purpose data exploration and
visualization system, which has been demonstrated to be effective
5 Related Work in helping R-tree development and debugging. As in the work of

Brabec and Samet, DEVise was used in this scenario to visualize
a 2-dimensional space containing data points and bounding rectan-
gles. DEVise itself provides no facility for animating index algo-
Pagel, et al. ([PSW95]) study index clustering in a manner very rithms or characterizing performance.

similar to that of our analysis framework, also using an idealized
goal of an optimal clustering to establish lower bounds on page
accesses. They focus on window queries over multidimensional
datasets, and apply simulated annealing to find an approximation
to the optimal clustering. In their complexity analysis, they use a
graph model for clustering that is not unlike our use of hypergraph
partitioning. 2 http:/iwww.cs.hope.edu/ alganim/ccaalccaa.html

5.1 Index Performance

6 Conclusion

This paper presents an analysis framework for tree-structured bal-
anced AMs that can be used to evaluate the page access perfor-




mance of user-defined query workloads. The framework is inde- [BS98] Frantisek Brabec and Hanan Samet. Visualizing and Animat-

pendent of the particular type of data to index or the nature of ing R-Trees and Spatial Operations in Spatial Databases on
the queries. It only requires as input the data and tracing infor- the Worldwide Web. IrProc. of Visual Database Systems
mation gathered during query execution. The performance metrics 1998.

it produces reflect actual performance loss, obtained by compar- Com79]

ing the observed performance against that of an assumed optimaF

tree structure. The loss numbers are further refined to reflect the

three fundamental structural performance factors: clustering, pagelFK94] Christos Faloutsos and Ibrahim Kamel. Beyond Uniformity

utilization and the subtree predicates. and Independence: Analysis of R-trees Using the Concept of
In amdb, the framework is combined with tree and data visual- g:gi?lﬁ'%%‘;'?gé 4"Proc' 13th ACM SIGACT-SIGMOD-

ization and animation functionality to create a powerful design tool :

D. Comer. The Ubiquitous B-TreACM Computing Surveys
11(4):121-137, 1979.

for access methods. The analysis process begins with the inspectionccog] Volker Gaede and Oliver @ither. Multidimensional Access
of performance metrics to locate sources of deficiencies. Unlike Methods.ACM Computing Survey80(2), 1998.
data-dependent measures, these metrics objectively reflect access o
method performance. The visualization and animation functional- [6379] M. Garey and D. JohnsorComputers and Intractability: A

Guide to the Theory of NP-Completenesg/.H. Freeman,

ity then enable users to investigate those sources of performance 1979

loss and gain an understanding of how semantic properties affect
performance. Based on this understanding, the designer incorpo-{Gutg4]  A. Guttman. R-Trees: A Dynamic Index Structure for Spatial
rates improvements into the design and repeats the analysis process Searching. IrProc. ACM SIGMOD Conf.1984.

to evaluate their efficacy.

The AM design toohmdbincorporates the analysis framework
as well as other features that support the design of GiST-compliant
AMs. Amdblets the user single-step through individual index op-
erations and set breakpoints on events of interest. The visualization[KAKS97] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Mul-

[HNP95]  J. Hellerstein, J. Naughton, and A. Pfeffer. Generalized
Search Trees for Database Systems. Ptoc. 21st VLDB
1995.

features allow navigation and inspection of the tree structure and tilevel Hypergraph Partitioning: Applications in VLSI Do-
the data contained in tree nodes. The latter is user-extensible, so main. InProc. ACM/IEEE 34th Design Automation Confer-
that the visualization is not tied to a fixed set of data types. To ence 1997.

faCIIItate_ the an_aIySIS procesamdb _gathers the required tracing [KS97] N. Katayama and S. Satoh. The SR-Tree: An Index Structure
information during workload execution and displays the computed for High-Dimensional Nearest Neighbor Queries. Aroc.
performance metrics both visually and textually. ACM-SIGMOD Conf.1997.

There are several questions we want to investigate in more de- )
tail in the future. Section 4 mentions that for the hypergraph par- [KSH98] M. Kornacker, M. Shah, and J. Hellerstein. amdb: An Ac-

titioning to produce “good” clusters—those that reflect semantic cess Method Debugging Tool. Rroc. ACM-SIGMOD Conf.
proximity of the data items—the queries in the workload must not 1998

only be representative, but also cover the entire data set to a suf-j_ | gg S. T. Leutenegger and M. A.dgez. The Effect of Buffering
ficient degree. What the required number and shape of queries in on the Performance of R-Trees. Pnoc. 14th ICDE 1998.

a workload should be needs to be established more clearly. We ) _
also plan on extending the analysis framework to other, more ex- [LLE97]  S.T.Leutenegger, M. A.&pez, and J. M. Edgington. STR: A
otic tree-structured access methods (such as non-balanced trees or Simple and Efficient Algorithm for R-tree Packing. Rroc.
key-transforming trees, such as Rrees) and hash-based access 13th ICDE 1997.

methods. The main challenge will be the construction of optimal [LRB+97] Miron Livny, Raghu Ramakrishnan, Kevin Beyer, Guangshun

structures for these AMs. Furthermore, we want to add function- Chen, Donko Donjerkovic, Shilpa Lawande, Jussi Myllymaki,
ality to amdb that allows it to compute user-defined metrics for and Kent Wenger. DEVise: Integrated Querying and Visual
queries, nodes and the split and insertion strategies. The metrics Exploration of Large Datasets. Rroc. ACM-SIGMOD Conf.
would express properties of the data and their organization within 1997.

the t“ree that Fh_e designer b_elieves to affect perfor_mance (for €Xam-pg\y9s]  B.-U. Pagel, H.-W. Six, and M. Winter. Window query-
ple, “small minimum-bounding rectangle overlap in R-trees results optimal clustering of spatial objects. Rroc. 14th ACM

in good performance”). Comparing the user-defined metrics with SIGACT-SIGMOD-SIGART PODS995.

those produced by our framework lets the designer verify the accu-

racy of his intuition and forces him to revise it, if necessary. [Rie98] Erik Riedel. A Performance Study of Sequential I/O on Win-

dows NT 4. InProc. 2nd USENIX Windows NT Symposium,

Seattle, WA1998.
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