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Abstract

Designing and tuning access methods (AMs) has always been more
of a black art than a rigorous discipline, with performance assess-
ments being mostly reduced to presenting bottom-line runtime or
I/O numbers. This paper presents an analysis framework for AMs
that defines performance metrics which are more meaningful than
bottom-line numbers and thereby allow the AM designer to de-
tect and isolate deficiencies in an AM design. The analysis pro-
cess takes a workload—a tree and a set of queries—as input and
provides metrics that characterize the performance of each query
as well as that of the tree structure and the structure-shaping as-
pects of the AM implementation. Central to the framework is the
use of the optimal behavior—which can be approximated relatively
efficiently—as a point of reference against which the actual ob-
served performance is measured. The performance metrics them-
selves reflect the fundamental performance-relevant properties of
the input tree. The framework applies to most balanced tree-structured
AMs and is not restricted to particular types of of data or queries.
It is implemented inamdb, a comprehensive graphical design tool
for AMs that are constructed on top of the Generalized Search Tree
abstraction.Amdbcomplements the analysis framework with vi-
sualization and debugging functionality, allowing the AM designer
to investigate the source of those deficiencies that were brought to
light with the help of the analysis framework.

1 Introduction

Despite the large and growing number of access methods (AMs)
that have been produced by the research community—and also de-
spite their increasing importance, considering the explosion of data
users find worth querying—the design and tuning of AMs has al-
ways been more of a black art than a rigorous discipline. Tradi-
tionally, performance analyses are presented in terms of aggregate
runtime or page access numbers. The drawback is that these num-
bers do not allow the contributions of individual design ideas to be
quantified. As a result, it is hard to explain performance differences
between competing AM designs, if those deviate in more than one
design aspect. Also, aggregate runtime or access numbers do not
allow AMs to be assessed on their own, because competing AM
designs are needed to put the numbers into perspective.

In this paper we present an analysis framework for tree-struc-
tured, height-balanced AMs that provides more meaningful perfor-
mance metrics than just aggregate numbers and can be applied to
any workload, regardless of the type of data or nature of the queries
involved. Its salient features are:

� The workload—a tree and a set of queries—is an input pa-
rameter of the analysis and the metrics characterize the per-
formance of an AM specifically in the context of that work-
load. This allows the framework to be used to tune an AM
for a specific workload and to compare workloads by running
them against the same AM.

� The performance metrics directly characterize the observed
performance of the workload execution, namely the page ac-
cesses. They are not stated in terms of data or query seman-
tics, and thus reflect performance objectively. On the other
hand, metrics that express performance in terms of semantic
properties require the designer to understand their correlation
with page accesses. Since such an understanding is agoalof
the analysis process, any apriori assumptions are often incor-
rect and misleading.

� Central to the analysis is the comparison of observed per-
formance with optimal performance, i. e., performance that
would have been obtained with a tree that is optimal for the
input workload. The performance metrics are derived from
this comparison and express performance loss. With such a
point of reference, the observed performance can be put into
perspective without having to compare with a competing AM
design. Moreover, this particular point of reference shows
the potential for performance improvement, which cannot
necessarily be discovered by comparing two alternative AM
designs.

� The framework defines performance loss metrics for each
query of the workload, for the nodes of the input tree and
for the structure-shaping aspects of the AM implementation.
Furthermore, those metrics are broken down to reflect the
fundamental performance-relevant properties of tree-struc-
tured AMs. Such a breakdown is more useful than aggregate
numbers, because it facilitates assessing the performance ef-
fects of AM design aspects individually.

The analysis framework is implemented inamdb, a compre-
hensive visual design tool for AMs built on top of the Generalized
Search Tree (GiST) abstraction ([HNP95]). Its features include:
interactive execution of search, insert and delete operations; sup-
port for breakpoints and single-stepping through operations; visu-
alization of the tree structure and node contents (the latter being



user-extensible); execution of query workloads, gathering of trac-
ing information and visual presentation of performance metrics and
tracing information. In order to compute performance loss metrics,
amdb approximates part of the workload-optimal tree, namely the
optimally clustered leaf level. This is achieved by modelling the in-
put workload as a hypergraph and approximating the optimal clus-
tering via a heuristic hypergraph partitioning algorithm.

The rest of the paper is structured as follows. Section 2 gives
an overview ofamdb and describes the integration of the analysis
framework into a graphical development environment. Section 3
briefly introduces GiST. Section 4 contains a discussion of the anal-
ysis framework, along with illustrative examples, among them a
test for unindexability. Section 5 discusses related work and Sec-
tion 6 contains the conclusion and an outline of future work.

2 Amdb: A Design Tool for Access Methods

The goal of the development ofamdb1 was to provide the AM de-
signer with a comprehensive tool that would cover the entire design
process, ranging from debugging the initial implementation to fine-
tuning of an AM for a specific workload. At the core ofamdb is
the analysis framework that is the topic of this paper; it is integrated
with a collection of modules in an interactive, easy-to-use graphi-
cal environment. Those modules are: a visualization component
for the tree structure and its contents (the latter user-extensible);
a facility for interactive execution of tree searches and updates as
well as breakpoints and single-stepping through those commands,
similar to functionality found in programming language debuggers;
browsers for viewing performance numbers derived from the anal-
ysis framework.

Amdbsupports access methods developed using the public do-
main libgist package which implements the GiST abstraction.
Amdbandlibgist are written in Java and C++ and are portable
across many versions of UNIX as well as Microsoft Windows NT.
The packages can be downloaded fromhttp://gist.cs.ber-
keley.edu/ .

This section describes the visualization and debugging features
and gives an overview of how the analysis framework is presented
to the user.

2.1 Visualization Functionality

Understanding flaws in an AM design requires inspecting the cor-
responding tree; thus,amdb provides interactive graphical views
of the entire tree, paths and subtrees within the tree, and contents
of nodes within the tree. These are the global view, tree view, and
node view, respectively (Fig 1). These views not only help visualize
the tree structure and its contents, but also help visualize profiling
data and performance metrics by associating them with nodes in
the tree (discussed in detail in Section 2.3). Finally, they provide
navigation features, which enables designers to drill down to the
source of a deficiency.

The highest-level, global view provides a manageable aggre-
gate view of the entire index (Fig 1: 1). This representation factors
out much of the tree structure by mapping it onto a triangle with
an adjustable baseline and height. The purpose of this view is to
project a user-selected tree statistic or performance metric onto this
abstract display and depict the variation of the statistics across the
total tree. The user can choose both a color map (or palette, Fig 1:
2) and a statistic; the global view assigns colors to the statistical
values and renders the nodes accordingly. Nodes are visually con-
catenated and merged if necessary with other nodes on the same
level. Thus, the pixel density of nodes increases geometrically with
the level. The user can also perform an approximate drill-down into

1An initial implementation is briefly described in [KSH98].

an area of interest by clicking on it. Subsequently, a path from the
root node to a node in the neighborhood of the specified point will
be shown in the tree view, a lower-level view which shows more
detail.

The tree view shows the structure of the search tree (Fig 1: 3).
It offers an intuitive point-and-click interface for browsing the tree
while improving on conventional tree navigation interfaces which
become cumbersome for high fanout trees. In this view, the tree’s
nodes are represented by boxes and labeled with a unique number
for reference. Each node is enclosed in a scrollable and stretchable
container which displays its direct siblings. This container (Fig 1:
4) allows users to focus on nodes of interest while bounding the
amount of detail displayed. Any node can be expanded or con-
tracted by clicking on it. When a node is expanded, the container
holding its children is displayed below it with a line linking the
two; when contracted, the entire subtree below the node is removed.
Like the global view, the tree view represents a user-selected tree
statistic or performance metric by coloring the nodes. With these
features, a user can simultaneously focus on several paths and sub-
trees of interest without being overwhelmed by the width of the
search tree.

After drilling down from the global view and tree view, the user
can investigate the contents of specific nodes usingamdb’s node
view (Fig 1: 5). Since tree nodes contain arbitrary user-defined
keys,2 the access method designer must provide a module which
displays the node given its contents. Currently,amdb contains a
suite of modules which visualize two-dimensional projections of
spatial data. One convenient feature of the node view is that it high-
lights the current path in the tree view. The node view also allows
the user to simulate a split3 and visualize the results by separating
the items with contrasting colors. In addition to user-defined data
visualization,amdbprovides a textual description of the keys, their
sizes, and associated pointers.

2.2 Debugging Functionality

The behavior of an AM can be difficult to understand without be-
ing able to observe its mechanics. Previously, only standard pro-
gramming language debugging tools were available for examining
libgist AMs. Because these tools are designed for analyzing
low level actions, such as a single line of source code, they are
too cumbersome for gaining an understanding of how search and
update operations behave and interact with the tree.

Amdballows a designer to single-step through tree search and
update commands. Those commands generate events for various
node-oriented actions, such as node split, node traversal,etc., which
permits users to step from event to event. Since manual stepping
can become tedious, it also supports breakpoints. Breakpoints can
be defined on generic events, e. g., node update, or can be tied
to a specific tree node, e.g., update of node 227. When a break-
point event is encountered, execution is suspended, and the user has
an option to single-step through events or continue until the next
breakpoint. Additionally,amdb allows batch execution of com-
mands via scripts so users can conveniently restore state.

2.3 Overview of the Analysis Process

The analysis framework described in Section 4 defines performance
metrics for each query of the owrkload, node of the input tree and
for the structure-relevant split and insertion strategies of the AM
design. These metrics point out deficiencies in the AM and tell the

2The GiST abstraction, described in more detail in Section 3, factors out structural
and algorithmic aspects that are common to most balanced tree-structured AM.

3This is achieved by calling thepickSplit()extension function, which will be intro-
duced in Section 3.
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Figure 1: Amdb User Interface

designer which parts of the input tree or which of the queries to fo-
cus on. The visualization and debugging features complement the
performance metrics by giving the designer the means to investi-
gate and understand the source of the deficiencies.

The per-query metrics show the performance loss for each query
and pinpoint badly performing queries. These metrics are comple-
mented with tracing data gathered during query execution, includ-
ing traversal paths, CPU execution time, the amount and specific
location of data retrieved,etc.This tracing data gives the developer
a very detailed view of the behavior of each query and is instru-
mental in understanding poorly performing queries.

Per-node metrics show which nodes in the tree contribute to
performance loss; they are computed for each query and for the
aggregate workload. The performance numbers are visualized via
coloring of nodes in the global and tree view, so that ill-behaved
parts of the tree can be identified easily. The navigation and data vi-
sualization features of these views let the developer examine those
parts of the tree structure and the data contained therein. Aside
from performance numbers, these views also visualize per-query
tracing data; for example, traversal paths and per-node CPU execu-
tion times can be visualized very effectively through node coloring.

AM implementation metrics show how workload performance
is affected by splits and insertions. This gives the developer direct
feedback about the quality of the AM design and points out cases
where the design fails. The actual splits and insertion paths that
deteriorate workload performance can be visualized with the node
and tree view, respectively.

Performing an analysis of an existing tree requires very lit-
tle user interaction. Essentially, the developer only needs to pre-
pare a script containing the queries of the workload (and a file
with keys for the insertion strategy analysis).Amdbexecutes this
script against the input tree, collects the required tracing data, and
computes the performance numbers, which are then shown in di-
alog boxes for easy browsing. The tracing data and performance
numbers are stored in a file to avoid recomputation for subsequent
amdbsessions.

3 Generalized Search Trees

A GiST is a balanced tree which provides “template” algorithms
for navigating the tree structure and modifying the tree structure
through node splits and deletes. Like all other (secondary) in-
dex trees, the GiST stores(key, RID)pairs in the leaves; the RIDs
(record identifiers) point to the corresponding records on the data
pages. Internal nodes contain(predicate, child page pointer)pairs;
the predicate evaluates to true for any of the keys contained in or
reachable from the associated child page. This captures the essence
of a tree-based index structure: a hierarchy of predicates, in which
each predicate holds true for all keys stored under it in the hierar-
chy. A B+-tree ([Com79]) is a well known example with those
properties: the entries in internal nodes represent ranges which
bound values of keys in the leaves of the respective subtrees. An-
other example is the R-tree ([Gut84]), which contains bounding
rectangles as predicates in the internal nodes. The predicates in the
internal nodes of a search tree will subsequently be referred to as
subtree predicates (SPs).

Apart from these structural requirements, a GiST does not im-
pose any restrictions on the key data stored within the tree or their
organization within and across nodes. In particular, the key space
need not be ordered, thereby allowing multidimensional data. More-
over, the nodes of a single level need not partition or even cover the
entire key space, meaning that (a) overlapping SPs of entries at the
same tree level are allowed and (b) the union of all SPs can have
“holes” when compared to the entire key space. The leaves, how-
ever, partition the set of stored RIDs, so that exactly one leaf entry
points to a given data record.4

A GiST supports the standard index operations: SEARCH, which
takes a predicate and returns all leaf entries satisfying that predi-
cate; INSERT, which adds a(key, RID)pair to the tree; and DELETE,
which removes such a pair from the tree. It implements these op-
erations with the help of a set of extension methods supplied by
the access method developer. The GiST can be specialized to one
of a number of particular access methods by providing a set of ex-
tension methods specific to that access method. These extension

4This structural requirement excludes R+-trees ([SRF87]) from conforming to the
GiST structure.



methods encapsulate the exact behavior of the search operation as
well as the organization of keys within the tree.

We now provide a sketch of the implementation of the opera-
tions and how they use the extension methods. For a more detailed
description, together with examples of B-tree and R-tree extension
methods, see the original paper ([HNP95]).

SEARCH In order to find all leaf entries satisfying the search predi-
cate, we recursively descendall subtrees for which the parent
entry’s predicate is consistent with the search predicate (em-
ploying the user-supplied extension methodconsistent()).

INSERT Given a new(key, RID)pair, we must find a leaf to insert
it on. Note that because GiSTs allow overlapping SPs, there
may be more than one leaf where the key could be inserted.
A user-supplied extension methodpenalty()compares a key
and predicate and computes a domain-specific penalty for in-
serting the key within the subtree whose bounds are given by
the predicate. Using this extension method, we traverse a sin-
gle path from root to leaf, following branches with the lowest
insertion penalty.

If the leaf overflows and must be split, a extension method,
pickSplit(), is invoked to determine how to distribute the keys
between two leaves. If, as a result, the parent also overflows,
the splitting is carried out bottom-up.

If the leaf’s ancestors’ predicates do not include the new key,
they must be expanded, so that the path from the root to the
leaf reflects the new key. The expansion is done with a ex-
tension methodunion(), which takes two predicates, one of
which is the new key, and returns their union. Like node
splitting, expansion of predicates in parent entries is carried
out bottom-up until we find an ancestor node whose predi-
cate does not require expansion.

DELETE In order to find the leaf containing the key we want to
delete, we again traverse multiple subtrees as inSEARCH.
Once the leaf is located and the key is found on it, we remove
the(key, RID)pair and, if possible, shrink the ancestors’ SPs.

Although the GiST abstraction prescribes algorithm for search-
ing and inserting, the AM designer still has full control over the
performance-relevant structural characteristics of the AM. These
structural characteristics are:

Clustering The clustering of the indexed data at the leaf level and
of the SPs at the internal levels determines the amount of
extra data that a query needs to access in order to retrieve its
result set. An AM design controls the clustering through the
pickSplit()andpenalty()extension methods.

Page Utilization The page utilization determines the number of
pages that the indexed data and the SPs occupy and there-
fore also influences the number of pages that a query needs
to visit. Similar to the clustering, the page utilization is con-
trolled by thepickSplit()andpenalty()extension methods.

Subtree PredicatesWhile the size and shape of the indexed data
is part of the input (if the data can be compressed, this should
be done in any case), the size and shape of the SPs are param-
eters of the design and considerably influence performance.
A SP’s task is to describe, or cover, that part of the data space
which is present at theleaf level of its associated subtree (i.e.,
the perfect SP would simply enumerate all the data items
contained in the leaves of its subtree; of course, this is prob-
lematic with regard to the size of the SPs). We speak of SP
excess coverageif the SP covers more of the data space than
is needed in order to represent the data contained in the sub-
tree. If a SP exhibits excess coverage, it may cause queries

to visit more than the minimum number of pages determined
by the clustering and page utilization.

4 Analysis Framework

The goal of the analysis framework is to explain the observed per-
formance of an AM running a user-supplied workload. The single
ultimate performance number is the total execution time of the en-
tire workload. This total depends on the number and nature of page
accesses, the buffering policy and the CPU time spent examining
pages. We will for now concentrate on explaining observed page
accesses and ignore the other components of the performance equa-
tion. Section 4.5 addresses these issues.

Instead of simply measuring the number of page accesses, a
more meaningful performance metric is the difference between the
number of page accesses in the actual tree and the optimal tree; we
call this difference the theperformance loss. The optimal tree is
defined as minimizing the total number of page accesses over the
entire workload. Having knowledge of the execution profile of the
workload, in particular the result sets of the queries, allows us to
approximate the optimal tree relatively accurately.

The analysis framework defines performance metrics that are
based on the performance loss and fall into three groups:

Query Metrics A query will experience a performance loss if the
actual tree has inferior clustering, page utilization, or SPs
relative to the optimal tree. In order to understand the nature
of the loss, we break down the total loss to reflect each of
these shortcomings. The breakdown reveals how much of
a query’s performance loss is due to suboptimal clustering,
page utilization and SPs.

Node Metrics Similar to the query metrics, the framework defines
node metrics that express an individual node’s contribution to
aggregate workload performance loss, broken down to reflect
the losses cause by the node’s clustering, utilization and SP.
Such metrics are valuable because they help the AM designer
identify anomalies in the tree structure.

Implementation Metrics The extension methodspickSplit()and
penalty()directly control the tree structure and their perfor-
mance metrics should express to what extent they are respon-
sible for the structural deterioration that causes performance
loss. Unlike query and node metrics, the implementation
metrics cannot be derived from the tracing information gath-
ered during workload execution. Instead, we execute addi-
tional splits and insertions and observe how workload per-
formance changes. Like query and node metrics, the imple-
mentation metrics reflect a comparison to an optimum, in this
case the optimal split and insertion.

The following subsection discusses the optimal tree and how
to construct it. Section 4.2 derives the query performance metrics,
first for the leaf level, then for internal levels, and presents exam-
ples of analyses conducted with these metrics. Section 4.3 derives
node metrics based on the query metrics. Section 4.4 discusses the
optimal split and insertion and derives metrics for thepickSplit()
andpenalty()extension methods; an example illustrates these met-
rics and completes one of the analyses begun in Section 4.2.

The presentation of the metrics in this section is purposely in-
formal and relies mainly on examples; we felt this would improve
readability. The input variables and metrics are defined and sum-
marized in Table 1 and Table 2, respectively.5 Variables with sub-
scriptq are query-specific and variables with subscriptp are page-
specific.

5We leave out the definition of the split and penalty metrics, because these are
cumbersome and can be derived from the descriptions in Section 4.4.
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Table 2: Performance Metrics

Q set of queriesq in workload
L set of leaf nodes in tree
I set of internal nodes in tree
C [bytes] page capacity
Rq [bytes] size of result set
Lo
q set of accessed pages in optimal clustering

Lq set of accessed leaves in actual tree
L0
q set of relevant leaves in actual tree (leaves that

contain items ofq’s result set)
up [%] utilization
uq [%] average utilization seen by query,uq =P

p2L0

q
up=jL

0
q j

Iq set of accessed internal nodes in tree
I 0q set of accessed internal nodes on paths toL0

q
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rq optimal ratio of accessed to retrieved data,
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Rp;q [bytes] size of fraction ofq’s result set found onp
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Qo
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P
q2Q0
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Table 1: Input Variables (Profiling Data, Tree Statistics and Derived
Variables)

4.1 Construction of the Optimal Tree

The optimal tree is defined by the following characteristics:

no excess coverage,which eliminates page accesses due to overly
general SPs;

target page utilization, which would ideally be 100%, but this is
unattainable in practice. For that reason, the AM designer
can specify a desired target page utilization, which serves as
a point of comparison for nodes within the tree structure. The
value we often used in practice was the average workload
page utilization. We will see that the absolute level of the

target page utilization does not affect the significance of the
performance metrics.

optimal clustering, which minimizes the total number of “rele-
vant” page accesses (at the leaf level, those are accesses to
pages containing items of the result set of a query, see Ta-
ble 1) for the entire workload.

A tree with these properties will execute the investigated work-
load with the minimal number of page accesses. This tree is only
a theoretical construct, since it is generally impossible to create
reasonably-sized SPs with no excess coverage. Nevertheless, it is
possible to approximate this tree well enough to be able to infer the
page access pattern of the workload queries.

To construct the optimal leaf level, we partition the indexed data
items so that the total number of leaf accesses is minimized over the
workload6 and the partition size is equal to the target page capacity.
This task can be converted into a hypergraph partitioning problem
by modelling the workload as a hypergraph (each indexed data item
is a node with a weight that is equal to its size in bytes; each query,
identified by its result set, is a hyperedge). Hypergraph partition-
ing is provably NP-hard ([GJ79]), but existing approximation algo-
rithms work reasonably well in practice (Section 4.6 discusses the
implementation, in particular the hypergraph partitioning, in more
detail).

To construct the optimal internal levels, we need to create reasonably-
sized SPs with no excess coverage, which is generally not possible.
Nevertheless, it is still possible to report utilization and excess cov-
erage loss metrics for those.

Figure 2 serves as a running example throughout the rest of this
section. It shows the traversal tree of a query (its traversal paths
in the index, which form a subtree of the index) that retrieves five
data items, for which it needs to access four leaves in the actual
tree and two leaves in the optimal tree. The page capacity is four
items (to keep the example simple, data items and SPs are assumed
to have the same size) and the target utilization is 75%. Occupied
slots are shaded, and the pages in the actual tree are enumerated for
reference.

6Note that clustering to minimize the number of leaf accesses over theentirework-
load will generally not minimize the number of leaf accesses for each queryindividu-
ally. The minimum number of leaf accesses for a single query is the size of its result
set divided by the page size. This usually cannot be achieved for the entire workload,
because the individual queries’ clustering requirements are contradictory.
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Figure 2: Traversal Paths and Optimal Clustering for Example Query

4.2 Query Performance Metrics

The per-query performance metrics express performance loss due
to suboptimal clustering, page utilization and SPs in the index. At
the leaf level, these numbers are derived by comparing the page
access pattern in the actual tree with the corresponding pattern in
the optimal tree. At the internal level, the corresponding optimal
structure is not available for comparison, but we can still derive a
reduced set of the metrics, namely excess coverage and utilization
loss. The next two subsections in turn describe how the loss metrics
are derived for the leaf level and the internal levels.

4.2.1 Leaf-Level Performance Metrics

For each query, the performance loss at the leaf level—actual minus
optimal leaf accesses—is divided up into utilization, excess cover-
age and clustering loss. More formally:

jLq j = jLo
q j+ELl

q + ULl
q + CLq :

In the example, the query experiences a performance loss of
two leaf accesses when compared against the optimal tree. We
show how to compute the losses for this example.

Excess coverage loss When accessing a leaf during query exe-
cution that does not contain any items of the result set, the leaf ac-
cess is due to excess coverage in the leaf’s SP. Even if those pages
are underutilized do they not count toward utilization loss, because
packing them more densely would not lower the total number of
leaf accesses (unless retrieved data were added, but then the ac-
cesss would not count as excess coverage to begin with). For the
same reason, the access cannot count as clustering loss, because the
feature of that node relevant to the query is its SP, not its page uti-
lization or clustering. In the example in Figure 2, leaf 0 is accessed
but contains no matching items, and therefore the access counts as
excess coverage loss.

Utilization loss Deviation from the target utilization in the re-
maining leaves is summed up as utilization loss. In the example,
leaf 2 has a utilization of 50%, which is2=3 of the target utilization
of 75%, resulting in a loss of1�0:5=0:75 = 1=3. The idea behind
this accounting is that if the pages had been packed more densely,
part of the accesses could have been avoided. Note that a page
utilization in excess of the target utilization counts as a negative
performance loss, i.e., a performance gain.

Clustering loss Clustering loss is the difference between the
conceptually “tightly packed” leaves in the index and the corre-
sponding leaves in the optimal tree. The accessed leaves in the
index become “tightly packed” by subtracting the utilization loss.
In the example, the result set is spread over three leaves, or8=3

tightly packed leaves. The difference between that and the two leaf
accesses in the optimal tree is2=3, the clustering loss.

To summarize the leaf-level metrics established for the example
query: excess coverage loss is 1, utilization loss is1=3 and cluster-
ing loss2=3. The sum is 2 accesses, which is the total performance
loss that the example query experiences at the leaf level.

4.2.2 Internal-Level Performance

Although it is not possible to construct the optimal internal levels
for the workload in a manner similar to the leaf level, the charac-
teristics of the accessed internal nodes in the actual tree still allow
us to derive two of the three metrics, namely excess coverage loss
and utilization loss. The remaining internal-node accesses cannot
be subdivided any further. More formally:

jIqj = Irq +ELi
q + ULi

q :

Excess coverage loss Similar to the leaf-level metric, accesses
to internal nodes without any matching entries are counted as ex-
cess coverage loss. In addition, we also count internal pages that
do not lead to any leaves containing retrieved data; these internal
pages are accessed due to excess coverage of SPs in the subtree. In
the example, page 6 does not carry any matching SPs and its access
is fully counted as excess coverage loss. Page 4 has a matching SP,
but it only matches because of excess coverage in page 0’s SP, so
we count its utilization,2=3 of the target utilization, as excess cov-
erage. The remaining1=3 are counted as utilization loss, because,
unlike the leaves of the traversal tree, the property of relevance of
these nodes is not their SP but the SPs of their children,i. e., the
data contained in this node.

Utilization loss Similar to the corresponding leaf-level metric,
the sum of the deviations from the target utilization is the utiliza-
tion loss, excluding from consideration leaf nodes of the traversal
path of the query. In the example, only page 4 causes the query
to experience utilization loss at the internal levels in the amount of
1=3.

To summarize the preceding observations: of the4 page accesses
to internal nodes,5=3 are caused by excess coverage and1=3 by
underutilization. The remaining 2 accesses to nodes5 and7 cannot
be subdivided any further.

4.3 Node Performance Metrics

The per-node loss numbers are derived from the per-query loss
numbers and show which parts of the tree contribute to perfor-
mance deterioration. More specifically, these metrics show how
a node’s utilization and clustering properties as well as its SP affect



workload performance. Generally, we sum up the per-query loss
metrics across the nodes to arrive at per-node metrics. Similar to
per-query metrics, we subdivide the accumulated performance loss
of a leaf page into excess coverage, utilization and clustering loss.
More formally:

jQpj = Qo
p +ELl

p + ULl
p + CLp; p 2 L:

At the internal levels, we can only identify excess coverage and
utilization loss; the remaining accesses cannot be subdivided any
further. More formally:

jQpj = Qr
p +ELi

p + ULi
p; p 2 I:

Figure 2 will again be used as our running example.

Excess coverage loss A node’s excess coverage loss is simply
the number of times the node was accessed but no matching data
was found. This does not take into account accesses to internal
nodes that are caused solely by excess coverage in the children’s SP,
which are also classified as excess coverage loss. In this particular
case it is the shared responsibility of the children, and it needs to be
apportioned to them in some way. It is not clear how that should be
done, so this type of excess coverage loss is presently not accounted
for in the node metrics.7

In the example, we have pages 0 and 6 with excess coverage
loss of 1 each. The excess coverage loss of page 0 should also
include the data accessed in page 4, but apportitioning this excess
coverage loss to the children is not generally possible, as explained
in the preceding paragraph.

Utilization loss A node’s utilization loss is the product of its
traversal count (minus those accesses caused by excess coverage)
and its deviation from target utilization. In the example, pages 2
and 4 both have a utilization of 50%, a deviation of1=3 from the
75% target utilization.8 If each of these were traversed 100 times
across the entire workload, each one would contribute33 1

3
accesses

to the entire workload performance.

Clustering loss Each query’s clustering loss needs to be dis-
tributed according to how much each accessed, non-empty leaf
contributes to total clustering loss. We use as the guiding princi-
ple the quality of the clustering in a nodefor the particular query
in question.The quality of clustering can be expressed as the ratio
of accessed to retrieved data, and the optimal clustering establishes
a benchmark ratio against which the accessed leaves in the actual
tree will be measured.9 In the example, the query accesses 2 leaves
in the optimal tree to retrieve 5 data items, which fill up5=3 pages,
resulting in a benchmark ratio of1:2. At leaf 3, the example query
accesses 1 page worth of data in order to retrieve1=3rd of the page,
although according to the benchmark ratio it should only have ac-
cessed1=3 � 1:2 = 40% of a page. The difference of 60% is the
clustering loss that the node contributes to this query. The corre-
sponding numbers for pages 1 and 2 are�0:2 and4=15. The sum
across these leaves is2=3, which is the total clustering loss for the

7In the experiments conducted so far, those accesses played an insignficant role in
comparison to the workload total. Note that the termQr

p also includes excess coverage
loss created by child nodes that cannot be apportioned to the child nodes themselves.

8Conversely, if the target utilization is 45%, those pages would have recorded a
utilization gain. Since utilization metrics recorddeviationfrom a constant, changing
this constant does not affect performance difference between any two nodes.

9More formally: the pages inL0

q cause a loss ofCLq that needs to be distributed
according to how much each page inL0

q contributes. GivenLo
q , we define a bench-

mark overhead ratiorq = jLo
qj � C � ut=Rq . Given that ratio, we expect to access

rq � Rq;p on each pagep if clustering in the actual tree were as efficient as in the
optimal tree. The differenceup � C � rq � Rq;p is p’s contribution to queryq’s
clustering loss.

query established in Section 4.2.1. The total per-node clustering
loss is simply the sum of the per-node losses over the queries.

4.3.1 Example 1: Comparison of R- and R�-Trees

This example illustrates how to make an initial performance assess-
ment with the help of the per-query and per-node metrics. We com-
pare R- and R�-trees for range queries over 8-dimensional point
data; we purposely chose to compare two well-known data struc-
tures, because knowing how they work will make the results of the
analysis easier to follow.

The data set used in the experiment consists of 40000 8-dimen-
sional points, with each dimension limited to the interval[0; 100),
arranged into clusters of 100 points each. The clusters are box-
shaped and have a diameter of 10; the center points of the clusters
are distributed randomly. The trees were produced by bulk-loading
20000 randomly selected data items and individually inserting the
remaining 20000. This ensures that the split and insertion strategies
are reflected in the resulting trees. Bulk-loading was done using the
STR technique ([LLE97]), which partitions the data points into iso-
oriented tiles. We ran 20000 square range queries over the trees,
each with a side length of 12. The center points of the queries
were randomly selected items from the data set, so that every query
intersected with a cluster. On average, each query retrieved 20.6
items.

The aggregate results of this analysis are summarized in Ta-
ble 3. We only report leaf-level performance numbers, since for
this type of workload, R- and R�-trees are relatively short and the
upper levels can be buffered. Section 4.5 talks more about how to
account for buffering.

R�-tree R-tree
actual tree, total 72,044 97,414
optimal clustering 23,262 23,224
utilization loss 4,650 3,906
excess coverage loss 16,895 30,171
clustering loss 27,237 40,113
sum 72,044 97,414

Table 3: Comparison of leaf-level performance in R- and R�-trees

The performance numbers indicate that R�-trees outperform R-
trees, which is what is expected, but that there’s is still room for
improvement.

Low utilization losses indicate that underutilization is not a prob-
lem. The target utilization was set to 80% and the average work-
load utilizations are close to that number (74.28% for the R�-tree
and 75.75% for the R-tree).

Comparing clustering losses with those in the initial bulk-loaded
tree confirms that the initial clustering is deteriorated by splits and
insertions, although only to a moderate extent in the case of R�-
trees. This can be deduced from the clusteringoverhead, which
is the ratio of optimal accesses plus clustering loss to optimal ac-
cesses. For the R�-tree, this ratio is(23262 + 27237)=23262 =
2:17 and for the initial bulk-loaded tree it is(10412+8903)=10412 =
1:86. A possible reason for the relatively high clustering loss in
the bulk-loaded tree is that by creating equi-distant partitions along
each dimension, the STR algorithm cuts through clusters that ex-
ist in the data; since the queries are centered on the data points,
breaking up clusters will also cause more page accesses.

Usingamdb, we can see that in both cases the clustering loss is
not spread evenly across the entire leaf level, but mostly confined to
a few hot spots (this is shown in the global view, which is described
in Section 2; we omit a screen shot of this particular scenario here
for brevity). The difference is that for the R-tree, these hot spots
are more frequent and more stretched out.



Looking at per-node excess coverage loss, we can see that this
is roughly co-located with clustering loss. This seems to suggest
that the SP design works well for the clustering requirements of
the workload, because we do not experience excess coverage loss
where clustering loss is low. Intuitively, this is what we expect for
minimum-bounding rectangles, because good clusters are rectan-
gular, which results in tightly-fitting MBRs.

4.3.2 Example 2: Comparison of SPs for Nearest-Neighbor
Searches on Multidimensional Points

This example illustrates how to evaluate and compare different SP
designs independently of the remaining AM design aspects. We
compare three different SP designs for a popular type of workload,
nearest-neighbor queries on multidimensional point data. The three
types of SPs are: minimum bounding rectangles, as employed in
R�-trees ([BKSS90]); minimum bounding spheres, as employed in
SS-trees ([WR96]); a combination of the two, which is used in SR-
trees ([KS97]). The latter two AMs were specifically designed for
the type of workload that underlies our comparison.

The data set used in the experiment consists of 40000 8-dim
points, with each dimension limited to the interval[0; 100), ar-
ranged into (uniformly distributed) clusters of 100 points each. The
clusters are box-shaped and have a diameter of 10. The query set
consists of 20000 nearest-neighbor queries, each centered on a ran-
domly selected (without replacement) data point and retrieving 20
items. In order to eliminate the effects of page utilization and clus-
tering, we built the R�-, SS- and SR-trees by bulk-loading the leaf
level, so that only their internal levels differ.

Leaves Internal Total
R� 15061 51486 66547
SR 15003 61699 76702
SS 134094 173350 307444

Table 4: Comparison of SPs of R�-, SS- and SR-trees

The measured excess coverage losses for the entire workload
are shown in Table 4. Essentially, R�- and SR-tree SPs cause about
the same amount of excess coverage loss, whereas the spheres of
the SS-tree have about 10 times as much excess coverage loss. The
reason is that the point sets in the leaves form clusters for which
the MBRs have an aspect ratio that significantly deviates from 1.
The corresponding spheres, which have a similar diameter as the
MBRs, suffer from a much higher volume. The higher excess cov-
erage loss of the SR-tree in comparison to the R�-tree is due to the
increased storage requirements of their SPs, which decreases the
fanout of internal nodes. Reducing the fanout leads to an increase
in the number of nodes, which also increases the number of traver-
sals caused by excess coverage.

The bad performance of spherical SPs in this example may well
be an artifact of bulk-loading, which produces clusters that are of-
ten skinny along one or more dimensions. If the clusters would
have a spherical shape, the result of the comparison might even fa-
vor spherical SPs. Intuitively, though, spherical SPs are less robust
regarding the shape of the clusters, because, unlike rectangles, they
have the same extent in all dimensions.

This example illustrates the value of the excess coverage met-
ric and the importance of separating individual aspects of an AM
design. Another performance study that compares sphere and rect-
angle SPs ([KS97]) comes to a conclusion contrary to ours, namely
that spheres result in smaller-diameter SPs, because three separate
elements of AM designs were evaluated together: by comparing
insertion-loaded SR- and R�-trees, the insertion and split strategies
also come into play and mask the performance effects of the SP
design.

4.3.3 Example 3: Unindexability Test

As part of constructing the optimal leaf level, we can perform a
simple test that will tell us if a workload is not indexable,10 even if
it were possible to construct an optimal tree for it. This test is not
limited to GiST-compliant AMs, but applies to all index structures
that store indexed data on fixed-size pages.

The test can be stated as follows:If in the optimal tree the ag-
gregate number of leaf access for the entire workload takes longer
than sequentially scanning the leaf level for each query, the work-
load should be considered unindexable.The aggregate number of
leaf accesses in the optimal tree is a lower bound on the total num-
ber of page accesses for the entire workload, because minimally
each query needs to access its result set. If this lower bound takes
longer to execute than a sequential scan of the leaf level for each
query, no actually constructed tree can be expected to outperform
sequential scans. Since index accesses usually result in random
accesses, a relatively small number of leaf accesses will take as
long as a sequential scan of the entire level. The exact ratio of se-
quential to random accesses depends on the disk drives and the OS
overhead, and we will assume a ratio of 14:1 as a conversion ratio
representative of current technology.11 Note that this test cannot
be reversed: failing this criterion does not necessarily mean that a
workload is indexable, because it might not be possible in practice
to come close enough to the optimal clustering and SPs to achieve
performance that will on average be better than a sequential scan.
Also note that this test does not constitute a proof of unindexabil-
ity, since in practice we can only approximate the optimal leaf-level
clustering. Rather, the test should be seen as a strong hint, which
becomes particularly compelling if one is unable to improve on the
generated clustering by hand.

To illustrate the usefulness of the test, we look at two differ-
ent kinds of workloads: nearest-neighbor queries on both uniform
and clustered synthetic point data of moderate dimensionality (16
and 32). Such datasets are very popular for performance stud-
ies of access methods for high-dimensional data such as feature
vectors ([BBK98] is one example). The datasets we use for the
analysis contain 10000 points each (experiments with 20000 and
40000 points give identical results for appropriately scaled result
set sizes). When applying the unindexability test, the average result
set size of the workload queries is important: if the average result
set contains fewer items than the number of leaf pages divided by
the conversion ratio, unindexability cannot be established. For the
16-dimensional data set, with with a target page capacity of around
40 points and 250 leaves, the threshold result set size is 18 points, or
0:18% of the data set. There is also a corresponding upper bound
for the result set size, beyond which unindexability is ensured: a
result set size in excess of the size of the data set divided by the
conversion ratio. For the preceding example, this upper threshold
is at around 7% of the data set.

Figure 3 plots the leaf accesses as a function of the result set
size for the example data sets. To establish unindexability, it is suf-
ficient for a workload to access more than 7% of the leaves. For the
uniform 16-dimensional workload, this threshold is reached when
result set sizes exceed about0:3% of the data set size, a surpris-
ingly small number. For the uniform 32-dimensional workload, the
situation is a little better, because doubling the number of dimen-
sions also doubles the storage size. Note, though, that the threshold
result set size does not double as well. In contrast to uniformly

10This test assumes that total execution time of the workload under consideration is
dominated by page access cost.
11Using Seagate Barracuda ultra-wide SCSI-2 drives, [Rie98] measures a through-

put of ca. 9MB/s under Windows NT. The average seek time and rotational delay for
this drive are 7.1ms and 4.17ms, respectively. For 8KB transfers, this results in a ratio
of 14 sequential I/Os for each random I/O. In the past years, raw drive throughput has
increased faster than seek times and rotational delay have decreased, so the conversion
ratio is likely to increase in the future.



distributed data sets, unindexability cannot be established for cor-
responding workloads involving clustered data sets, even for much
larger result set sizes.
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Figure 3: Unindexability Test: 16- and 32-dimensional uniformly
distributed and clustered data

Unindexability of uniformly-distributed high-dimensional point
data is confirmed by a recently published theoretical analysis of
nearest-neighbor queries( [SBGR99]), which notes that for this type
of data, increasing the dimension decreases the distance between
the nearset and the farthest points. This implies that a given point
is more likely to be a “nearest neighbor” for any query point in
higher dimensions than in lower dimensions. As a result, a given
point can be co-retrieved with a larger variety of points, making it
more difficult to co-locate with all co-retrieved points. Note that
our unindexability test is able to reach the same conclusion without
knowledge of the data domain or the particular indexing problem.
It can therefore be used as an automated first step in the AM design
process.

Even if unindexability cannot be established, it is still instruc-
tive to look at the ratio of the number of workload leaf accesses
in the optimal clustering to the number of pages needed to store
the result sets. This ratio, which we will call the workload-optimal
access overhead, is a measure of the inter-query “tension” in the
workload: the higher this overhead, the more extra data must be
accessed, even if the index achieves optimal clustering and is able
to construct SPs without excess coverage. For example, the opti-
mal access overhead of B-tree workloads is never worse than 2, and
that of 2-dimensional uniform point data is1:5 on average for 20-
item result sets. On the other hand, that of 16-dimensional uniform
point data is12:2 and for 32 dimensions the corresponding ratio
is 16:3. A correspondingly defined query-optimal access overhead
can be used to find “atypical” queries in a workload, for which the
overhead deviates noticeably from the average.

4.4 Implementation Performance Metrics

In addition to analysing existing tree structures, we also want to as-
sess the performance of the structure-shaping extension methods,
pickSplit()andpenalty(). Our goal is to measure how these func-
tions deteriorate the tree structure, expressed by the derioration of
the workload performance caused by splits and insertions. This
cannot be derived from the tracing information, because the work-
load only contains queries, and the effects of structure changes can-
not be inferred indirectly. Instead, we simulate splits and insertions

and observe the changes in workload performance; the splits and
insertions are not carried to avoid actually deteriorating the tree
during the evaluation process. Similar to the query and structural
metrics, the implementation metrics should reflect the performance
loss in comparison to the optimum, which we obtain by comparing
the effects of a split of a particular node or insertion of a particular
data item with the effects of an optimal split or insertion. The fol-
lowing two subsections in turn derive the split and penalty metrics.

4.4.1 Split Performance Metrics

We evaluate a split of a particular leaf node by comparing the ac-
tual split as produced by thepickSplit() extension method to the
optimal split. The optimal split minimizes the total number of page
accesses to the two post-split nodes by (a) producing perfect SPs
with no excess coverage and (b) optimally partitioning the items
on the leaf node so that non-empty accesses to the successor nodes
are also minimized. Like the optimal tree, the optimal split is a
theoretical construct, because partitioning the leaf items optimally
will generally not result in SPs that completely eliminate excess
coverage loss.

This definition of an optimal split actually ignores the effects of
page utilization or the balance of the page utilizations produced by
the split. The balance of a split clearly has an effect on the perfor-
mance of a dynamic tree structure, since a perfectly balanced split
is usually better at maintaining overall higher page utilization (in an
unbalanced split, the fuller node is more likely to be the next node
to be split again—assuming subsequent insertions are not biased
toward the less utilized node—which will result in an overall low-
ered page utilization). On the negative side, a perfectly balanced
split might have less desirable clustering properties. Unfortunately,
the effects of the degree of balance of a split cannot be quantified,
at least not in the workload context we consider. For that reason,
we leave page utilization our of our split analysis and simply stipu-
late that the optimal split should be at least as balanced as the actual
split. This way, both the utilization properties and the clustering of
the optimal split are at least as good as that of the actual split.

Excess coverage loss Assuming that the optimal split elimi-
nates excess coverage, the excess coverage loss of the actual split is
the combined excess coverage in the left and right post-split nodes.
A split is also an opportunity to improve SPs: describing data that
previously resided on a single node with two SPs allows the de-
scription to be more specific. The success metric is the ratio of the
decrease in excess coverage loss to the pre-split excess coverage
loss, which constitutes the maximal improvement. Note that this
ratio can drop below0, if the split produces SPs with more excess
coverage loss than the original SP.

Clustering loss The quality of clustering is expressed by the ra-
tio of accessed to retrieved data: the higher the ratio, the more data
a query needs to access in order to retrieve its result set and the
poorer the clustering from that query’s perspective. The amount of
data that is accessed but not retrieved expresses clustering-related
overhead, which the optimal split minimizes. The clustering loss
of a split therefore is the difference in overhead data—limited to
the left and right nodes of a split—between the actual and the op-
timal split. This is the same as the difference in the total amount
of accessed data, because the volume of retrieved data remains un-
changed by the splits. Note that the total amount of accessed data
on a node cannot go up after a split: even if each query in the
workload that visits the original node would have to visit both suc-
cessor nodes. We call the amount by which data access decreases
clustering savings. The ratio of actual clustering savings to opti-
mal clustering savings serves as a “success’ metric of the split that



expresses to what extent the split realizes the potential for improve-
ment of clustering.

4.4.2 Penalty Performance Metrics

We compare a penalty-guided insertion of a particular data item
with the corresponding optimal insertion. The optimal insertion is
defined as: (a) not adding to the excess coverage of the optimal
target leaf and (b) choosing as the target the leaf which causes the
smallest number of additional accesses in the workload. Note that
the optimal target leaf does not correspond to the one that, if the
data item were inserted and the SP actually updated, would result
in the smallest number of total additional page accesses, including
those due to excess coverage. Rather, it represents the true theoret-
ical optimum, which optimizes each performance factor indepen-
dently.

Performing a top-down, penalty-guided insertion has the disad-
vantage of accumulating the effects of multiple penalty computa-
tions. This could be avoided by scanning directly the level above
the leaves for the minimum penalty leaf. However, a top-down
traversal is more realistic and also reflects the quality of internal
SPs.

In our analysis of the penalty function, we will again ignore the
effects on page utilization. In the GiST framework, the shape of
the SP cannot take the page utilization into account—theunion()
method is not informed of it—so thatpenalty()cannot direct an
insertion based on the page utilization at the leaf level. For that
reason, we assume change in the page utilization in response to
insertions to be more or less random.

Excess coverage loss This is the number of additional excess
coverage accesses to the actual target leaf after the insertion, as-
suming that optimally no additional excess coverage would be pro-
duced. When determining pre-insertion excess coverage, those queries
that intersect with the new key need to be ignored, because they
would falsely show up as a reduction in excess coverage.

Clustering loss The change in clustering quality in response to
an insertion is reflected by the change in overhead data that the
workload queries need to access. By definition, the optimal inser-
tion minimizes additional overhead data access. The clustering loss
is the difference in overhead data access between the actual and the
optimal split.

4.4.3 Example 4: Comparison of R-tree and R�-tree Split
and Insertion Strategies

This example continues the analysis begun in Section 4.3.1. We
compare the split and insertion strategies of R- and R�-trees on a
workload similar to that used in the previous example. For the im-
plementation analysis, we use the intial bulk-loaded tree containing
20000 data items, and a correspondingly scaled back set of only
10000 queries. Using identical input trees for both the R-tree and
R�-tree analysis simplifies the comparison, because the metrics re-
flectchangesin workload performance due to splits and insertions.

Table 5 summarizes the split and insertion performance num-
bers. As expected, the R�-tree strategies are superior to those of
the R-tree. The R�-tree split produces a better clustering and is
also more effective at eliminating excess coverage than the R-tree
split; the R�-tree insertion strategy also creates better clusters and
marginally better SPs.

4.5 Other Performance Factors

In the analysis framework presented so far we completely ignored
a number of components of the performance equation (CPU time,

R�-tree R-tree
Splits

pre-split accesses 75.44
post-split accesses 40.04 44.62
pre-split exc. cov. loss 26.6
post-split exc. cov. loss 20.8 33.0

Insertions
clustering loss 1.28 1.88
excess coverage loss 8.74 8.8

Table 5: Performance numbers for R- and R�-tree split and inser-
tion strategies

buffering, and comparison with approximations). We will now ad-
dress these components individually and also comment on the use-
fulness of approximation numbers as the basis for our comparisons.

CPU Time Although CPU time can play an important role in
the overall performance of an AM, we excluded it from the analy-
sis framework. Since CPU time is not amenable to the same type
of analysis as page accesses, it is unclear how to construct a model
of optimal CPU time behavior. This is exacerbated by the fact that
the underlying GiST framework has no knowledge of the internals
of the stored data and the associated extension functions. Another
drawback of CPU time is that it depends on the quality of the im-
plementation and the particular hardware platform on which the
analysis is run. This implies that these metrics are less general than
page access-related metrics. Since CPU time can play an impor-
tant role in overall execution cost, we suggest that an AM designer
weigh it judiciously against the page access metrics of our frame-
work when deciding which aspects of the AM implementation need
to be improved.

Bu�ering Buffering has been shown to reduce the number of
I/Os for AM queries ([LL98]) and its presence—a standard feature
in all commericial DBMS—will therefore change observed work-
load performance. We will outline several ways of taking buffering
into account in the context of our analysis framework. A popular
buffering technique for tree-structured AMs is to pin the first few
levels of the tree ([LL98] mentions that in their experiments, this
technique never performed worse than LRU replacement). Modify-
ing the analysis metrics to take this into account is straightforward:
the observed page accesses to those upper levels can simply be sub-
tracted. For other buffering techniques, we can estimate an average
hit rate and reduce the performance metrics uniformly by that rate.
Either way, buffering can be dealt with separately and need not be
integrated into our framework. Note that in order to integrate a re-
alistic view of buffering into the framework, it is not sufficient to
simulate a buffer pool/replacement strategy against a serial execu-
tion of the queries. In real DBMSs, queries are typically executed
concurrently and index access is most likely interleaved.

Comparison with Approximation Numbers The performance
metrics use the optimal tree as a point of reference. Unfortunately,
in practice we can only approximate the optimal tree, which ques-
tions the usefulness of reported performance numbers. First, note
that in the optimal tree, only clustering is approximated. Page uti-
lization and SPs are stipulated to be perfect, and therefore the cor-
responding numbers accurately reflect the true performance loss.
However, since no bounds on clustering quality are known for the
heuristic algorithm we use for optimal clustering, the reported clus-
tering loss numbers are only with regard to a “good” clustering
rather than the optimum. Nevertheless, those numbers are still use-
ful information for the AM designer: if the reported clustering loss
is positiv, clustering in the actual tree cannot be optimal and should



therefore be a target for performance improvement. The number
of cases in which negative clustering loss will be reported depends
on the effective quality of the clustering algorithms. With the al-
gorithm currently in use, we have not seen a single workload for
which negative clustering loss was reported.

4.6 Implementation

During the execution of the workload,amdbcollects profiling data
for each query individually, consisting of query result sets (refer-
ences to retrieved items), visited pages, the number of bytes re-
trieved per page, etc. The burden this puts on the workload execu-
tion is proportional to the cost of the execution itself, i.e., profil-
ing a single page access or item retrieval incurs a small, constant
cost, and is negligible. For example, 2500 nearest-neighbor queries
on 5000 2-dimensional points took 12.3 seconds without profiling
and 13.06 seconds with profiling on a Dell Dimension Workstation
333MHz Intel Pentium II processor. The size of the stored profiling
data and performance metrics depends on a number of factors, such
as the size of the result sets, tree size and excess coverage present
in the tree, so it cannot be stated as a simple percentage of the
tree size. Informally speaking, the sizes are fairly moderate. For
example, the profile sizes for the workloads used in the unindex-
ability tests in Section 4.3.3 range from 1.4MB (for 5000 queries
retrieving 21 of 10000 16-dimensional points) to 40MB (for 20000
queries retrieving 120 of 40000 16-dimensional points).

Hypergraph partitioning is used to construct the optimal leaf
level used for the query and node analysis, the optimal tree used
for the implementation analysis and the optimal split used for the
pickSplit()analysis. This task is performed by the public domain
packagehMetis from the University of Minnesota ([KAKS97]).
HMetis employs heuristics to approximate the optimal partition-
ing (which itself is NP-hard). Although designed primarily with
VLSI applications in mind, we nevertheless found it to produce
high-quality partitionings. As an example, we compared an R-
tree bulk-loaded with 2-dimensional, Hilbert-value-sorted points
with the equivalenthMetis -partitioned leaf level. The latter even
slightly improved the clustering of the Hilbert-sorted leaf level (one
has to keep in mind that even a perfectly square grid partitioning
might be suboptimal for a given set of queries, because the queries
might prefer a different grid origin or a different aspect ratio). We
also found cases where thehMetis -produced clustering was in-
ferior to space-partitioned ([LLE97]), bulk-loaded leaf levels, but
the performance difference was minuscule and the two clusterings
were practically identical. Using hypergraph partitioning to arrive
at a clustering of the data items requires that each data item be cov-
ered by a sufficiently large number of queries, and furthermore that
the queries themselves are sufficiently diverse (where establishing
“sufficiently” is an area of future work). For the experimental re-
sults presented earlier, we tried to be conservative and executed
half as many queries as there were data items. The queries them-
selves were centered on uniformly selected data items so that even
coverage was ensured.

5 Related Work

5.1 Index Performance

Pagel, et al. ([PSW95]) study index clustering in a manner very
similar to that of our analysis framework, also using an idealized
goal of an optimal clustering to establish lower bounds on page
accesses. They focus on window queries over multidimensional
datasets, and apply simulated annealing to find an approximation
to the optimal clustering. In their complexity analysis, they use a
graph model for clustering that is not unlike our use of hypergraph
partitioning.

The literature is rife with performance studies of various in-
dex structures, especially for multidimensional querying. Gaede
and Günther survey over 50 different multidimensional index struc-
tures ([GG98]), most of which were introduced with a performance
study to demonstrate their efficacy. [GG98] also surveys a number
of comparative studies of multidimensional indexes, and attempts
to unify the results into a partial ordering of quality; this is compli-
cated by the variance in the workloads that the studies examine.

Most of the studies in the literature do not analyze performance
results beyond comparing the number of page accesses on a given
workload. Some studies provide analyses or intuitions of vary-
ing complexity to justify the page access measurements, often with
domain- and workload-specific arguments. As an example, [BKSS90]
explains (and visually illustrates) the efficacy of their node split
technique with arguments about the virtues of square bounding
boxes, which are not clearly translatable to other data domains, or
to workloads of queries with high aspect ratio.

There is also a body of work on describing or predicting multi-
dimensional index performance using formal models ([FK94, PSW95]
are two examples). These papers provide insight into the perfor-
mance of different indexing techniques on various synthetic work-
loads of queries and data. They often make rather strict assump-
tions about the workloads they model (e.g., many study only square
queries). These models shed light on the challenges of multidimen-
sional indexing in general, but are not necessarily helpful to a user
studying a particular workload of queries and data. Mapping from
a user’s workload to one of these models is not generally possible.

5.2 Index Visualization and Animation

To our knowledge,amdb is the first tool of its kind to allow index
developers to debug and analyze their implementations. Naturally,
its various visualization and debugging components have prece-
dents in the literature.Amdbsignificantly extends many of these
approaches, and unifies them into a single framework for index de-
velopers.

There are a number of tools for visualizing and animating search
tree data structures and algorithms; a compendium of references is
maintained on the World-Wide Web.12 Most of these tools fo-
cus on displaying tree structures, typically in a “nodes and arrows”
visualization. This is useful only for pedagogical purposes, since
such diagrams do not scale to the size of database indexes.

Brabec and Samet provide a suite of Java applets for a variety
of 2-dimensional spatial database search trees, including R-trees
and a host of quad-tree variants [BS98]. The visualizations focus
on a geographic, 2-dimensional view of thedata domain, akin to
amdb’s “node view” but spanning all nodes of one or more levels.
Users may observe SPs and data items during insertion, deletion
and splitting, with a large but fixed set of split algorithms. Some
simple domain-specific statistics are displayed per level. Again,
the focus of these tools seems to be pedagogic; the authors note
that the visualizations do not scale to the fanouts typical in most
trees. DEVise [LRB+97] is a general-purpose data exploration and
visualization system, which has been demonstrated to be effective
in helping R-tree development and debugging. As in the work of
Brabec and Samet, DEVise was used in this scenario to visualize
a 2-dimensional space containing data points and bounding rectan-
gles. DEVise itself provides no facility for animating index algo-
rithms or characterizing performance.

6 Conclusion

This paper presents an analysis framework for tree-structured bal-
anced AMs that can be used to evaluate the page access perfor-

12http://www.cs.hope.edu/ alganim/ccaa/ccaa.html



mance of user-defined query workloads. The framework is inde-
pendent of the particular type of data to index or the nature of
the queries. It only requires as input the data and tracing infor-
mation gathered during query execution. The performance metrics
it produces reflect actual performance loss, obtained by compar-
ing the observed performance against that of an assumed optimal
tree structure. The loss numbers are further refined to reflect the
three fundamental structural performance factors: clustering, page
utilization and the subtree predicates.

In amdb, the framework is combined with tree and data visual-
ization and animation functionality to create a powerful design tool
for access methods. The analysis process begins with the inspection
of performance metrics to locate sources of deficiencies. Unlike
data-dependent measures, these metrics objectively reflect access
method performance. The visualization and animation functional-
ity then enable users to investigate those sources of performance
loss and gain an understanding of how semantic properties affect
performance. Based on this understanding, the designer incorpo-
rates improvements into the design and repeats the analysis process
to evaluate their efficacy.

The AM design toolamdb incorporates the analysis framework
as well as other features that support the design of GiST-compliant
AMs. Amdb lets the user single-step through individual index op-
erations and set breakpoints on events of interest. The visualization
features allow navigation and inspection of the tree structure and
the data contained in tree nodes. The latter is user-extensible, so
that the visualization is not tied to a fixed set of data types. To
facilitate the analysis process,amdb gathers the required tracing
information during workload execution and displays the computed
performance metrics both visually and textually.

There are several questions we want to investigate in more de-
tail in the future. Section 4 mentions that for the hypergraph par-
titioning to produce “good” clusters—those that reflect semantic
proximity of the data items—the queries in the workload must not
only be representative, but also cover the entire data set to a suf-
ficient degree. What the required number and shape of queries in
a workload should be needs to be established more clearly. We
also plan on extending the analysis framework to other, more ex-
otic tree-structured access methods (such as non-balanced trees or
key-transforming trees, such as R+-trees) and hash-based access
methods. The main challenge will be the construction of optimal
structures for these AMs. Furthermore, we want to add function-
ality to amdb that allows it to compute user-defined metrics for
queries, nodes and the split and insertion strategies. The metrics
would express properties of the data and their organization within
the tree that the designer believes to affect performance (for exam-
ple, “small minimum-bounding rectangle overlap in R-trees results
in good performance”). Comparing the user-defined metrics with
those produced by our framework lets the designer verify the accu-
racy of his intuition and forces him to revise it, if necessary.
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