Consistency Analysis in Bloom: a CALM and Collected
Approach

Peter Alvaro, Neil Conway, Joseph M. Hellerstein, William R. Marczak

{palvaro, nrc, hellerstein, wrm}@cs.berkeley.edu
University of California, Berkeley

ABSTRACT

Distributed programming has become a topic of widespread interest,
and many programmers now wrestle with tradeoffs between data
consistency, availability and latency. Distributed transactions are
often rejected as an undesirable tradeoft today, but in the absence
of transactions there are few concrete principles or tools to help
programmers design and verify the correctness of their applications.

We address this situation with the CALM principle, which con-
nects the idea of distributed consistency to program tests for logical
monotonicity. We then introduce Bloom, a distributed programming
language that is amenable to high-level consistency analysis and
encourages order-insensitive programming. We present a prototype
implementation of Bloom as a domain-specific language in Ruby.
We also propose a program analysis technique that identifies points
of order in Bloom programs: code locations where programmers
may need to inject coordination logic to ensure consistency. We
illustrate these ideas with two case studies: a simple key-value store
and a distributed shopping cart service.

1. INTRODUCTION

Until fairly recently, distributed programming was the domain of
a small group of experts. But recent technology trends have brought
distributed programming to the mainstream of open source and
commercial software. The challenges of distribution—concurrency
and asynchrony, performance variability, and partial failure—often
translate into tricky data management challenges regarding task
coordination and data consistency. Given the growing need to wres-
tle with these challenges, there is increasing pressure on the data
management community to help find solutions to the difficulty of
distributed programming.

There are two main bodies of work to guide programmers through
these issues. The first is the “ACID” foundation of distributed trans-
actions, grounded in the theory of serializable read/write schedules
and consensus protocols like Paxos and Two-Phase Commit. These
techniques provide strong consistency guarantees, and can help
shield programmers from much of the complexity of distributed pro-
gramming. However, there is a widespread belief that the costs of
these mechanisms are too high in many important scenarios where

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2011.
5™ Biennial Conference on Innovative Data Systems Research (CIDR ’11)
January 9-12, 2011, Asilomar, California, USA.

availability and/or low-latency response is critical. As a result, there
is a great deal of interest in building distributed software that avoids
using these mechanisms.

The second point of reference is a long tradition of research and
system development that uses application-specific reasoning to tol-
erate “loose” consistency arising from flexible ordering of reads,
writes and messages (e.g., [6, 12, 13, 18, 24]). This approach en-
ables machines to continue operating in the face of temporary delays,
message reordering, and component failures. The challenge with
this design style is to ensure that the resulting software tolerates the
inconsistencies in a meaningful way, producing acceptable results
in all cases. Although there is a body of wisdom and best practices
that informs this approach, there are few concrete software devel-
opment tools that codify these ideas. Hence it is typically unclear
what guarantees are provided by systems built in this style, and the
resulting code is hard to test and hard to trust.

Merging the best of these traditions, it would be ideal to have a
robust theory and practical tools to help programmers reason about
and manage high-level program properties in the face of loosely
coordinated consistency. In this paper we demonstrate significant
progress in this direction. Our approach is based on the use of a
declarative language and program analysis techniques that enable
both static analyses and runtime annotations of consistency. We
begin by introducing the CALM principle, which connects the theory
of non-monotonic logic to the need for distributed coordination to
achieve consistency. We present an initial version of our Bloom
declarative language, and translate concepts of monotonicity into a
practical program analysis technique that detects potential consis-
tency anomalies in distributed Bloom programs. We then show how
such anomalies can be handled by a programmer during the devel-
opment process, either by introducing coordination mechanisms to
ensure consistency or by applying program rewrites that can track
inconsistency “taint” as it propagates through code. To illustrate the
Bloom language and the utility of our analysis, we present two case
studies: a replicated key-value store and a fault-tolerant shopping
cart service.

2. CONSISTENCY AND LOGICAL
MONOTONICITY (CALM)

In this section we present the connection between distributed
consistency and logical monotonicity. This discussion informs the
language and analysis tools we develop in subsequent sections.

A key problem in distributed programming is reasoning about the
consistent behavior of a program in the face of temporal nondeter-
minism: the delay and re-ordering of messages and data across nodes.
Because delays can be unbounded, analysis typically focuses on
“eventual consistency” after all messages have been delivered [26]. A
sufficient condition for eventual consistency is order independence:

the independence of program execution from temporal nondetermin-
ism.

Order independence is a key attribute of declarative languages
based on sets, which has led most notably to the success of paral-
lel databases and web search infrastructure. But even set-oriented
languages can require a degree of ordering in their execution if they
are sufficiently expressive. The theory of relational databases and
logic programming provides a framework to reason about these
issues. Monotonic programs—e.g., programs expressible via selec-
tion, projection and join (even with recursion)—can be implemented
by streaming algorithms that incrementally produce output elements
as they receive input elements. The final order or contents of the
input will never cause any earlier output to be “revoked” once it has
been generated.! Non-monotonic programs—e.g., those that contain
aggregation or negation operations—can only be implemented cor-
rectly via blocking algorithms that do not produce any output until
they have received all tuples in logical partitions of an input set. For
example, aggregation queries need to receive entire “groups” before
producing aggregates, which in general requires receiving the entire
input set.

The implications for distributed programming are clear. Mono-
tonic programs are easy to distribute: they can be implemented via
streaming set-based algorithms that produce actionable outputs to
consumers while tolerating message reordering and delay from pro-
ducers. By contrast, even simple non-monotonic tasks like counting
are difficult in distributed systems. As a mnemonic, we say that
counting requires waiting in a distributed system: in general, a com-
plete count of distributed data must wait for all its inputs, including
stragglers, before producing the correct output.

“Waiting” is specified in a program via coordination logic: code
that (a) computes and transmits auxiliary information from produc-
ers to enable the recipient to determine when a set has completely
arrived across the network, and (b) postpones production of results
for consumers until after that determination is made. Typical co-
ordination mechanisms include sequence numbers, counters, and
consensus protocols like Paxos or Two-Phase Commit.

Interestingly, these coordination mechanisms themselves typically
involve counting. For example, Paxos requires counting messages to
establish that a majority of the members have agreed to a proposal;
Two-Phase Commit requires counting to establish that all members
have agreed. Hence we also say that waiting requires counting, the
converse of our earlier mnemonic.

Our observations about waiting and counting illustrate the crux
of what we call the CALM principle: the tight relationship between
Consistency And Logical Monotonicity. Monotonic programs guar-
antee eventual consistency under any interleaving of delivery and
computation. By contrast, non-monotonicity—the property that
adding an element to an input set may revoke a previously valid
element of an output set—requires coordination schemes that “wait”
until inputs can be guaranteed to be complete.

We typically wish to minimize the use of coordination, because
of well-known concerns about latency and availability in the face
of message delays and network partitions. We can use the CALM
principle to develop checks for distributed consistency in logic
languages, where conservative tests for monotonicity are well under-
stood. A simple syntactic check is often sufficient: if the program
does not contain any of the symbols in the language that correspond
to non-monotonic operators (e.g., NOT IN or aggregate symbols),
then it is monotonic and can be implemented without coordination,
regardless of any read-write dataflow dependencies in the code. As

'Formally, in a monotonic logic program, any true statement contin-
ues to be true as new axioms—including new facts—are added to
the program.

students of the logic programming literature will recognize [19, 20,
21], these conservative checks can be refined further to consider
semantics of predicates in the language. For example, the expression
“MIN(x) < 100”is monotonic despite containing an aggregate, by
virtue of the semantics of MIN and <: once a subset S satisfies this
test, any superset of S will also satisfy it. Many refinements along
these lines exist, increasing the ability of program analyses to verify
monotonicity.

In cases where an analysis cannot guarantee monotonicity of a
whole program, it can instead provide a conservative assessment
of the points in the program where coordination may be required
to ensure consistency. For example, a shallow syntactic analysis
could flag all non-monotonic predicates in a program (e.g., NOT
IN tests or predicates with aggregate values as input). The loci
produced by a non-monotonicity analysis are the program’s points
of order. A program with non-monotonicity can be made consistent
by including coordination logic at its points of order.

The reader may observe that because “waiting requires counting,’
adding a code module with coordination logic actually increases
the number of syntactic points of order in a program. To avoid this
problem, the coordination module itself must be verified for order
independence, either manually or via a refined monotonicity test
during analysis. When the verification is done by hand, annotations
can inform the analysis tool to skip the module in its analysis, and
hence avoid attempts to coordinate the coordination logic.

Because analyses based on the CALM principle operate with
information about program semantics, they can avoid coordination
logic in cases where traditional read/write analysis would require
it. Perhaps more importantly, as we will see in our discussion of
shopping carts (Section 5), logic languages and the analysis of points
of order can help programmers redesign code to reduce coordination
requirements.

s

3. BUD: BLOOM UNDER DEVELOPMENT

Bloom is based on the conjecture that many of the fundamental
problems with parallel programming come from a legacy of order-
ing assumptions implicit in classical von Neumann architectures.
In the von Neumann model, state is captured in an ordered array
of addresses, and computation is expressed via an ordered list of
instructions. Traditional imperative programming grew out of these
pervasive assumptions about order. Therefore, it is no surprise
that popular imperative languages are a bad match to parallel and
distributed platforms, which make few guarantees about order of
execution and communication. By contrast, set-oriented approaches
like SQL and batch dataflow approaches like MapReduce translate
better to architectures with loose control over ordering.

Bloom is designed in the tradition of programming styles that
are “disorderly” by nature. State is captured in unordered sets.
Computation is expressed in logic: an unordered set of declarative
rules, each consisting of an unordered conjunction of predicates.
As we discuss below, mechanisms for imposing order are available
when needed, but the programmer is provided with tools to evaluate
the need for these mechanisms as special-case behaviors, rather than
a default model. The result is code that runs naturally on distributed
machines with a minimum of coordination overhead.

Unlike earlier efforts such as Prolog, active database languages,
and our own Overlog language for distributed systems [16], Bloom
is purely declarative: the syntax of a program contains the full spec-
ification of its semantics, and there is no need for the programmer
to understand or reason about the behavior of the evaluation engine.
Bloom is based on a formal temporal logic called Dedalus [3].

The prototype version of Bloom we describe here is embodied in
an implementation we call Bud (Bloom Under Development). Bud

Type Behavior
table A collection whose contents persist across timesteps.

scratch A collection whose contents persist for only one timestep.

channel | A scratch collection with one attribute designated as the
location specifier. Tuples “appear” at the network address
stored in their location specifier.

periodic | A scratch collection of key-value pairs (id, timestamp).

The definition of a periodic collection is parameterized by
a period in seconds; the runtime system arranges (in a
best-effort manner) for tuples to “appear” in this collection
approximately every period seconds, with a unique id
and the current wall-clock time.

interface | A scratch collection specially designated as an interface
point between modules.

Op | Valid lhs types
= scratch

Meaning

rhs defines the contents of the lhs for the cur-
rent timestep. lhs must not appear in lhs of any
other statement.

lhs includes the content of the rhs in the current
timestep.

lhs will include the content of the rhs in the
next timestep.

tuples in the rhs will be absent from the lhs at
the start of the next timestep.

tuples in the rhs will appear in the (remote) lhs
at some non-deterministic future time.

<= | table, scratch
<+ | table, scratch
<- | table

<~ | channel

Figure 1: Bloom collection types and operators.

is a domain-specific subset of the popular Ruby scripting language
and is evaluated by a stock Ruby interpreter via a Bud Ruby class.
Compared to other logic languages, we feel it has a familiar and
programmer-friendly flavor, and we believe that its learning curve
will be relatively flat for programmers familiar with modern script-
ing languages. Bud uses a Ruby-flavored syntax, but this is not
fundamental; we have experimented with analogous Bloom embed-
dings in other languages including Python, Erlang and Scala, and
they look similar in structure.

3.1 Bloom Basics

Bloom programs are bundles of declarative statements about
collections of “facts” or tuples, similar to SQL views or Datalog
rules. A statement can only reference data that is local to a node.
Bloom statements are defined with respect to atomic “timesteps,”
which can be implemented via successive rounds of evaluation. In
each timestep, certain “ground facts” exist in collections due to
persistence or the arrival of messages from outside agents (e.g., the
network or system clock). The statements in a Bloom program
specify the derivation of additional facts, which can be declared to
exist either in the current timestep, at the very next timestep, or at
some non-deterministic time in the future at a remote node.

A Bloom program also specifies the way that facts persist (or do
not persist) across consecutive timesteps on a single node. Bloom
is a side-effect free language with no “mutable state”: if a fact is
defined at a given timestep, its existence at that timestep cannot be
refuted by any expression in the language. This technicality is key
to avoiding many of the complexities involved in reasoning about
earlier “stateful” rule languages. The paper on Dedalus discusses
these points in more detail [3].

3.2 State in Bloom

Bloom programs manage state using five collection types de-
scribed in the top of Figure 1. A collection is defined with a
relational-style schema of named columns, including an optional
subset of those columns that forms a primary key. Line 15 in Fig-

0 |module DeliveryProtocol

1 def state

2 interface input, :pipe_in,

3 [’dst’, ’src’, ’'ident’], [’payload’]

4 interface output, :pipe_sent,

5 [’dst’, ’src’, ’ident’], [’payload’]

6 end

7 |end

9 |module ReliableDelivery

10 include DeliveryProtocol

12 def state

13 channel :data_chan, [’@dst’, ’src’, ’'ident’], [’payload’]
14 channel :ack_chan, [’@src’, ’'dst’, ’ident’]

15 table :send_buf, [’dst’, ’src’, ’ident’], [’payload’]
16 periodic :timer, 10

17 end

19 declare
20 def send_packet
21 send_buf <= pipe_in
22 data_chan <~ pipe_in
23 end
25 declare
26 def timer_retry
27 data_chan <~ join([send_buf, timer]).map{|p, t| p}
28 end

30 declare

31 def send_ack

32 ack_chan <~ data_chan.map{|p| [p.src, p.dst, p.ident]}
33 end

35 declare

36 def recv_ack

37 got_ack = join [ack_chan, send_buf],

38 [ack_chan.ident, send_buf.ident]

39 pipe_sent <= got_ack.map{|a, sb| sb}
40 send_buf <- got_ack.map{|a, sb| sb}
41 end
42 | end

Figure 2: Reliable unicast messaging in Bloom.

ure 2 defines a collection named send_buf with four columns dst,
src, ident, and payload; the primary key is (dst, src, ident).
The type system for columns is taken from Ruby, so it is possible to
have a column based on any Ruby class the programmer cares to de-
fine or import (including nested Bud collections). In Bud, a tuple in
a collection is simply a Ruby array containing as many elements as
the columns of the collection’s schema. As in other object-relational
ADT schemes like Postgres [23], column values can be manipulated
using their own (non-destructive) methods. Bloom also provides for
nesting and unnesting of collections using standard Ruby constructs
like reduce and flat_map. Note that collections in Bloom provide
set semantics—collections do not contain duplicates.

The persistence of a tuple is determined by the type of the col-
lection that contains the tuple. scratch collections are useful for
transient data like intermediate results and “macro” definitions that
enable code reuse. The contents of a table persist across consecutive
timesteps (until that persistence is interrupted via a Bloom statement
containing the <- operator described below). Although there are
precise declarative semantics for this persistence [3], it is convenient
to think operationally as follows: scratch collections are “emptied”
before each timestep begins, tables are “stored” collections (similar
to tables in SQL), and the <- operator represents batch deletion
before the beginning of the next timestep.

The facts of the “real world,” including network messages and the
passage of wall-clock time, are captured via channel and periodic
collections; these are scratch collections whose contents “appear” at
non-deterministic timesteps. The paper on Dedalus delves deeper

Method Description

bc.map Takes a code block and returns the collection formed
by applying the code block to each element of bc.

bc.flat_map | Equivalent to map, except that any nested collections
in the result are flattened.

bc.reduce Takes a memo variable and code block, and applies the
block to memo and each element of bc in turn.

bc.empty? Returns true if be is empty.

bc.include? | Takes an object and returns true if that object is equal

to any element of bc.

bc.group Takes a list of grouping columns, a list of aggregate
expressions and a code block. For each group, com-
putes the aggregates and then applies the code block
to the group/aggregation result.

join, Methods of the Bud class to compute join variants over

leftjoin, BudCollections. join, leftjoin and outerjoin

outerjoin, take an array of collections to join, as well as a

natjoin variable-length list of arrays of join conditions. The

natural join natjoin takes only the array of BudCol-
lection objects as an argument.

Figure 3: Commonly used methods of the BudCollection class.

into the logical semantics of this non-determinism [3]. Note that
failure of nodes or communication is captured here: it can be thought
of as the repeated “non-appearance” of a fact at every timestep.
Again, it is convenient to think operationally as follows: the facts
in a channel are sent to a remote node via an unreliable transport
protocol like UDP; the address of the remote node is indicated by
a distinguished column in the channel called the location specifier
(denoted by the symbol @). The definition of a periodic collection
instructs the runtime to “inject” facts at regular wall-clock intervals
to “drive” further derivations. Lines 13 and 16 in Figure 2 contain
examples of channel and periodic definitions, respectively.

The final type of collection is an interface, which specifies a
connection point between Bloom modules. Interfaces are described
in Section 3.4.

3.3 Bloom Statements

Bloom statements are declarative relational expressions that de-
fine the contents of derived collections. They can be viewed opera-
tionally as specifying the insertion or accumulation of expression
results into collections. The syntax is:

<collection-variable> <op> <collection-expression>
The bottom of Figure 1 describes the five operators that can be used
to define the contents of the left-hand side (lhs) in terms of the
right-hand side (rhs). As in Datalog, the lhs of a statement may
be referenced recursively in its rhs, or recursion can be defined
mutually across statements.

In the Bud prototype, both the lhs and rhs are instances of (a de-
scendant of) a Ruby class called BudCollection, which supports
several useful methods for manipulating collections (Figure 3).?
The rhs of a statement typically invokes BudCollection methods
on one or more collection objects to produce a derived collection.
The most commonly used method is map, which applies a scalar
operation to every tuple in a collection; this can be used to imple-
ment relational selection and projection. For example, line 32 of
Figure 2 projects the data_chan collection to its src, dst, and
ident fields. Multiway joins are specified using the join method,
which takes a list of input collections and an optional list of join
conditions. Lines 37-38 of Figure 2 show a join between ack_chan
and send_buf. Syntax sugar for natural joins and outer joins is also
provided. BudCollection also defines a group method similar

ZNote that many of these methods are provided by the standard
Ruby Enumerable module, which BudCollection imports.

to SQL’s GROUP BY, supporting the standard SQL aggregates; for
example, lines 15-17 of Figure 14 compute the count of unique
reqid values for every combination of values for session, item
and action.

Bloom statements are specified within method definitions that
are flagged with the declare keyword (e.g., line 20 of Figure 2).
The semantics of a Bloom program are defined by the union of its
declare methods; the order of statements is immaterial. Dividing
statements into multiple methods improves the readability of the
program and also allows the use of Ruby’s method overriding and
inheritance features: because a Bloom class is just a stylized Ruby
class, any of the methods in a Bloom class can be overridden by a
subclass. We expand upon this idea next.

3.4 Modules and Interfaces

Conventional wisdom in certain quarters says that rule-based lan-
guages are untenable for large programs that evolve over time, since
the interactions among rules become too difficult to understand.
Bloom addresses this concern in two different ways. First, unlike
many prior rule-based languages, Bloom is purely declarative; this
avoids forcing the programmer to reason about the interaction be-
tween declarative statements and imperative constructs. Second,
Bloom borrows object-oriented features from Ruby to enable pro-
grams to be broken into small modules and to allow modules to
interact with one another by exposing narrow interfaces. This aids
program comprehension, because it reduces the amount of code a
programmer needs to read to understand the behavior of a module.

A Bloom module is a bundle of collections and statements. Like
modules in Ruby, a Bloom module can “mixin” one or more other
modules via the include statement; mixing-in a module imports
its collections and statements. A common pattern is to specity an
abstract interface in one module and then use the mixin feature
to specify several concrete realizations in separate modules. To
support this idiom, Bloom provides a special type of collection
called an interface. An input interface defines a place where a
module accepts stimuli from the outside world (e.g., other Bloom
modules). Typically, inserting a fact into an input interface results
in a corresponding fact appearing (perhaps after a delay) in one of
the module’s output interfaces.

For example, the DeliveryProtocol module in Figure 2 defines
an abstract interface for sending messages to a remote address.
Clients use an implementation of this interface by inserting a fact
into pipe_in; this represents a new message to be delivered. A
corresponding fact will eventually appear in the pipe_sent out-
put interface; this indicates that the delivery operation has been
completed. The ReliableDelivery module of Figure 2 is one possi-
ble implementation of the abstract DeliveryProtocol interface—it
uses a buffer and acknowledgment messages to delay emitting a
pipe_sent fact until the corresponding message has been acknowl-
edged by the remote node. Figure 18 in Appendix A contains a
different implementation of the abstract DeliveryProtocol. A client
program that is indifferent to the details of message delivery can
simply interact with the abstract DeliveryProtocol; the particular
implementation of this protocol can be chosen independently.

A common requirement is for one module to “override” some of
the statements in a module that it mixes in. For example, an Ordered-
Delivery module might want to reuse the functionality provided by
ReliableDelivery but prevent a message with sequence number x
from being delivered until all messages with sequence numbers < x
have been acknowledged. To support this pattern, Bloom allows an
interface defined in another module to be overridden simply by re-
declaring it. Internally, both of these redundantly-named interfaces
exist in the namespace of the module that declared them, but they

only need to be referenced by a fully qualified name if their use
is otherwise ambiguous. If an input interface appears in the lhs of
a statement in a module that declared the interface, it is rewritten
to reference the interface with the same name in a mixed-in class,
because a module cannot insert into its own input interface. The
same is the case for output interfaces appearing in the rhs of state-
ments. This feature allows programmers to reuse existing modules
and interpose additional logic in a style reminiscent of superclass
invocation in object-oriented languages. We provide an example of
interface overriding in Section 4.3.

3.5 Bud Implementation

Bud is intended to be a lightweight rapid prototype of Bloom: a
first effort at embodying the Dedalus logic in a syntax familiar to
programmers. Bud consists of less than 2400 lines of Ruby code,
developed as a part-time effort over the course of a semester.

A Bud program is just a Ruby class definition. To make it opera-
tional, a small amount of imperative Ruby code is needed to create
an instance of the class and invoke the Bud run method. This imper-
ative code can then be launched on as many nodes as desired (e.g.,
via the popular Capistrano package for Ruby deployments). As an
alternative to the run method, the Bud class also provides a tick
method that can be used to force evaluation of a single timestep; this
is useful for debugging Bloom code with standard Ruby debugging
tools or for executing a Bud program that is intended as a “one-shot”
query.

Because Bud is pure Ruby, some programmers may choose to
embed it as a domain-specific language (DSL) within traditional im-
perative Ruby code. In fact, nothing prevents a subclass of Bud from
having both Bloom code in declare methods and imperative code
in traditional Ruby methods. This is a fairly common usage model
for many DSLs. A mixture of declarative Bloom methods and imper-
ative Ruby allows the full range of existing Ruby code—including
the extensive RubyGems repositories—to be combined with check-
able distributed Bloom programs. The analyses we describe in the
remaining sections still apply in these cases; the imperative Ruby
code interacts with the Bloom logic in the same way as any external
agent sending and receiving network messages.

4. CASE STUDY: KEY-VALUE STORE

In this section, we present two variants of a key-value store (KVS)
implemented using Bloom.> We begin with an abstract protocol that
any key-value store will satisfy, and then provide both single-node
and replicated implementations of this protocol. We then introduce a
graphical visualization of the dataflow in a Bloom program and use
this visualization to reason about the points of order in our programs:
places where additional coordination may be required to guarantee
consistent results.

4.1 Abstract Key-Value Store Protocol

Figure 4 specifies a protocol for interacting with an abstract key-
value store. The protocol comprises two input interfaces (repre-
senting attempts to insert and fetch items from the store) and a
single output interface (which represents the outcome of a fetch
operation). To use an implementation of this protocol, a Bloom
program can store key-value pairs by inserting facts into kvput. To
retrieve the value associated with a key, the client program inserts
a fact into kvget and looks for a corresponding response tuple in
kvget_response. For both put and get operations, the client must
supply a unique request identifier (reqid) to differentiate tuples in

3The complete source code for both of the case studies presented in
this paper can be found athttp: //boom.cs.berkeley.edu/cidrll/.

0 | module KVSProtocol

1 def state

2 interface input, :kvput,

3 [’client’, ’key’, ’reqid’], [’value’]

4 interface input, :kvget, [’reqid’], [’key’]
5 interface output, :kvget_response,

6 ['reqid’], [’key’, ’value’]

7 end

8 | end

Figure 4: Abstract key-value store protocol.

0 | module BasickVS

1 include KVSProtocol

3 def state

4 table :kvstate, [’'key’], [’value’]

5 end

7 declare

8 def do_put

9 kvstate <+ kvput.map{|p| [p.key, p.value]l}

10 prev = join [kvstate, kvput], [kvstate.key, kvput.key]
11 kvstate <- prev.map{|b, p| b}

12 end

14 declare

15 def do_get

16 getj = join [kvget, kvstate], [kvget.key, kvstate.key]
17 kvget_response <= getj.map do |g, t]|

18 [g.reqid, t.key, t.value]

19 end

20 end

21 |end

Figure 5: Single-node key-value store implementation.

the event of multiple concurrent requests.

A module which uses a key-value store but is indifferent to the
specifics of the implementation may simply mixin the abstract pro-
tocol and postpone committing to a particular implementation until
runtime. As we will see shortly, an implementation of the KV SPro-
tocol is a collection of Bloom statements that read tuples from the
protocol’s input interfaces and send results to the output interface.

4.2 Single-Node Key-Value Store

Figure 5 contains a single-node implementation of the abstract
key-value store protocol. Key-value pairs are stored in a persistent
table called kvstate (line 4). When a kvput tuple is received, its
key-value pair is stored in kvstate at the next timestep (line 9).
If the given key already exists in kvstate, we want to replace the
key’s old value. This is done by joining kvput against the current
version of kvstate (line 10). If a matching tuple is found, the old
key-value pair is removed from kvstate at the beginning of the next
timestep (line 11). Note that we also insert the new key-value pair
into kvstate in the next timestep (line 9); hence, an overwriting
update is implemented as an atomic deletion and insertion.

4.3 Replicated Key-Value Store

Next, we extend the basic key-value store implementation to sup-
port replication (Figure 6). To communicate between replicas, we
use a simple multicast library implemented in Bloom; the source
code for this library can be found in Appendix A. To send a mul-
ticast, a program inserts a fact into send_mcast; a corresponding
fact appears in mcast_done when the multicast is complete. The
multicast library also exports the membership of the multicast group
in a table called members.

Our replicated key-value store is implemented on top of the single-
node key-value store described in the previous section. When a new
key is inserted by a client, we multicast the insertion to the other

® | module ReplicatedKVS

1 include BasicKVS

2 include MulticastProtocol

4 def state

5 interface input, :kvput,

6 [’client’, ’key’, ’reqid’], [’value’]
7 end

9 declare

10 def replicate

11 send_mcast <= kvput.map do |Kk|

12 unless members.include? [k.client]

13 [k.reqid, [@local_addr, k.key, k.reqid, k.value]]
14 end

15 end

16 end

18 declare

19 def apply_put
20 kvput <= mcast_done.map{|m| m.payload}
22 kvput <= pipe_chan.map do |d|
23 if d.payload.fetch(l) != @local_addr
24 d.payload
25 end
26 end
27 end
28 |end

Figure 6: Replicated key-value store implementation.

® | class RealizedReplicatedKVS < Bud

1 include ReplicatedKVS

2 include SimpleMulticast

3 include BestEffortDelivery

4 |end

6 | kvs = RealizedReplicatedKVS.new("localhost", 12345)
7 | kvs.run

Figure 7: A fully specified key-value store program.

replicas (lines 11-15). To avoid repeated multicasts of the same
inserted key, we avoid multicasting updates we receive from another
replica (line 12). We apply an update to our local kvstate table
in two cases: (1) if a multicast succeeds at the node that originated
it (line 20) (2) whenever a multicast is received by a peer replica
(lines 22-26). Note that @Llocal_addr is a Ruby instance variable
defined by Bud that contains the network address of the current Bud
instance.

In Figure 6 ReplicatedKVS wants to “intercept” kvput events
from clients, and only apply them to the underlying BasicKVS
module when certain conditions are met. To achieve this, we “over-
ride” the declaration of the kvput input interface as discussed in
Section 3.4 (lines 5-6). In ReplicatedKVS, references to kvput ap-
pearing in the lhs of statements are resolved to the kvput provided
by BasicKVS, while references in the rhs of statements resolve to
the local kvput. As described in Section 3.4, this is unambiguous
because a module cannot insert into its own input or read from its
own output interfaces.

Figure 7 combines ReplicatedKVS with a concrete implementa-
tion of MulticastProtocol and DeliveryProtocol. The resulting class,
a subclass of Bud, may be instantiated and run as shown in lines 6
and 7.

4.4 Predicate Dependency Graphs

Now that we have introduced two concrete implementations of the
abstract key-value store protocol, we turn to analyzing the properties
of these programs. We begin by describing the graphical dataflow
representation used by our analysis. In the following section, we

Scratch collection

D
]

G
Qoo

& O
&

Figure 8: Visual analysis legend.

Persistent table
A appears in RHS, Bin LHS of arule R

Ris a temporal rule (uses <+ or <-)

R is non-monotonic
(uses aggregation, negation, or deletion)

Bis a channel

A, B, C are mutually recursive via a
non-monotonic edge

Dataflow source and sink (respectively)

Indicates that dataflow is underspecified

discuss the dataflow graphs generated for the two key-value store
implementations.

A Bloom program may be viewed as a dataflow graph with exter-
nal input interfaces as sources, external output interfaces as sinks,
collections as internal nodes, and rules as edges. This graph repre-
sents the dependencies between the collections in a program and
is generated automatically by the Bud interpreter. Figure 8 con-
tains a list of the different symbols and annotations in the graphical
visualization; we provide a brief summary below.

Each node in the graph is either a collection or a cluster of collec-
tions; tables are shown as rectangles, ephemeral collections (scratch,
periodic and channel) are depicted as ovals, and clusters (described
below) as octagons. A directed edge from node A to node B indi-
cates that B appears in the lhs of a Bloom statement that references
A in the rhs, either directly or through a join expression. An edge is
annotated based on the operator symbol in the statement. If the state-
ment uses the <+ or <- operators, the edge is marked with “+/-".
This indicates that facts traversing the edge “spend” a timestep to
move from the rhs to the lhs. Similarly, if the statement uses the <~
operator, the edge is a dashed line—this indicates that facts from
the rhs appear at the lhs at a non-deterministic future time. If the
statement involves a non-monotonic operation (aggregation, nega-
tion, or deletion via the <- operator), then the edge is marked with a
white circle. To make the visualizations more readable, any strongly
connected component marked with both a circle and a +/— edge is
collapsed into an octagonal “temporal cluster,” which can be viewed
abstractly as a single, non-monotonic node in the dataflow. Any
non-monotonic edge in the graph is a point of order, as are all edges
incident to a temporal cluster, including their implicit self-edge.

4.5 Analysis

Figure 9 presents a visual representation of the abstract key-value
store protocol. Naturally, the abstract protocol does not specify a
connection between the input and output events; this is indicated
in the diagram by the red diamond labeled with “??”, denoting an
underspecified dataflow. A concrete realization of the key-value

Figure 9: Visualization of the abstract key-value store protocol.

kvget_response

Figure 10: Visualization of the single-node key-value store.

store protocol must, at minimum, supply a dataflow that connects
an input interface to an output interface.

Figure 10 shows the visual analysis of the single-node KVS im-
plementation, which supplies a concrete dataflow for the unspecified
component in the previous graph. kvstate and prev are collapsed
into a red octagon because they are part of a strongly connected
component in the graph with both negative and temporal edges. Any
data flowing from kvput to the sink must cross at least one non-
monotonic point of order (at ingress to the octagon) and possibly
an arbitrary number of them (by traversing the dependency cycle
collapsed into the octagon), and any path from kvget to the sink
must join state potentially affected by non-monotonicity (because
kvstate is used to derive kvget_response).

Reviewing the code in Figure 5, we see the source of the non-
monotonicity. The contents of kvstate may be defined via a “de-
structive” update that combines the previous state and the current
input from kvput (lines 9-11 of Figure 5). Hence the contents of
kvstate may depend on the order of arrival of kvput tuples.

5. CASE STUDY: SHOPPING CART

In this section, we develop two different designs for a distributed
shopping-cart service in Bloom. In a shopping cart system, clients
add and remove items from their shopping cart. To provide fault
tolerance and persistence, the content of the cart is stored by a

0 |module CartProtocol

1 def state

2 channel :action_msg,

3 [’@server’, ’client’, ’session’, ’reqid’],

4 [’item’, ’action’]

5 channel :checkout_msg,

6 [’@server’, ’client’, ’'session’, ’reqid’]

7 channel :response_msg,

8 [’@client’, ’server’, ’session’], [’contents’]
9 end

10 | end

12 | module CartClientProtocol

13 def state

14 interface input, :client_action,

15 [’server’, ’session’, ’'reqid’], [’item’, ’action’]
16 interface input, :client_checkout,

17 [’server’, ’session’, ’'reqid’]

18 interface output, :client_response,

19 [’client’, ’server’, ’session’], [’contents’]
20 end

21 |end

Figure 11: Abstract shopping cart protocol.

0 |module CartClient

1 include CartProtocol

2 include CartClientProtocol

4 declare

5 def client

6 action_msg <~ client_action.map do |al

7 [a.server, @local_addr, a.session, a.reqid, a.item, a.action]
8 end

9 checkout_msg <~ client_checkout.map do |al

10 [a.server, @local_addr, a.session, a.reqid]
11 end

12 client_response <= response_msg

13 end

14 | end

Figure 12: Shopping cart client implementation.

collection of server replicas. Once a client has finished shopping,
they perform a “checkout” request, which returns the final state of
their cart.

After presenting the abstract shopping cart protocol and a sim-
ple client program, we implement a “destructive,” state-modifying
shopping cart service that uses the key-value store introduced in
Section 4. Second, we illustrate a “disorderly” cart that accumulates
updates in a set-wise fashion, summarizing updates at checkout
into a final result. These two different designs illustrate our analy-
sis tools and the way they inform design decisions for distributed
programming.

5.1 Shopping Cart Client

An abstract shopping cart protocol is presented in Figure 11. Fig-
ure 12 contains a simple shopping cart client program: it takes client
operations (represented as client_actionand client_checkout
facts) and sends them to the shopping cart service using the Cart-
Protocol. We omit logic for clients to choose a cart server replica;
this can be based on simple policies like round-robin or random
selection, or via more explicit load balancing.

5.2 “Destructive” Shopping Cart Service

We begin with a shopping cart service built on a key-value store.
Each cart is a (key,value) pair, where key is a unique session
identifier and value is an object containing the session’s state,
including a Ruby array that holds the items currently in the cart.
Adding or deleting items from the cart result in “destructive” up-
dates: the value associated with the key is replaced by a new value

® | module DestructiveCart

1 include CartProtocol

2 include KVSProtocol

4 declare

5 def do_action

6 kvget <= action_msg.map{|al [a.reqid, a.key]l}

8 kvput <= action_msg.map do |a]|

9 if a.action == "A"

10 unless kvget_response.map{|b| b.key}.include? a.session
11 [a.server, a.client, a.session, a.reqid, [a.item]]
12 end

13 end

14 end

16 old_state = join [kvget_response, action_msg],

17 [kvget_response.key, action_msg.session]
18 kvput <= old_state.map do |b, a|

19 if a.action == "A"
20 [a.server, a.client, a.session,
21 a.reqid, b.value.push(a.item)]
22 elsif a.action == "D"
23 [a.server, a.client, a.session,
24 a.reqid, delete_one(b.value, a.item)]
25 end
26 end
27 end
29 declare
30 def do_checkout
31 kvget <= checkout_msg.map{|c| [c.reqid, c.session]}
32 lookup = join [kvget_response, checkout_msg],
33 [kvget_response.key, checkout_msg.session]
34 response_msg <~ lookup.map do |r, c|
35 [c.client, c.server, c.session, r.value]
36 end
37 end
38 |end

Figure 13: Destructive cart implementation.

that reflects the effect of the update. Deletion requests are ignored if
the item they refer to does not exist in the cart.

Figure 13 shows the Bloom code for this design. The kvput
collection is provided by the abstract KVSProtocol described in
Section 4. Our shopping cart service would work with any concrete
realization of the KV SProtocol; we will choose to use the replicated
key-value store (Section 4.3) to provide fault-tolerance.

When client actions arrive from the CartClient, the cart service
checks to see if there is a record in the key-value store associated
with the client’s session. If no record is found (i.e., this is the first
operation for a new session), then lines 9—13 generate an entry
for the new session in kvstate. Otherwise, the join conditions in
line 17 are satisfied and lines 19-25 “replace” the value in the key-
value store with an updated set of items for this session; this uses
the built-in overwriting capability provided by the key-value store.
When a checkout_msg appears at a server replica, the key-value
store is queried to retrieve the cart state associated with the given
session (lines 31-35), and the results are returned to the client.

5.3 “Disorderly” Shopping Cart Service

Figure 14 shows an alternative shopping cart implementation, in
which updates are monotonically accumulated in a set, and summed
up only at checkout. Lines 12—14 insert client updates into the
persistent table cart_action. Lines 15-17 define action_cnt
as an aggregate over cart_action, in the style of an SQL GROUP
BY statement: for each item associated with a cart, we separately
count the number of times it was added and the number of times it
was deleted. Lines 22-27 ensure that when a checkout_msg tuple
arrives, status contains a record for every added item for which
there was no corresponding deletion in the session. Lines 29-36

module DisorderlyCart
1 include CartProtocol
3 def state
4 table :cart_action, [’session’, ’item’, ’action’, ’reqid’]
5 table :action_cnt, [’session’, ’item’, ’action’], [’cnt’]
6 scratch :status, [’server’, ’client’, ’session’, ’item’],
7 [’ent’]
8 end
10 declare
11 def do_action
12 cart_action <= action_msg.map do |c|
13 [c.session, c.item, c.action, c.reqid]
14 end
15 action_cnt <= cart_action.group(
16 [cart_action.session, cart_action.item, cart_action.action],
17 count(cart_action.reqid))
18 end
20 declare
21 def do_checkout
22 del_items = action_cnt.map{|al a.item if a.action == "Del"}
23 status <= join([action_cnt, checkout_msg]).map do |a, c]|
24 if a.action == "Add" and not del_items.include? a.item
25 [c.client, c.server, a.session, a.item, a.cnt]
26 end
27 end
29 status <= join([action_cnt, action_cnt,
30 checkout_msg]) .map do |al, a2, c|
31 if al.session == a2.session and al.item == a2.item and
32 al.session == c.session and
33 al.action == "A" and a2.action == "D"
34 [c.client, c.server, c.session, al.item, al.cnt - a2.cnt]
35 end
36 end
38 response_msg <~ status.group(
39 [status.client, status.server, status.session],
40 accum(status.cnt.times.map{status.item}))
41 end
42 | end

Figure 14: Disorderly cart implementation.

additionally define status as the 3-way join of the checkout_msg
message and two copies of action_cnt—one corresponding to
additions and one to deletions. Thus, for each item, status contains
its final quantity: the difference between the number of additions
and deletions (line 34), or simply the number of additions if there are
no deletions (line 25). Upon the appearance of a checkout_msg,
the replica returns a response_msg to the client containing the final
quantity (lines 38—40). Because the CartClient expects the cart to
be returned as an array of items on checkout, we use the accum
aggregate function to nest the set of items into an array.

5.4 Analysis

Figure 15 presents the analysis of the “destructive” shopping cart
variant. Note that because all dependencies are analyzed, collec-
tions defined in mixins but not referenced in the code sample (e.g.,
pipe_chan, member) also appear in the graph. Although there is no
syntactic non-monotonicity in Figure 13, the underlying key-value
store uses the non-monotonic <- operator to model updateable state.
Thus, while the details of the implementation are encapsulated by
the key-value store’s abstract interface, its points of order resur-
face in the full-program analysis. Figure 15 indicates that there are
points of order between action_msg, member, and the temporal
cluster. This figure also tells the (sad!) story of how we could ensure
consistency of the destructive cart implementation: introduce coor-
dination between client and server—and between the chosen server
and all its replicas—for every client action or kvput update. The
programmer can achieve this coordination by supplying a “reliable”

getj, kvget_response, kvput, kvstate,
mcast_done, old_state, pipe_chan, pipe_in,
pipe_sent, prev, send_mcast

response_msg
client_response

Figure 15: Visualization of the destructive cart program.

OO

action_msg

Q

Q
response_msg

Figure 16: Visualization of the core logic for the disorderly cart.

implementation of multicast that awaits acknowledgements from all
replicas before reporting completion: this fine-grained coordination
is akin to “eager replication” [9]. Unfortunately, it would incur the
latency of a round of messages per server per client update, decrease
throughput, and reduce availability in the face of replica failures.

Because we only care about the ser of elements contained in
the value array and not its order, we might be tempted to argue
that the shopping cart application is eventually consistent when
asynchronously updated and forego the coordination logic. Unfortu-
nately, such informal reasoning can hide serious bugs. For example,
consider what would happen if a delete action for an item arrived at
some replica before any addition of that item: the delete would be
ignored, leading to inconsistencies between replicas.

A happier story emerges from our analysis of the disorderly cart
service. Figure 16 shows a visualization of the core logic of the
disorderly cart module presented in Figure 14. This program is not
complete: its inputs and outputs are channels rather than interfaces,
so the dataflow from source to sink is not completed. To complete
this program, we must mixin code that connects input and output
interfaces to action_msg, checkout_msg, and response_msg, as

Figure 17: Visualization of the complete disorderly cart pro-
gram.

the CartClient does (Figure 12). Note that the disorderly cart has
points of order on all paths but there are no cycles.

Figure 17 shows the analysis for a complete implementation that
mixes in both the client code and logic to replicate the cart_action
table via best-effort multicast (see Figure 20 in Appendix A for
the corresponding source code). Note that communication (via
action_msg) between client and server—and among server replicas—
crosses no points of order, so all the communication related to
shopping actions converges to the same final state without coor-
dination. However, there are points of order upon the appear-
ance of checkout_msg messages, which must be joined with an
action_cnt aggregate over the set of updates. Additionally, using
the accum aggregate adds a point of order to the end of the dataflow,
between status and response_msg. Although the accumulation
of shopping actions is monotonic, summarization of the cart state
requires us to ensure that there will be no further cart actions.

Comparing Figure 15 and Figure 17, we can see that the disorderly
cart requires less coordination than the destructive cart: to ensure
that the response to the client is deterministic and consistently repli-
cated, we need to coordinate once per session (at checkout), rather
than once per shopping action. This is analogous to the desired
behavior in practice [13].

5.5 Discussion

Strictly monotonic programs are rare in practice, so adding some
amount of coordination is often required to ensure consistency. In
this running example we studied two candidate implementations of
a simple distributed application with the aid of our program analysis.
Both programs have points of order, but the analysis tool helped
us reason about their relative coordination costs. Deciding that
the disorderly approach is “better” required us to apply domain

knowledge: checkout is a coarser-grained coordination point than
cart actions and their replication.

By providing the programmer with a set of abstractions that are
predominantly order-independent, Bloom encourages a style of
programming that minimizes coordination requirements. But as we
see in the destructive cart program, it is nonetheless possible to use
Bloom to write code in an imperative, order-sensitive style. Our
analysis tools provide assistance in this regard. Given a particular
implementation with points of order, Bloom’s dataflow analysis can
help a developer iteratively refine their program—either to “push
back” the points to as late as possible in the dataflow, as we did in
this example, or to “localize” points of order by moving them to
locations in the program’s dataflow where the coordination can be
implemented on individual nodes without communication.

6. TOLERATING INCONSISTENCY

In the previous section we showed how to identify points of order:
code locations that are sensitive to non-deterministic input order-
ing. We then demonstrated how to resolve the non-determinism
by introducing coordination. However, in many cases adding ad-
ditional coordination is undesirable due to concerns like latency
and availability. In these cases, Bloom’s point-of-order analysis can
assist programmers with the task of tolerating inconsistency, rather
than resolving it via coordination. A notable example of how to
manage inconsistency is presented by Helland and Campbell, who
reflect on their experience programming with patterns of “memories,
guesses and apologies” [13]. We provide a sketch here of ideas for
converting these patterns into developer tools in Bloom.

“Guesses”—facts that may not be true—may arise at the inputs
to a program, e.g., from noisy sensors or untrusted software or users.
But Helland and Campbell’s use of the term corresponds in our
analysis to unresolved points of order: non-monotonic logic that
makes decisions without full knowledge of its input sets. We can
rewrite the schemas of Bloom collections to include an additional
attribute marking each fact as a “guarantee” or “guess,” and automat-
ically augment user code to propagate those labels through program
logic in the manner of “taint checking” in program security [22,
25]. Moreover, by identifying unresolved points of order, we can
identify when program logic derives “guesses” from “guarantees,
and rewrite user code to label data appropriately. By rewriting pro-
grams to log guesses that cross interface boundaries, we can also
implement Helland and Campbell’s idea of “memories”: a log of
guesses that were sent outside the system.

Most of these patterns can be implemented as automatic program
rewrites. We envision building a system that facilitates running
low-latency, “guess”-driven decision making in the foreground, and
expensive but consistent logic as a background process. When the
background process detects an inconsistency in the results produced
by the foreground system (e.g., because a “guess” turns out to be
mistaken), it can then take corrective action by generating an “apol-
ogy.” Importantly, both of these subsystems are implementations of
the same high-level design, except with different consistency and co-
ordination requirements; hence, it should be possible to synthesize
both variants of the program from the same source code. Through-
out this process—making calculated “guesses,” storing appropriate
“memories,” and generating the necessary “apologies”—we see sig-
nificant opportunities to build scaffolding and tool support to lighten
the burden on the programmer.

Finally, we hope to provide analysis techniques that can prove
the consistency of the high-level workflow: i.e., prove that any
combination of user behavior, background guess resolution, and
apology logic will eventually lead to a consistent resolution of the
business rules at both the user and system sides.

s

7. RELATED WORK

Systems with loose consistency requirements have been explored
in depth by both the systems and database management communities
(e.g., [6, 8,9, 24]); we do not attempt to provide an exhaustive survey
here. The shopping cart case study in Section 5 was motivated by
the Amazon Dynamo paper [11], as well as the related discussion
by Helland and Campbell [13].

The Bloom language is inspired by earlier work that attempts
to integrate databases and programming languages. This includes
early research such as Gem [27] and more recent object-relational
mapping layers such as Ruby on Rails. Unlike these efforts, Bloom
is targeted at the development of both distributed infrastructure
and distributed applications, so it does not make any assumptions
about the presence of a database system “underneath”. Given our
prototype implementation in Ruby, it is tempting to integrate Bud
with Rails; we have left this for future work.

There is a long history of attempts to design programming lan-
guages more suitable to parallel and distributed systems; for exam-
ple, Argus [15] and Linda [7]. Again, we do not hope to survey that
literature here. More pragmatically, Erlang is an oft-cited choice
for distributed programming in recent years. Erlang’s features and
design style encourage the use of asynchronous lightweight “actors.”
As mentioned previously, we did a simple Bloom prototype DSL in
Erlang (which we cannot help but call “Bloomerlang”), and there is
a natural correspondence between Bloom-style distributed rules and
Erlang actors. However there is no requirement for Erlang programs
to be written in the disorderly style of Bloom. It is not obvious
that typical Erlang programs are significantly more amenable to a
useful points-of-order analysis than programs written in any other
functional language. For example, ordered lists are basic constructs
in functional languages, and without program annotation or deeper
analysis than we need to do in Bloom, any code that modifies lists
would need be marked as a point of order, much like our destructive
shopping cart. We believe that Bloom’s “disorderly by default” style
encourages order-independent programming, and we know that its
roots in database theory helped produce a simple but useful program
analysis technique. While we would be happy to see the analysis
“ported” to other distributed programming environments, it may be
that design patterns using Bloom-esque disorderly programming are
the natural way to achieve this.

Our work on Bloom bears a resemblance to the Reactor lan-
guage [5]. Both languages target distributed programming and are
grounded in Datalog. Like many other rule languages including
our earlier work on Overlog, Reactor updates mutable state in an
operational step “outside Datalog” after each fixpoint computation.
By contrast, Bloom is purely declarative: following Dedalus, it
models updates as the logical derivation of immutable “versions” of
collections over time. While Bloom uses a syntax inspired by object-
oriented languages, Reactor takes a more explicitly agent-oriented
approach. Reactor also includes synchronous coupling between
agents as a primitive; we have opted to only include asynchronous
communication as a language primitive and to provide synchronous
coordination between nodes as a library.

Another recent language related to our work is Coherence [4],
which also embraces “disorderly” programming. Unlike Bloom,
Coherence is not targeted at distributed computing and is not based
on logic programming.

8. CONCLUSION AND FUTURE WORK

In this paper we make three main contributions. First, we present
the CALM principle, which connects the notion of eventual con-
sistency in distributed programming to theoretical foundations in

database theory. Second, we show that we can bring that theory
to bear on the practice of software development via “disorderly”
programming patterns, complemented with automatic analysis tech-
niques for identifying and managing a program’s points of order in
a principled way. Finally, we present our Bloom prototype as an
example of a practically-minded disorderly and declarative program-
ming language, with an initial implementation as a domain-specific
language within Ruby.

We plan to extend the work described in this paper in several
directions. First, we are building a more mature Bloom language
environment, including a library of modules for distributed comput-
ing. We intend to compose those modules to implement a number
of variants of distributed systems. The design of Bloom itself was
motivated by our experience implementing scalable services and
protocols in Overlog [1, 2], and this practice of system/language
co-design continues to be part of our approach. Second, we hope to
expand our suite of analysis techniques to address additional impor-
tant properties in distributed systems, including idempotency and
invertability of interfaces. Third, we are hopeful that the logic foun-
dation of Bloom will enable us to develop better tools and techniques
for the debugging and systematic testing of distributed systems un-
der failure and security attacks, perhaps drawing on recent work on
this topic [10, 17]. Finally, we are working to formally tighten our
ideas connecting non-monotonic logic, distributed coordination, and
consistency of distributed programs [14].

Acknowledgments

We would like to thank Ras Bodik, Kuang Chen, Haryadi Gunawi,
Dmitriy Ryaboy, Russell Sears, and the anonymous reviewers for
their helpful comments. This work was supported by NSF grants
0917349, 0803690, 0722077, 0713661 and 0435496, Air Force
Office of Scientific Research award 22178970-41070-F, the Natural
Sciences and Engineering Research Council of Canada, and gifts
from Yahoo Research, IBM Research and Microsoft Research.

9. REFERENCES

[1] P. Alvaro, T. Condie, N. Conway, K. Elmeleegy, J. M.
Hellerstein, and R. C. Sears. BOOM Analytics: Exploring
Data-centric, Declarative Programming for the Cloud. In
EuroSys, 2010.

[2] P. Alvaro, T. Condie, N. Conway, J. M. Hellerstein, and
R. Sears. I Do Declare: Consensus in a Logic Language.
SIGOPS Oper. Syst. Rev., 43:25-30, January 2010.

[3] P. Alvaro, W. R. Marczak, N. Conway, J. M. Hellerstein,
D. Maier, and R. Sears. Dedalus: Datalog in Time and Space.
In Proc. Datalog 2.0 Workshop (to appear), 2011.

[4] J. Edwards. Coherent Reaction. In OOPSLA, 2009.

[5] J. Field, M.-C. Marinescu, and C. Stefansen. Reactors: A
Data-Oriented Synchronous/Asynchronous Programming
Model for Distributed Applications. Theoretical Computer
Science, 410(2-3), February 2009.

[6] H. Garcia-Molina and K. Salem. Sagas. In SIGMOD, 1987.

[7] D. Gelernter. Generative communication in Linda. ACM
Trans. Program. Lang. Syst., 7:80—112, January 1985.

[8] C. Gray and D. Cheriton. Leases: an efficient fault-tolerant
mechanism for distributed file cache consistency. In SOSP,
1989.

[9] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The Dangers of
Replication and a Solution. In SIGMOD, 1996.

[10] H. S. Gunawi et al. FATE and DESTINI: A Framework for
Cloud Recovery Testing. In NSDI (to appear), 2011.

[11] D. Hastorun et al. Dynamo: Amazon’s Highly Available
Key-Value Store. In SOSP, 2007.

[12] P. Helland. Life beyond Distributed Transactions: an
Apostate’s Opinion. In CIDR, 2007.

[13] P. Helland and D. Campbell. Building on Quicksand. In CIDR,
20009.

[14] J. M. Hellerstein. The declarative imperative: experiences and
conjectures in distributed logic. SIGMOD Rec., 39:5-19,
September 2010.

[15] B. Liskov. Distributed programming in Argus. CACM,
31:300-312, 1988.

[16] B.T. Loo et al. Implementing Declarative Overlays. In SOSP,
2005.

[17] W.R. Marczak, S. S. Huang, M. Bravenboer, M. Sherr, B. T.
Loo, and M. Aref. Secureblox: customizable secure
distributed data processing. In SIGMOD, 2010.

[18] D. Pritchett. BASE: An Acid Alternative. ACM Queue,
6(3):48-55, 2008.

[19] T. C. Przymusinski. On the Declarative Semantics of
Deductive Databases and Logic Programs, pages 193-216.
Morgan Kaufmann, Los Altos, CA, 1988.

[20] K. A. Ross. Modular stratification and magic sets for
DATALOG programs with negation. In PODS, 1990.

[21] K. A. Ross. A syntactic stratification condition using
constraints. In International Symposium on Logic
Programming, pages 76-90, 1994.

[22] A. Sabelfeld and A. Myers. Language-Based
Information-Flow Security. Selected Areas in
Communications, 21(1):5-19, 2003.

[23] M. Stonebraker. Inclusion of New Types in Relational Data
Base Systems. In ICDE, 1986.

[24] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser. Managing update conflicts in
Bayou, a weakly connected replicated storage system. In
SOSP, 1995.

[25] S. Vandebogart et al. Labels and Event Processes in the
Asbestos Operating System. ACM Trans. Comput. Syst.,
25(4):11, 2007.

[26] W. Vogels. Eventually Consistent. CACM, 52(1):40-44, 2009.

[27] C. Zaniolo. The database language GEM. In SIGMOD, 1983.

APPENDIX
A. ADDITIONAL SOURCE CODE

Figures 18, 19 and 20 contain the remainder of the Bloom code
used in this paper: best-effort protocols for unicast and multicast
messaging, and the complete program for the replicated disorderly
cart described in Section 5.

® |module BestEffortDelivery

1 include DeliveryProtocol

3 def state

4 channel :pipe_chan,

5 [’@dst’, ’src’, ’ident’], [’payload’]

6 end

8 declare

9 def snd

10 pipe_chan <~ pipe_in

11 end

13 declare

14 def done

15 pipe_sent <= pipe_in

16 end

17 | end

Figure 18: Best-effort unicast messaging in Bloom.

® |module MulticastProtocol

1 def state

2 table :members, [’peer’]

3 interface input, :send_mcast, [’ident’], [’payload’]
4 interface output, :mcast_done, [’ident’], [’payload’]
5 end

6 |end

8 |module SimpleMulticast

9 include MulticastProtocol

10 include DeliveryProtocol

12 declare

13 def snd_mcast

14 pipe_in <= join([send_mcast, members]).map do |s, m|
15 [m.peer, @local_addr, s.ident, s.payload]

16 end

17 end

19 declare
20 def done_mcast
21 mcast_done <= pipe_sent.map{|p| [p.ident, p.payload]}
22 end
23 |end

Figure 19: A simple unreliable multicast library in Bloom.

® | class ReplicatedDisorderlyCart < Bud

1 include DisorderlyCart

2 include SimpleMulticast

3 include BestEffortDelivery

5 declare

6 def replicate

7 send_mcast <= action_msg.map do |a|

8 [a.reqid, [a.session, a.item, a.action, a.reqid]]
9 end

10 cart_action <= pipe_chan.map{|c| c.payload }
11 end

12 | end

Figure 20: The complete disorderly cart program.

