
1

Chabot: Retrieval from a Relational Database of Images

 Virginia E. Ogle
 Michael Stonebraker

 University of California, Berkeley
 {ginger, mike}@cs.berkeley.edu

Abstract

Chabot is a picture retrieval system for a database that will eventually include over 500,000 digitized
multi-resolution images. We describe the design and construction of this system which uses the
relational database management system POSTGRES for storing and managing the images and their
associated textual data. For retrieval, Chabot uses tools provided by POSTGRES, such as
representation of complex data types, a rich query language, and extensible types and functions. To
implement retrieval from the current collection of 11,643 images, Chabot integrates the use of stored
text and other data types with content-based analysis of the images to perform “concept queries”.

1. Introduction

The Chabot project was initiated at UC Berkeley to study storage and retrieval
from a large collection of digitized images. The images we use belong to the State
of California Department of Water Resources (DWR), the agency that oversees the
system of reservoirs, aqueducts and water pumping stations throughout California
known as the State Water Project. DWR maintains a growing collection of over
500,000 photographs, negatives, and slides, primarily images of State Water
Project facilities, but also many images of California natural resources. Some
examples of these images are shown in Figure 1.

Over the years, as DWR has made its collection available to the public, it has
found itself devoting increasing resources toward filling requests for prints and
slides. The agency receives 100-150 requests a month from a variety of sources:
other government agencies, regional magazines, encyclopedia, university libraries,
wildlife organizations, and individuals. Requests vary from those where the ID
number of the desired picture is already known, to very general requests for
“scenic pictures” of California lakes and waterways. DWR keeps the slides that are
requested most often in lighted display boxes for browsing; the rest of the
collection is housed in archival containers and slide drawers.

To facilitate retrieval, DWR began a project last year to digitize all its images

2

using Photo-CD technology; several years ago the agency had begun to enter
descriptive data about each image into a single-user personal computer style
database. To process a request, the staff uses keyword look-up on the text
descriptions stored in the database to find an ID number for the requested images.
The ID is then used to locate the container or drawer where the print or slide is
stored.

While an attempt is made to annotate each image with as much descriptive
information as possible, keyword indexing for an image collection has significant
limitations. Non-specific requests such as “find a scenic photo of Lake Tahoe”
may entail looking through an unmanageably large set of images of Lake Tahoe to
find the desired prints. Misspelled keywords (“azalia” for “azalea”) thwart
successful retrievals, even when close matches can be culled from a dictionary.
And inaccurate descriptions are not helped by a dictionary: a photo of a bright red
anemone in full flower with the stored description “close-up of a pansy” will never
be retrieved using any spelling of the keyword “anemone”. In some cases, a
thesaurus might compensate for incorrect descriptions, but not for incomplete
descriptions. Many images in the DWR collection are old and cannot be identified,
so they are digitized and loaded into the database with minimal or no descriptive
data.

Because of these types of problems, most of DWR’s retrievals currently rely on
having a staff member who is familiar enough with the collection to know where
to find the desired prints. One of the goals of the Chabot project is to integrate
image analysis techniques into the retrieval system so that requests for images do
not depend solely on stored textual information. As a first step toward this goal, we
have implemented a simple method for color analysis which we describe in
Chapter 4. Using color information in the images in conjunction with textual
information can help to find red flowers (the anemone and azalea pictures) and to
locate scenic pictures of sunsets of Lake Tahoe.

Aside from the problem of depending on keywords to locate pictures, the current
database system that DWR uses cannot support complex data types such as time,
geographical location, and the images themselves. Nor does it allow the user to
compose queries that combine several of the attributes of an image. Therefore, the
Chabot project has the additional goal of providing DWR with a system that can
store and search on diverse data types, and provide the functionality of an
advanced relational database management system (DBMS) such as a high-level
query language, query optimization, and flexible indexing. We usePOSTGRES

[6,9], an object-relational DBMS developed at the University of California,
Berkeley. As we will describe, one of the advantages of usingPOSTGRES for this
project is the ability to create user-defined functions and types. We use this feature

3

to perform run-time image analysis during the querying process.

Another consideration is that DWR would like to load and edit its database
remotely and to enable browsing of its images by offsite users who are interested
in ordering prints or slides. The current database does not meet the needs of the
agency for on-line, multi-user access. Furthermore, it will not scale to
accommodate the 500,000 images in the collection. The Chabot project was
initiated to replace the existing system with a better system that includes:

• An advanced relational database for images and data
• Large-scale storage for images
• On-line browsing and retrieval of images
• A flexible, easy-to-use retrieval system
• Retrieval of images by content

In Chapter 2 we describe the motivation and goals for the project. Chapter 3
discusses current research in the field. Chapter 4 contains a description of the
Chabot project, and in Chapter 5 we summarize the project and give our plans for
further enhancements.

2. System Motivation and Goals

The design of Chabot is influenced by DWR’s existing system for storing its
metadata, by the types of requests it receives, and by the methods now in use for
queries and updates.

Integration of Data Types: Each image is accompanied by a sizeable amount of
metadata. Below is a sample entry for one image from DWR’s existing database:

0162 A-9-98 6/1/69 SWP Lake Davis Lahontan Region (6) Grizzly Dam,
spillway and Lake Davis, a scenic image. DWR 35 mm slide Aerial 2013 0556 18

In this example, “0162” is the first four digits of the CD number, “A-9-98” is the
DWR ID, followed by the date the photo was taken (6/1/69), the category
(“SWP”), the subject (“Lake Davis”), the location (“Lahontan Region (6)”), a
description of the image, the organization (“DWR”), the type of film used, the
perspective of the photo, the last eight digits of the Photo-CD, and finally, the
number of the image on the Photo-CD.

DWR needs a DBMS that can support a variety of complex data types including
text, numerical data, relative and absolute time, and geographical location.
Retrievals should be possible on any combination of the complex data types that
are associated with the images, as well as on the content of the images themselves.

4

Scalability and Storage Concerns: Since each of the multi-resolution Photo-CD
images is from 4 to 6 MB in size, the entire database of 500,000 images and their
associated text data will require in excess of 2.5 terabytes of storage. The desire for
fast access for browsing images must be balanced with the need to minimize the
cost to store the images. Therefore a multiple level storage plan is needed
including a tertiary memory device to store images.

Simplicity of Use, Simplicity of Design: The browser needs to be simple enough for
non-technical staff to use and it should also protect against accidental modification
of data already contained in the database. The user interface should to be similar in
structure to the existing system and as intuitive and self-documenting as possible.
The design of the system should also be simple; it should use existing functions
and established models both for ease of implementation as well as to simplify
future modifications.

Flexible Query Methods: The retrieval system must be flexible enough to handle
complex queries that combine several of the attributes of the image. To process a
query such as “Find a picture of a sunset taken near San Francisco during 1994”,
the retrieval system must be able to search on multiple data types such as
geographical location (“San Francisco”), time (“after 12/31/93 and before 1/1/
95”), and content (“a sunset”).

Querying by Image Content: Because of the size of the DWR collection, queries
that are too general might return a result set of unmanageable size, as in the case of
the “scenic picture of Lake Tahoe” example in Chapter 1. Therefore, we must take
steps to increase the precision of retrievals, thereby reducing the set of images that
a user must browse to find the images of interest. More importantly, since the
primary data type of this database is the image, standard querying by stored
descriptive data will not always yield satisfactory results. Therefore, the system
must integrate stored textual information with image content information. Ideally,
the user should be able to register a conceptual description like “sunset” with the
retrieval system, which should respond by initiating the appropriate functions to
analyze the content of the images stored in the database that meet the user’s
expectation of what constitutes a “sunset”. Concepts should embody textual
metadata about the image as well as image feature information. In Chapter 4 we
will describe our implementation of “concept queries” like this.

3. Current Research

The problem of how to store large numbers of digitized images and retrieve
pictures from such a collection is an active area of research that overlaps many

5

fields within computer science including graphics and image processing,
information retrieval, and databases. The Chabot project takes a database approach
to the problem, and we use a DBMS that allows us to incorporate image analysis
and information retrieval tools into our system. Before we describe this process,
we first discuss some of the current research.

Much work is underway in the area of image feature indexing, especially color
indexing [10,11]. With this approach, features of the images such as dominant
color, shapes, lines, and texture, are pre-computed and stored for later analysis. An
index is created to provide quick access to the feature information. Runtime
computations determine the degree of similarity between a sample image and other
images stored in the collection. Usually a ranked list of matches is returned from
queries. Given the unpredictable nature of the DWR queries, however, it is not
likely that such an index can be made for our database that will be relevant for
more than a small number of requests. Moreover, indexing presupposes similarity
matching for retrievals (“Find other pictures that look like this one”) and pre-
identification of interesting features. DWR would like to “fish” from the database
rather than present a sample image for matching, and image-by-image review to
delineate content features is not feasible because of the large number of images in
the collection.

The Photobook project [5] at the M.I.T. Media Lab seeks to circumvent the issue
of pre-determined search criteria by storing enough information about each image
so that run-time computations are possible. Images are classified at load time as
having “face”, “shape”, or “texture” properties; some techniques have been
developed to automate this process, such as foreground extraction. Once classified,
the image is compressed by encoding salient semantic information according to its
category, and these smaller encoded versions are used at query time both to
reconstruct the image and also to compute any additional search criteria such as a
color histogram. Photobook has been used to match faces in a collection of
photographic portraits and to identify hand tools in a small collection of images.
However, this project does not use an underlying relational database; moreover,
static pre-analysis is not practical for our application.

One of the most closely related projects to Chabot is the QBIC project [1,3] at IBM
Almaden, which uses image analysis to process queries for an image database.
This project uses color, shape, and texture to match images in the database to a
user’s query, which has the form “find more pictures like this one”. The user can
make a sketch of a shape, select colors and color distributions from a color wheel,
or select textures from a predetermined range. The system returns a ranked list of
best matches to the user’s query. However, the DWR application requires a
stronger emphasis on the ability of the underlying relational database to handle

6

diverse types of textual metadata; support for integration of image features with
text and other data types is essential. Most queries to the DWR collection rely on
the textual metadata alone, or a combination of text and image features, but rarely
on the image content alone. Moreover, queries that do include content-based
criteria should not require the user to furnish a sample image for finding similar
pictures in the database, so a courser granularity of image analysis is needed. For
example, we would like to allow the user to “find pictures of a sunset at Lake
Tahoe” by using textual information (“Lake Tahoe”) and by defining the concept
“sunset” as a range of predominant colors in the image.

In the DBMS community, image database research focuses on storage methods for
large objects: spatial data such as geographical maps may be stored in structures
such as R-trees [2]. Current work includes Digital Equipment Corporation’s
multimedia object support for Rdb [7], DEC’s relational database. Multimedia
object files are physically stored in segments on a WORM device and within the
database as binary large objects (BLOBs), guaranteeing DBMS functionality such
as transactions and concurrency for these objects. However, this project is not
investigating ways to incorporate content-based queries to retrieve images.

The particular needs of our application require the services of a powerful relational
database model as the foremost consideration because most retrievals from this
collection are made using the stored textual data for each image, which
encompasses diverse data types. The features that a relational DBMS provide -
query optimization, complex types, a rich query language - become even more
important as the size of the collection increases. We also require the flexibility to
implement “concept” queries that use image content in conjunction with the text-
based queries supported by the DBMS. In these ways Chabot differs noticeably
from the systems described above.

4. Description of Chabot

Chabot includes a top-level user interface that handles both queries and updates to
the database. Our querying mechanism retrieves images on the basis of stored
textual data as well as on more complex relations among the stored data. As a first
step towards integrating content analysis into the retrieval system, we have
implemented a method for color analysis of the images. In this section we give the
implementation details of the Chabot.

7

POSTGRES

To store the images and textual data, we are usingPOSTGRES. POSTGRES is
particularly attractive for use with a database like Chabot; in addition to the
standard relational database features, it provides features not found in traditional
relationalDBMS’s, such as:

Object-oriented properties:Classes can be defined for objects in aPOSTGRES

database and attributes can be inherited among classes. The “Schema” section
below explains this in more detail.

Complex types:POSTGRES provides a flexible assortment of data types and
operators that are useful for a database like Chabot such astime (absolute and
relative), variable-length arrays, and images. In addition, users can define new data
types for a database, along with operators that are particular to the type. For
example, a type “PhotoCD” can be defined that includes operators to manipulate
the image at runtime.

User-defined indices: A secondary index can be defined using access methods
specified by the user. The index can be implemented either as a B-tree or as an R-
tree. Partial indices that include a qualifying operator can be extended
incrementally. For image analysis, an index can be created for all pictures that are
predominantly red, for example, using the stored color histograms for each image.

User-defined functions: Functions written in C can be registered with aPOSTGRES

database. The first time the function is invoked,POSTGRES dynamically loads the
function into its address space; repeated execution of the function causes
negligible additional overhead since it remains in main memory. For the Chabot
database, we wrote a function that analyzes at retrieval time color histograms that
have been previously computed and stored in the database.

Storage

Each of our images is received in Photo-CD format in five different resolutions,
ranging from a “thumbnail” (128x192 pixels) to the highest resolution of
2048x3072 pixels. The size of each image is from 4 to 6 MB. Since DWR’s goal is
to allow on-line access to both images and data, Chabot must provide reasonably
fast browsing of the stored images over a network. A random access medium such
as a magnetic disk that is fast enough for remote browsing is too expensive to store
the large number of images we are storing; cheaper alternatives such as tape may
be so slow that on-line browsing is virtually impossible. Our solution is to use a
two-level storage scheme. We use magnetic disk for storing the thumbnail images
and text needed for browsing the database and we archive the large multi-
resolution image files on a tertiary device, a Metrum VHS-tape jukebox. The

8

Metrum holds 600 VHS tapes, each tape having a 14.5 GB capacity. With a total
capacity of 10.8 TB, the Metrum is more than adequate as a repository for the
DWR image library. The average time for the Metrum to find a tape, load it, and
locate the required file is about 2 minutes - too slow for browsing a set of images
but fast enough for filling a request from a DWR client once the desired image has
been identified.

The Schema

The schema for the Chabot project was designed to fit with those of other research
projects in progress at Berkeley -- a collection of technical reports and a video
library. The image class in our database is called PHOTOCD_BIB, for “Photo-CD
Bibliography”, which inherits the attributes “title” and “abstract” from the
DOC_REFERENCE class, which is shared by the technical report and video
object classes. As shown below, the PHOTOCD_BIB class contains
“bibliographical” information about the image object, such as the ID number, the
name of the photographer, the film format, the date the photo was taken, and so on.
A complete list of attributes for the PHOTOCD_BIB class is shown in Table 1
below.

 Schema for technical report, video, and photo-cd classes

Most of the attributes for the image class are stored as text strings; there are two
fields that have typeabstime, the “shoot_date” of the photo and the “entry_date”
that the information was entered into the database. These allow us to perform time-

DOC_REFERENCE

abstract
title

[...]
photographer
filmformat
shoot_date
[...]

[...]
pages
copyright
language
[...]

[...]
length
genre
director
[...]

PHOTOCD_BIBVIDEO_BIBTECH_RPT_BIB

9

relative searches, for example, “Find all shots of Lake Tahoe that were taken after
January 1, 1994.”

The User Interface

We have implemented a graphical point-and-click Motif-like interface for Chabot
written in Tcl/Tk [4]. The interface is designed to prevent accidental corruption of
data while browsing the database; the main screen gives the user three options:
find, edit, and load. The database can be modified only via theedit and load
screens and user authorization for these screens is required. Thefind screen is for
running queries and for browsing the database.

An example of the current implementation for thefind window appears below. The
user can build queries by clicking on the appropriate buttons and typing text into
the entry fields next to the search criteria. Pull-down menus, indicated by a
downward pointing arrow next to the entry field, are provided for some search
criteria, those that have limited options such asRegion, Film Type, Category,
Colors, andConcept. The user selects one or more of these fields and then clicks
on the button labelled “Look Up” to initiate the query, and a Postquel query is
constructed and issued to the database. Postquel is a query language written for

attribute type description
abstract text abstract (for documents)
title text title (of document)
comments text comments
disknum text Photo-CD number
imgnum integer image number on CD
id text DWR ID number
doc_type text nature, art, legal, etc.
copyright text copyright information
 indexer text person creating db entry
organization text who commissioned photo
category text DWR category - “SWP”, etc.
subject text DWR subject - “The Delta”
 location text one of 9 California regions
description text a description of the image
 job_req_num text DWR job request ID
photographer text photographer
filmformat text “35 mm slide”
perspective char16 aerial - ground - close-up
color char C (color) B (black & white)
orientation char H (horizontal) V (vertical)
histogram text color histogram
entry_date abstime date of db entry
shoot_date abstime date photo was taken
oid oid POSTGRES object ID

 Table 1: Attributes for the PHOTOCD_BIB class

10

POSTGRES that is very similar to SQL. For example, using the search criteria from
thefind screen shown, the Postquel query would be:

retrieve (q.all) from q in PHOTOCD_BIB where
q.shoot_date>”Jan 1 1994” and
q.location~”2” and
MeetsCriteria(“SomeOrange”,q.histogram)

This query returns all images in the database that were taken after January 1, 1994
in the San Francisco Bay region, and that have some of the color orange in them.
Figure 2 shows some of the images that were returned from the above query, such
as orange poppies, pictures of fire, a sunset, and underwater marine life.

thefind window

11

When a query is processed, the result set of data is displayed in a pop-up “Query
Result” window; the user can then print the data, save it to a file, or click on a
“Show Image” button, to display the selected images; up to 20 images can be
displayed at once. In the example above, eight of the images were selected from
the “Query Result” window and the resulting display is shown in Figure 2.

MeetsCriteria

To implement concept queries, we use two capabilities thatPOSTGRES provides:
storage of pre-computed content information about each image (a color histogram)
as one of the attributes in the database, and the ability to define functions that can
be called at run-time as part of the regular querying mechanism to analyze this
stored information. The function “MeetsCriteria” is the underlying mechanism that
is used to perform concept queries. The example above shows how MeetsCriteria
is used within a query. It takes two arguments: a color criterion such as “Some
Orange” and a color histogram. The user selects a color criterion from a menu on
the find screen, and a call to MeetsCriteria is incorporated into the query using the
selected color. Colors implemented so far are shown in the example below:

For the histograms, we have experimented with quantizing the colors in our
images to a very small number so that run-time analysis is speeded up. Our tests
were conducted on histograms containing 20 elements that were computed using
Floyd-Steinberg quantization. We have found that quantizing to as few as 20
colors allows us to find the predominant colors in a picture for the “Mostly”
queries while still providing a glimpse of the minor colors for the “Some” queries.
For example, a picture of a field of purple flowers having tiny yellow centers
qualifies as “Mostly Purple”, but we can also retrieve this picture using the search
criterion “Some Yellow”.

ThePOSTGRES query executor calls the function MeetsCriteria for each histogram
in the database, checking to see whether it meets the criterion that is presented.

12

POSTGRES’s query optimization facility is used to minimize the search set of
histograms. The function returnstrue if the histogram meets the criterion,false if it
does not. Although the method for finding histograms that meet the criterion varies
according to which color is being checked, in general the algorithm employs two
metrics:compliance andcount.

Compliance: Each of the colors in the histogram is checked to see whether it
complies with the values that have been pre-defined for the requested color. For
example, in the RGB model the color white is represented by (255,255,255) for
(red, green, blue); a color whose RGB values are all above 241 qualifies as “white”
in our approach.

Count: As we check each color in the histogram for compliance, we keep two
counts: the number of colors in the current histogram that have matched the
criterion, and the number of pixels contained in the matching colors as a function
of total pixels in the image. The former count is used when we are looking for
“Some” colors; in the “Some Yellow” example, we get atrue result if just one or
two of the twenty colors in the histogram qualify as “yellow”. We use the total
pixel count for the “Mostly” matches: more than 50% of the total pixels of an
image must be “red” in order for the image to meet the “Mostly Red” criterion.

Concept Queries

In addition to using color directly for content analysis, users can compose higher
level content-based queries to the database that embody contextual information
such as “sunset” and “snow”. These queries are called concept queries. The
Concepts selection on thefind screen of the interface lists the concept queries that
are available, each of which has been previously defined by the user:

Selecting a concept from the pull-down menu generates a Postquel query that
incorporates a combination of search criteria that satisfy the concept. Typically

13

MeetsCriteria is used in these queries for color analysis in combination with some
other textual criteria. For example, when “sunset” is chosen from theConcepts
menu, the following query is sent to the database:

retrieve (q.all) from q in PHOTOCD_BIB where
q.description ~ “sunset” or
MeetsCriteria(“MostlyRed”,q.histogram) or
MeetsCriteria(“MostlyOrange”,q.histogram)

In this case, the user has defined the concept “sunset” as including images that
have the stored keyword “sunset” associated with them, or images that have red or
orange as their predominant color. Concept queries can be used in conjunction
with other criteria. The query “Find pictures of Lake Tahoe at sunset” would be
generated by choosing “sunset” from theConcept menu and setting theLocationto
“Lake Tahoe”.

Users can define new concepts and add them to theConcepts menu by first
selecting criteria on thefind screen that should be included in the new concept.
Clicking on the “Define Concept” button on the find screen brings up a dialog box
prompting the user for the name of the new concept, as illustrated below. The

Postquel query can be edited, after which the user presses the “Define” button to
register the new concept. The query is written to a file in the user’s home directory,
so that the new concept is immediately available, and future invocations of the
browser will include it as well. The editing capability can also be used to add
postquel constructs that may not be otherwise available, such as disjunctive

14

conjunctions. The user can edit the concept file, make copies of the file available
to other users, and incorporate others’ concepts in the file.

Testing

To test our content analysis, we measured therecall andprecision [8] of some of
the concept queries that are shown in the User Interface section.Recall is the
proportion of relevant materials retrieved, whileprecision quantifies the
proportion of retrieved materials that are relevant to the search. For each concept
query, we identified by hand all the images in the collection that we thought should
be included in the result set. We then tried various implementations of the concept
using different combinations of content-based and stored textual data. We
measured recall and precision for each implementation.

Table 2 shows the results from one of the test queries that is representative of our
findings, the concept “yellow flowers”. For this concept, we first identified 22
pictures in the collection that were relevant; we then implemented the “yellow
flowers” function in seven different ways using different combinations of search
criteria. As shown below, queries 1-3 used keyword search only, queries 4 and 5
used only content-based information, and queries 6 and 7 used a combination of
keyword and content-based data.

In this test, two different methods for finding yellow were tried. SomeYellow (2)
means there were at least two yellow colors in a 20-element histogram.

keywords color content retrieved relevant recall precision

1 “flower” - 55 13 59.1 23.6

2 “yellow” - 11 5 22.7 45.4

3 “flower” and “yellow” - 5 4 18.1 80.0

4 - SomeYellow (2) 235 16 72.7 6.8

5 - SomeYellow(1) 377 22 100 5.8

6 “flower” and SomeYellow (2) 7 7 31.8 100

7 “flower” and SomeYellow(1) 15 14 63.6 93.3

 Table 2: Query “Find yellow flowers” (relevant images = 22)

15

SomeYellow (1) means that only one yellow color is needed for the picture to be
counted as having “some yellow”. As shown for query 5, pictures can be retrieved
with 100% recall if the color definition is broad enough, but the precision is too
low: the 377 images retrieved from query 5 would require the user to browse
nineteen screens of thumbnails (each screen displays 20 images) to find the
pictures of yellow flowers. Using the coarse definition for yellow in conjunction
with the keyword “flower” gives the best result: query 7 has a recall of 63.6% with
a very high precision of 93%. Figure 3 shows the fifteen images that were retrieved
from this query; only the image in the upper left corner of the group - a plant with
pink stems and leaves but with only a small amount of yellow in its petals - was
not considered relevant. Figure 4 shows the five images retrieved from query 3,
where the keywords “flower” and “yellow” were used. The second picture in this
group was not considered relevant.

Other examples of concept queries we tested are shown in Figures 5-8. The query
“sunset on a lake” returned nineteen images, two of which were not relevant, when
the keyword “lake” was used in conjunction with the concept “sunset” (Figure 5).
When keywords alone - “sunset” and “lake” are used for this query, only nine
images are retrieved (Figure 6). In the “find purple flowers” example (Figure 7),
the keyword “flower” was used along with the content criteria “Some Purple”.
Only the third picture in that group could be retrieved using keywords alone. In the
“Antelope Lake on a sunny day with clouds” example (Figure 8), we show some of
the 53 images that were retrieved by searching for “Antelope Lake” in theSubject
field along with “White Stuff” (clouds) as a color criterion. In this experiment,
most of the return set was not relevant. As shown in the Figure 8 sample, we did
find clouds but we also got back white water and patches of light-colored sky.
Only 10 of the total 53 images retrieved from this trial were relevant, out of 13
total relevant images. However, using textual information alone yielded worse
results. Searching for the keyword “cloud” with the subject “Antelope Lake”
returned just one image, which was relevant. And searching only on the subject
field retrieved 120 pictures for a recall rate of only 8.3%, though all 13 of the
relevant pictures were in the set.

In some of our tests, a good deal of experimentation was necessary to find the right
combination of color content and keywords. For the “sunset on a lake” concept we
made several passes through the database testing various colors and keywords
before identifying all the necessary criteria that would result in the best recall and
precision rates. Thus, the success of the concepts that users define will depend to
some degree on their familiarity with the images in the collection. On the other
hand, concepts like “yellow flowers” and “purple flowers” are more
straightforward and are more easily implemented, especially if care is taken to

16

include some textual information in the concept along with the content-based
criteria.

In summary, we found that retrieving images on keywords alone or on content
alone produced unsatisfactory results. For example, recall and precision are in
inverse proportion: when we retrieve a high percentage of the relevant images, as
retrieving all “Mostly Red” images in order to find sunsets, we also retrieve many
more images that are not sunsets. But if we more closely restrict the search criteria
using carefully chosen keywords so that precision increases, fewer of the relevant
images are retrieved. For our application, the best results are achieved when both
content and some other search criteria were used, and this is the method we use to
implement concept queries.

5. Conclusions and Future Work

We set out to integrate a relational database retrieval system with content analysis
techniques that would give our querying system a better method for handling
images. We have found that even the simple color analysis method we employ, if
used in conjunction with other search criteria, improves our ability to retrieve
images efficiently. We concluded that the best result is obtained when text-based
search criteria are combined with content-based criteria and when a coarse
granularity is used for content analysis. Our concept queries take advantage of this
combination.

We are continuing to add images to our collection and we would like to re-run our
tests on the collection after it has doubled or tripled in size. We expect that our
color analysis technique will scale, but we are interested in discovering to what
degree we have tuned our color definitions to the current body of images.

Implementation is underway to include techniques to improve our color analysis.
We plan to divide each image into segments and compute and store a histogram for
each of these areas. Since most of our images are outdoor shots, we would then be
able to distinguish between colors in the lower (ocean, ground) and upper (sky)
halves of the picture. Storing a histogram of the center diamond of the picture is
another consideration; many of the photos were taken by a professional
photographer, the “interesting” objects can often be found in the center of the
picture. We would also like to experiment with adjusting our quantization factor
according to the color distribution in individual images; images having a large
number of different colors would be allotted a histogram with a larger than average
number of elements.

17

We would also like to experiment with other content analysis techniques besides
color, such as texture, shape, and line. For example, we would like to handle
concept queries such as “Find a picture of Lake Anza with people swimming in it”
using texture information, or “Find a picture of Chabot Reservoir when the water
is low” using edge detection. POSTGRES provides an easy way to introduce new
functions into the querying process by using its user-defined function facility; we
plan to work with image analysis experts in developing new content analysis
algorithms that can be registered with the database.

Since so many of our retrievals are based on the stored textual data rather than on
the images, we would like to include some information retrieval techniques such as
the use of a thesaurus and dictionary, and to investigate imposing restrictions on
the size of the return set, which we expect will become increasingly important as
we add more images to our collection. Although ranking the elements of the return
set is usually associated with similarity matching, which is not used for Chabot’s
retrieval system, we are interested in how ranking might be used to reduce the
return set size as the collection becomes very large.

We plan to integrate the Chabot schema with those of the geographical and
environmental datasets of other research projects at UC Berkeley such as satellite
imagery, aerial photography, and environmental reports. One planned
enhancement is to generate longitude and latitude coordinates for the DWR images
using GIPSY [12] a system for extracting these coordinates from textual place
names. Using this technique, a location name like “El Cerrito” that is attached to
one of the DWR images can be associated with spatial data that contains
longitudinal coordinates.

18

References

[1] Christos Faloutsos, Myron Flickner, Wayne Niblack, Dragutin Petkovic,
Will Equitz, Ron Barber, “Efficient and Effective Querying by Image
Content”, IBM Research Report RJ 9453, August 3, 1993.

[2] Antonin Guttman, “R-Trees: A Dynamic Index Structure for Spatial
Searching”,Proceedings of the 1984 ACM SIGMOD Conference on
Management of Data, Boston, Mass. June 1984.

[3] Wayne Niblack, Ron Barber, Will Equitz, Myron Flickner, Eduardo
Glasman, Dragutin Petkovic, Peter Yanker, Christos Faloutsos, “The QBIC
Project: Querying Images by Content Using Color, Texture, and Shape”,
IBM Research Report, RJ 9203, February 1, 1993.

[4] John K. Ousterhout, “Tcl and the Tk Toolkit”, Addison-Wesley Publishing
Company, 1994.

[5] Alex Pentland, Rosalind Picard, and Stan Sclaroff, “Photobook: Tools for
Content-Based Manipulation of Image Databases.” SPIE PAPER 2185-05
Storage and Retrieval of Image and Video Databases II, San Jose, CA.
February 6-10, 1994.

[6] The POSTGRES Group, “ThePOSTGRES Reference Manual”, Computer
Science Division, University of California, Berkeley, January 1993.

[7] Mark F. Riley, James J. Feenan, Jr., John L. Janosik, Jr., T.K. Rengarajan,
“The Design of Multimedia Object Support in DEC Rdb”,Digital Technical
Journal, Vol.5, No.2, Spring 1993.

[8] Gerard Salton, “Automatic Text Processing”, Addison-Wesley Publishing
Company, 1989.

[9] Michael Stonebraker, et al., “The Implementation ofPOSTGRES,” IEEE
Transactions on Knowledge and Data Engineering, March 1990.

[10] Markus A. Stricker and Markus Orengo, “Similarity of Color Images”,SPIE
Proceedings Vol. 2420, 1995.

[11] Michael J. Swain, “Interactive Indexing into Image Databases”,IS&T/SPIE
International Symposium on Electronic Imaging: Storage and Retrieval for
Image and Video Databases, February 1993.

[12] Allison G. Woodruff and Christian Plaunt, “GIPSY: Georeferenced
Information Processing SYstem”, UC Berkeley Technical report
UCB:S2K-94-41, March 1994.

