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Abstract

As network connectivity has continued its explosive growth and as storage devices have become

smaller, faster, and less expensive, the number of online digitized images has increased rapidly.

Successful queries on large, heterogeneous image collections cannot rely on the use of text match-

ing alone. In this paper we describe how we use image analysis in conjunction with an object

relational database to provide both textual and content-based queries on a very large collection of

digital images. We discuss the e�ects of feature computation, retrieval speed, and development

issues on our feature storage strategy.

1 Introduction

A recent search of the World Wide Web found 16 million pages containing the word \gif" and 3.2 million

containing \jpeg" or \jpg." Many of these images have little or no associated text, and what text they

do have is completely unstructured. Similarly, commercial image databases may contain hundreds of

thousands of images with little useful text. To fully utilize such databases, we must be able to search

for images containing interesting objects. Existing image retrieval systems rely on a manual review

of each image or on the presumption of a homogeneous collection of similarly-structured images, or

they simply search for images using low-level appearance cues [1, 2, 3, 4, 5]. In the case of a very

large, heterogeneous image collection, we cannot a�ord to annotate each image manually, nor can we

expect specialized sets of features within the collection, yet we want to retrieve images based on their

high-level content|we would like to �nd photos that contain certain objects, not just those with a

particular appearance.

2 Background

The UC Berkeley Digital Library project is part of the NSF/ARPA/NASA Digital Library Initiative.

Our goal is to develop technologies for intelligent access to massive, distributed collections comprising

multiple-terabyte databases of photographs, satellite images, maps, and text documents.
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Figure 1: WWW query form set up for the \sailing and sur�ng" query.

In support of this research, we have developed a testbed of data [6] that as of this writing includes

about 65,000 scanned document pages, over 50,000 digital images, and several hundred high-resolution

satellite photographs. This data is provided primarily by public agencies in California that desire online

access to the data for their own employees or the general public. The testbed includes a large number

of (text-based) documents as well as several collections of images such as photos of California native

species and habitats, historical photographs, and images from the commercial Corel photo database.

The image collection include subjects as diverse as wildowers, polar bears, European castles, and

decorated pumpkins. It currently requires 300 GB of storage and will require more than 3.4 TB when

it is complete. Image feature data and textual metadata are stored in an Illustra database.

All data are now being made available online using access methods developed by the Berkeley

Digital Library project. The data is accessible to the public at http://elib.cs.berkeley.edu/ via

forms, sorted lists, and search engines. Image queries can rely on textual metadata alone, such as the

photographer's name or the photo's caption, or they can employ feature information about the image,

such as color information or the presence of a horizon in the image (see �gure 1).
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3 Content-Based Querying

Most work on object recognition has been for �xed, geometric objects in controlled images (for example,

machine parts on a white background), which is not very useful for image retrieval in a general setting

such as ours. However, a few researchers have begun to work on more general object recognition [7].

The current focus of our vision research is to identify objects in pictures: animals, trees, owers,

buildings, and other kinds of \things" that users might request. This focus is the direct result of

research by the user needs assessment component of the Digital Library project [8]. Interviews were

conducted at the California Department of Water Resources (DWR), which is a primary source of the

images used in the Digital Library project testbed as well as one of its main users. Employees were

asked how they would use the image retrieval system and what kinds of queries they would typically

make. The DWR �lm library sta� provided a list of actual requests they had handled in the past, such

as \canoeing," \children of di�erent races playing in a park," \owers," \seascapes," \scenic photo of

mountains," \urban photos," \snow play," and \water wildlife."

As the user needs assessment team discovered, users generally want to �nd instances of high-level

concepts rather than images with speci�c low-level properties. Many current image retrieval systems

are based on appearance matching, in which, for example, the computer presents several images, and

the user picks one and requests other images with similar color, color layout, and texture. This sort of

query may be unsatisfying for several reasons:

� Such a query does not address the high-level content of the image at all, only its low-level

appearance.

� Users often �nd it hard to understand why particular images were returned and have di�culty

controlling the retrieval behavior in desired ways.

� There is usually no way to tell the system which features of the \target" image are important

and which are irrelevant to the query.

Our approach is motivated by the observation that high-level objects are made up of regions of

coherent color and texture arranged in meaningful ways. Thus we begin with low-level color and texture

processing to �nd coherent regions, and then use the properties of these regions and their relationship

with one another to group them at progressively higher levels [9]. For example, an algorithm to �nd a

cheetah might �rst look for regions which have the color and texture of cheetah skin, then look for local

symmetries to group some regions into limbs and a torso, and then further group these body segments

into a complete cheetah based on global symmetries and the cheetah body plan.

4 Implementation

4.1 Finding Colored Dots

As a �rst step toward incorporating useful image features into the database, we have searched for

isolated regions of color in the images. Such information can be useful in �nding such objects as

owers and people.

We look for the following 13 colors in each image: red, orange, yellow, green, blue-green, light blue,

blue, purple, pink, brown, white, gray, and black. We chose these colors because they match human

perceptual categories and tend to distinguish interesting objects from their backgrounds [10].

We use the following algorithm to �nd these \colored dots":

1. Map the image's hue, saturation, and value (HSV) channels into the 13 perceptual color channels.
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2. Filter the image at several scales with �lters which respond strongly to colored pixels near the

center of the �lter but are inhibited by colored pixels away from the center. These �lters �nd

isolated dots (such as in a starry sky) and ignore regions that are uniform in color and brightness

(such as a cloudy sky).

3. Threshold the outputs of these �lters and count the number of distinct responses to a particular

�lter.

Responses at a coarse scale indicate large dots of a particular color; responses at �ner scales indicate

smaller dots. The number of dots of each color and size is returned, as is the overall percentage of each

color in the image. A 13 � 6 matrix is generated for each image. Rows in the matrix represent the

13 colors that are identi�ed. Six integers are associated with each color: the percentage of the image

which is that color, and the number of very small, small, medium, large, and very large dots of that

color found. (These sizes correspond to dots with radii of approximately 4, 8, 16, 32, and 64 pixels,

respectively, in 128� 192 pixel images.)

While these dot counts and percentages contain no information about high-level objects, they are

a �rst step toward purely image-based retrieval. A number of combinations of the dot and percentage

data yield interesting results; the following are a few examples:

Query Percentages Dotsa Text Datasets Precisionb

Sailing & Sur�ng blue-green > 30% # VS yellow � 1 | Corel, DWR 13/17

(�g. 2)

Pastoral Scenes green > 25% AND | all 85/93

(�g. 3) light blue > 25%

Purple Flowers # S purple > 3 | all 98/110

(�g. 4)

Fields of # VS yellow > 15 | all 63/74

Yellow Flowers

Yellow Cars # L yellow � 1 OR \auto"c all 6/7

# VL yellow � 1

People orange > 1% # L pink � 1 OR | Corel, DWR 19/69

(�g. 5) # VL pink � 1

aThe di�erent dot sizes (very small, small, medium, large, and very large) are abbreviated VS, S, M, L, and VL,

respectively.
b\Precision" is the fraction of returned images that contain the intended concept. \Recall," the fraction of images in

the database containing the intended concept that are returned, is not a feasible measure in this case because we do not

know how many instances of the intended concept are in the database.
cThere are 132 \auto" images; restricting the query to images with large yellow dots reduces the number to seven.

4.2 Storage of Feature Data

Because of the size of the image collection and its associated metadata, we must use a database to

manage both textual and image content information. Our chief priority is to store this data in such a

way as to facilitate the fastest possible retrieval time in order to make rapid online browsing feasible.

Therefore, we do not store the images themselves in the database, and we store metadata in a way that

circumvents the need for joins on two or more tables. In addition, because image content analysis is

time-consuming and computationally expensive, we do this analysis ahead of time and store the results

in the database rather than using run-time functionality provided by the database. Another concern
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Figure 2: Representative results for the \sailing and sur�ng" query. (Color images are available at

http://elib.cs.berkeley.edu/papers/db/)

            

Figure 3: Representative results for the \pastoral" query.
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Figure 4: Representative results for the \purple owers" query.

            

Figure 5: Representative results for the \people" query.
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related to image analysis is the need to support continual development of new analysis techniques and

new feature data. We want to be able to add new features and modify existing features painlessly as

our vision research progresses. In this section we describe how our approach to storing image feature

data meets these goals.

Each of the �ve image collections is stored in its own table with its own particular attributes. The

collection of DWR images has 24 textual attributes per image, including a description of the image, the

DWR-de�ned category, subject, and internal identi�cation numbers. The wildowers table contains 14

attributes per image such as common name, family, and scienti�c name. The Corel stock images have

very little metadata: an ID number, a disk title such as \The Big Apple," a short description, and up

to four keywords such as \boat, people, water, mountain." The various image collections have very

few textual attributes in common, other than a unique ID assigned by the Digital Library project and

at least a few words of textual description from the data provider. Given the diversity of the overall

collection and the likelihood of acquiring additional dissimilar image collections in the future, we do

not want to support a superset of all image attributes for all the collections in one table. In addition,

we have found that most users of our system want to direct a fairly speci�c query to a particular

collection.

On the other hand, the addition of image feature data presents a more homogeneous view of the

collection as a whole. Using image feature information to �nd a picture of sailboats on the ocean does

not require any collection-speci�c information. Our approach is to support both text-based queries

directed to a speci�c collection at a �ne granularity (\�nd California wildowers where common name

= `morning glory' ") and text/content-based queries to the entire collection (\�nd pictures that are

mostly blue-green with one or more small yellow dots"). The separate tables for each collection are

used for collection-speci�c queries, while collection-wide queries can be directed to an aggregate table of

all images. This supertable contains selected metadata for every image in the repository: the collection

name, the unique ID, a \text soup" �eld which is a concatenation of any available text for that image,

and the feature data.

We have experimented with di�erent ways of storing the types of feature data that have been

developed so far, and we continue to try di�erent techniques as new features are developed. Storage of

Boolean object information, such as the presence or absence of a horizon in the image, is straightforward;

we simply store a Boolean value for a \horizon" attribute. As our vision research proceeds and new

kinds of objects can be identi�ed, they can be concatenated onto an \objects" attribute string, so

that each image has just one list|the objects that were found in that image. In this manner, we

eliminate the need to record a \false" entry for each object not found in an image. This text string can

be indexed, and retrieval is accomplished using simple text matching. However, more complex color

and texture features, such as colored dot information, require careful planning in order to ensure fast

retrieval, development ease, and storage e�ciency. Interestingly, the complexity of the stored feature

data is inversely related to the capability of the image analysis system: as computer vision systems

become more adept at producing high-level output (e.g., \ower" instead of \yellow dot"), the question

of storage and retrieval becomes simpler, because the level of detail of the stored information more

closely matches the level of detail of desired queries.

Storing Image Features as Text

In general, we store image feature data as text strings, and we use text substring matching for retrievals.

Dot information is stored in one text �eld per image. Any nonzero number of dots in an image is

categorized as \few," \some," or \many" and stored in this �eld, separated by spaces. For example, a

picture of a sky with clouds might have a few large white dots and a large amount of blue, so its dot

�eld would be \mostly blue large white few."
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We have found that storing feature data as text yields the best results in terms of development ease,

extensibility, and retrieval speed. We have experimented with other methods, such as storing dots as

integer or Boolean values, and we have considered a compact encoding scheme for the feature data in

order to save storage space and possibly cut down on retrieval time. But conservation of storage space

is not a high priority for our project, and we have found that for fast retrieval time the use of text is

satisfactory.

There are several advantages to using text instead of other data types. Most images have few

signi�cant objects and only two to �ve signi�cant colors; each color typically has just a few of the dot

attributes represented. The current implementation of dots would require 78 (13� 6) integer values,

and most of them would be zero. Using one dots text string per image allows us to store only the

features that are present in that image. This has an added bene�t during the development stage,

when vision researchers are testing their results on the image database|feature data can be concisely

displayed in a readable form on the results page with little e�ort on the developer's part.

Using text also means that incremental changes to stored feature data do not require elaborate

re-encoding or new attribute names. Text-based queries are simple to construct because there is just

one dots �eld, as illustrated in the following example:

To �nd an image with \any kind of white dots" using text, we simply use wildcards in the select

statement:

where dots like `%white%'

The equivalent integer expression requires �ve comparisons:

where VS white � 1 or S white � 1 or M white � 1 or L white � 1 or VL white � 1

Integer-based queries must be more carefully constructed to make sure that all possibilities are

included in each expression. Such factors contribute to a faster development time if a text-based

method is used, a bonus for a system like ours that is continually changing.

5 Future Directions

In the future we plan to investigate more e�cient ways to store numerical feature data such as colored

dots. However, as our image analysis research progresses, we expect to be able to use low-level feature

information (shape, color, and texture) to automatically identify higher-level concepts in the images,

such as trees, buildings, people, animals of all kinds, boats, and cars. As high-level information like

this becomes available, the need to store low-level features like dots will decrease.

Currently most of the feature data we have developed is stored in a single table|the supertable

that includes all the images in the collection. Although queries on this table can include text and can

be directed to individual collections, no categorization of text is provided, because the primary purpose

of the form is to make content-based queries. We plan to extend the content-based capability to the

query forms for each individual collection so that users who know that particular collection can take

advantage of the stored feature data. One collection that we think will bene�t greatly from the use

of content-based queries is the California wildower collection. Users will be able to request pictures

of a named ower in a particular color, such as \blue morning glories and not white morning glories,"

or even search for the names of owers using color cues alone: \pink owers with yellow centers" and

\owers with large purple blossoms."
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