
Optimization of In-Network Data Reduction

Joseph M. Hellerstein∗ † Wei Wang∗

∗UC Berkeley and † Intel Research Berkeley

{jmh,wangwei}@eecs.berkeley.edu

Abstract

We consider the in-network computation of approximate
“big picture” summaries in bandwidth-constrained sen-
sor networks. First we review early work on comput-
ing the Haar wavelet decomposition as a User-Defined
Aggregate in a sensor query engine. We argue that this
technique can be significantly improved by choosing a
function-specific network topology. We generalize this
discussion to a loose definition of a 2-level optimization
problem that maps from a function to what we call a sup-
port graph for the function, and from there to an aggre-
gation tree that is chosen from possible subgraphs of the
physical network connectivity. This work is frankly quite
preliminary: we raise a number of questions but provide
relatively few answers. The intent of the paper is to lay
groundwork for discussion and further research.

1 Introduction

Wireless sensor networks must operate with significant
constraints on energy and bandwidth consumption. This
presents challenges for interactive analysis of data in
sensornets, since data analysts tend to desire a big-
picture view of the data before “drilling down” to spe-
cific queries. The big-picture queries can range over all
the data in the network, but fortunately approximate an-
swers are often sufficient for these purposes. Techniques
to provide approximate answers to resource-intensive
queries of this sort were explored by a variety of re-
searchers in traditional database scenarios (e.g., [6, 8]).

Copyright 2004, held by the author(s)

Proceedings of the First Workshop on Data Management
for Sensor Networks (DMSN 2004),
Toronto, Canada, August 30th, 2004.
http://db.cs.pitt.edu/dmsn04/

In this paper we explore some initial ideas and chal-
lenges in performing online, in-network data reduction
in sensor networks. Data reduction techniques can be
used to provide synopses or “sketches” that can be used
to approximately answer queries. Our main contribution
here is not to present specific results, but to rough out
a set of ideas and research challenges that we hope the
community can explore and define further.

We begin by describing in some detail two tech-
niques for in-network computation of Haar Wavelets. We
hinge this discussion on the Haar support tree, a logical
dataflow specification that describes the ordering con-
straints on combining data values. We show that an ear-
lier idea for in-network computation of the Haar does not
observe the constraints of the support tree, and instead
produces biased results. We then consider constraining
the network topology to generate a physical communi-
cation tree that observes the constraints of the logical
Haar support tree. We present the surprising observation
that a correct communication pattern for the Haar sup-
port tree results in a binomial communication tree at the
network layer. This insight leads to some relatively crisp
questions surrounding the optimization of communica-
tion topologies for computing Haar wavelets in-network.

Given this specific example as background, we pose a
more generic (albeit vaguely defined) family of optimiza-
tion problems for doing in-network data reduction, by fo-
cusing on the general problem of mapping from support
graphs to communication graphs for various computa-
tions. We also raise various challenges in transferring
this algorithmic work to practice.

2 Case Study: Wavelets

Wavelets have been widely used in the database litera-
ture as a data reduction technique (a tutorial is presented



-4
3

7

3
5

2
-1

3

8

18

17
7

10

3
8

5

3
4

1

5

13

35

Figure 1: A column of a table and its Haar wavelet sup-
port tree (sometimes called an “error tree”). The output
of the wavelet transform in this example is [35, -1, 3, 8,
-4, 3, 3, 3].

in [11]). Aggregate queries can be answered approxi-
mately by running them over compressed wavelets of a
raw dataset. Wavelets have a number of attractive prop-
erties, including their mathematical simplicity, and their
ability to provide “multi-resolution” results by incremen-
tally fetching more of the wavelet from a disk or network.

2.1 A Brief Primer on Haar Wavelets

The Haar wavelet is the simplest and most popular ex-
ample of the wavelet family. The Haar is also easy to ex-
plain; we give a brief sketch here. Given an array of num-
bers (e.g., one column of a database table), it pairs up
the neighboring numbers in odd and even positions (e.g.
rows of the table), and transforms them into two different
numbers: their sum and their difference. The differences
are stored, and the sums are passed into a recursive appli-
cation of the procedure. The recursion can be visualized
as a tree, as in Figure 11. The numbers (“coefficients”)
stored at each internal node in the tree represent the dif-
ferences between the overall sum of leaves in the left and
right subtrees of the node; the edges are labeled with the
sums that are passed up. The root represents the sum
of all the entries in the original array. We call this tree
the support tree of the Haar wavelet: edges in the tree
represent data dependencies, where each internal node
is computed as a function of its children, and the leaves
underneath a node represent the support of the value in
that node. The output of the Haar transform can be pro-
duced by a breadth-first traversal of the (non-leaf) nodes
of the support tree, though in practice there are coding al-
gorithms that do not require constructing and traversing

1The example builds a 1-d wavelet. Multi-d wavelets are analo-
gously built with trees of fan-in 2d.

such a tree [16].

The decoding of the transformed data can be done in a
straightforward fashion starting from the root and recurs-
ing downwards: given the overall sum s at the root, and
the difference d at the node below, the overall sums of
the left and right subtrees are calculated as (s+d)/2 and
(s − d)/2 respectively, and the process can then recurse
to the leaves.

As described, the output of the Haar transform is ex-
actly the same size as the input. However, a simple
scheme can be used to lossily compress the wavelet by
truncating the list of coefficients. The basic idea is to
only keep coefficients with high absolute values2, and
“round” the remaining coefficients to zero. In our ex-
ample of Figure 1, truncating to the top 3 coefficients
gives [35, 0, 0, 8, -4, 0, 0 ,0]. The resulting output array
has mostly zero-valued entries, and can be represented
compactly via a number of well-known techniques (e.g.,
via (position, value) pairs for the non-zero entries, or
run-length encoding.) Decoding our truncated example
wavelet reconstructs the input as [2, 6.75, 4.375, 4.375,
6.125, 6.125, 2.125, 2.125]. Note that wherever a node
in the support tree was rounded to zero, the reconstructed
leaves in the corresponding subtree moved closer to-
gether in value. Dropping coefficients “smooths” differ-
ences in the original data.

If the full wavelet encoding is available somewhere
– e.g. on a disk, or across a network – then the num-
ber of “unrounded” coefficients fetched locally can be
increased incrementally in a “multi-resolution” manner,
to remove these smoothing effects. Each new coefficient
fixes a more subtle smoothing than the previous. This
incremental improvement in the reconstruction is one at-
tractive feature of wavelets.

A final side-note is merited regarding the treatment of
set-valued data like columns of database tables. Wavelets
are a sequence-encoding scheme, preserving the ordering
of values in the input. In databases, this input ordering
is arbitrary by definition. Given that any ordering is ac-
ceptable, an open question is to choose an ordering of the
input data for which a wavelet truncated to the top k co-
efficients is most effective. For numeric data, sorting the
table is a natural option; an extension of this idea for inte-

2Typically the values are normalized by dividing by
√

2i where i is
the height of the node above the leaves. Normalization does not affect
the examples or algorithms here.



-4

3 7

3

5 2

3

710

3

8 5

13

3

8 5

0

0 0

013

Zero-Pad

13

17 13

Figure 2: Given support subtrees of differing sizes, the PM technique zero-pads the smaller subtree before combining
them.

ger data is the Wavelet Histogram, which run-length en-
codes the sorted column into (value, frequency) pairs and
performs a wavelet transform on the resulting sorted fre-
quencies [13]. For categorial attributes, the best choice
of sort-order is an open question; it is likely to be depen-
dent on the wavelet basis functions chosen (e.g. Haar,
Daubechies-4, Mexican Hat, etc.)

2.2 Haar Wavelets as a Distributed UDA

Earlier work based on the TinyDB system presented a
User-Defined Aggregation (UDA) technique to compute
a Haar wavelet over readings gathered in a sensor net-
work [10]. We refer to this as the Pad-Merge or PM
technique, and briefly review it here.

As in extensible databases, UDAs in TinyDB are rep-
resented by a triplet of functions: a merging function f ,
an initializer i, and an evaluator e. The initializer con-
verts a scalar input value into an opaque partial state
record (PSR), the merging function takes two PSRs and
combines them into a new PSR, and the evaluator takes
a PSR and produces an output scalar value. In sensor-
net query systems like TinyDB, an aggregation query is
disseminated to participating sensor nodes, which call
the initializer function on their local reading and then
communicate PSRs up a communication tree of network
links to the query node. When a node N receives a PSR
from a child in the tree, it calls the merging function to
merge the incoming PSR into N ’s current PSR; when
N has merged in all of its children’s PSRs, N sends the
merged PSR to its own parent. Details of this aggrega-
tion scheme, including the dissemination of queries and
construction of communication trees, can be found in the

literature [12].
The PM technique uses a distributed, bottom-up

scheme to construct a Haar support tree like that of Fig-
ure 1. It has a total communication cost that is linear
in the number of nodes of the network (one fixed-size
message per node). The PSRs in the PM technique are
essentially arrays of k wavelet coefficients represented as
(position, value) pairs. Each PSR corresponds to a sub-
tree of a complete Haar support tree. The main logic in
the PM technique is in the merging function, which takes
two arrays of wavelet coefficients (representing two Haar
subtrees), generates a new set of wavelet coefficients rep-
resenting the two trees connected by a new root, and
keeps the top k of those coefficients as the new PSR3.
Upon completion, the PM technique produces k large
wavelet coefficients that can be used to lossily recon-
struct the input data.

A Haar support tree is a balanced binary tree. But
aggregation in TinyDB imposes no structure on the com-
munication tree, and hence it does not control the order in
which PSRs are merged. The merging function can be in-
voked on two arbitrary PSRs, which may represent Haar
subtrees of differing heights. To handle this, the PM ap-
proach proposes a zero-padding technique to “promote”
the smaller of the two input PSRs to a tree of the same
height as the larger: it pads the smaller PSR with an ap-
propriate number of zero-valued leaves until it becomes

3The order in which PSRs are combined recursively determines the
left-to-right ordering of the leaves of the Haar tree. In our discussion
here we focus on set-oriented query scenarios where this order – or,
equivalently, IDs of the nodes – is insignificant. Preserving the order
or node IDs can be done in a number of different ways that would
complicate our discussion here unnecessarily.



-4
3

7

3
5

2

-1

3

8

18

17

7

10

3
8

5

3

4

1

5

13

35

3

7 5

2

8

5 4

1

[3]

[5] [8]

[4]

[10,-4]

[7,3][17,3,-4,3]

[t]

Figure 3: An in-network computation of the Haar wavelet of Figure 1. The left side annotates the (logical) support
tree with dark arrows representing physical message-passing between the sensor nodes. The right side of the figure
shows just the (physical) communication tree, i.e., the leaf level of the left side. Each edge on the right is labeled with
the wavelet coefficients sent.

a balanced binary tree of the same height as the larger
PSR (Figure 2). This guarantees that the PM technique
always merges two PSRs of the same size, and hence al-
ways constructs balanced binary Haar support trees.

If the PM technique never truncates any coefficients,
it can reconstruct the data perfectly: the extra zeros in-
troduced by padding can be correctly accounted for and
deleted in the decoding process. However, in the practi-
cal cases where the PSR is much smaller than the number
of nodes in the network, each merging step has to trun-
cate to the top k coefficients. When zero-padding is used,
the truncating can smooth the spurious zeros across the
true data. In the end, the PM technique will produce a
k-coefficient wavelet that is not as accurate as the one
that would be produced in a centralized implementation
of the Haar encoding – the PM wavelet will incorrectly
bias the reconstructed data toward zero, in many cases in
a significant way.

2.3 Haar-Specific Network Topologies

The PM technique introduces bias when padding Haar
support subtrees of unequal size. Imagine that one could
guarantee that only equal-sized subtrees were merged.
Then no zero-padding would be needed, and the correct
top-k wavelet coefficients would be produced as a re-

sult. In this section we explore the possibility of achiev-
ing such an invariant by controlling the sensor network
topology used for aggregation in the network.

For purposes of illustration, assume for a moment that
we have a fully-connected communication network with
nodes numbered 1 through 2 l. Our goal is to construct
the Haar support tree bottom-up by passing messages be-
tween nodes. By convention, we will assume that lower-
numbered nodes will pass messages to higher-numbered
nodes. The process begins at the leaves of the support
tree: node 1 passes its value to node 2, node 3 passes
its value to node 4, etc. The even-numbered recipients
pass along PSRs that contain their top k difference co-
efficients as well as their sum: node 2 passes its PSR
to node 4, node 6 passes its PSR to node 8, etc. At the
end of this process, the contents of the Haar support tree
would be distributed throughout the network, with the
top-k coefficients and the overall sum residing at node
2l. This communication pattern is depicted by the di-
rected arrows in the left side of Figure 3.

Given our assumption of a fully connected sensor net-
work graph, this distributed algorithm employs a very
stylized subgraph that comes from the data structures lit-
erature: the binomial tree [4] (right hand side of Fig-



Figure 5: A binomial tree embedded in a radius-1 grid.

ure 3). In a binomial tree of 2 l nodes, the root has
l children, which are binomial trees of 2 i nodes for
i ∈ 0, . . . , l − 1. The depth and maximum fan-in of a bi-
nomial tree are both logarithmic in the number of nodes.

We can now relax our unrealistic requirement of full
connectivity in the sensor network, and ask whether this
technique is feasible in practice. This reduces to two ba-
sic questions: (1) do binomial trees naturally occur as
subgraphs of practical sensornet communication graphs,
and if so, then (2) can an efficient, distributed topology-
selection algorithm be devised to find and maintain a bi-
nomial subtree topology in a sensor network?

It would be interesting to study this question empir-
ically, and/or to analyze it formally for random graphs
from typical distributions. Here we simply provide a
bit of intuition from the canonical simplistic sensornet
model of an equally-spaced 2-d grid of nodes with com-
munication radius of 1 grid-square per node. In a 4 × 4
grid, it is certainly possible to find binomial trees (Fig-
ure 5). Note however that in two dimensions each node
has only 8 neighbors, and the root of a binomial tree of
size 2l has l children. Hence clearly any 2-d grid topol-
ogy of more than 256 nodes will not have a binomial tree
embedding unless its communication radius is greater
than 1. Similarly, since the corner of a grid has only 3
neighbors, there is no binomial tree rooted at a corner of
our 4 × 4 grid of Figure 5.

3 Generalizing the Haar Example

Haar wavelets are only one of many non-trivial aggre-
gation functions that may be of use in sensor networks.
The discussion above illustrates a number of interesting,
general problems that arise in computing such complex
aggregates efficiently. In this section we briefly sketch a
set of research problems that arise in this space.

3.1 A Static Optimization Problem

Section 2.3 raises the challenge of finding communica-
tion trees that match the Haar wavelet support tree. This
is an example of a more general optimization problem
in sensornet aggregation. The challenge is to take any
aggregation function and map it onto the graph of radio
connectivity in the network. This can be viewed as a
multi-layer optimization problem: as illustrated in Fig-
ure 4: (a) a support graph must be chosen for the ag-
gregation function, and (b) the support graph must be
mapped onto a communication tree; the communication
tree in turn is constrained to be a subgraph of (c) the radio
connectivity graph of the sensornet. Note that depending
on the aggregation function, there may be more than one
satisfying support graph for step (a). Similarly, in step
(b) there are multiple communication trees correspond-
ing to a chosen support graph, more than one of which
may be a subgraph of the radio connectivity.

In the case of the Haar wavelet, the mapping from
support graph to communication graph was quite ele-
gant: a balanced binary support tree became a binomial
communication tree. Since the properties of binomial
trees are well known, they are amenable to analysis and
(hopefully) simple construction and maintenance algo-
rithms. It is unclear whether the mappings of other sup-
port graphs into communication graphs will be as ele-
gant. The curious reader is encouraged to play with the
Daubechies-4 wavelet as a more complex example, since
it has a support DAG rather than a support tree. The gen-
eral mapping problem itself is of interest, as is the ques-
tion of characterizing the communication graphs at the
output.

As noted in the previous section, it may in some cases
be impossible to find a communication graph in the net-
work to match a particular support graph for a func-
tion. In such cases, two options are available. One is to
achieve such a topology as an overlay network, by hav-
ing some sensors forward PSR messages directly to other
nodes without applying the merging function. This of
course causes overheads that spoil the ideal linear com-
munication cost of many aggregates. The second op-
tion is to always apply the merging function on arriv-
ing PSRs regardless of data dependencies in the support
graph; logically this reshapes the support graph that gets
computed. This is exactly the approach taken by the PM
technique for Haar wavelets. Ideally this latter approach



Support Graph

Communication Tree

Radio Connectivity Graph

Figure 4: The general optimization problem needs to choose a Support Graph, and map it to a Communication Graph
that is a subgraph of the Radio Connectivity Graph.

should include a technique to quantify the error intro-
duced by such inappropriate merging.

The general optimization problem is as follows.
Given an aggregation function, a connectivity graph, and
a cost function to minimize, the challenge is to choose a
min-cost communication graph in the network that is a
subgraph of the connectivity graph. The communication
graph must be annotated to differentiate between cases of
PSR forwarding and PSR merging. The cost function is
likely to be a multi-objective metric, incorporating per-
haps such issues as bandwidth, latency, power consump-
tion, and bounds on errors in the result.

3.2 Real-World Complications

This optimization problem is relatively well-defined, but
not entirely realistic. Here we highlight additional chal-
lenges that are likely to arise in practice.

The first is the very real issue of packet loss in sen-
sor networks. Loss probabilities on radio links can be
estimated, and added as inputs to the optimization prob-
lem. But this leaves the question of how to deal with
loss. A natural option is to implement network retries;
the expected number and cost of retries can be translated
in the cost metric to bandwidth, latency and power con-
sumption. A second option is simply to tolerate loss, and
estimate the loss in accuracy of the answer. A third, in-
triguing direction is the use of forward error correction.
Naive application of error-correcting codes seems like a
bad idea, since the codes are traditionally used to pre-
serve opaque packets. Given our knowledge of applica-
tion semantics, it is interesting to explore the joint de-

sign of error-correcting aggregation functions. The re-
cent work on duplicate-insensitive distinct count sketch-
ing [3] may seen as an example of this idea. A generic
challenge with any of these schemes is to minimize wak-
ing time: if a node chooses not to propagate any data
(e.g., because its coefficients are below a threshhold) it
should be able to power down. This is complicated by
the problem of loss, since it is unclear how receivers dif-
ferentiate between lost packets and unsent packets.

A second critical challenge is that of network dy-
namism. Experience shows that connectivity in a sen-
sornet changes over time as a function of many factors.
Given that the physical graph will change over time, a
dynamic reoptimization technique is needed for the prob-
lems sketched above, and preferably one that works in
a distributed fashion with minimal communication re-
quirements.

An additional, fundamental challenge arises at the ar-
chitectural level. This paper advocates algorithmic op-
timizations that collapse traditional boundaries between
application-level logic and various parts of the network
stack (e.g. topology construction, loss handling, etc.)
This raises the challenge of architecting a system that
allows users defining new aggregation functions to de-
scribe acceptable networking choices with a minimum of
fuss. This is an extensibility interface that is not well un-
derstood. A better understanding of this interface might
also provide guidance in choosing data reduction func-
tions to compute. For example, the support graphs of
various wavelet variants (Haar, Daubechies-4, etc.) are



quite different. Understanding how to describe these dif-
ferences compactly to a system might also provide ana-
lytical insight into their relative merits in terms of map-
pability to communication graphs.

Finally, this discussion raises the question of what one
does with multiple concurrent functions with competing
desires – e.g. a query that requests the simultaneous com-
putation of two very different aggregates.

4 Open Issues and Alternatives

This paper describes a relatively focused family of opti-
mization challenges. In this section we briefly touch on
some broader issues and alternative approaches.

An important challenge in this context is to handle
changes in the data while the aggregation protocol is
running. Multi-resolution schemes like wavelets can let
users watch detail accumulate as coefficients are passed
up in multiple rounds of communication, in the spirit of
Online Aggregation [9]. However, during the multiple
rounds of communication, the data itself may be chang-
ing, and it may be more beneficial to send newer, coarse-
grained data rather than increasing refinements on stale
data. In this vein, it might be beneficial look at spatio-
temporal wavelet encoding, and consider which coeffi-
cients of the spatio-temporal wavelet to communicate at
each timestep. This tradeoff emcompasses data proper-
ties and user desires, and it inherently a mix of systems,
coding, and HCI issues.

The traditional database approach to aggregation has
a unidirectional dataflow that results in the one-way com-
munication trees we have discussed here. A broad class
of data analysis techniques can be more efficiently com-
puted in two communication rounds: one up a tree and
the other back down. This includes multi-dimensional
regression, Fast Fourier Transforms, and Bayesian be-
lief propagation, all of which can be computed via the
Junction Tree algorithm [1]. These techniques have been
mapped into the sensornet domain in recent years [7, 15].
But current sensornet query engines have yet to incor-
porate these approaches into their architectures or lan-
guages, and the integration may require a new architec-
ture beyond analogies to Object-Relational UDAs. It is
worth noting that many of the problems suggested here
are related to work being studied in the Junction Tree
context [15].

Another fruitful vein of exploration is to design data

reduction techniques whose merging function is fully
commutative and associative. The network optimization
for these aggregates is therefore unconstrained by the
choice of support tree. AMS sketches [2] are one ex-
ample that may be a good alternative to wavelets. Nath
and Gibbons propose a scheme to additionally intro-
duce duplicate insensitivity to aggregates in a general
way [14]. Duplicate insensitivity removes the constraint
of the communication graph being a tree, allowing for
arbitrary “diffusion” or “gossip” of messages.

Wavelets have been proposed for sensor networks in
the work of Ganesan, et al. on DIMENSIONS [5]. DI-
MENSIONS does not perform any distributed wavelet
computation. Instead it has two main components: (a)
it uses local wavelets to lossily compress archival stor-
age of readings over time at each node in the network,
and (b) it embeds a geographic quad-tree in the network
to provide distributed, hierarchical spatial summariza-
tion. Each node of the quad tree receives the (wavelet-
encoded) data from the nodes below, decodes it to form
a 2-d array, and re-encodes the array into (threshholded)
2-d wavelet coefficients used both for lossy local stor-
age and for communication further up the quad-tree.
DIMENSIONS blends two approaches to hierarchical
data reduction: local wavelets and distributed quad trees.
An interesting question is whether a distributed multi-
dimensional wavelet of the form described in this paper
could be extended appropriately to achieve the function-
ality of DIMENSIONS in a unified fashion.

5 Conclusion

If sensornet query engines are to succeed, they need to
either provide a wide range of useful built-in function-
ality, or be easily extended to incorporate new function-
alities. Given the relative immaturity of the area, it is
unlikely that we will anticipate many of the important
features in advance. The traditional User-Defined Ag-
gregation functionality of extensible databases should be
a key feature in sensornet query systems, and optimiza-
tion of UDAs over networks will be a key challenge. Per-
haps the most critical aspect of the work described here
is architectural challenge raised: how do users define the
merging rules for complex UDAs to the system, and are
there general optimization techniques to take such rules
and use them to achieve good performance?



Acknowledgments

Thanks for conversation and feedback to Amol Desh-
pande, Christos Faloutsos, Minos Garofalakis, Phil Gib-
bons, Carlos Guestrin, Sam Madden, Yossi Matias, Mark
Paskin, Kannan Ramchandran, and Mehul Shah. Mark
Paskin devised the visualization of the layered optimiza-
tion problem for his work on distributed inference [15].

References

[1] S. M. Aji and R. J. McEliece. The generalized
distributive law. IEEE Trans. Info. Theory, 46(2),
2000.

[2] N. Alon, Y. Matias, and M. Szegedy. The space
complexity of approximating the frequency mo-
ments. In Proc. 28th Annual ACM Symposium
on Theory of Computing (STOC), pages 20–29,
Philadelphia, PA, 1996.

[3] J. Considine, F. Li, G. Kollios, and J. Byers.
Approximate aggregation techniques for sensor
databases. In Proc. International Conference on
Data Engineering (ICDE), Mar. 2004.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms, Second Edi-
tion. MIT Press, 2001.

[5] D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Es-
trin, and J. Heidemann. An evaluation of multi-
resolution storage for sensor networks. In Proc.
First ACM Conference on Embedded Networked
Sensor Systems (SenSys), 2003.

[6] P. B. Gibbons, V. Poosala, S. Acharya, Y. Bartal,
Y. M. andf S. Muthukrishnan, S. Ramaswamy, and
T. Suel. AQUA: System and techniques for approx-
imate query answering. Technical report, Bell Lab-
oratories, Murray Hill, NJ, Feb. 1998.

[7] C. Guestrin, R. Thibaux, P. Bodik, M. A. Paskin,
and S. Madden. Distributed regression: An efficient
framework for modeling sensor network data. In
Proc. 3rd International Symposium on Information
Processing in Sensor Networks (IPSN), 2004.

[8] J. M. Hellerstein, R. Avnur, A. Chou, C. Hidber,
C. Olston, V. Raman, T. Roth, and P. J. Haas. Inter-
active data analysis with CONTROL. IEEE Com-
puter, 32(8), August 1999.

[9] J. M. Hellerstein, P. J. Haas, and H. Wang. Online
aggregation. In Proceedings of the ACM SIGMOD,
pages 171–182, Tucson, AZ, May 1997.

[10] J. M. Hellerstein, W. Hong, S. Madden, and
K. Stanek. Beyond average: Towards sophisticated
sensing with queries. In 2nd International Work-
shop on Information Processing in Sensor Net-
works (IPSN), 2003.

[11] D. Keim and M. Heczko. Wavelets and their appli-
cations in databases. In Proc. International Con-
ference on Data Engineering (ICDE), Heidelberg,
Germany, 2001.

[12] S. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. TAG: A Tiny AGgregation Service for
Ad-Hoc Sensor Networks. In Symp. Operating Sys-
tems Design and Implementation (OSDI), 2002.

[13] Y. Matias, J. S. Vitter, and M. Wang. Wavelet-based
histograms for selectivity estimation. In SIGMOD,
pages 448–459, Seattle, Washington, 1998.

[14] S. Nath and P. B. Gibbons. Synopsis diffusion for
robust aggregation in sensor networks. Technical
Report IRP-TR-03-08, Intel Research, 2003.

[15] M. A. Paskin and C. E. Guestrin. A robust archi-
tecture for distributed inference in sensor networks.
Technical Report IRB-TR-03-039, Intel Research,
2003. Submitted for publication.

[16] W. Sweldens. The lifting scheme: A construc-
tion of second generation wavelets. SIAM J. Math.
Anal., 29(2):511–546, 1997.


