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Abstract— Sensornet systems research is being con-
ducted with various applications and deployment scenarios
in mind. In many of these scenarios, the presumption is
that the sensornet will be deployed and managed by users
who do not have a background in computer science. In
this paper we describe the “Tiny Application Sensor Kit”
(TASK), a system we have designed for use by end-users
with minimal sensornet sophistication. We describe the
requirements that guided our design, the architecture of
the system, and results from initial deployments. Based
on our experience to date we present preliminary design
principles and research challenges that arise in delivering
sensornet research to end users.

I. I NTRODUCTION

A standard vision of wireless sensor networks in-
volves an end-user buying a collection of sensor nodes,
powering them up, and sprinkling them – literally or
figuratively – within an environment. The devices au-
tomatically form an ad-hoc network, sense their envi-
ronment, and report readings back to a central location
over the course of months or years. In these early years
of sensor network technology, things are not yet that
simple. Most deployments today happen via a squad of
computer science researchers working hand-in-hand with
a potential user to carefully deploy nodes, configure and
even write software on the fly, observe network behavior
and analyze incoming data, and return on a regular basis
to monitor and maintain the health of the system [1].

Over the past two years, we have been working on the
Tiny Application Sensor Kit (TASK), a “turnkey” sensor-
net application for Berkeley motes. TASK is intended to
encourage sensornet adoption by making environmental
monitoring deployments relatively self-explanatory, easy
to configure, and easy to maintain. Our work on TASK
was guided by our initial deployments of sensornets in
partnership with the scientific [2] and agricultural [3]
communities, as well as initial discussions with industrial
partners focused on HVAC [4], equipment monitoring [5]
and asset management [6].

These experiences have helped us identify a set of

user requirements for TASK (Section II), and helped
guide its design and implementation (Section III). We
believe that these requirements are not specific to TASK
but are necessary for any similar environmental moni-
toring system. TASK is not yet fully mature, but early
experiences with a couple of deployments (Section IV)
show that our basic architecture is sound and have taught
us a number of lessons (Section V) which should help
TASK’s future development. Our overall experience is
that deploying sensornet applications in the real world is
significantly harder than laboratory tests and simulators
would indicate. We believe that our efforts to build a
turnkey sensornet kit are an important step in addressing
critical sensornet challenges in a meaningful manner.

II. U SERREQUIREMENTS

A large variety of sensor network applications have
been proposed, from environmental monitoring to struc-
tural monitoring to asset tracking. Clearly, it is impos-
sible to design a single sensor kit to satisfy the require-
ments of all possible applications. Thus, we decided
to focus our efforts on building a kit for low data
rate, environmental monitoring applications. Although
we have since worked on extending TASK for new types
of applications, they are beyond the scope of this paper.
We derived the requirements for TASK both by talking to
many potential sensor network users with environmental
monitoring applications, and by working with some of
them closely in real sensor network deployments [2].

A. Design Requirements for End Users

End users of sensor networks are typically experts
in their own fields such as biology or agriculture, but
often not sophisticated computer users. Thus, one of our
primary goals was to alleviate the need for end-users to
program devices or “babysit” a network.

With this intuition in mind, we laid out initial require-
ments for TASK, which we revisit throughout the paper:

EU-1 Ease of software installation. The installation
of the system software on any device (including



standard desktop PCs) must be extremely simple.
EU-2 Deployment tools. After software installation,
users are faced with the task of placing sensor nodes
at required sensing locations, deploying routing
nodes to ensure good network connectivity, and
establishing connections between the gateways and
the Internet. To the extent possible, users should
be aided in their deployment efforts by tools that
provide network and data quality feedback. Users
should also be able to add nodes to a deployment
with a minimum of effort and plenty of feedback.

EU-3 Reconfigurability. Sensor network users of-
ten need to reconfigure their applications over the
course of a deployment to fine-tune data rates or
types of data collected, or to adjust network size.

EU-4 Health monitoring . Users need tools to verify
that all sensor nodes are connected to the network
and reporting meaningful data.

EU-5 Minimum network reliability guarantee .
Most sensor network users expect some noise and
data loss from sensor networks. Extensive loss,
however, is unacceptable.

EU-6 Interpretable sensor readings. To end users,
raw sensor readings are meaningless. They must be
able to receive and manipulate sensor readings in
well-known engineering units.

EU-7 Integration with data analysis tools. A sen-
sor kit should use standard data formats (comma
delimited text, ODBC/JDBC interfaces, etc) that
permit access by a variety of analysis tools.

EU-8 Audit trails . Sensor networks may exhibit
unexpected behavior – catastrophic losses, delayed
transmission, node failures, and so on. Maintaining
a record of every human manipulation of the net-
work and every single packet that flows out of the
network will help diagnose such unexpected faults.

EU-9 Network longevity estimates. There must be
a method to provide some reasonably accurate es-
timate of the network lifetime based on the current
sensornet configuration. For example, the biologists
monitoring the bird habitat on Great Duck Island [1]
need the network to last for at least 6 months as that
is the duration of the nesting season on the island.

B. Design Requirements for Developers

There were additional requirements necessary to make
TASK a flexible system for developers. These included:

D-1 The need for afamiliar system API, allow-
ing the easy development of new real-time data

visualization or network monitoring tools without
rewriting portions of TASK.

D-2 The need forextensibility of sensor node
software, for adding new types of sensors or new
data transformation operators.

D-3 Modular in-network services, to facilitate ex-
perimentation with different solutions for routing,
sampling, scheduling, etc.

III. TASK D ESIGN

In this section, we describe the design and implemen-
tation of TASK. We start with a general discussion of
our design principles followed by a description of the
overall architecture and its key components.

A. Design Principles

The driving principles we adopted in designing TASK
are simplicity over functionality, modularity, remote
controllability and fault tolerance. In this section we
consider each principle in turn, and highlight some its
key influences on TASK.

Simplicity over Functionality. Many of the com-
ponents needed to build a general purpose sensor kit
have already been developed by the sensor network
community. For this reason, we decided to build TASK
based on the “best of breed” existing components already
developed by the TinyOS community. Our efforts have
focused on hardening existing technology, integrating it
into a single package, and evaluating its performance in
real world deployments. When functionality had to be
implemented from scratch, we tended to use the simplest
possible solutions. For example, we struggled for several
months to integrate a general purpose, high precision
time synchronization layer into TASK – it consistently
caused nodes to crash and become desynchronized under
high load. The better approach was a simple, application-
specific approach that achieves millisecond accuracy and
is absolutely sufficient for our needs. (Section III-C.)

Modularity. Though modularity is key to any good
software engineering practice, it is particularly impor-
tant in using a best-of-breed approach for emerging
technology, because the components will evolve over
time and will need to be replaced. With this in mind,
we structured TASK as a set of loosely-coupled layers.
The client applications/GUIs access the TASK server
(Section III-D) over a simple interface. This server
communicates with the sensornet via a narrow, well-
specified abstraction that permits easy substitution of
different sensornet data collection models. The core in-
network data collection software is separable from the
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communication provider allowing for different multi-hop
protocols and radio power modes (see Section V.)

Remote Management.It is frequently desirable to
interrogate and control remote nodes throughout a sensor
network deployment. Nodes tend to be installed in hard-
to-reach or remote locations so significant time and effort
can be saved if nodes can be remotely managed.

Fault Tolerance. Failures are much more common
in sensor networks than traditional IT systems because
of cheap hardware components and challenging environ-
ments. We took a simple approach to fault tolerance:
whenever a failure is detected, nodes restart, retaining
enough state (or inferring enough state from other, non-
failed nodes around them) to continue data collection.

B. System Overview

Figure 1 shows the overall architecture of TASK,
which is covered in detail in the rest of this section.
A TASK sensor kit consists of a collection of sensor
nodes (Section III-C), asensor network appliance (SNA,
Section III-D)), a number of TASKfield toolsrunning on
PDAs, and TASKclient toolsrunning from any computer
connected to the Internet (Section III-E). In the spirit
of the end-user design requirement EU-7, TASK also
integrates easily with popular data analysis tools such as
Matlab, Excel, Labview, etc. through standard database
and text export interfaces.

C. Sensor Nodes and Software

The TASK sensor nodes aremica2 or mica2dot ,
running TinyDB [7], a distributed query processor for
TinyOS motes. TinyDB presents a sensor network as
a virtual database table calledsensorsconsisting of
all the attributes defined in the network on all of the
sensors. This database is queried using a SQL-like
query language called TinySQL. TinySQL is a slightly
modified version of SQL. The main difference is that

TinySQL introduces a new “SAMPLE PERIOD” clause
to SQL’s “SELECT ... FROM ... WHERE ...” syntax. The
“SAMPLE PERIOD” clause specifies how frequently the
sensors are sampled to generate a tuple in the virtual
table. Alternatively, the sample period can be derived
from a lifetime requirement using the “LIFETIME”
clause, where the sample period is computed from the
lifetime goal using a simple model of a query’s energy
consumption. An example sensor query is:

SELECT nodeid, temperature, humidity
FROM sensors
SAMPLE PERIOD 5 min

TinyDB supports multiple, concurrently running queries,
and a command interface for controlling other aspects
of mote behavior. TinyDB is relatively mature, and
satisfies many of Section II’s requirements. A data
collection query collects the user’s data, thus supporting
reconfigurability (EU-3), and, via the “LIFETIME”
clause, longevity management (EU-9). A separate
health query collects attributes representing network
topology (EU-2) and system parameters (EU-4). TinyDB
allows developers to extend the system with new data
transformations, and with newattributes to query
different types of sensor or access internal metadata
(Developer Requirement D-2). The interfaces between
TinyDB and TinyOS are also sufficiently modular for
our needs, as required by D-3. For instance, it works
over a variety of multi-hop routing implementations.

However, TinyDB was not ready for real-world de-
ployment when we began our work. We made the
following changes to TinyDB to facilitate real-world
deployments: we added simple power management and
time synchronization features, aquery sharingfeature,
a watchdog, and on-mote logging. We discuss these
improvements in turn.

Power Management. TinyDB initially left nodes on
all the time, which limited lifetime to just a few days.
To meet TASK network lifetime requirements (EU-9),
we needed to add power management features. We have
explored two power management solutions for TinyDB:
duty cyclingand low-power listening. In duty cycling,
nodes are awake for a short, synchronized period each
sample interval. This period must be long enough for a
node to sample sensors, send its data and forward data
for its children. Ideally, this period would be adaptive
(e.g., see [8]), but currently TinyDB uses a fixed period
(selected for each deployment, typically 4s). In low-
power listening, each node wakes up periodically to
sample the channel for traffic and goes right back to
sleep if there is nothing being sent. In this mode, nodes



send messages with a preamble that is at least as long
as the period with which listeners sample the channel to
make ensure that the messages will be received by the
destination nodes. The advantage of low-power listening
is that the TinyDB application layer no longer needs to
manage the scheduling of wake and sleep. The disad-
vantage is that is substantially increases transmission
cost. A preliminary performance comparison of these
two approaches is presented in Section IV-C.

Time Synchronization. Time synchronization is re-
quired for TinyDB to schedule nodes to wake up at the
same time. Even with low-power listening, time syn-
chronization is desirable because it ensures that readings
from sensors across different nodes were taken at the
same time. TinyDB uses the approach proposed in many
research papers [9], [10] of time-stamping every packet
just before it is transmitted. When a node overhears
a packet sent by its parent, it synchronizes its time
with its parent’s. Thus, the entire network is eventually
synchronized (in a step-by-step fashion) to the time of
the root node. When a node does not hear from its parent
for a number of sample periods, it will stay awake for
an entire sample period to re-synchronize with its parent
node. This simple approach achieves an accuracy of 1-2
milliseconds in our real deployments, which is sufficient
for purposes of our scientific users and our scheduled
communication protocol.

Query Sharing. Query sharing is a mechanism for
reliable query dissemination in TinyDB. It also allows
new or restarted nodes to learn about currently executing
queries, which is important both for network evolution
(EU-2) and fault tolerance. It works as follows: When a
node overhears a neighboring node transmitting a data
packet, it checks the 8-bit query id embedded in the
packet against the ids of the queries that it is executing.
If the query id is unknown, it sends a query request
message to the source of the overheard data packet.
When a node receives a query request message, it broad-
casts the query corresponding to the requested query id.
This way the node missing this query will receive and
begin executing the query. Our initial implementation of
query sharing did not scale to a large number of nodes:
whenever a node heard a result for a missing query, it
would send a query request, and every node that heard
that request would reply. This resulted in a huge amount
of traffic. To see this, consider a network withn nodes in
a single cell, wheren/2 of them (the“starters” ) know
about the query, and the othern/2 (the “others” do not.
A TinyDB query is transmitted ink messages, typically
for somek > 1. When each of thestarters sends its

query results, each of theotherswill send a query request
to each of thestarters, who will respond with ak-packet
response. Thus,(n/2)2∗(k+1)) messages are generated
in a single epoch. Forn = 10 andk = 5, this is already
150 messages. Such traffic loads cause the TinyOS MAC
to collapse. We implemented the following optimizations
to fix this problem:

• Receive bitmap. To reduce the size of the query
messages, we added a bitmap indicating which parts
of a query are needed to the query request message.
The receiver of the query request only sends out
those needed portions.

• Backoff. To prevent duplicated transmission of a
query, if a node hears one of its neighbor nodes re-
quest the same query, it suppresses its own request.

• Rate limiting. We no longer allow a node to send
a query request message more than once per query
sample epoch.

Watchdog. TinyDB uses the watchdog component in
TinyOS to achieve two purposes: fault tolerance and
remote controllability. At the start of everyk sample
periods, TinyDB starts the watchdog. The watchdog will
restart the node if TinyDB does not reset the watchdog
before it expires. The watchdog is reset whenever the
node hears a message. Thus, the watchdog will restart
the node if it does not hear any messages fork sample
periods. After a node is restarted, it obtains the current
TinyDB queries via query sharing. This approach also
ensures that the node is always reachable remotely
because if the node’s radio stack crashes, the watchdog
will trigger.

Logging. We added an optional “data logger” to
TinyDB to preserve all query results, in the spirit of
EU-5. The goal of this component is to provide extra
durability, by allowing recovery of historical readings
when the motes are brought back from the field. Clearly
it is not intended as a substitute for live data, but rather
as a backup technique.

The data logger uses themica2 512kB flash chip and
a “persistent logger” component that provides reliable,
record-oriented logging. Each record contains the mote’s
current time and the data portion of a TinyDB message.
In the current implementation, this record takes 31 bytes,
so we can save the first 16500 query results which is
sufficient for short deployments (e.g., this is 57 days at
one query result every five minutes).

The persistent logger supports only three operations:
erase the log, append a new record, read the log. It is
designed to provide reliability in the presence of failures
such as power loss or sudden reboot in the following



sense: after recovery, the log will be readable up to the
end of some record (i.e., it isn’t possible to read a partial
record), and logging will resume at this same point. Note
that this still allows some amount of data loss at each
failure.

The implementation is fairly straightforward: The
flash is divided into blocks (256 data + 8 metadata
bytes) which can be individually written; we assume that
these blocks are the unit of failure. Records are written
consecutively into the data portion of these blocks, and
may straddle block boundaries. The metadata stores a
cookie, the offset of the last record that ended in this
block (if any), and a CRC (on the data+metadata). At
boot time, the end of the log is found by performing a
binary search for the last valid block.

We a used binary search to avoid placing any global
metadata (e.g., last write offset) at a fixed location, as
flash chips only allow a limited (e.g., 10000) number of
writes to any one address. Our binary search assumes
that the flash contains a sequence of valid blocks fol-
lowed by invalid blocks. This covers the failures we are
concerned with, but will fail if, e.g., a block becomes
corrupted after the next block has been fully written.

D. The Sensor Network Appliance (SNA)

The Sensor Network Appliance (SNA) serves as a
portal between a sensor network and the clients. The
SNA is a self-contained base station that requires little
setup other than a network connection and power source
(EU-1). It uses a radio compatible with sensor nodes and
provides local data storage and management functions
for the sensor nets associated with it. It also includes
wide-area connectivity via a persistent Ethernet connec-
tion (when available) or a satellite or cellular connection
in remote settings. The SNA includes a DBMS that
provides local storage for data results, health monitoring
and logging as required by the TASK Server. The DBMS
is accessed via a standard ODBC interface. Additionally,
the TASK Server (see below) provides an HTTP interface
accesible via a browser or directly by applications.

While a laptop could have served as our SNA, they
do not typically have a desirable size or power footprint,
and are difficult to harden against the environment.
Instead, we adopted the Stargate platform from Intel
Research and Crossbow [11]. The Stargate is a palm-
sized, general-purpose computer that houses a 255Mhz
Intel xScale processor, 64 MB of memory, and a pro-
vides variety of connectivity options including PCMCIA,
Ethernet, USB, RS232, and a native connector for the
mica series of sensor motes. It can be powered by

Method Description
runQuery Creates the necessary DBMS table

and issues the given sensor query.
addListener Add a callback method for

certain types of query results.
runCommand Issues the given command to the

sensor net.
stopQuery Stops a given query if it is running.
getQuery Retrieves the running sensor query.
addCliInfo Creates a new configuration.
deleteCliInfo Deletes a configuration.
addMote Adds a sensor to a configuration.
deleteMote Deletes a sensor from a configuration.
runDBMSQuery Executes a result query

on the SNA DBMS.

TABLE I

TASK SERVER ABSTRACTAPI

batteries. The Stargate runs the Linux operating system
and supports the full range of software tools available for
this environment. Updates to the software can be made
by simply inserting a new compact flash card.

The TASK Server implements the core functionality
of the SNA. Externally, the server exports an interface
to clients for submitting sensor queries and commands,
monitoring health and browsing DBMS data (see Ta-
ble I). On initial startup, the TASK Server initializes
TinyDB, the internal web server and the local DBMS.
Prior to issuing a sensor query on a new network, the
client creates a sensor networkconfigurationwhich is
a persistent logical grouping of nodes with attached
metadata such as the location or attached sensors. This
configuration helps manage related sensor nodes on the
same physical network, and provides an affordance to
users about previous deployment decisions (EU-2).

Once a configuration has been selected (or created),
the server listens for incoming queries or commands and
handles data result arrivals. When a client issues a query,
the server logs the query to the DBMS (EU-8), creates
a new result table for the query in the DBMS and then
passes the query on to the sensor network software (i.e.,
TinyDB) for processing. Multiple queries may be issued
to the sensor network simultaneously. When results from
a sensor query are received, the TASK Server stores the
results in the SNA DBMS and then sends the data to
any active clients that are connected. Alternatively, the
server can periodically replicate results to an external
database. In the TASK architecture, the SNA DBMS is
not necessarily the stable store for sensor results. Rather,
it is intended to be a flexible staging buffer in front of
an external database or client tool.

We implemented our TASK Server in Java. It provides
a sockets-based client interface as well as an HTTP front
end via the Jetty HTTP server [12]. The implementation
required approximately 4800 lines of source code.



Fig. 2. The TASK View Client Tool

E. Tools for the User

TASK comes with two client tools: a simple web-
based tool for interacting with the sensor network
through the SNA and a full-featured Visual Basic-based
tool called TASK View that provides more advanced
features such as node deployment bookkeeping, network
visualization, and near-real-time continuous monitoring.
Figure 2 is a sample screen shot of TASK View. The
lower left window shows the deployment and configura-
tion screen, while the two other windows show a tabular
and graphical view of data from a set of motes.

The field tool is a simple tool for debugging TASK-
based sensor networks “in the field” (EU-2). The field
tool allows a user to walk up to a TASK-mote and inspect
or modify its state by issuing a set of simple commands.
The two primary commands are “ping”, to query the
mote’s network status (current query, parent) and “reset”
to reset it. The field tool only operates on the motes that
are in direct radio range (i.e., close proximity) to the user.
The field tool runs on handhelds devices (we currrently
use Sharp’s Zaurus handheld) equipped with aCanby
or Canby2 compact-flash mote.

The field tool broadcasts periodic beacons asking
motes to report in so that it can provide the user with a
list of the local motes. When TinyDB is used in duty-
cycling mode, this may take a while (up to a whole
sampling period). Once a mote notices these beacons
it disables duty sampling to allow interaction with the
field tool (duty cycling is re-enabled when the beacons
are no longer heard).

When many motes are in the proximity of the field
tool, responses to the periodic beacon can saturate
available radio bandwidth. To avoid this, motes respond
to beacons after a random delay, and suppress their
responses if they overhear more thann other motes
(currently, n = 5) or if they have responded recently.

The combination of periodic beacons, random delay and
duplicate suppression allows the field tool to provide an
accurate list of motes even when their density is high.

IV. TASK D EPLOYMENT EXPERIENCES

In this section, we study the details of our two
most significant TASK deployments to date: a 54 node
deployment in our lab (hereafter, the lab deployment)
that ran for about a month, and a 23 node deployment in
the UC Berkeley Botanical Garden (hereafter, the garden
deployment) that ran for about 20 days. We also per-
formed a more controlled study in our lab (Section IV-
C), to compare the behavior of three routing layers:
the original, standard TinyOS routing used in the first
two deployments; MINTRoute [13]; and a variation on
MINTRoute using a low-power radio stack [14].

The goal of these studies is to validate the use of
TASK for long-lived, low data-acquisition rate applica-
tions, not to perform a detailed comparison of various
routing approaches. We want to ensure that we can gather
data at a sufficient rate for enough time, so we measure
yield (percentage of requested data received) and average
current consumption.

A. The Lab Deployment

Figure 3 shows a map of the 54 node deployment in
our lab. Data was routed towards node id 0 and the fur-
thest nodes (in the upper left corner of the deployment)
were about 10 hops from the root. For example, node
51’s most common route is 52, 54, 9, 10, 11, 14, 18,
24, 26, 0. Sensors collected light, temperature, humidity,
voltage, and network topology information every 30
seconds. The nodes were active during March, 2004 and
lasted between 28 and 31 days (about 30× 24 = 720
hours), using the scheduled communication approach
described in Section III-C, with a waking period of
four seconds (a 4/30=13% duty cycle). Four seconds
reflects a one-second sensor start up time, plus a three-
second window during which motes deliver their data
over the network. Choosing this value properly is critical
to both the longevity and quality of data collected in a
deployment, an issue which we discuss in more detail in
Section IV-C.

The deployment served two purposes; first, it provided
a way for us to verify that our power management
and watchdog facilities could keep a network running
unattended for long periods of time. Second, it gave
developers of sensor network applications and algorithms
a data set to experiment with.
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We added support for a special “network neighbor-
hood” attribute to TinyDB prior to this deployment. This
attribute consisted of a 64-bit bitmap where theith bit
in j’s bitmap on epoche indicated whether or notj had
heard nodei transmit on epoche − 1. This provided
a way to study the network graph in detail and has
proven a to be useful tool in a number of network design
scenarios. Furthermore, we believe this is one of the
first networking data sets to characterize loss in a high-
contention environment, as opposed to a radio-controlled
environment where only a single sender and receive are
active at a time, as is common in the literature [13], [15].
Figure 4 shows a histogram of the reception rates versus
distance in feet computed using this data set; we omit a
complete study of this data as this is not the main focus
of this paper.

We also measured the percentage of total results
received from each of the nodes in the deployment.
The results are shown in Figure 5. Nodes 5, 8, 15, and
51 failed after the first few days; the cause of failure
is unknown. Notice that most nodes get substantially
less than 75% of results, with some getting as few as
30%. Interestingly, it is nodes 11-20 that perform the
worst; based on anecdotal evidence, we have reason to
believe that this corner of the lab is subject to unusual
interference.

Losses do not appear to be particularly correlated
across sensors, though they are certainly highly corre-
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lated within a single sensor; Figure 6 shows losses for
a 1 hour period on sensors 1-10. Notice relatively large
gaps on individual sensors that do not usually correspond
to gaps on other sensors. We observed similar patterns
throughout the data set.

The large percentage of losses in this deployment, as
well as in our initial redwood deployment, led us to
evaluate techniques for mitigating loss. These efforts are
described in more detail in Section IV-C below.

B. The Garden Deployment

The garden deployment consisted of 23 motes running
for about 20 days (480 hours) during the summer of 2003
at a sample period of 30 seconds. In this case, motes
were deployed in special weatherproof packages with
800 mAh lithium-ion batteries. Motes sensed photosyn-
thetically active radiation (PAR), humidity, temperature,
and barometric pressure.

Devices were placed in a 34m redwood tree in the
UC Berkeley Botanical Garden at four different altitudes.
The goal of the deployment was to measure how environ-
mental parameters varied throughout the day at different
heights in the forest canopy. Such variances can have
a significant effect on the models used to predict the
growth of trees [16]; for example, variations of just 20%
in humidity (either up or down) can reduce tree growth
from a normal rate to almost nothing. Such models play
a critical role in forestry management because incorrect
predictions can have a significant negative economic
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Fig. 7. Temperature (top) and Humidity (bottom) Readings from 5
Sensors in the Botanical Garden

impact on the logging industry.
Motes radioed data from the tree, which was in the

middle of a small grove, back about 100m to a building
where we had installed a large antenna and the TASK
base station which collected results on a local database.
Due to the range of our antenna the network was mostly
single hop, although motes on the far side of the tree
needed several hops.

For power management purposes, motes were config-
ured to use a waking period of 2 seconds (as discussed
below, we determined that this period was too short,
and switched to a longer period of 4 seconds in the
subsequent lab deployment), so the active duty cycle was
2/30 = 6.6%.

1) Result Summary and Data Quality:Figure 7 shows
data from five of the sensors collected during the first few
days of August, 2003. The periodic bumps in the graph
correspond to daytime readings; at night, the temperature
drops significantly and humidity becomes very high as
fog rolls in.

This variation in humidity and temperature throughout
the canopy is one of the effects the biologists involved
in the project are interested in studying. In particular,
they wish to understand how textbook models relating
tree growth to temperature, humidity, and light should
be changed to accomodate these intra-canopy variations,
since these existing models are based on simple coarse-
grained characterizations of temperature and humidity
that vary significantly with the general weather. How-
ever, as we see in our data, the trees act as a buffer,
releasing water into the air on hot days and absorbing
it on foggy days. Looking closely at the line for sensor
ID 1, it is apparent that not only is the mote cooler and
wetter during the day, but at night it is warmer and less

humid than the exposed sensors near the treetop. Further-
more, the rate of change of humidity and temperature at
the bottom of the tree is substantially less than at the top
– Sensor 1 is the last sensor to begin to warm upand
the last sensor to cool off. Given these measurements,
our colleagues have argued that earlier growth models
take a simplistic view of a forest’s microclimates – one
that does not accurately capture the dynamics across the
forest’s three-dimensional volume [2].

Perhaps the most significant result here is the qualita-
tive change in measurement ability afforded by the sen-
sor net’s fine-grained readings. The density of measure-
ment provided by even these early TASK deployments
changes scientists’ ability to measure and understand
natural processes.

We also studied the loss rates in this deployment.
Figure 8 shows the number and percentage of results
received from sensors 1-16, with a breakdown by parent
in the routing tree. Sensors are along the X axis, and the
packet count is along the Y axis. Shading indicates the
portion of each sensor’s packets that were forwarded by
a given parent. Parent ID 0 is the base station – note that
the majority of readings for most sensors are transmitted
to this node in a single hop. Only sensors 6,7,9,11 and 14
transmit a significant portion of their packets via multiple
radio hops. It is interesting to note that these are sensors
in the middle of the tree – nodes at the bottom and very
top seem to be better connected.

In this case, the best sensor (ID 2) successfully trans-
mitted about 75% of its data. Except for sensor 3 (which
failed), the worst performing sensor, 14, successfully
transmitted 22% of its results. Losses are uniformly
distributed across time and do not appear to be correlated
across nodes.

We suspect that the primary cause of loss is network
collisions. Despite the fact the each node transmits in-
frequently, time synchronization causes sensors wake up
and transmit during exactly the same 2s communication
interval. Even without multi-hop communication, this
means that at least 16 packets are sent during the same
second, which is difficult for the TinyOS MAC layer to
handle. This observation led us to switch to a 4 second
backoff period in the lab deployment. We have yet to an-
alyze this hypothesis in detail, in part because of the shift
to 802.15.4 radios in products like theMICAz, which
changes a number of aspects of the communication layer,
and appears in our early experiences to provide much
lower loss rates.

2) Calibration: Calibration is essential to provide
users with numbers in well-known units that they can
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Fig. 9. Comparison of readings from a manufacturer calibrated light
sensor on motes and high-cost calibrated sensor in an environmentally
controlled chamber.

understand and integrate into their existing models and
software. It is also one of the trickiest and least an-
ticipated issues that arose with the garden deployment.
We had selected sensors that we believed had been
reasonably calibrated before they left the factory [17],
[18], [19]. However, when we began comparing the
output of these sensors to much higher cost sensors that
had been calibrated by the biologists we were working
with, the results we disappointing. As an example, Figure
9 compares the value from the light sensor we had
selected (calibrated according to the manufactured spec-
ification) and a calibrated sensor in an environmentally
controlled chamber – although the two sets of readings
are correlated, the values between the two sensors at the
same time often vary by a large amount.

In this case, we were able to produce readings that
much more closely matched the calibrated sensor by
reporting the value at each time as the median of 10
readings from the previous 10 seconds. This had the
effect of smoothing the curve and eliminating much of
the noise, but also decreased the responsiveness of the
sensor and consumed significantly more energy. Figure
10 shows the results after the median had been applied.

Our current calibration protocol calls for comparing
each sensor on each mote against a well-known baseline
(as in the calibrated chamber setting) to verify it is

0

20

40

60

80

100

120

140

160

180

20:09 20:38 21:07 21:36 22:04 22:33 23:02 23:31 0:00 0:28 0:57 1:26

Chamber Sensor
Sensor 69 (Median of Last 10)

Fig. 10. Same data as in Figure 9, except that each point is the
median of ten readings from the previous 10 seconds; this has the
effect of removing noise from the signal, producing a result that
matches much more closely with the calibrated chamber sensor.

behaving correctly and to establish the values of per-
sensor scaling parameters. This protocol also demands
that we re-measure sensors versus this baseline after a
deployment is complete, to verify that the passage of
time hasn’t affected a device’s ability to sense.

In general, calibration is tricky because the appropriate
calibration function varies from sensor to sensor. For
example, many of our sensor’s readings are affected
by the voltage of the device, but the exact relationship
varies across different sensor types. This makes deriving
appropriate calibration functions a time-consuming and
ad-hoc process. Unfortunately, proper calibration is an
essential feature for anyone using these devices for
precision monitoring, as in many scientific and industrial
environments. We see this as one of the primary chal-
lenges facing TASK– and sensor networks in general – as
we seek wider adoption. Calibration has received scant
attention in the sensor network research community, but
is a critical aspect in the practical use of the technology.
We encourage more research on this topic.

C. Performance Benchmarks

To help understand the network reliability and power
consumptions results observed in our deployments, we
conducted several controlled, small-scale experiments.
Three different routing and radio driver configurations
were used to better understand the impact of the com-
munication layer on these parameters. The first config-
uration used the standard routing layer in TinyOS 1.1
(located in tos/lib/Route) and the default radio stack for
the MICA2 platforms. This routing layer implements
a distance-vector protocol using shortest path to the
root and link quality of the next hop [13]. The second
configuration utilized the minimum transmission routing
provider (MINTRoute) which chooses a path to the root
based on the aggregate quality of a links along different
paths [13]. The final configuration used a variant of
MINTRoute coupled with a low power radio stack [14].

For each of the configurations, queries with sample
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Routing Layer - Avg Avg Min Max Avg Power
Sample Duration Depth Yield Yield Yield (mW)

Standard - 30 1.9 0.53 0.14 0.88 5.4
Standard - 150 1.5 0.50 0.05 0.92 1.4

MINTRoute - 30 2.2 0.57 0.18 0.89 5.4
MINTRoute - 150 2.1 0.57 0.08 0.93 1.4
Low Power - 30 2.2 0.88 0.63 1.0 5.1
Low Power - 150 2.1 0.84 0.32 0.98 3.6

TABLE II

ROUTING STATISTICS AND POWER CONSUMPTION PER NODE.

periods of 30s and 150s were run for 1 hour and 2.5
hours respectively, on a 15-node in-lab sensor network
(Figure 11). Both queries collected routing tree par-
ent, routing tree depth and node voltage. The power
consumption of such queries thus reflected the under-
lying energy cost of queries in TASK, independent
of any particular sensors used. For each configuration
and query, we report in Table II average routing tree
depth, average, minimum and maximum yield (per node)
and average current consumption (measured on a single
node). Figure 12 shows the yield averages for each node
for the 30s query.

There are several immediate conclusions to be drawn
from this data: first, MINTRoute provides better, more
reliable routing than standard TinyOS routing (Figure 12
shows very high variance in the yield per node for
standard routing, these results are consistent with [13]);
the sample period has little effect on yield but a sig-
nificant effect on power; low power listening provides
significantly better yield (in particular, nodes 13 and 14
which are poorly connected to the rest of the network do
much better), but at the expense of much higher power
consumption for long sample periods (3.6mW vs 1.4mW
at 150s); the standard routing and MINTRoute use the
same amount of power (this is not surprising as power
consumption is dominated by the 4s wakeup period and
the cost of sending messages, which is equal in both
cases).

With a 3V, 1000mAh battery (as used in the garden
deployment), the 150s query would have a lifetime of 88
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days with MINTRoute and only 34 days with low power
listening. The reduced lifetime with the low power radio
stack is due to at least three factors. First, nodes have
a higher base power consumption when idle: the low
power radio stack consumes 1mW when “idle” (checking
every 100ms for a message), while duty cycling con-
sumes 0.45mW when “off” (waiting for the next epoch).
Second, sending messages costs more because they must
have a 100ms preamble. Third, from examining our
power consumption graphs, we see that nodes wake up
from low-power mode to listen to messages which were
not intended for them, thus spending a higher proportion
of each epoch awake.

In conclusion, the current routing layers in TASK offer
the choice of moderate reliability with low power con-
sumption (MINTRoute) or better reliability but limited
lifetime (MINTRoute with low power listening).

V. L ESSONSLEARNED

We first began development of TASK in April, 2002.
Two years into the project, we continue to be surprised
by the challenges of sensor network development, and
to remark on the things we wish we had known when
the project began. In this section, we briefly summarize
some of those lessons.

Be Pessimistic: Failures in sensornets often occur
in unexpected ways. For example, we spent months
preparing for our initial deployment in the botanical
garden, ensuring that sensors could be remotely reset,
adding watchdog support, studying network reliability,
and so on, only to have our first two weeks of deploy-
ment average a 50% uptime because the Windows-based
laptop that was logging results repeatedly crashed.

Many of the lessons described below are instances of
this ”Murphy’s Law” for sensornets. The implication is
that all elements of a deployed sensornet system must
be fault tolerant, must automatically detect failures and
restart one another, and must be designed to assume
unexpected faults will occur.



Test at Scale: A real fifty-node deployment in a
target environment is quite different from five nodes on
a table, or from a fifty node simulator. When we initially
deployed TASK, we had tested our field tool with just
a few nodes at a time. The first time we turned the
field tool on in the botanical garden, all of the nodes
hung and had to be reset. A subtle race condition in a
flag in a message handler caused the software to stop
sending messages. This bug was hard to reproduce with
five sensors, but was inevitable with twenty-five.

Build the Simplest Thing You Need: Significant
effort was expended to build unnecessary complex fea-
tures such as TinyDB aggregation or precision time-
synchronization. This lesson has important implications
for many of the designers of sensor services like
time synchronization [9], [10], communication schedul-
ing [20], [21], and localization [22]. Long-term, low
data rate applications such as TASK (and many other
compelling sensornet applications) do not need high-
precision time synchronization, fine-grained localization
or a highly optimized TDMA scheme. Instead, these
applications need highly reliable, low-overhead, and
well-behaved implementations of such services. In our
experience, many research implementations have subtle
and hard to understand interactions with the rest of the
OS that make them unsuitable for real-world use.

Invest in Monitoring Infrastructure: One of the
explicit initial goals of TASK was to support system
monitoring. The flexible, introspective query infrastruc-
ture provided by TinyDB, as well as the field tool,
were a significant step in this direction. Over time this
infrastructure only grew: we added multiple base stations
to increase our ability to collect readings, wrote special
parsing software to display the structure of messages
transmitted over the radio, and added special logging
code to write raw readings to motes’ flash memory.
Monitoring tools are the best approach to tackling the
challenge of understanding and reproducing failures.

Calibration is Hard: Our initial assumption that the
“calibrated” sensors we had purchased from vendors
would produce accurate readings turned out to be com-
pletely false. Significant effort was required to calibrate
each sensor individually. In our second round of garden
deployments (which are currently underway), calibration
has proved to be one of the most time consuming
parts of the process, and is something that requires
significant infrastructure (e.g., a controlled environment)
and experience to do properly.

Beware of Hidden Assumptions:Software written
for TinyOS is full of hidden assumptions, despite the

best efforts of its authors to modularize the various
pieces [23]. As a prime example of this, we found that on
the 4 MHzmica2dot platform, the loss rates in TASK
were significantly higher than on the 7 MHzmica2
platform. The problem turned out to be our radio driver
add-on that writes timestamps into messages. On the
slower platform, the timestamp routine would cause the
driver to miss inter-bit deadlines resulting in loss of radio
synchronization and garbled packets. Unfortunately,
TinyOS does not provide any built in mechanism to
enforce runtime requirements on such low-level routines,
and it is very difficult to judge how many instructions
equate to a single radio bit time . While this lesson
parallels the need to be pessimistic, it also calls attention
to a class of invariants in sensornets that need to be
checked and debugged. Over time, the lessons learned
in identifying such assumptions should be reflected in
the sensornet software engineering process and tools.

VI. RELATED WORK

Sensor networks have been deployed in 2002 and
2003 at Great Duck Island (GDI), off the coast of
Maine, to monitor the habitat of the Leach’s Storm
Petrel [1], [24]. These sensor networks collected data
on micro-climatic conditions on both the surface and
in the Petrel’s burrows. These deployments had a sys-
tem architecture similar to that of TASK: the motes
collected sensor readings and routed them to a central
node, where the data was logged in a database. There
was limited support for changing the data collection
parameters. These deployments took the approach of
building a simple, effective infrastructure for this specific
environmental monitoring problem, as opposed to TASK
which provides a general, reusable framework for sensor
data collection.

The Extensible Sensing System (ESS) [25], [26] is
being used to collect micro-climate data at the UC James
Reserve in the San Jacinto Mountains of California, at
more than one hundred locations. Like TASK, data is
collected by sensor nodes and sent to a central server
via a multi-hop wireless network. However, their are a
number of significant differences in the system architec-
ture: the sensor nodes in ESS are heterogeneous: some
are motes like in TASK, while others are heavier duty
(handheld-class, to support elaborate signal processing);
the mote software is based on TinyDiffusion [27] rather
than TinyDB; and the central server is based on a pub-
lish/subscribe model rather than on a submit-query/log-
results-to-database model. At this point in time, ESS



is not a complete turn-key system, but is clearly more
general than the GDI deployments.

The Zebranet [28] project uses sensor network nodes
attached to zebra’s to monitor their movements via GPS.
More generally, Zebranet supports data collection from
a sensor network composed of mobile nodes which are
only occasionally in radio contact with each other or the
base station. It must thus address a significantly different
set of problems than TASK. No results from their recent
deployment in the wild [29] are yet available.

VII. F UTURE WORK AND CONCLUSIONS

We are optimistic about the future of both TASK
and the practical potential for sensornets as a whole.
While our experiences building TASK have at times
been frustrating, it seems that the TinyOS community
is converging on reliable networking and power man-
agement services that will greatly improve future long
term deployments.

At some point, if sensor networking technology is to
have a significant impact outside of computer science,
our community will need to shift some attention away
from low-level micro-systems that work well in isola-
tion, towards whole-system integration and configuration
management issues. In particular, sensor calibration re-
mains an open problem. We view TASK as an important
first step in that direction, and the challenges we face in
delivering TASK should provide useful context for other
sensornet research.
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