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Abstract

The long-running nature of continuous queries poses new
scalability challenges for dataflow processing. CQ systems
execute pipelined dataflows that may be shared across mul-
tiple queries. The scalability of these dataflows is limited by
their constituent, stateful operators – e.g. windowed joins
or grouping operators. To scale such operators, a natural
solution is to partition them across a shared-nothing plat-
form. But in the CQ context, traditional, static techniques
for partitioned parallelism can exhibit detrimental imbal-
ances as workload and runtime conditions evolve. Long-
running CQ dataflows must continue to function robustly in
the face of these imbalances.

To address this challenge, we introduce a dataflow oper-
ator called Flux that encapsulates adaptive state partition-
ing and dataflow routing. Flux is placed between producer-
consumer stages in a dataflow pipeline to repartition state-
ful operators while the pipeline is still executing. We present
the Flux architecture, along with repartitioning policies that
can be used for CQ operators under shifting processing
and memory loads. We show that the Flux mechanism and
these policies can provide several factors improvement in
throughput and orders of magnitude improvement in aver-
age latency over the static case.

1. Introduction
Continuous query (CQ) systems break the traditional
paradigm of a request-response style system in which a fi-
nite answer set is computed for each query. Instead, users
register queries that specify their interests over unbounded,
streaming data sources. Based on these queries, a query
engine continuously filters and synthesizes incoming data
from the sources, and delivers unbounded, streaming results
to the appropriate users. These systems have been proposed
for a variety of personalization and critical monitoring tasks.
For example, they can be used to deliver up-to-date person-
alized news, monitor stock quotes, filter incoming email for
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spam, monitor traffic for accidents and congestion, or mon-
itor the network for troubleshooting and intrusion detection.

These demanding applications place several scalability
requirements on continuous query systems. First, a typi-
cal service could have millions of users each with several
queries registered. Second, results need to be computed
from incoming data upon arrival, so fast response times and
high data throughput are essential. Finally, since queries
range over endless streams of data, a CQ system may need
to manage data over a large history to process these queries.
Previous approaches have addressed these scalability issues
in two ways. One thrust has been to leverage the commonal-
ity amongst queries [6, 16, 7, 2] and index queries like data
in a traditional database system. Another direction has been
to exploit weaker semantics and sacrifice result quality for
cases in which the system cannot be scaled to match peak
workloads [18, 4]. While this previous work has focused
on single-site implementations, we present complementary
techniques for parallelizing CQ dataflows that can offer in-
creased scalability to any CQ system.

1.1. Parallelism and Adaptive Partitioning

Pipelined CQ dataflows are fundamentally limited by the
scalability of their constituent streaming, lookup-based op-
erators. The traditional approach for scaling operators
is to partition them across a shared-nothing cluster. Of-
ten referred to as intra-operator or partitioned parallelism,
this approach allows lookup-based CQ operators like win-
dowed joins and group-by-aggregate, which may easily out-
grow a single-site’s main memory, to utilize aggregate main
memory and other resources. Shared nothing clusters can
scale to thousands of computers, scaling available main
memory, processors, disk space and bandwidth along the
way[8, 28, 29], and thereby provide the potential for high
throughput and low latencies. Yet, to date, the shared-
nothing approach has been overlooked for CQ systems.

CQ systems strain traditional dataflow parallelism tech-
niques, because they require adaptive, online repartitioning
of lookup-based operators. This requirement arises in CQ
systems for two reasons. First, CQ systems typically han-
dle multi-user workloads that place unpredictable demands
on resources. As additional queries arrive, new dataflows
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may be instantiated, causing variations in load and mem-
ory usage to arise across a cluster. Second, since by def-
inition continuous queries run indefinitely, CQ operators
will encounter changes in system and workload properties
in the middle of ongoing queries. For such queries to con-
tinue running efficiently, their constituent dataflow opera-
tors must be able to adapt on the fly to changes in the runtime
environment. For lookup-based operators, load and mem-
ory usage at each site in a cluster is largely determined by
the data partitioning. Thus, the system must adjust intra-
operator data partitioning on the fly to balance resource uti-
lization, and hence optimize performance.

1.2. Flux
We introduce an encapsulated dataflow operator called Flux,
Fault-tolerant Load-balancing eXchange. In this paper, we
focus on its load-balancing features that adaptively reparti-
tion the state of lookup-based operators; we defer the fault-
tolerance discussion to future work. Flux is interposed
between a partitioned producer-consumer pair in a paral-
lel dataflow pipeline to provide adaptive repartitioning for
lookup-based operators on the consumer side. In addition
to providing the encapsulated data partitioning found in tra-
ditional parallel dataflow systems [12], Flux provides two
main adaptivity mechanisms:

1. To mask short-term imbalances, Flux provides a buffer-
ing and reordering mechanism that absorbs transient, lo-
calized perturbations.

2. To adapt to long-term imbalances, Flux encapsulates the
logic for detecting imbalances across a cluster, and for
triggering and enabling online repartitioning of state ac-
cumulated in lookup-based operators.

This parallel repartitioning mechanism can also be exploited
to allow in-core, streaming operators to “spill” to disk, re-
lieving the operator writer of that burden.

In this paper, we present the generic Flux load-balancing
mechanism, and also some specific parallel repartitioning
policies that handle different causes of imbalance. We
present a policy to handle load imbalances during situations
with ample memory resources, a policy to handle mem-
ory utilization imbalances in a memory-constrained envi-
ronment, and a hybrid that is effective in both cases. While
Flux can be used with a wide range of lookup-based oper-
ators, in this paper we focus on its application to operators
found in data-stream processing systems like Telegraph [5]
and Aurora [4]. In this context, we show that the imbal-
ances outlined above can severely degrade the maximum
sustainable throughput and the average response time of
statically-partitioned lookup-based operators. By contrast,
we show that Flux can achieve several factors improvement
in throughput, and orders of magnitude improvement in av-
erage response time over the static case.

In the next section, we briefly outline the traditional ap-
proach for parallelizing dataflows, its deficiencies, and our
contribution. Section 3 describes the methodology used for
evaluating Flux. Section 4 describes the Flux buffering and
reordering mechanism. Section 5 describes the state move-
ment mechanisms and repartitioning policy to balance load
in low memory pressure conditions. Section 6 describes the
memory-constrained mechanism and repartitioning policy,
and the hybrid policy. Section 7 surveys the related work,
and Section 8 summarizes and presents future work.

2. Background and Contribution
In this section, we describe previous approaches for opti-
mizing and executing parallel query plans, delineate their
inadequacies in the CQ context, and outline our contri-
bution. For this work, we assume a shared-nothing [28]
or cluster-based parallel computing architecture in which
each processing node (or site) has a private CPU, memory,
and disk, and is connected to all other nodes via a high-
bandwidth, low-latency network.

2.1. Previous Approach
A popular approach for parallel database queries consists of
two phases [14]. First, a query optimizer generates a static,
sequential query plan based on fixed cost models and pre-
viously computed statistics. Second, at execution time, this
plan is parallelized based on the current runtime character-
istics of the system. In the second phase, the degree of par-
allelism (or declustering) of operators is determined, and a
corresponding number of instances of the operator are cre-
ated, with each instance responsible for a certain portion or
partition of the input data. The sites in a cluster for each
of these instances is chosen, and operators are then instanti-
ated to execute the query plan. Except for some constrained
cases discussed in Section 7, the partitioning of these opera-
tors traditionally remains fixed until the query is completed.

2.2. The Problem of Changing Loads
Continuous query systems like [16, 7, 4] are essentially
a collection of pipelined dataflows, a generalization of
pipelined query plans, that are shared across numerous
queries. A dataflow pipeline is a DAG in which the nodes
are non-blocking operators, and the edges represent the di-
rection in which data is processed. A stage in a dataflow
pipeline is a producer-consumer operator pair and the mech-
anisms that connect them together.

It is possible to use traditional parallelization and ex-
ecution techniques to improve the performance of CQ
dataflows. Like parallel query plans, one can take all the
operators in a CQ dataflow and horizontally partition them
across the sites in a cluster. However, since continuous
queries are by definition unbounded, the optimal partition-
ing of the state and input data stream of any particular oper-
ator is likely to change over time. If the partitioning is not
adjusted, operators will perform poorly due to imbalances
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that develop among the sites.
Changes in the workload are one class of variations that

can cause imbalances. One such change is in the input data
distribution. For example, in a network monitoring sce-
nario, the geographic bias of client connections may vary
depending on the time of day. Or in a web-log processing
scenario, the popularity of pages may vary depending on the
time of day. One-time sampling is inapplicable in these set-
tings since streams are unbounded and time-varying. An-
other such change is in the system workload. The system
may schedule additional dataflows or add operators to exist-
ing dataflows, creating both CPU and memory contention.
Since a CQ operator runs for an unbounded amount of time,
it cannot pin down a large amount of memory forever. So,
its main memory usage also must be flexible over time.
The operator must react to variations in memory availability
both on a single site and across the cluster.

Variations in the underlying runtime environment are an-
other potential cause of problems. Heterogeneities in the
underlying hardware platform can lead to unexpected per-
formance. For example, disk read bandwidth performance
can vary depending on the track being read [23]. Unex-
pected CPU utilizations can also arise, e.g. due to the activ-
ities of daemon processes.

Finally, these problems are exacerbated in a parallel set-
ting. As described in Section 4, a slowdown in just a single
machine can cause all instances of a partitioned operator to
equally under-perform. Since a dataflow pipeline is only as
fast as its slowest operator, the entire pipeline may suffer.

2.3. Exchange

In a parallel database, an Exchange [12] operator is used to
connect a stage in a pipeline where the producer’s output
needs to be repartitioned for the consuming operator. For
example, if a relation is not partitioned on the join key, then
the relation scan is connected to a hash join consumer via
an Exchange. The Exchange ensures proper routing of data
between the producer and consumer operators.

Although Exchange is conceptualized as a single opera-

tor, it is actually composed of two intermediate operators,
Ex-Cons and Ex-Prod (see Figure 1). An Ex-Cons instance
supports the traditional getNext() interface, and when
invoked simply polls its inputs in a round-robin fashion and
returns the incoming data to its consumer operator instance.
An Ex-Prod instance connects each producer instance to all
consumer instances via Ex-Cons. Ex-Prod encapsulates the
routing logic. It calls getNext() on the producer instance
and routes the output tuples to the appropriate consumer in-
stance based on the tuple’s content and the partitioning of
the consumer operator. For example, for a hash-join, Ex-
Prod would use the hash of the join key to determine the
destination of the tuple. We call this type of routing content
sensitive, since the destination is determined by the con-
tents of the tuple. Range partitioning is another well-known
content-sensitive partitioning strategy.

In an iterator architecture [13], there is typically a thread
boundary at the Exchange, so the producer and consumer
operator instances are scheduled independently, in sepa-
rate threads (see Figure 1). The benefits of Exchange are
twofold. First, the operator writer can write relational oper-
ators while being agnostic as to whether they will be used
in a parallel or single-site setting. Second, since a pro-
ducer instance is generating output for many consumer in-
stances and vice-versa, placing the producer and consumer
instances in different threads allows a certain degree of over-
lapped execution among the instances. The larger the queue
between Ex-Prod and any of its Ex-Cons destinations, the
more overlapped execution that is possible. If any of the
outgoing queues of an Ex-Prod is full, it must block until
there is available space for the next tuple.

2.4. RiverDQ

The distributed queue (RiverDQ) abstraction in the River
[23] system addresses the load-balancing problems for a
constrained set of operators: those for which the parti-
tioning of the input stream can be content-insensitive, i.e.
any tuple in the input stream can be sent to any instance
of the consumer operator. This includes consumers such
as selections, projections, and distributive aggregates. The
RiverDQ architecture is the same as the Exchange except
that the routing logic in Ex-Prod is modified. Instead of
content-sensitive routing, a tuple is routed to a randomly
chosen consumer instance weighted by the emptiness of the
queue to that instance. Thus, slower consumer instances
will have a larger backlog and are less likely to receive the
next input. This mechanism, however, is inapplicable to op-
erators that require content-sensitive routing like hash-based
groupby-aggregates or joins because re-routing the input re-
quires moving the corresponding state needed to process it.

2.5. Flux Contributions

Flux is a generalization of Exchange and RiverDQ that en-
capsulates the logic for online repartitioning of a wide range
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of content-sensitive operators. Flux is inserted in a dataflow
stage for which the consumer operator is a potential bot-
tleneck. The key design feature of encapsulation, inspired
by Exchange, relieves the operator developer of the burden
of implementing this logic for each query operator. The
dataflow APIs to content-sensitive operators that use Flux
need some modification to allow state movement, but we
endeavor to make this API as lean as possible.

3. Experimental Methodology
In this section, we describe the experimental methodology
used to illustrate the benefits of Flux mechanisms.

Throughout this paper, we use a hash-based, windowed
group-by-aggregate operator as an example. It is similar
to a traditional hash-based group-by-aggregate operator [3]
except that it maintains a history of the most recently pro-
cessed tuples for each group. In the CQ context, this opera-
tor takes a stream, splits it into multiple logical streams (one
per group), and computes a statistic over the recent history
of the extracted streams. Such an operator can be used, for
example, in a network monitoring scenario to compute the
average packet size per client over the most recent � packets
received. Variants of this operator exist [31] where both the
statistic computed and the notion of recent history can vary.

To isolate and illustrate the effects of Flux, we restrict
ourselves to a simple hash-based windowed group-by that,
on every new tuple, computes a statistic over a fixed size
history. In terms of resource use, the salient characteristics
of this operator are similar to ones with more sophisticated
definitions of history. It has bounded but non-negligible
state, and the per-tuple processing time is non-trivial.

To evaluate our mechanisms, we built a simulation of this
operator on a shared-nothing cluster. Each simulated node
in this cluster has a 1000 MIPS CPU, with a single 80GB
disk, and 1 GB of main memory. The nodes are connected
by a gigabit ethernet network. We model the network con-
nection between each pair of machines as a fixed size queue
that holds two 1K packets, and each packet has a latency of
70 � s. The network is not the bottleneck for most of our ex-
amples. So unless otherwise specified, we assume the net-
work has infinite bandwidth. We simulate a disk with read
and write bandwidth of 20 MB/s and average seek time of 5
+/- 0.2 ms. We model the per-tuple in-memory processing
time of our windowed group-by using a normal distribution
with a mean of 45 +/- 3 � s. On a 1000 MIPS machine, this
accounts for the time to probe the hashtable and update the
history of the group; it also allows for modest additional
processing for computing the next aggregate, e.g. standard
deviation.

Our simulator is based on the Telegraph system [27], and
the simulation of each node is a hybrid between operators
in the Telegraph code base and a discrete-event simulator.
Thus, we have a working implementation of the Flux APIs
described in this paper. Only the hardware, aggregate func-
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Figure 2. Flux-Prod Design

tion evaluation, and underlying scheduler are simulated to
allow us to easily control and scale our experiments.

The baseline for all our experiments is a single producer-
consumer stage. This stage is partitioned across a 32-node
cluster and composed using a traditional Exchange. The
consumer operator is our windowed group-by that maintains
a history for 16K groups that are partitioned evenly across
the cluster. Each machine also has a producer instance that
generates an 80 byte tuple in 0.5 � s on every getNext()
call. Thus, producer instances generate tuples as fast as the
consumer operator can process them allowing us to assess
the consumer’s maximum sustainable performance. Un-
less otherwise noted, each producer instance generates tu-
ples uniformly distributed across the 16K groups. At steady
state, the aggregate throughput of the consumer operator,
i.e. the total across all instances, is ��� ���	��
� tuples/sec.
This setup has a cross-sectional communication bandwidth
requirement of 450 mbps, well under the capacity of gigabit
ethernet.

4. Short-Term Imbalances
In this section, we describe a buffering and reordering
mechanism that allows Flux to handle short-term imbal-
ances better than Exchange for content-sensitive consumers.
Flux extends the Exchange design, and analogously, its in-
termediate operators are called Flux-Prod and Flux-Cons.

In a stage with an Exchange, there is typically all-to-
all communication between the Ex-Prod and Ex-Cons in-
stances. In such a case, a slowdown in a single consumer
instance can cause a slowdown of the entire stage, an ef-
fect that is a result of head-of-line blocking. Imagine the
input from each producer instance is distributed uniformly
across the consumer instances. Then, all Ex-Prod instances
are forced to produce at the rate of the slowest consumer
instance because when a queue to that instance is filled, an
Ex-Prod instance must block until that queue has available
space. This effects the delivery rate to the other consumers
causing each consumer instance to proceed only as fast as
the slowest and thereby slowdown the entire operator.

Short-term imbalances across the cluster or transient
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Figure 3. Effect of Short-Term Imbalances

skew can cause head-of-line blocking in an Exchange stage,
resulting in potentially severe performance degradation.
This situation can arise for various reasons. One source
of transient skew is data arrival order. For example, even
though the producer operator may generate tuples from a
uniform distribution, it may distribute these values unevenly
over time – e.g., it may generate tuples in batches that first
go to machine A, then machine B, then machine C, etc. A
similar effect can arise if short-term processing load cycles
through the machines in a cluster in round-robin fashion.
Such load may occur, for example, when a central monitor
cycles through the machines in a cluster probing for statis-
tics. In this case, every one of these perturbations impacts
all producer instances in a serial fashion.

The alert reader may have noticed that when an Ex-Prod
instance blocks as a result of transient skew, there may be
ample queuing space in the connections to other machines.
To mollify the head-of-line blocking effect, we need a more
flexible data structure to take advantage of the extra space.
Instead of placing the buffer space in the connections, Flux-
Prod uses a buffer interposed between it and the producer
operator instance. This buffer, called the transient skew
buffer, supports the retrieve(int PartID) method
that returns the next available tuple intended for a particular
machine (see Figure 2), and a insert(tuple T, int
PartID)method for queuing up a tuple for the destination
PartID.

The buffer is implemented as a hashtable keyed on the
destination of the tuple, and pins down a fixed amount of
memory for that hashtable. It is similar to the Juggle [22]
operator, except it does not spill tuples to disk. Flux-Prod
drains tuples from the buffer for only the connections that
can accept another tuple. Flux-Prod first calls getNext()
on the producer instance if the buffer has space to hold an-
other tuple, inserts the returned tuple into the buffer based
on its destination, and then extracts and forwards a tuple
from the buffer for an unblocked destination if one exists.

This enhancement permits reordering of the input tuples.
It allows the Flux-Prod to continue to forward tuples in the
buffer intended for other destinations even when the con-
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Figure 4. Flux-Cons Design

nection to a particular destination is blocked. With this de-
sign, the buffer space is flexibly allocated to the destinations
on demand, as opposed to dividing the space among the des-
tinations beforehand. If the buffer is large enough to absorb
the type of transient skew described above, then the Flux-
Prod instances will be affected by the largest of the pertur-
bations, and not each one individually. In the next section,
we describe how the transient skew buffer is also used to
avoid blocking Flux-Prod during state movement.

We modified our baseline configuration to use Flux-Prod
with a transient skew buffer and compared it to Exchange
with an equivalent amount of space in the outgoing queues.
We introduced a load that goes round-robin on the ma-
chines, lasting 
���� sec. on each machine. We simulate
the load by introducing a process that consumes process-
ing time of 100 � s and sleeps for 50 � s. On a single machine
with a windowed group-by running at steady state, the addi-
tional process degrades throughput of the operator instance
by about 57%. We artificially warmed up the buffer at the
start, and ran the parallel simulation with the rotating load
for 16 sec. (32 machines x 0.5 sec.) of simulated time. Fig-
ure 3 plots the average aggregate throughput for each run as
we varied the buffer size. With no buffer, throughput of the
entire stage drops to about half of the unloaded case, even
though only a single machine is overloaded at any time. As
buffer size is increased, Flux quickly beats Exchange and
approaches the throughput of the unloaded case.

5. Long-Term Processing Imbalance

Long-term load imbalances eventually overload any fixed-
sized buffer, so the previous technique is only suited for
short-term imbalances. As mentioned before, some sources
of long-term imbalance include changes in both the query
mix and the underlying data distribution which can make
content-sensitive operators severely under-perform. Thus,
we describe a mechanism to adjust the partitioning of an
operator on the fly and describe policies for deciding when
and how to repartition them.
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5.1. Flux Repartitioning Mechanism

Like the RiverDQ, we need the ability to repartition the in-
put stream to rebalance the work for a content-sensitive op-
erator. In this case, repartitioning the input also requires
moving the accumulated operator state necessary for pro-
cessing the input. For example, in our windowed group-by,
if the input stream for a particular group is shifted to another
machine, then the group’s history needs to be relocated ac-
cordingly. To allow repartitioning of the state of a content-
sensitive operator, we make a few changes to our design.

We first introduce a level of indirection. Instead of having
a partition per consumer instance as in Exchange, we instan-
tiate numerous “mini”-partitions, so that the total number
of partitions is much larger than the degree of decluster-
ing of the consumer operator. Creating numerous partitions
for handling skew is a well known technique [10]. These
numerous, small partitions are distributed amongst the con-
sumer operator instances at initialization time, and those in-
stances are responsible for processing the corresponding in-
put.

To permit reallocating these partitions for load-balancing
purposes, the consumer operator must implement, in ad-
dition to the traditional iterator interface, the getPar-
titionState() and installPartitionState()
methods for extracting and installing the state associated
with a particular partition. The getPartitionState()
method extracts the partition state from the internal data
structures, and marshalls the partition state into a machine-
independent form. The installPartitionState()
method unmarshalls the partition state, and installs it into
the operator’s internal data structures. These methods oper-
ate on a list of pages that contain the partition state. These
extraction and installation methods are invoked only by
Flux-Cons.

Because we added a level of indirection and permit state
movement, a given partition can potentially be located on
any one of the sites of the content-sensitive operator. So,
the routing logic in Flux-Prod needs to change. The rout-
ing function must return a partition id instead of a machine
id. In addition, Flux-Prod maintains a mapping between the
partitions and their sites to determine the destination of a tu-
ple (see Figure 2). Also, the transient skew buffer is keyed
on partition id instead of machine id to avoid blocking Flux-
Prod during state movement as described in the next section.
Flux-Prod now cycles through only the partitions for which
the destination connections are unblocked.

We also modify Flux-Cons to maintain statistics about the
execution and to coordinate state movement. We first de-
scribe the added mechanisms for coordinating state move-
ment depicted in Figure 4. Each Flux-Cons instance main-
tains a reverse connection to all Flux-Prod instances, and
a bi-directional connection to a central Controller, located
on a separate dedicated machine. The Controller is re-

sponsible for collecting the runtime information from the
Flux-Cons instances and issuing movement decisions for
load-balancing. Also shown in Figure 4, is the StateMover
thread. It is responsible for asynchronously transferring
state or receiving state as instructed by Flux-Cons. Each
Flux-Cons instance communicates with a local StateMover
thread through a shared-memory data structure. Each State-
Mover thread maintains a connection to all the other State-
Mover threads at the other sites. Note, the StateMover
thread and Controller can be shared by multiple Fluxen in a
dataflow1.

A Flux-Cons instance maintains two statistics that the
Controller uses to determine if repartitioning will be effec-
tive. First, it keeps a count of the number of tuples pro-
cessed per partition. Second, it estimates the amount of
time the instance has spent idle. Idle time is the amount
of time the Flux-Cons instance waits on the incoming con-
nections for a tuple, and is used to determine utilization of
the consumer instance. Because we need a way to estimate
idle time, we require Flux-Cons and Flux-Prod to be sched-
uled in separate threads. In a polling-based implementation
of Flux-Cons, it can estimate idle time by the time spent
“sleeping” while waiting for input to arrive. The better the
estimate, the more effective the load-balancing policy is in
improving the aggregate performance of a content-sensitive
operator.

5.2. State Movement Protocol

For a content-sensitive operator like our windowed group-
by, the state of a partition depends upon the sequence of
tuples it has processed. Thus, moving a partition requires
the partition state to be consistent with respect to the se-
quence of tuples delivered to it. In order to ensure this con-
sistency, our state movement protocol needs to quiesce the
input stream to the partition before it is transferred. More-
over, to avoid blocking during state movement, Flux needs
to buffer the input for the in-flight partitions while still con-
tinuing to process the input for stationary partitions. Below,
we detail the state movement protocol and mechanisms that
achieve both these criteria.

Moving a partition from one instance to another involves
the following steps: quiescing the input to the partition,
marshalling the state into machine independent form and re-
moving it from the internal data structures, transferring the
state, unmarshalling the state and installing it into the re-
ceiving instance, and restarting the partition’s input stream.
We walk through the steps of how a partition is moved from
one site to another to illustrate the details of each of these
steps.

State movement is initiated by the Controller, which
starts the quiescing phase. After receiving statistics from all
the Flux-Cons instances, the Controller consults the repar-

1We pluralize Flux in the same manner as “ox” or “VAX”.
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titioning policy and generates a list of partitions to move.
The moves are then sent to both the originating and destina-
tion Flux-Cons instances for each partition to be shifted. A
Flux-Cons instance, once invoked by the consumer instance
(through getNext()), first checks for messages from the
Controller. When a move request is received by the desti-
nation Flux-Cons, it queues up a receive request with the
StateMover thread. When a move request is received by
the originating Flux-Cons, it broadcasts a pause request on
the relevant partition to all Flux-Prod instances, and then
continues to process normally. When a Flux-Prod instance
receives a pause request, it marks that partition as stalled
and stops draining tuples for that partition from the tran-
sient skew buffer. It then immediately sends an acknowl-
edgement to the originating Flux-Cons instance. Assum-
ing ordered message delivery, once the originating Flux-
Cons instance receives all acknowledgements, all in-flight
tuples for the candidate partition have been received and
processed. At this point, the candidate partition is success-
fully quiesced.

Next, the originating Flux-Cons extracts the partition
state from the consumer instance via the getPartition-
State() method, and passes the result to the StateMover
thread to transfer the state. Once the state has been trans-
ferred, the StateMover thread at the destination site notifies
the local Flux-Cons instance. The destination Flux-Cons in-
vokes the installPartitionState()method on the
consumer instance, and then sends a restart message on the
relevant partition to all Flux-Prod instances and the con-
troller. When the restart message is received, the Flux-Prod
instances update their map for the partitions, and resume
draining tuples for the stalled partition. Note, during this
protocol, state transfer across machines occurs in the back-
ground while Flux-Cons and Flux-Prod continue processing
for partitions not being moved.

We made two important design decisions to facilitate
state movement. First, although quiescing causes a transient
delay on a single (mini-)partition, we can take advantage of
the transient skew buffer to allow Flux-Prod to stall the input
for in-flight partitions without blocking. The buffer holds
the input for the stalled partitions while permitting Flux-
Prod to continue forwarding tuples for other partitions. If
we had placed the buffer space into the destination connec-
tions like Exchange, then when a tuple for a stalled partition
arrived, Flux-Prod would be forced to block to avoid for-
warding that tuple. Moreover, by limiting the buffer space
between Flux-Prod and Flux-Cons instances, we minimize
the number of in-flight tuples, and hence the time it takes to
quiesce a partition.

Second, because the extraction and installation methods
are called only by Flux-Cons, we are able to simplify the
implementation of these routines. Since dataflow operators
are typically single-threaded, no internal state is concur-
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Figure 5. Partition movements in a single round

rently being modified once control has passed to Flux-Cons.
Thus, implementing the extraction and installation methods
requires only slight modification to existing operators with-
out introducing additional synchronization overhead during
normal processing.

5.3. Load-Balancing Policy
The goal of the Flux load-balancing policy is to repartition
the consumer operator to improve aggregate performance
for that stage. Since it is difficult to predict future behavior,
the aim of our policy is to react to existing conditions and
avoid thrashing, i.e., repeatedly making bad decisions caus-
ing the operator to make no progress. Because moving state
has a significant cost, this policy tries to maximize the bene-
fit of rebalancing while minimizing the number of partitions
moved. In this section, we assume that there is ample main
memory to accommodate the state of the consumer opera-
tor. Under this assumption, average latency per tuple is just
the in-memory processing latency of the tuple. Thus, the
metric for which to optimize is throughput.

The policy for load-balancing proceeds in rounds. Each
round consists of two phases: a statistics collection phase,
and a move phase. At the beginning of each round, the
Controller sends a message to all Flux-Cons instances that
serves as a signal to begin collecting statistics. Within that
message is a duration � indicating how long a Flux-Cons in-
stance should accrue statistics before it returns the informa-
tion to the Controller. When � time passes, each Flux-Cons
instance, � , returns the amount of time spent idle, ��� , during
the collection phase, and the number of tuples processed per
partition, ���	��
 . The Controller computes the utilization of
each site (or instance), � �� �������� , and sorts the sites by
decreasing utilization. For each site, it sorts the partitions
in descending order of the number of tuples processed, and
calculates the total tuples processed, � � . The sites with uti-
lization above the average, �� , are considered (in descending
order) for shedding load.

Our policy aims to equalize the utilization of each of the
sites as well as possible in the fewest number of moves.
Starting from the most utilized site (the donor site), we pair
it with the least utilized site (the receiving site), and repeat-
edly pair sites at the ends as we work toward the middle.
Figure 5 shows an example with four sites, sorted in de-
scending order of utilization. The size of each partition rep-
resents the amount of processing time each partition con-
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sumed in the round. We pair site 1 with 4 and site 2 with
3. For each pair, we consider moving a partition from the
donor to the receiver. We first apply a threshold test. If the
donor’s utilization, � 
 is less than the average, �� , or if the
utilization ratio (i.e. imbalance) of the two sites is less than
some threshold factor ��� ����� or if the receiver’s utilization,
��� , is above a threshold, ���
	�� �� , then we do not consider
those sites for any state movement. Otherwise, we walk
down the sorted list of partitions and schedule a move for
the first partition in the donor’s list that will reduce the uti-
lization imbalance between the donor and receiver.

To estimate the post-repartitioning utilization of each site,
we assume that the number of tuples processed by each par-
tition and the processing rate of each consumer instance (or
site) remains fixed across rounds. Given a partition to be
moved that processed ��� tuples, the donor’s new utiliza-

tion is estimated as ���
  � 

�
� ���������� . Likewise, the re-

ceiver’s new utilization is estimated as ����  � � � ��� � ���� � .

The second term in both equations is an estimate of the
change in utilization given the current processing rate of the
consumer instances. If the receiver becomes overutilized,
������ � , then we do not schedule the move.

Figure 5 shows an example in which the partitions are
sorted by the number of tuples processed. Partition 5 is
moved to site 4, and partition 8 is moved to site 3 because
moving 9 would increase the imbalance between sites 2 and
3. Only a single partition is moved for every pair during a
round. We continue down our list of machine pairs until all
pairs have been considered or some pair fails the threshold
test. During any round at most  "!$# partitions are moved
where  is the degree of declustering for the operator, and
each site moves or receives at most one partition.

Once the moves have been determined, the Controller
sends out the move orders to the appropriate Flux-Cons in-
stances and starts a timer. Once all the moves have com-
pleted the round is finished, and we use the timer to record
the duration of the move phase. The duration of the next
collection phase � is set to the length of the previous move
phase. This heuristic ensures that even if we make poor
movement decisions, at most half the time is spent stalling
and repartitioning. In effect, this heuristic dampens the
load-balancing policy and prevents it from overreacting. In
case no partitions were moved, we set � to half its previous
value. Our collection phase length is subject to a minimum,
�%� �'& . In the next section, we show this minimum collection
phase duration allows the system to be configured to avoid
excessive movements when partition sizes are small.

5.4. Experiments w/ Processing Load

To show the effectiveness of our load-balancing policy, we
ran a number of simulations of the windowed group-by
operator using Flux. We instantiate 64 partitions per ma-
chine, with each partition holding a history of 10,000 tu-
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Figure 6. Balancing Processing load

ples, or 800KB. In this example, even though the entire
state of the windowed groupby can fit onto 2 machines,
we utilize the cluster for improved throughput. Each pro-
ducer instance generates tuples uniformly distributed across
16K groups. Unless otherwise specified, for all subsequent
experiments, the Flux-Prod transient skew buffer is set to
160KB (2048 tuples). Also, we charge 0.2 � s per tuple
for quiescing and installing partitions. To approximate the
bandwidth limitations of a gigabit ethernet network during
the move phase, we assume that the maximum available
cross-sectional bandwidth is 500mbps for partition move-
ment, and maximum point-to-point bandwidth is 250mbps.
For the load-balancing policy, we used the following param-
eter values �%� �'&  ��
)(+* , ��� �����  � � # , ��� 	�� ��  
�� � .

Our first experiment examines how quickly the load-
balancing policy reacts to a load perturbation by introduc-
ing an external load on a single machine. As before, an
extra process that computes for 100 � s and sleeps for 50 � s
is used to exert the load. The top line in Figure 6 shows
performance the with no machines perturbed. The bottom
curve shows the performance with load-balancing turned off
and load introduced at �  � sec. We report the aggregate
throughput computed over one second intervals. The effect
of additional load is felt only after �  � sec.: head-of-line
blocking ensues when the transient skew buffer fills, afford-
ing us about 4 sec. of slack. Likewise, our load-balancing
policy feels the effect of the imbalance at the same time as
shown in the middle curve. However, it begins to move par-
titions to react to this perturbation. It reaches steady state
after offloading 32 partitions at �  �%, sec., � sec. from
when it began rebalancing. The minimum time needed to
transfer these partitions is # sec. The dilation in reaction
time is a result of two factors. One is the time to process
and drain in-flight tuples before partition movement occurs,
and another is the collection phase which waits as long as
the previous move phase.

Our second experiment displays how aggregate perfor-
mance degrades with increasing external load. We per-
turbed a random subset of the machines in the cluster with
the same external load and report the average steady state
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Figure 7. Graceful Degradation

aggregate throughput of the consumer operator, i.e., after
the load is felt in the static case, and after rebalancing has
completed in the load-balancing case. The bottom line in
Figure 7 shows the performance without the load-balancing
policy. As expected, a result of the head-of-line blocking
phenomenon described before, the throughput of the entire
stage drops once a single machine is perturbed and remains
there. On the other hand, the load-balancing policy manages
to rebalance the partitions thus exhibiting a smooth, linear
degradation profile.

Finally, we present experiments in which the policy over-
reacts and exhibits suboptimal performance, and we show
how increasing the minimum collection time parameter
�%� �'& can prevent it from overreacting. We modified the
producer instances to generate tuples according to an 80/20
distribution across 16K groups. Using this workload and
no external load, we initially ran two types of experiments,
with and without the load-balancing policy. For all experi-
ments, we ran the simulation for 60 sec. of simulation time,
computed the aggregate throughput in one second intervals,
and report the average of the 60 values. Figure 8 shows
at small values of � � ��& the load-balancing policy achieves
half the throughput of the static case. In this skewed work-
load, there are a few partitions that receive most of the work
and are the bottleneck. Since the partitions are small, move-
ment time is short, causing the collection phase to be short.
During collection, the controller only receives an accurate
sample of processing load on machines with popular parti-
tions; hence, it keeps shifting popular partitions. As ��� �'&
is increased, it dampens the frequency of movements, and
at � � ��&  # � 
 ms, the load-balancing policy outperforms
the unloaded, static case. We reran the same experiments
with the same external load introduced on 8 machines, en-
suring that the site initially with the most popular partition
was also overloaded. As expected, in the static case, the
throughput drops and the load-balancing policy is still inef-
fective at small � � ��& . As � � �'& is increased, its performance
quickly improves, and it outperforms the static unloaded
case at �%� ��&  � � 
 ms. Surprisingly, the policy works bet-
ter (i.e., it requires a smaller �%� �'& ) in the loaded case than
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Figure 8. Varying Collection Time, � � �'&
in the unloaded case. In the loaded case, the policy moves
popular partitions onto unloaded sites quickly because the
imbalance between sites is larger, and the load imbalance
prevents the partitions from being moved back. Of course,
as we noted earlier, the trade-off for increasing the collec-
tion phase duration is that it takes longer to rebalance. Be-
cause the policy is sensitive to its parameters, autotuning
of these values is an interesting and necessary direction for
future work.

6. Memory-Constrained Environment
In the previous sections, we only considered repartition-
ing in conditions with ample aggregate memory, but for
content-sensitive operators often memory can be the criti-
cal resource rather than processing capacity. For example,
if our windowed group-by is required to maintain a much
larger history or the number of groups increases dramati-
cally, then it could run short on physical memory for its
internal state. Or, the CQ runtime system could instanti-
ate another operator on the same machines, forcing existing
operators to release some of their memory. When physical
memory is exhausted on some site, content-sensitive oper-
ators like our windowed group-by have three choices: shed
state to disk, move state to another site, or decrease the his-
tory size maintained. In certain critical applications like in-
trusion detection or monitoring stock quotes, the last option
may not be acceptable. We focus on such applications in
which content-sensitive operators must adapt their memory
usage by repartitioning to employ both local disk and avail-
able memory across the cluster.

Flux uses a dual-destination repartitioning mechanism for
memory-constrained environments. Flux-Cons leverages
the state movement APIs to provide a local, per-site mech-
anism for spilling partitions to disk. Since streaming oper-
ators have unbounded input, Flux uses a local round-robin
style policy that continually rotates through on-disk parti-
tions to avoid accruing input tuples indefinitely. Due to lack
of space, we refer the reader to the full paper [26] for details
of the local mechanism and policy.

When an operator starts spilling, both throughput and av-
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erage latency per tuple are degraded. Throughput is dimin-
ished because I/O is performed, and latency rises because
input tuples for on-disk partitions must be spilled to disk and
processed later. Thus, imbalances in memory usage across
a cluster can lead to suboptimal aggregate performance in
both respects. We modify the Controller to provide a global-
level repartitioning policy that avoids or postpones local
disk use and efficiently uses aggregate main memory across
the cluster to improve both throughput and average latency.

6.1. Global Memory-Constrained Repartitioning

Like the case with load imbalances, even a single instance
that exhausts memory and spills to disk can hamper the per-
formance of the entire consumer operator. To detect such
imbalances under heavy memory pressures, Flux needs ad-
ditional interfaces to the consumer operator to determine its
memory usage characteristics. The idle time metric fails
to accurately reflect imbalances when available memory is
exhausted because the local Flux-Cons mechanism is busy
performing I/O, so it rarely exhibits idle time.

Thus, we require the operator export to a getParti-
tionInfo() method that returns a list of sizes for in-
stalled partitions. Moreover, Flux-Cons needs a hook into
the memory pool to determine the free space available to
the operator. By using these new interfaces, the Flux-
Cons operator returns to the Controller information about
memory availability and partition sizes. Since it also han-
dles spilling, Flux-Cons also indicates whether partitions
are memory resident, and the size of their unprocessed in-
put. The Controller implements a global repartitioning pol-
icy that attempts to balance memory usage amongst ma-
chines and balance disk usage when aggregate memory is
exhausted.

To deal with the memory-constrained case, we modify the
policy in Section 5.3 to use the memory usage information
directly for repartitioning. The policy continues to proceed
in rounds with a collection phase and move phase, but in-
stead of considering idle time, the Controller determines the
excess memory capacity, � � ��� � *%��� ��� *����	� � (
��( �	�	�	� � ,
of each site (or consumer instance). Sites are sorted in in-
creasing order of excess memory capacity. For each site,
the partitions are sorted in decreasing order of size, with in-
memory partitions listed or prioritized before on-disk parti-
tions, because the latter require I/O and processing spilled
input before movement. Like the load-balancing policy, we
select partitions to move by pairing sites with less excess ca-
pacity to sites with more excess capacity. For each pair, we
traverse down the list of partitions and move the first that re-
duces the imbalance in excess capacity between the two. In
the threshold test, we remove the utilization restrictions for
the receiver, because although memory may be exhausted,
movement would balance the number of on-disk partitions.
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Figure 9. Throughput during Memory Balancing

6.2. Experiments w/ Memory Pressure
To illustrate the efficacy of the memory-constrained reparti-
tioning policy, we ran a number of simulation experiments
and analyzed their behavior with respect to throughput and
average latency per tuple. We define latency the time a tu-
ple enters the Flux-Cons operator to the time it is processed
by the consumer operator. We continue with our simulation
of the windowed group-by operator using the both the local
and global mechanism and policy. The size of each parti-
tion is increased to 6MB and we create 128 partitions per
machine. Thus, at each site, 768MB out of 1GB is initially
occupied. We simulate synchronous disk I/O for spilling to
disk during which a Flux-Cons instance is blocked and not
processing incoming requests.

In the first experiment, shown in Figures 9 and 10, we ex-
amine how quickly the repartitioning policy reacts to mem-
ory pressure. We ran the simulation and introduced mem-
ory pressure on a single machine by reducing the avail-
able memory from 1GB to 512MB. We report the aggregate
throughput and average latency per tuple computed over one
second intervals. At �  � sec., available memory is re-
duced, and Flux begins to extract and spill partitions to disk.
It needs to extract and write 256MB to disk, which takes ap-
proximately � , sec. to complete. During that time, the Flux-
Cons operator is completely stalled, causing the producers
to block and grinding throughput to a halt. In the static
case, at �  � � sec., the overloaded machine begins to pro-
cess incoming tuples again at a much reduced rate, because
it is cycling through the on-disk partitions (see Figure 9).
On the other hand, when the repartitioning policy in effect,
while some partitions are being transferred to disk, others
are concurrently transferred to other machines. Thus, we
observe some minute throughput during the stalled phase.
At �  � � sec., the overloaded machine starts processing
incoming tuples again and the repartitioning policy contin-
ues to offload on-disk partitions to other machines. During
this time, average latencies are high (see Figure 10) because
activated partitions are processing their previously spilled
input. Once all the partitions are in memory at � �	� sec.,
the throughput of the stage reaches the unloaded case, and

10



20 40 60

Time (secs)

10

100

1000

10000

100000

1000000

A
vg

. L
at

en
cy

 (
us

ec
/t

up
le

)

No Press. / Static
Press. / With Repart.
Press. / Static

Figure 10. Avg. Latency during Memory Balancing

average latency returns to the in-memory latency.
The repartitioning policy takes � � sec. to reach steady

state while it should only take � � � sec. to transfer the par-
titions and rebalance. This dilation in reaction time occurs
because the local mechanism in Flux-Cons spills partitions
to disk during which time it cannot dispatch move requests
or process collection requests. This elongates both the move
and collection phase in a round resulting in an increase in
reaction time.

In a second set of experiments we varied the number of
machines perturbed with the same external memory pres-
sure to show how the system degrades. We summarize these
results due to space constraints [26]. The degradation pro-
file for the static case as compared to the repartitioning pol-
icy is similar qualitatively to the one in Figure 7. The av-
erage steady-steady throughput for the static case drops to
� � � � ��
 � from ��� � � ��
 � tuples/sec once a single machine
is perturbed and remains there. The memory-constrained
policy exhibits an almost linear degradation profile. The
steady-state average latency for the static case increases by
several orders of magnitude from , � � * to # � , � ��
� � * with
one machine perturbed and reaches ��� � � ��
�� � * with all ma-
chines perturbed. This precipitous increase occurs because
on a perturbed machine, a third of the partitions are on disk,
and average latency is proportional to the time it takes to ro-
tate through all the partitions. The memory-constrained pol-
icy manages to maintain the in-memory latency , � � * until
available aggregate memory is exhausted, after which the
average latency increases exponentially.

6.3. Hybrid Repartitioning Policy

We describe a simple hybrid of our load-balancing and
memory-constrained repartitioning policy that achieves the
benefits of both. If any operator instance has partitions
spilled to disk, the hybrid policy resorts to the memory-
constrained policy to avoid high average latencies. If par-
titions for all instances are resident in memory, it resorts
to the load-balancing policy to improve throughput, subject
to the constraint that a partition is moved only if sufficient
memory exists at the destination site.

The hybrid policy outperforms the other policies under a
mixture of external CPU and memory loads because it can
leverage both load imbalance and memory usage statistics
directly. We refer the reader to [26] for experiments show-
ing the hybrid’s benefits.

7. Related Work
The relevant work which inspired Flux falls into two main
categories: recent advancements in continuous query and
stream processing systems, and previous work in parallel
query processing.

Previous CQ systems have dealt with scalability require-
ments by taking advantage of the commonality amongst
queries. NiagraCQ [7] and XFilter [2] are examples of CQ
systems over streaming XML documents. CACQ [16] is
an adaptive system for relational-style continuous queries
over streaming sensor data. PSoup [6] extends CACQ to ac-
commodate disconnected operation. A key feature of these
systems is to treat queries like data and index them to take
advantage of their commonality. The latter two systems
employ an Eddy [24] to dynamically adapt a query plan to
changing workload characteristics.

STREAM [18] is a data stream processing project which
focuses on computing approximate results and minimizing
the memory footprint of queries over data streams. The Au-
rora [4] system proposes to use user specified quality-of-
service profiles sacrificing result quality in the absence of
sufficient resources for scalability. In contrast, we believe
that inexpensive shared-nothing parallelism is a more com-
pelling approach to scalability than specialized techniques
that sacrifice result quality, though a combination of these
is certainly natural.

While none of these systems have explicitly considered
parallelism, integrating Flux into systems that are composed
of fixed dataflows like NiagaraCQ, XFilter, STREAM, and
Aurora, should be straightforward. On the other hand, Ed-
dies take a dramatic departure from traditional dataflow pro-
cessing techniques, and integrating their mechanisms with
Flux is a promising future direction.

We refer the reader to [13] for an overview of database
query processing techniques and highlight the most relevant
work on parallel query processing. Early work concentrated
on parallelizing individual, traditional content-sensitive op-
erators like hybrid-hash join [25] and sort (e.g., [11, 20, 1]).
The abstractions which inspired Flux, Exchange [12] and
RiverDQ [23], were proposed to compose such operators
into a dataflow. In [10] and [9], the authors present practical
techniques for handling data skew for a hash join and exter-
nal sort, respectively. These techniques rely on sampling a
static data set, which is infeasible in the streaming scenario.
Work in [17] and [21] describes how to account for current
CPU utilization, memory usage, and I/O load to perform
site selection and determine degree of declustering for hash
joins. None of these previous schemes consider repartition-

11



ing the join operator during execution. In [30] and [15],
the authors describe techniques to repartition a traditional
hash join at one point in time: between the build and probe
phases of the join. These techniques are specific to an im-
plementation of the hash join operator, and do not consider
continual, on-the-fly repartitioning of stream-based opera-
tors. The ConQuest [19] system takes an approach comple-
mentary to ours; it focuses on reconfiguring an entire paral-
lel query plan instead of a single partitioned operator

8. Conclusion
Pipelined dataflows in CQ systems are bound to experience
fluctuations in resource availability while executing. To
perform efficiently when parallelized across a cluster, their
constituent dataflow operators must adapt on the fly to im-
balances that arise. In this paper, we propose a reusable
mechanism, Flux, that encapsulates adaptive repartitioning
for a wide range of content-sensitive operators. Flux ex-
tends the Exchange operator to include mechanisms that al-
leviate short-term and long-term imbalances across a clus-
ter. Our experiments show that both CPU and memory load
imbalances can cause severe performance degradation and
we propose policies to accommodate both. When Flux em-
ploys these policies, it outperforms the statically partitioned
case by several factors in throughput and orders of magni-
tude in average latency.

Given the Flux mechanism, there are a few fruitful di-
rections for future research. As shown in Section 5.4, our
policies are sensitive to their parameter values, e.g. the
minimum collection phase length. A scheme for auto-
tuning these parameters is necessary to avoid placing the
burden on an administrator or operator designer. Investi-
gating how these per-operator policies effect global perfor-
mance in a dataflow with multiple Fluxen is also an inter-
esting direction. Finally, we intend to integrate our load-
balancing mechanisms with fault-tolerance mechanisms to
provide controlled degradation for CQ dataflows in the face
of machine failures.
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