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Abstract— Unstructured text represents a large fraction of the
world’s data. It often contains snippets of structured information
(e.g., people’s names and zip codes). Information Extraction
(IE) techniques identify such structured information in text. In
recent years, database research has pursued IE on two fronts:
declarative languages and systems for managing IE tasks, and
probabilistic databases for querying the output of IE. In this
paper, we make the first step to merge these two directions,
without loss of statistical robustness, by implementing a state-of-
the-art statistical IE model – Conditional Random Fields (CRF)
– in the setting of a Probabilistic Database that treats statistical
models as first-class data objects. We show that the Viterbi
algorithm for CRF inference can be specified declaratively in
recursive SQL. We also show the performance benefits relative
to a standalone open-source Viterbi implementation. This work
opens up the optimization opportunities for queries involving
both inference and relational operators over IE models.

I. INTRODUCTION

The field of database management has traditionally focused
on structured data, however, there has been significant interest
in techniques that parse text and extract structured objects that
can be integrated into traditional databases. This task is known
as Information Extraction (IE).

In the database community, work on IE has centered on
two major architectural themes. First, there has been interest
in the design of declarative languages and systems for the
task of IE [1], [2], [3]. Second, IE has been a major motivating
application for the recent groundswell of work on Probabilistic
Database Systems (PDBS)[4], [5], [6], [7], [8], [9], which can
model the uncertainty inherent in IE outputs, and enable users
to write declarative queries that reason about that uncertainty.

Given this background, it is natural to consider merging
these two ideas into a single architecture: a unified database
system that enables declarative IE tasks, and provides a proba-
bilistic framework for querying the outputs of those tasks. This
is especially natural for leading IE approaches like Conditional
Random Fields (CRF) [10] that are themselves probabilistic
machine learning methods. The query language of the PDBS
should be able to capture the models and methods inherent in
these probabilistic IE techniques.

Gupta and Sarawagi recently considered storing the prob-
abilistic output of the CRF in a probabilistic database [11].
However, they used a PDBS model that supported tuple-
and attribute-level uncertainty with restrictive dependency
structures. This limitation enabled them to capture only a
coarse approximation of the CRF distribution model inside
the PDBS, when complex dependency structures exist.

In this paper we show how to bridge the gap between CRF-
based IE and probabilistic databases, preserving the fidelity of
the CRF distribution. Our technique is based on the following
observations:
• Relational Representation of Inputs: CRF can be naturally

modeled as first-class data in a relational database, in the
spirit of recent PDBS like BayesStore [9] and the work of
Sen and Deshpande [7]. Similarly, text data can be captured
relationally via the inverted file representation commonly
used in information retrieval.

• Declarative Viterbi Inference: Given tabular representations
of CRF model parameters and input text, the central algo-
rithm for CRF – Viterbi inference [12] – can be elegantly
expressed as a standard recursive SQL query for dynamic
programming.

Together, these results in a unified and efficient approach for
implementing a probabilistic database supporting CRF and
its inference operator in PostgreSQL DBMS. We also show
the performance benefits relative to a standalone open-source
Viterbi implementation. Importantly, our approach not only
correctly performs CRF-based IE on input text, it also main-
tains the probability distributions inherent in CRF to enable
standard possible worlds semantics for answering queries over
the model, which is part of future work.

II. BACKGROUND

This section covers the background on probabilistic
databases, the CRF model, and the top-k inference operation
over a CRF model, in the context of information extraction.

A. Probabilistic Databases

A probabilistic database DBpconsists of two key compo-
nents: (1) a collection of incomplete relations R with missing
or uncertain data, and (2) a probability distribution F on all
possible database instances, which we call possible worlds,
and denote pwd(Dp). The attributes of an incomplete relation
R ∈R include a subset that are probabilistic attributes Ap,
whose values may be present, missing or uncertain. Each
possible database instance is a possible completion of the
missing and uncertain data in R.

B. Conditional Random Fields (CRF)

The declarative IE system we build and evaluate is based on
the linear-chain Conditional Random Field (CRF) [13], which
is a leading probabilistic model for solving IE tasks.
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Fig. 1. (a) Example CRF model for a address string; (b) A sample of
the TOKENTBL table; (c) a sample of the MR table; (d) two possible
segmentations y1, y2.

We now describe an example IE task called field segmen-
tation, in which a text-string is regarded as a sequence of
pertinent fields, and the goal is to tag each token in a text-
string with one of the field labels.

Example 1: Fig. 1(a) shows a CRF model instantiated over
an address string x ’2181 Shattuck North Berkeley CA USA’.
The possible labels are Y = {apt. num, street num, street
name, city, state, country}. A segmentation y = {y1, ..., yT }
is one possible way to tag each token in x into one of the
field labels in Y . �

The following definition [10], [13] defines the conditional
probabilistic distribution of y given a specific assignment x
by the CRF model.

Definition 2.1: Let X, Y be random variables, Λ = {λk} ∈
RK be a parameter vector, and {fk(yt, yt−1, xt)}Kk=1 be
a set of real-valued feature functions. Then a linear-chain
conditional random field is a distribution p(y | x) that takes
the form:

p(y | x) =
1

Z(x)
exp{

T∑
t=1

K∑
k=1

λkfk(yt, yt−1, xt)}, (1)

where Z(x) is a normalization function. �
Two possible feature functions for Example 1 are:
f1(yt, yt−1, xt) = [xt appears in a city list] · [yt = city]
f2(yt, yt−1, xt) = [xt is an integer] · [yt = apt. num]

·[yt−1 = street name]

A CRF model represents the probability distribution over
all possible segmentations of a text-string d. Fig. 1(d) shows
two possible segmentations of d and their probabilities.

C. Top-k Inference on CRF Model

The top-k inference is the most frequently used inference
operation over the CRF model. Top-k inference determines
the segmentations with the top-k highest probabilities given a
token sequence x from a text-string d.

The Viterbi dynamic programming algorithm [12] is a key
implementation technique for top-k inference in IE applica-
tions. For simplicity, we provide the equations to compute the
top-1 segmentation. These can be easily extended to compute
the top-k. The dynamic programming algorithm computes a

two dimensional V matrix, where each cell V (i, y) stores the
top-1 partial segmentations ending at position i with label y.

V (i, y) =

 maxy′(V (i− 1, y′)

+
∑K

k=1 λkfk(y, y′, xi)), if i > 0
0, if i = −1.

(2)

We can backtrack through the V matrix to recover the top-
1 segmentation sequence y∗. The complexity of the Viterbi
algorithm is O(T · |Y |2) where T is the length of the text-
string and |Y | is the number of labels.

III. CRF MODELS IN A PROBABILISTIC DATABASE

In this section, we describe a probabilistic database
DBp=<R, F>, based on [9] that can support rich probabilistic
IE models, such as CRF by (1) storing text-strings in an incom-
plete relation R as an inverted file with a probabilistic labelp

attribute; and (2) storing the exact probability distribution F
over the extraction possibilities from CRF using a factor table.

A. Token Table: The Incomplete Relation

The token table TOKENTBL is an incomplete relation R,
which stores text-strings as relations in a database, in a manner
akin to the inverted files commonly used in information
retrieval. As shown in Fig. 1(b), each tuple in TOKENTBL
records a unique occurrence of a token, which is identified by
the text-string ID (strID) and the position (pos) the token is
taken from. A TOKENTBL has the following schema:

TOKENTBL (strID, pos, token, labelp)

The TOKENTBL contains one probabilistic attribute –
labelp, which can contain missing values, whose probability
distribution can be computed from the CRF model. The
deterministic attributes of the TOKENTBL are populated by
parsing the input text-strings D, with label values marked as
missing by default.

B. MR Matrix: A Materialization of the CRF Model

The probability distribution F over all possible extractions
is stored in the MR matrix (the name MR matrix is borrowed
from [14]), which is a materialization of the factor tables in
the CRF model for all the tokens in D. More specifically, each
token xt in D is associated with a factor table φ[yt, yt−1 | xt]
in the CRF model, which represents the correlations between
the token xt, the label yt and the previous label yt−1. The
factor table φ[yt, yt−1 | xt] is computed from the weighted
sum of the features activated by xt in the CRF model:

φ[yt, yt−1 | xt] =
∑K

k=1 λkfk(yt, yt−1, xt).

where the features are real-valued functions, as described
in Section II-B. There are two ways to store the MR
matrix. The first is to use the following schema, where
{token,label,prevLabel} is the primary key:

MR (token, label, prevLabel, score)

An example of MR matrix with the above schema is shown
in Fig. 1(c). The second way is to store the factor table
φ[yt, yt−1 | xt] for each token xt as an array data type, where
the array contains a set of scores sorted by {prevLabel, label}.



This is a more compact representation, and can lead to better
memory locality characteristics. In addition, with the array
data type, we do not have to explicitly store the values of
prevLabel and label, we can simply look up the score by index.
For example, if we want to fetch the score for prevLabel=5
and label=3, then we look up the (5 × |Y | + 3)th cell in the
array. The MR matrix schema with the array data type is:

MR (token, score ARRAY[])

IV. TOP-K INFERENCE ON CRF MODEL

This section describes the recursive SQL implementation of
the Viterbi algorithm. We compare the merits of a declarative
SQL implementation vs. an imperative Java implementation
of the Viterbi algorithm, and decide on a middle ground that
retains a good deal of the declarativeness of SQL, but embeds
imperative UDF functions for issues where relational is not a
good representation, such as vectors and arrays.

A. Viterbi SQL Implementations

The Viterbi dynamic programming algorithm can be im-
plemented using recursive SQL queries over the incomplete
relation TOKENTBL and the model representation in the
MR matrix. We compare different Viterbi implementations
including (1) an existing Java implementation (2) the SQL
implementations ViterbiPerStr, ViterbiAllStr with recursive
queries and (3) the SQL implementation ViterbiArray with
recursive queries and UDF functions over arrays.

ViterbiPerStr and ViterbiAllStr: As stated in Section II-C,
the Viterbi algorithm computes the top-k segmentation using
a dynamic programming data structure – the V matrix. Let
us assume that we are computing top-1 segmentation for
simplicity. Each cell in V (i, y) stores the score and the path
of the top-1 partial segmentation up until position i ending
with label y. The V matrix at position 0 is initialized from
the MR matrix: V (0, y) = φ[y,−1|x0], where −1 denotes
that the previous label is NULL. The V matrix at position
i > 0 is recursively defined from the V matrix at position
i−1, by picking the partial segmentation with maximum score:
V (i, y) = maxy′{V (i−1, y′)+φ[y, y′|xi]}. The next example
illustrates the score and the path of the top-1 segmentations
stored in the V matrix.

Example 2: We use the address of ”Jupiter”, a popular
jazz bar in downtown Berkeley, ”2181 Shattuck Ave. Berke-
ley CA USA” as an example. Fig. 3 shows the V matrix
computed by the Viterbi algorithm. The first row contains
the possible labels and the first column contains the string
positions from 0 to 5. The scores are shown in the cells of
the V matrix; the path of the top-1 partial segmentations are
shown as the edges. For example, the partial segmentation
in V(3,’city’) consists of three edges V(0,’street num’) →
V(1,’street name’), V(1,’street name’) → V(2,’street name’),
and V(2,’street name’) → V(3,’city’).
The top-1 segmentation of the text-string can be computed
by following the path from the cell in the V matrix with
the maximum score. In this example the path is high-lighted:

1 CREATE FUNCTION ViterbiPerStr (int) RETURN VOID AS
2 $$
3 -- compute the top-1 path from V
4 INSERT INTO Ptop1
5 WITH RECURSIVE P(pos,segID,label,prevLabel,score) AS (
6 SELECT * FROM Vtop1 ORDER BY score DESC LIMIT 1
7 UNION ALL
8 SELECT V.* FROM Vtop1 V, P
9 WHERE V.pos = P.pos-1 AND V.label = P.prevLabel
10 ),
11 -- compute the V matrix from mr and tokenTbl
12 Vtop1 AS(
13 WITH RECURSIVE V(pos,segID,label,prevLabel,score) AS (
14 -- compute V(0,y) from mr and tokenTbl
15 SELECT st.pos, st.segID, mr.label, mr.prevLabel, mr.score
16 FROM tokenTbl st, mr
17 WHERE st.strID=$1 AND st.pos=0 AND mr.segID=st.segID
18 AND mr.prevLabel=-1
19 UNION ALL
20 -- compute V(i,y) from V(i-1,y), mr and tokenTbl
21 SELECT start_pos, seg_id, label, prev_label, score
22 FROM (
23 SELECT pos, segID, label, prevLabel, score, RANK()
24 OVER (PARTITION BY pos,label ORDER BY score DESC) AS r
25 FROM (
26 SELECT st.pos, st.segID, mr.label, mr.prev_label,
27 (mr.score+v.score) as score
28 FROM tokenTbl st, V, mr
29 WHERE st.strID=$1 AND st.pos = v.pos+1
30 AND mr.segID=st.segID AND mr.prevLabel=v.label
31 ) as A
32 ) as B WHERE r=1
33 )SELECT * FROM V)
34 SELECT $1 as strID, pos, segID, label FROM Ptop1
35 $$
36 LANGUAGE SQL;

Fig. 2. ViterbiPerStr UDF function in SQL takes in one strID at a time and
computes the top-1 segmentation.

pos street
num

street 
name

city state country pos street
num

street 
name

city state country

0 5 1 0 1 1

1 2 15 7 8 7

0 5 1 0 1 1

1 2 15 7 8 7

2 12 24 21 18 17

3 21 32 32 30 26

4 29 40 38 42 35

2 XXX XXX XXX XXX

3 21 32 32 28 26

4 XXX XXX XXX XXX4 29 40 38 42 35

5 39 47 46 46 50

4 XXX XXX XXX XXX

5 36 42 40 43 50

(a) (b)(a) (b)Fig. 3. Illustration of computing V matrix in ViterbiPerStr algorithm.

{V(0,’street num’)→ V(1,’street name’)→ V(2,’street name’)
→ V(3,’city’) → V(4,’state’) → V(5,’country’)}. �

The basic SQL implementation of any dynamic program-
ming algorithm involves recursion and window aggregation.
In the Viterbi algorithm, the window aggregation is group by
followed by sort and top-1. In Fig. 2, we show the SQL
implementation for the ViterbiPerStr algorithm in a UDF
function in SQL. ViterbiPerStr processes one strID at a time,
whereas an alternative is to compute the top-k inference for
all text-strings in D at the same time, which we call the
ViterbiAllStr algorithm. However, ViterbiAllStr suffers from
generating a large intermediate table that cannot be indexed.

ViterbiArray: The ViterbiArray algorithm is an optimization
of the ViterbiPerStr algorithm, which uses the second schema
of the MR matrix from Section III-B, and takes advantage
of the array data type. Correspondingly, the score in the V
matrix for a specific position i is also stored as an array of
〈score, prevLabel〉 pairs with length |Y |, where prevLabel is
used for backtracking the top-1 segmentation.

Fig. 4 shows the SQL statements in ViterbiArray that
replace Line 21 – 32 of ViterbiPerStr, where the UDF function



1 SELECT st.pos, st.segID,
2 top1_array(v.score, mr.score) as score
3 FROM tokenTbl st, V, mr
4 WHERE st.strID=$1 AND st.pos = v.pos+1
5 AND mr.segID=st.segID

Fig. 4. ViterbiArray modification in ViterbiPerStr.
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Fig. 5. Average inference time (msec) for a single text-string for different
implementations of the Viterbi algorithm.

TOP1-ARRAY(V (i − 1),MR(xi)) is used to replace the join
between array V (i − 1) and array MR(xi), and the window
aggregation (group-by, sort and top-1 operations) over the
result of the join.

The ViterbiArray algorithm is much faster than the Viter-
biPerStr algorithm, because (1) the join on V (i − 1).label =
MR(xi).prevLabel is replaced by index computation between
two arrays V (i− 1).score and MR(xi).score; (2) the scores
in the MR matrix are compactly represented as an array, which
greatly improves the memory locality characteristics; (3) the
computation of the group by, sort and top-1 computation
in ViterbiPerStr is replaced by index computation and the
maintenance of a priority queue.

B. Experimental Results

We implemented probabilistic declarative IE system sup-
porting CRF and top-k inference over PostgreSQL 8.4 devel-
opment version. The reason we use the development version is
that it supports recursive queries. The Java implementation of
the CRF model learning and inference is from the CRF open
source project [14]. We conducted our experiments on a 2.4
GHz Intel Pentium 4 Linux system with 1GB RAM.

We use two datasets in the evaluation. The first dataset is a
set of over 200k address strings we extracted from the yellow
pages. The average number of tokens in the address strings
is 6.8, and 8 labels are used to tag this dataset. The second
dataset is a set of more than 18k bibliography entries prepared
by R.H. Thomason [15]. The average number of tokens in the
bibliography strings is 37.8, and 27 labels are used to tag this
dataset. We ran the three top-k inference implementations in
SQL: ViterbiAllStr, ViterbiPerStr and ViterbiArray, and the
Java implementation on the address dataset.

Fig. 5 shows the average inference time per text-string (IPS)
in msec for different Viterbi implementations with increasing
number of text-strings on the x-axis, from 1k to 200k. The
results show that ViterbiAllStr is not scalable with the number
of text-strings, and ViterbiPerStr is 6 times more expensive
than the hand-tuned Java implementation. On the other hand,
the use of the array data type in ViterbiArray demonstrates
comparable performance to the Java implementation. The
average IPS is 0.57 msec for Java, and 0.81 for ViterbiArray.

dataset ViterbiAllStr ViterbiPerStr ViterbiArray Javadataset ViterbiAllStr ViterbiPerStr ViterbiArray Java

address 10.5 msec 3.2 msec 0.8 msec 0.5 msec

bib 1760.1 msec 175.1 msec 6.2 msec 16.2 msec

label1 Y‐label2

Y‐label2

label2

state0 state1 state2 –
t t ( +1)

state(2+n)
state(n+1)

(Y‐label2) and state(n+1)

Fig. 6. Average inference time per text-string (msec) for different Viterbi
implementations on address and bib dataset.

Fig. 6 compares the IPS numbers over two datasets. The
ViterbiArray is more efficient than the Java implementation
on the bibliography dataset. There are two main reasons for
this: (1) ViterbiArray uses the materialized MR matrix, which
needs to be computed on the fly in the Java implementation;
and (2) ViterbiArray uses an efficient join between arrays
with good memory locality characteristics, whose benefit is
especially evident with a large set of labels.

V. CONCLUSION

In this work, we show the design, implementation, and effi-
ciency of a unified probabilistic database system that supports
the CRF IE model and its top-k inference operator. This is
the first step towards a declarative IE system that provides a
probabilistic framework for performing IE tasks, and querying
the outputs of those tasks. This work opens up optimization
opportunities for queries with both inference and relational
operators over IE models.
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