A RULES SYSTEM FOR A RELATIONAL
DATA BASE MANAGEMENT SYSTEM

by

Michael Stonebraker
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
UNIVERSITY OF CALIFORNIA
BERKELEY, CA.

Rowland Johnson
COMPUTATIONS DEPARTMENT
LAWRENCE LIVERMORE LABORATORIES
LIVERMORE, CA.

Steven Rosenberg
COMPUTER SCIENCE AND APPLIED MATH DEPARTMENT
LAWRENCE BERKELEY LABORATORIES
BERKELEY, CA.

This paper presents the specification and proposed
implementation of a rules system for a relational data base
manager. The motivation for this proposal is the fact that
integrity constraints, protection, triggers, alerters, and
views are ALL examples of special purpose rules systems. We
suggest that all five services can be obtained in one uni-
fied way through a single rules system.

I INTRODUCTION

Rule systems have been extensively investigated in non
data base contexts. For example, MYCIN [SHOR76] and PROS-
PECTOR [DUDA78] are basically rule driven systems. Program~
ming languages such as XKRL [BOBR77] and FRL [ROBE77] support
rules in a fundamental way.

Many services of a data base management sysitem (DBMS)
can be interpreted as rules systems. TFor example, integrity
constraints [STON75, HAMM76] specify conditions which must
be guaranteed by a data manager. One such constraint for
the relation

EMP(name, age, salary, dept, manager)

is that employee salaries be greater than 1000. It can be

Research Sponsored by Naval Electronics Systems Command
Contract NOQ039-76-C~0022.

Improving D?lahase Usability Copyright €1982 by Academic Press, Inc.
and Responsiveness 323 All rights of reproduction in any form reserved.
1SBN 0-12-624080-9

324 MICHAEL STONEBRAKER et g/,

expressed in the current INGRES DBMS [STON76, STON80] as:

range of E is EMP
define integrity E.salary > 1000

This condition is automatically enforced by medifying each
incoming salary update to one which is guaranteed not to
violate the constraint. Tor example, the command

range of E is EMP
replace E(salary = .8 ¥ E.salary) where E.name = "Smith"

is changed to

range of E is EMP
replace E(salary = .8 * E.salary) where
E.name = "Smith" and .8 * E.salary > 1000.

The last clause ensures that Smith's updated salary cannot
violate the constraint.

This modification procedure is triggered by an incoming
command and performs a collection of actions which alter the
command. Hence, it is of the form

On condition
Then action

As such, it is a special purpose rules system. In addition,
alerters [BUNN79], +triggers {ESWA76], protection services
[GRIF76, STONT4], and support systems for views [CHAMTS,
STONT75] follow the same paradigm. Consequently, they are
also rules systems.

Many DBMS implement such data base services individu-
ally. For example, INGRES implements integrity control,
protection and views with three independent modules; each of
which is a special purpose rules system. The purpose of this
paper is to propose a single rules system which can provide
all such data base services. In this way only one mechanism
need be implemented, and an economy of data base code may
resulst. Moreover, many rules not possible with existing
DBMS services can also be formulated.

We begin with a specification of our rule paradigm in
Section II. Then in Section III several examples of our
rules system are presented which indicate its power and gen-
erality. Lastly, in Section IV we suggest an implementation
of our constructs in a relational system.

IT RAISIN

The language by which a data base administrator or user
specifies rules is called RAISIN (Rules from AI Specified
for INgres). Its basic structure is a sequence of ON-THEN
clauses. That is,

ON (condition) THEN (action)
ON (condition) THEN (action)

-
.

For each ON-THEN clause, the condition will specify

RULES SYSTEM FOR RELATIONAL DATA BASE MANAGEMENT SYSTEM 325

constraints to be met by an incoming data manipulation com-
mand before the action can be applied. Moreover, the condi-
tion can depend on data in the data base system. The action
will be a set of operations to be performed on +the command
as well as other possibly new operations on the data base.

In this section we specify the allowable conditions and
actions in RAISIN. The general form of a condition is the
following:

ON command(s)
70 relations(s)
AFFECTING field(s)
QUALIFYING field({s)

BY user-name(s)
DURING time-range
FOR day-range
WHERE qualification

Hence a condition is a collection of terms, each of which is
a keyword followed by a parameter. We give a few examples
of conditions then explain the general syntax.

ON replace

T0O EMP

OoN replace

TO EMP

AFFECTING salary

WHERE EMP.name = "Smith"
ON append, replace
TO *

BY Jones

DURING 8:00-17:00

FOR mon-fri

The first condition applies to all replace operations to the
EMP relation while the second applies to a salary update for
an employee named Smith. Lastly, the third condition
applies to all data base modifications made by Jones during
normal working hours.

It should be noted that 2ll terms in a condition except
the first are optional and +the wild card "*¥" ig a valid
parameter standing for "always". The TO clause specifies a
list of relations in +the current data base to which this
rule applies while the AFFECTING term indicates what fields
must be updated for the condition to apply. Moreover, the
QUALIFYING clause indicsates what fields must be present in
the qualification of a user command for the condition to
apply. For example, the command which gave a 20 percent
salary decrease to Smith uses name in the qualification. A
rule which included the term

QUALIFYING name

would apply to this update.

The day-range, time-range and user-list constructs are
self-explanatory. Lastly, the WHERE clause qualifies data

126 MICHAEL STONEBRAKER et

to which the rule applies. Hence, it should be a wvalig
qualification in a data manipulation language. In this expo-
sition, we assume that qualification is a QUEL WHERE clause
modified in one important way. In QUEL, all field names must
have an attached range variable. Hence, E 1is declared to
range over EMP in +the above QUEL example and fields are
designated by E.name and E.salary. In RAISIN qualifications
we assume that a relation name is prepended to a field name
instead of a range variable. Hence, EMP.name and EMP.salary
would be valid field names.

For any incoming data manipulation command, +the first
condition of any rule is either true or false. If false,
the rule does not apply. However, if true the action part
of the rule is executed and the remainder of the ON-THEN
statements (if any) are checked for applicability. We now
turn to +the 1legal actions which can appear in a RAISIN
statement

The action portion of an ON-THEN statement 1is an
ordered collection of commands from the following list.

1) EXECUTE

The user command is performed automatically as the last
action of a rule. If a user wants the command done earlier,
he must use an EXECUTE statement. Two EXECUTE statements in
a row would cause the user command to be run twice.

2) CANCEL

This action cancels the execution of the user's command.
3) UNDO

This action undoes all changes to the data base since the
beginning of the rule. With the inclusion of this action
there is the implicit assumption that transactions are sup-
ported.

4) CHANGE relation-1 TO relation-2,..,relation-N

This action will change the scope of the user command from
relation-1 to relation-2,.., relation-N. More precisely,
whenever one has

range of var-1 is relation-1
this is changed to
range of var-2 is relation-2

.

range of var-N is relation-N

Var-2, .., var-N are internally assigned by a RAISIN imple-
mentation. Moreover, for any given field name, F, in
relation-1, it is assumed that only one relation, say
relation-j, has a field of the same name. Hence,

var-1.F

RULES SYSTEM FOR RELATIONAL DATA BASE MANAGEMENT SYSTEM 327

is changed to
var-j.F

For example, one can deflect all operations on the EMP rela-
tion to the NEW-EMP relation by the following rule.

ON *
TO EMP
THEN

CHANGE EMP to NEW-EMP

5) RENAME field-1 TO field-2

This action causes all references to field-1 to be changed
to field-2. If, for example, NEW-EMP has a salary field
named dollars, the action statements of the above rule
should be extended to the following:

RENAME salary T0 dollars
CHANGE EMP TO NEW-EMP

6) MESSAGE {TO user-name} "message text"

A message is returned to the person who issued the command
that activated the rule. If the optional clause TQ user~
name is included, the message is directed to another user.
The MESSAGE action is useful when a command must be aborted
and an error message returned.

7) ILLEGAL "message text"

This action inspects the current command to see if it is
syntactically wvalid. If not, it will perform a CANCEL and

generate a message. Consequently, it has +the following
effect:

ON syntax error

THEN

CANCEL

MESSAGE "message text"

8) QUEL command

Any QUEL command is a legal action. Por example, suppose
RULES is a relation with two fields, a rule number and a
count field indicating how many times any given rule has
been executed. The action statement needed to correctly
update this relation for rule number 16 follows.

range of R is RULES
replace R (count = R.count + 1) where R.number = 16

Unfortunately, this action statement must be repeated for
each rule currently being enforced.

One extension is needed to QUEL commands in a RAISIN
context. Portions of the user command which activated the
rule can be substituted into a QUEL statement which 1is
applied as an action. The following keywords indicate the
needed portions.

328 MICHAEL STONEBRAKER et g/,

qualification - a keyword for the qualification
in the users command

command - a keyword for the whole user
command

new.field-name - a keyword for the value being

asgsigned to field-name
by the user command.

These can appear where they are semantically valid in a QUEL
command. For example, in the command which gave a 20 per-
cent pay decrease to Smith, qualification has the value

E.name = "Smith"
while new.salary has the value
.8 * E.galary

9) ADDQUAL gualification

This action will perform query modification [STON75] on the
current command. Specifically it will add the indicated
qualification to the one specified by the user. This extra
qualification follows +the syntax of QUEL WHERE clauses
except each field name has a relation name prepended instead
of a range variable. Since the user's command will have a
range variable in front of each field name, the qualifica-
tion must ©be preprocessed to find each field name, remove
the prepended relation name and substitute the user's range
variable.

For example, we can restrict Jones +to the subset of
employees under 30 by the following rule:

ON *

TO EMP
BY Jones
THEN

ADDQUAL EMP.age < 30
If Jones issues a query such as
range of E is EMP

retrieve (E.salary) where E.name = "Smith"
then it will be modified to
retrieve (E.salary) where E.name = "Smith"
and
E.age < 30

Notice that EMP.age is preprocessed to E.age before being
added +o0 the command. One other processing step must take
place. The keywords noted in command (8) are also valid
here, and the appropriate substitutions must take place.

We now turn to illustrating this facility with several
examples of commonly desired features.

IIT EXAMPLES OF RAISIN

We indicate the use of RAISIN to accomplish integrity
constraints, protection statements, triggers, alerters, and

RULES SYSTEM FOR RELATIONAL DATA BASE MANAGEMENT SYSTEM 329

view support in turn. Then, we conclude +the section with
some other miscellaneous applications of our rules system
which seem useful.

3.1 Integrity Constraints

If employees must make more than 1000, then the follow-
ing integrity constraint in INGRES expresses this desire.

range of E is EMP
define integrity E.salary > 1000

In RAISIN this rule can be expressed as:

ON replace, append
70 EMP
THEN

ADDQUAL new.salary > 1000

Note that new.salary refers to the value assigned to salary
by the wuser command. A more sophisticated example is the
constraint that Smith must make more +than 2000. This is
expressed in INGRES by

range of E is EMP

define integrity E.salary > 2000 or E.name != "Smith"
In RAISIN this rule can be expressed as follows:

ON replace, append

TO EMP

AFFECTING salary

WHERE EMP.name = "Smith"

THEN

ADDQUATL new.salary > 2000

Next, consider the case where the average salary must be
less than 1800. The RAISIN rule for this is:

OoN replace, append, delete
T0 EMP

THEN

OoN *

WHERE AVG(EMP.salary < 1800)
THEN

UNDO

MESSAGE "command not done because it would
raise average salary above 1800"
CANCEL

A last example is to specify +that employee salaries
cannot decrease. This is not expressible by the integrity

00§straints of [STON75]. However, in RAISIN, the desired
rule is

ON replace
T0 EMP
AFFECTING salary
THEN

ADDQUAL new.salary > EMP.salary

3.2 Protection

330 MICHAEL STONEBRAKER et of

Suppose Jones is only allowed to wupdate salaries of
employees for whom he is the manager between 8 A.M. and 5
P.M. This can be expressed in INGRES as:

range of E is EMP
define permit replace of E(salary) to Jones
FROM 800 to 1700 WHERE E.manager = "Jones"

This can also be specified in RAISIN as:

OoN replace

TO EMP
AFFECTING salary

BY Jones
DURING 8:00-17:00
THEN

ADDQUAL EMP.manager = "Jones"
3.3 Triggers

Whenever one appends a new tuple to the EMP relation,
one might wish to trigger an auxiliary update to the NEW-EMP
relation. This could be accomplished as follows:

OoN append

TO EMP

THEN

EXECUTE

CHANGE EMP TO NEW-EMP

A second example would be to construct a trigger which would
automatically keep a count of the number of employees in
each department. 1In the case that the application designer
knows that employees are added one at a time, the following
rule will keep a correct count in the DEPT-COUNT relation.

ON append
TO EMP
THEN

range of D is DEPT-COUNT
replace D(count = count + 1) where
D.name = new.dept

3.4 Alerters

Suppose one wanted a message printed on a user's termi-
nal if he performed a salary update for any employee. The
required RAISIN code is the following:

ON replace
T0 EMP
AFFECTING salary
THEN

MESSAGE "alarm, you are updating salaries®

As a second example, suppose one wants a message printed out
if the average salary rises above 2000. This alarm could be
gpecified in RAISIN as:

ON append, delete, replace
TO EMP

AFFECTING salary

THEN

ON *

RULES SYSTEM FOR RELATIONAL DATA BASE MANAGEMENT SYSTEM 331

WHERE AVG(EMP.salary >2000)

THEN

MESSAGE TO accounting "alarm, salaries too high"
3.5 Views

We will do three view examples in this section +to
illustrate the power of RAISIN. PFirst we will explore a
view which is a restriction of a single relation.

The specification of YOUNGEMP in QUEL is:

range of £ is EMP
define view YOUNGEMP (E.all) WHERE E.age < 32

This same view can be indicated in RAISIN as:

ON *
TO YOUNGEMP
THEN

CHANGE YOUNGEMP TO EMP
ADDQUAL EMP.age < 32

This collection of action statements specifies the normal

INGRES query modification procedure. Now, if we have a
second relation:

DEPT (dname, floor)
then we can define a second view as follows:

range of D is DEPT
define view EMP-FLOOR (E.all, D.floor)
WHERE E.dept = D.dname

This view is the natural join of EMP and DEPT. The normal
query modification [STON75] facility to support this view is
expressed in RAISIN as follows:

OoN *
70 EMP-FLOOR
THEN

range of £ is EMP

range of D is DEPT

CHANGE EMP-FLOOR TO EMP, DEPT

ADDQUAL EMP.dept = DEPT.dname

ILLEGAL "Your command on EMP-FLOOR
could not be mapped"

There are several classes of updates +that cannot be
translated wunambiguously %o underlying relations. INGRES
currently issues an error message for such commands. For
example,

range of P is EMP-FLOOR
replace F (floor = 6, dept = "toy") WHERE F.name = "Mike"

This command cannot be mapped to EMP and DEPT wunambiguously
unless Mike is the only employee in the toy department. The
problem is that we will have to move the toy dept and will,
as a result, move all other employees in the toy department.
If we wish Mike moved to the toy department and in addition
the toy department moved to the 6th floor, we can express
this desire in RAISIN as follows:

ON replace

332 MICHAEL STONEBRAKER et i,

TO EMP-FLOOR
AFFECTING dept, floor
THEN

range of E is EMP
range of D is DEPT
CHANGE EMP-FLOOR TO EMP, DEPT
REPLACE D (floor = new.floor) WHERE qualification AND
E.dept = D.dname AND D.floor = new.floor
REPLACE E (dept = new.dept) WHERE qualification
AND E.dept = D.dname
CANCEL

Notice that fairly general semantics can be specified by a
data base administrator for ambiguous views.

3.6 Other Applications

It is easy to log each command which is submitted +to
the data manager by the following rule:

ON *

THEN

range of L is LOG

append to LOG (text = command)

It is also possible to accumulate statistics about data
base activity by application of a rule. TFor example:

ON replace
TO EMP
AFFECTING salary
THEN

range of S is STATISTICS
replace S(salcount = S.salcount + 1)
where S.name = "EMP"

IV IMPLEMENTATION CONSIDERATIONS

The action statements can be stored in parsed form in a
system relation since they never need to be used for search-
ing. Moreover, any subsequent ON-THEN clauses in the current
rule can be added to the end of the action statement for the
first clause. This situation is analogous to current INGRES
specifications for views, protection and integrity con-
straints which are stored in this fashion. If +he parsed
representation exceeds the length of the longest character
string (currently 255 bytes), then INGRES must cut it into
255 Dbytes pieces and store each with a sequence number. A
mechanism for storing arbitrary length character string
fields would facilitate storing such data. This appears to
be a suitable use of data base experts [STON80Oa].

The ON condition will need to be stored in encoded form
for efficient access. The structure we expect to use is:

CREATE RULES-REL(

relation = C1t, /*relation pointed to*/

command = i1, /*bit vector for which commands
appear in the ON condition

affecting = i2, /*bit vector for which columns

appear in the AFFECTING condition*/

RULES SYSTEM FOR RELATIONAL DATA BASE MANAGEMENT SYSTEM 333

qualifying = 12, /*bit vector for which columns appear
in the QUALIFYING condition*/

during = it, /¥flag indicating whether there
is a DURING clause */

by = i1, /*¥flag indicating whether there
is a BY clause */

for = i1, /*flag indicating whether there
is an ON clause*/

rule-id = i2, /*¥id for the rule*/

CREATE RULE-TEXT(

rule-id = i2, /*join field to RULES-REL*/

ON = €255, /*parsed form of ON condition*/
ACTION = (255, /*parsed form of ACTION condition*/
sequence = it, /¥sequence number in case parsed form

) exceeds 255 bytes*/

The WHERE term in a condition could be used as input to a
theorem ©prover which could check if the intersection of the
term with the users qualification was empty. If so, the
rule does not apply. Otherwise, the WHERE term must be
translated to an action which OR's the user command with:

NOT qualification

It appears that this proposed structure will be at
least as efficient as the existing INGRES implementation
which stores views, integrity constraints and protection
statements in three different relations. Here, we need only
access one relation to find all rules which apply to any
given command.

V. CONCLUSIONS

It should be noted that RAISIN is not an appealing
language. Obviously, +the current INGRES specification for
views integrity controls and protection seems generally more
user friendly than the corresponding RAISIN statements. It
is straightforward to build a small language processor which
accepts current INGRES specifications and translates them
into RAISIN internal form. In addition, special translators
might be useful for alerters and triggers. Only a user who
wished to perform complex view resolution would wuse RAISIN
directly. Moreover, it is hoped that a more user friendly
specification of RAISIN can be designed in the future.

In the current INGRES implementation there are three
separate modules to handle integrity constraints, views and
protection. These rule systems share virtually no code.
Under a RAISIN implementation there would be one module for
rules. It is likely that a general RAISIN implementation
would be mno more complex +than the current INGRES query
modification procedures.

334 MICHAEL STONEBRAKER et ol

As a result we expect that RAISIN could provide
increased functionality in the form of a more powerful rules
system with a comparable amount of software. Lastly, such an

implementation might well be more efficient than the current
one.

REFERENCES

[ASTR76] Astrahan, M. M. et. al., "System R: A Relational
Appgoach to Database Management," TODS 2, 2, June
1976.

[BLAS79] Blasgen, M., et. al., "System R: An Architectural
Update," IBM Research, San Jose; Ca., RJ 3091,
September 1979.

[BOBR77] Bobrow, D. and Winograd, T., "An Overview of KRIL,
a Knowledge Representation Language," Cognitive
Science, 1,1 1977

[BUNE79] Bunemann, O. and Clemons, B., "Efficiently Moni-
toring Relational Databases," TODS, Sept. 1979.

[CHAM74] Chamberlin, D. and Boyce, R., "SEQUEL: A Struc-
tured English Query Language," Proc. 1974 ACM-
SIGMOD Conference on Management of Data, Ann
Arbor, Mich., May 1974.

[cHAM75] Chamberlin, D., et. al., "Views, Authorization and
Locking in a Relational Data Base System," Proc.
1975 National Computer Conference, Anaheim, Ca.,
May 1975.

[DUDA78] Duda, R. et. al., "Development of +the Prospector
Consultation System for Mineral Exploration," SRI
International, October 1978.

[ESWA76] Eswaren, K., "Specifications, Implementations and
Interactions of a Trigger OSubsystem in an
Integrated Database System," IBM Research, RJ
1820, San Jose, Ca., August 1976.

[GRIF76] Griffiths, P. and Wade, B., "An Authorization
Mechanism for a Relational Data Base Systen,"
TODS, 2, 3, September 1976.

[HAMM76] Hammer, M. and McLeod, D., "A Framework for Data
Base Semantic Integrity," Proc. 2nd. International
Conference on Software Engineering, San Francisco,
Ca., October 1976.

[ROBE77] Roberts, R. and Goldstein, I., "The FRL Manual,"
MIT, AI Laboratory, Memo No. 409, Sept 1977.

[SHOR76] Shortliffe, E., "Computer Based Medical Consulta-
tions: MYCIN," Elsevier, New York, 1976.

[8TON74] Stonebraker, M. and Wong, E., "Access Control in a
Relational Data Base System by Query Modifica-
tion," Proc. 1974 ACM Annual Conference, San
Diego, Ca., November 1974.

RULES SYSTEM FOR RELATIONAL DATA BASE MANAGEMENT SYSTEM 335

{STONTS]

[sTON76]
[sTON8O]

[sTONBO=]

Stonebraker, M., “Implementation of Integrity Con-
straints and Views by Query Modification," Proc.
1975 ACM-SIGMOD Conference on Management of Data,
San Jose, Ca., June 1975.

Stonebraker, M. et. al., "The Design and Implemen-
tation of INGRES," TODS 2, 3, September 1976.

Stonebraker, M., Retrospection on a Data Base Sys-
tem," TODS, September, 1980.

Stonebraker, M. and Keller, K., "Embedding Experts
and Hypothetical Data Bases in A Relational data
Base System,"” Proc. 1980 ACM-SIGMOD Conference on
management of Data, Santa Monica, Ca., May 1980.

