
Data Gathering Tours in Sensor Networks

Alexandra Meliou ∗, David Chu ∗, Carlos Guestrin †, Joseph Hellerstein ∗, Wei Hong ‡
∗ University of California, Berkeley
† Carnegie Mellon University
‡ Arched Rock Corporation

{ameli,davidchu,hellerstein}@cs.berkeley.edu, guestrin@cs.cmu.edu, whong@archedrock.com

ABSTRACT
A basic task in sensor networks is to interactively gather data from a subset of
the sensor nodes. When data needs to be gathered from a selected set of nodes
in the network, existing communication schemes often behave poorly. In this
paper, we study the algorithmic challenges in efficiently routing a fixed-size
packet through a small number of nodes in a sensor network, picking up data
as the query is routed. We show that computing the optimal routing scheme
to visit a specific set of nodes is NP-complete, but we develop approximation
algorithms that produce plans with costs within a constant factor of the opti-
mum. We then enhance the robustness of our initial approach to accommodate
the practical issues of limited-sized packets as well as network link and node
failures, and examine how different approaches behave with dynamic changes
in the network topology. Our theoretical results are validated via an implemen-
tation of our algorithms on the TinyOS platform and a controlled simulation
study using Matlab and TOSSIM.

Categories and Subject Descriptors: E.1, F.2.0, G.2.2

General Terms: Algorithms, Theory

Keywords: Sensor Networks, Routing Algorithms, Splitting Tours

1. INTRODUCTION
In this paper, we consider a basic task in sensor networks: gath-

ering data from a subset of nodes. This problem arises in interactive
scenarios, in which a user or algorithm running at a base station re-
quests readings from an explicit subset of the nodes in the network.
The choice of nodes – and the sensors on those nodes – may be made
manually based on knowledge of the sensor placement and properties.
The choice may also be made in software: The BBQ system, for ex-
ample, proposes model-driven querying schemes for sensornets [10],
in which an optimization process chooses the set of nodes and sensors
to sample in order to approximately answer a high-level SQL query.

The standard approach to interactive data gathering uses a two-part
protocol: query flooding from a basestation, followed by an incast of
data from the sensors via a network spanning tree [21]. This approach
makes sense in scenarios where all or most of the nodes need to par-
ticipate in a query. In some cases, however, the set of desired readings
is small, and only a small subset of nodes need to participate in an-
swering the query. The combination of flooding and tree-based result
routing is ill-suited to these scenarios.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’06, April 19–21, 2006, Nashville, Tennessee, USA.
Copyright 2006 ACM 1-59593-334-4/06/0004 ...$5.00.

0 0.05 0.1 0.15 0.2 0.25
0

50

100

150

200
Histogram on the success probability variance

success probability variance

nu
m

be
r

of
 li

nk
s

Figure 1: Histogram of the variance of the success probabilities of all network

links.

Network connectivity in a wireless sensornet can be highly unpre-
dictable, but in many deployments the sensor nodes are fixed in space,
and the communication links between the nodes do not demonstrate
extreme variation over time – this is the case, for example, in an office
environment like Intel’s Mirage sensornet testbed [1]. In these cases
the graph representing the network can be considered semi-static. Al-
though the link quality of an edge demonstrates variations over time,
its distribution is practically stationary ([25]) — its statistical prop-
erties do not change much over time (thus our use of the term semi-
static). To support this assumption, we analyzed connectivity data
from an indoor network of 41 nodes collected every 2 minutes, for a
period of 20 hours. Figure 1 presents a histogram of the variance of
the link qualities. Most links demonstrate very low variance, which
shows that the semi-static assumption is reasonable.

In such situations the properties of the network links – e.g., the ex-
pected number of retries required for pairs of nodes to communicate
– can be easily measured by the nodes and periodically propagated
to the basestation. By taking advantage of this knowledge, we can
develop more sophisticated query routing schemes, where the most
efficient communication path is decided at the basestation, which uses
source routing to move the query through the network. However, we
stress that while the cost estimates of such an approach may rest on
semi-static properties of the network, the actual routing behavior can-
not: transient node and link failures must be handled robustly, even in
static deployments in which they are relatively infrequent.

In this paper we study the algorithmic challenges lurking behind
the apparently simple problem of selective data-gathering in a semi-
static sensor network. Our contributions include the definition of a
base-to-base, source-routed data gathering protocol that constructs
small tours of nodes in the network, starting and ending at the bases-
tation. Each tour combines the tasks of propagating a fixed-size query
packet with collecting the requested data: as the query packet pro-
gresses through the network, the indicated readings are written into
the packet, which eventually returns to the basestation. We achieve
our tours via source routing: the basestation uses its knowledge of the
network to choose an optimal route for each fixed-size packet, with

the final hop of the route being back at the basestation.
Our theoretical contributions include the proof of NP-completeness

for our query-routing problem, as well as the development of poly-
nomial approximation algorithms that produce tours within a constant
factor of the optimum. Finally we enhance the robustness of our initial
algorithms to accommodate the practical issues of limited-sized pack-
ets as well as network link and node failures, and examine how differ-
ent approaches behave with dynamic changes in the network topology.
Our theoretical results are validated via an implementation of our al-
gorithms on the TinyOS platform and a controlled simulation study
using Matlab and TOSSIM [18].

1.1 Related work
Our work addresses a problem in the BBQ query system [10], where

the authors describe a method of reducing query cost using probabilis-
tic inference. The presented algorithms derive a subset of the network
nodes that are sufficient to answer the query within some specified
confidence intervals. Our work in this paper focuses on computing
the optimal communication path for retrieving the measurements from
this subset. It should not be assumed however that the applicability of
this work is restricted to the framework of [10]. Many applications
that rely on selective data gathering could benefit from the theory pre-
sented in this paper (e.g., multi-resolution storage [11]). We make
the assumption that the basestation possesses information about the
entire network topology, which is assumed semi-static. The sensor
nodes are not required to maintain any routing information, not even
for their immediate neighbors.

A wide range of routing protocols have been proposed for wireless
sensor networks, and many of them could be used for selective data
gathering. Conventional protocols like flooding or gossip [14] spend
a lot of bandwidth and energy on unnecessary transmissions. The
tradeoff between energy and latency has also been a topic of study
([26]). In this work however we do not include latency as a part of the
optimization process. Also, we do not make any assumptions about
data correlations as is the case in [24, 7, 8].

The SPIN protocol proposed in [15] and [17] disseminates the data
in each node, so that a user posing a query anywhere in the network
can immediately get back results, assuming that all nodes keep neigh-
borhood information. In [16] Intanagonwiwat et. al. propose an ag-
gregation paradigm called directed diffusion. This is a data-centric
approach that sets up gradients from data sources to the basestation,
forming paths of information flow, which also perform data aggrega-
tion along the way. Rumor routing ([3, 4]) also creates paths using a
set of long lived agents who direct the paths towards the events they
encounter. More specific to query-centric routing are DIM [19], where
indices are embedded in the sensor network, and semantic trees [20],
where trees are constructed in consideration of the query. GHTs [23]
also focus on data centric routing and storage, mapping IDs and nodes
to metric space coordinates.

Since the nodes in our framework have no knowledge of the topol-
ogy, we will propose a packet structure for injecting routing informa-
tion in the network. This approach makes the problem very similar
to the capacitated vehicle routing problem [22, 5, 13]. In capacitated
vehicle routing, there exist nodes in a graph that contain an item of a
specified volume (analogous to our “measurement set” in Section 2).
The items need to be picked up by a vehicle (a packet) of a certain
capacity and transferred to another node (our basestation). The ca-
pacitated vehicle routing problem is to find the minimum cost tours
that the vehicles need to make in order to transfer all items. The main
difference of this problem with our case is that the packets (vehicles)
are required to carry the routing information as well as the data, and
packets can be copied mid-tour while vehicles cannot.

2. THE OPTIMIZATION PROBLEM
In our setting we have a semi-static sensornet, and we need to gather

data from an explicitly enumerated set of nodes R, which we refer to
as the measurement set. We assume that there is a powered basestation
computer that we will also refer to as the root of the network, where
the data are gathered.

The network is modeled at the basestation as a graph G(V, E),
where V is the set of all nodes and E represents the radio commu-
nication links between them. Each edge is characterized by a cost
function c(i, j) representing the expected number of transmissions re-
quired to send a message successfully over link (i, j). The cost func-
tion is modeled as 1

pijpji
, where pij is the probability that node i will

successfully communicate with node j on a given trial. The choice
of an undirected model was meant to capture the requirement of re-
ceiving an acknowledgement for every message (even if a message
is successfully received, the transmission is not considered successful
until the sender gets an ack). The same approach was taken in [25]
and proposed in [9]. This approach results in an undirected cost graph
(c(u, v) = c(v, u)), but it does not imply symmetry on the link layer.

The graph model of the network is maintained at the basestation
by periodic propagation of link quality measurements. Given the net-
work graph G and measurement set R, the goal of our optimization
problem is to compute a minimal-cost routing scheme that visits all
the nodes in R and brings their data back to the basestation. The com-
munication path can include nodes that don’t belong to the set R and
operate in the plan only as routing nodes. This optimization is most
naturally solved at the basestation. We therefore adopt a source rout-
ing approach, in which the source of the fixed-size query packets (the
basestation) marks them with sufficient information to allow nodes in
the network to follow the route. In Section 4 we elaborate on the me-
chanics of annotating a packet with source-routing information; for
our expository purposes in this early discussion we can simply as-
sume that (a) some space in the packet is used to instruct nodes how
to acquire data and forward the packet appropriately, and (b) space is
available in the packet to store the acquired data from nodes in R as
the packet makes its way through the network. Because we use source
routing, we do not require nodes to maintain routing or connectivity
tables for our purposes.

2.1 Optimal communication path
Most traditional techniques divide the actions of query dissemina-

tion and data gathering into two separate phases. In the scheme that
we are proposing, these two phases are combined, and are executed to-
gether, along the same communication path. The communication path
that we will compute can also be represented as a graph Gs(Vs, Es)
where Vs ⊇ R (R the measuring set), and Es is a multiset of edges
(u, v) ∈ E and u, v ∈ R. The existence of an edge (u, v) in Gs

indicates that a message will be sent from node u to node v. Note that
Gs is directed.

For Gs to be a valid solution to our problem, it needs to be a
strongly connected graph. This means that there should be a path
from every node to every other node. We refer to a graph Gs that
satisfies the above condition as a Splitting Tour, in contrast to a tradi-
tional graph-theoretic tour which is a simple path that begins and ends
at the same node. A splitting tour is a “tour” that is allowed to split
and merge along the way (e.g., Figure 2).

The fact that Gs is strongly connected guarantees that all nodes in
the communication path are able to both receive the query and deliver
the results. A necessary condition for this is that every cut in the graph
is of minimum size 2.1 To see this, first observe that a cut of size 0

1The size of a cut (VA, VB), where VA ⊆ Vs and VB = Vs − VA,
is the number of edges (u, v) ∈ Es where u ∈ VA and v ∈ VB , or

a
 f

e

d

c

b

g

Figure 2: A splitting tour. The tour splits at node b and follows two separate paths

which merge at node e.

would indicate a disconnected graph. Now assume there was a cut
(VA, VB) of size 1, and suppose the basestation was a node r ∈ VA,
then there would be no way of sending the query to nodes in VB and
retrieving the answers, because of the single edge connecting VA and
VB . (Remember that Gs is directed, so using a physical link in both
directions counts as two separate edges in Gs.)

The above observation indicates that a necessary condition for Gs

to be a splitting tour is that the undirected version of the graph is 2-
edge connected.

DEFINITION 1 (2-EDGE CONNECTED GRAPH). A graph is 2-edge-
connected if the removal of any 1 edge leaves the graph connected.

Notice however that a splitting tour represents a communication
pattern, and as such it should be allowed to use an edge more than once
(a node can receive and transmit on the same link at different times).
This means that the splitting tour can in general be a multigraph: a
graph G(V, E) where E is a multiset, and hence there can be multiple
edges between each pair of nodes. We define a generalization of a
2-edge connected graph which takes this fact into account.

DEFINITION 2 (2-EDGE CONNECTED MULTIGRAPH). A 2-edge-
connected multigraph is a multigraph G(V, E), where ∀e ∈ E the
graph G′(V, E − {e}) is connected.

Our goal is to find the most efficient communication path in the net-
work, that visits all of the nodes in our measurement set. This means
that we need to find the graph Gs (splitting tour) with the minimum
total cost, as defined by the sum of its constituent edge costs. We made
the observation that, by definition, the undirected version of a splitting
tour is a 2-edge connected multigraph. As the following lemma states,
the converse is also true.

LEMMA 1. G is a 2-edge connected multigraph if and only if there
exists a direction of its edges that results in a splitting tour.2

We want the splitting tour Gs with minimum total cost. From
Lemma 1 we see that the problem that we need to solve is equiva-
lent to finding the 2-edge connected multigraph with minimum cost.

2.2 Hardness
We now assess the hardness of finding the minimal-cost splitting

tour of a graph. We will prove the following:

THEOREM 1. Computing the minimum cost splitting tour of a graph
G(V, E) is NP-complete.

As we know from Lemma 1, finding the min-cost splitting tour is
equivalent to finding the min-cost 2-edge connected multigraph that
spans all the nodes in the measurement set R. From now on we will
refer to this graph as 2-edge-connected multigraph embedding, to em-
phasize the fact that it is constructed from another graph (G).

The instance of the problem that we are required to solve is the
following:
Minimum cost 2-edge connected multigraph embedding (2ECME)

u ∈ VB and v ∈ VA.
2For proof of lemmas and theorems see extended version [2].

• Instance: Graph G(V, E), cost function c(u, v) representing
the cost of the edge (u, v), integer B.

• Question: Is there a 2-edge-connected multigraph embedding
G′ = (V, E′) of G = (V, E) with

∑
(u,v)∈E′ c(u, v) ≤ B?

We will prove that 2ECME is NP-hard. To do this, we will use
a reduction from the minimum k-edge connected subgraph problem,
which is known to be NP-complete [12]. The minimum k-edge con-
nected subgraph problem is stated as follows:

• Instance: Graph G(V, E), positive integers k ≤ |V | and B ≤
|E|.

• Question: Is there a subset E′ ⊆ E with |E′| ≤ B such that
G′ = (V, E′) is k-edge connected?

This problem is NP-complete for k ≥ 2. We will concentrate on the
case of k = 2 and we will refer to this problem as 2EC.

In 2EC, the solution is the spanning 2-edge connected subgraph of
G with the minimum number of edges. The difference between 2EC
and the 2ECME problem is that the second minimizes the total weight
of the graph and allows reuse of edges (i.e., an edge from the input
graph can appear twice as 2 different edges in the result).

Using a reduction from 2EC, we can prove the following:

THEOREM 2. The 2ECME problem is NP-hard.

Using Theorem 2 it is now easy to prove Theorem 1.

3. APPROXIMATIONS
Finding the optimal splitting tour is an NP-complete problem and

computing the exact solution is computationally expensive. We need
an approximation algorithm that runs in polynomial time. It is natural
as a first step towards this goal, to examine the connection this prob-
lem has with a very similar graph problem, which is well studied in
the literature: the Traveling Salesman Problem (TSP). The TSP pro-
duces “simple” tours that do not have splits, which makes it a special
case of the splitting tour. Despite the fact that the TSP problem is
also NP-complete, it is very well-studied, with many known approx-
imation algorithms, which can give us insight for a solution to our
problem.

3.1 Bounding the Minimum Splitting Tour with
the TSP

We intend to provide a polynomial approximation of the Minimum
Splitting Tour Problem (MSTP) by examining its relationship with
the TSP. We wish to provide a constant factor bound for our approx-
imations, so we will start by proving that the solution for the TSP is
bounded by a constant factor of the solution of the MSTP.

Since the communication path is required to span only the mea-
surement set R ⊆ V , we can transform the original network graph
to GR(R, ER) which contains only the nodes in R. The set ER is
computed from the original graph G such that each edge (r, s) ∈ ER

represents the minimum distance path from r to s in G. ER can be
computed in polynomial time by computing all-pairs shortest paths in
G. Note that GR is a complete graph, as long as the original network
graph is connected. We will call GR the reduced graph of the net-
work. By definition, since every edge of GR represents the shortest
path in G of the two nodes it connects, the triangle inequality will hold
for GR. The TSP can be solved on GR and transformed to the equiva-
lent tour in the original graph, by replacing every edge from GR with
the path it represents. 3

The TSP is a special case of the splitting tour, so it follows that
the MSTP solution will be at least as good as the TSP solution, i.e.,
3Note that we allow the TSP tour to visit a node more than once.

C
opt
MSTP ≤ C

opt
TSP . The question that we need to answer is how much

worse the optimal solution of the TSP space will be, compared to the
solution from the MSTP space. The answer is given by the following
theorem.

THEOREM 3. The optimal solution for the TSP cannot be worse
than a factor of 1.5 from the optimal solution of the minimum splitting
tour problem (MSTP).

C
opt
TSP ≤ 1.5C

opt
MSTP

This means that the TSP solution bounds the MSTP solution by a
constant factor of 1.5.

3.2 A polynomial approximation for the mini-
mum splitting tour

The bound of Theorem 3 does not yet provide us with a good ap-
proximation of the minimum splitting tour, because the TSP problem
is itself NP-hard. Therefore, we need to provide a bound for a poly-
nomial algorithm, and we will do that for Christofides’ approximation
algorithm for the TSP with triangle inequality4, which runs in O(n3)
time [6] and produces a result whose cost is at most 1.5 times that of
the optimal tour. Since we will use it later on, a sketch of Christofides’
Algorithm is presented in Algorithm 1.

Algorithm 1 Christofides’ Algorithm for TSP Approximation

1: Find a MST (Minimum Spanning Tree) T1. Clearly CT1
≤ CT SP

2: Let S be the set of vertices in T1 with odd degree.
3: Find a minimum weight matching M on S. It is proven in [6] that CM ≤ 1

2
CT SP .

4: Construct an eulerian tour T2 on the edges of T1 + M . It will be CT2
= CT1

+

CM ≤ CT SP + 1

2
CT SP = 1.5CT SP

Now based on the bounds that we proved for the TSP solution, we
will prove a constant factor bound for the TSP approximation. It
is trivial to show that since C

opt
TSP ≤ 1.5C

opt
MSTP and C

approx
TSP ≤

1.5C
opt
TSP , we get C

approx
TSP ≤ 2.25C

opt
MSTP .

However, we are able to prove that the algorithm provides a better
bound, as Theorem 4 shows. The proof consists of applying Theo-
rem 3 to every step of Algorithm 1.

THEOREM 4. Algorithm 1 provides a factor 1.75 approximation
of the Splitting Tour Problem.

Therefore, using Algorithm 1 we can compute in polynomial time a
simple tour which we know cannot be more expensive than 1.75 times
the cost of the actual optimal solution of our routing problem.

4. PACKET SIZE LIMITATIONS
The previous section established a theoretical basis for our prob-

lem. However, we have yet to handle a number of important practical
considerations. The first, which we address in this section, is the fact
that radio network packets are of small fixed size, and source routing
instructions for long tours may not fit in a single packet. We begin
by describing the specifics of our packet routing implementation in
Section 4.1, and then three schemes for dealing with long tours in
Sections 4.2 through 4.4.

4.1 Background: Path injection
In Section 2 we discussed in general terms the idea of source rout-

ing in a sensor network. Here we provide more detail. We use the
simple packet structure shown in Figure 3. The packet header in our
4Notice that although the triangle inequality does not hold for the orig-
inal network, it does hold for its reduced graph GR on which all the
algorithms are performed.

SeqNo
 length
 offset

header
 Node 1
 Node 2
 Node n
...

sender
 status

Figure 3: Packet structure.

01

02

03

03 52
 FF FE
 01 DD
 02 DD

01 3A
 02 0D
 03 52
 FF FE

02 0D
 03 52
 FF FE
 01 DD

FF FE
 01 DD
 02 DD
 03 DD

Figure 4: Example of how the packet changes from hop to hop. Two bytes are

allocated per node. The first one represents the nodeID and the second holds the

necessary data to instruct the node whether it needs to sample or not, how many

retries it should attempt for the next hop etc. A byte with the value 0xDD in the

figure represents sampling data stored by the corresponding node in the packet. The

bytes filled with the values 0xFFFE are special delimeters that separate the routing

information from the data storage.

implementation includes a sequence number which gets incremented
as the packet gets routed around the network, a field indicating the to-
tal number of bytes being sent, the ID of the sender, and two additional
fields which are used for more advanced packet handling discussed
later in the paper.

The main part of the packet represents a simple path of size n,
which should be traversed in the order indicated, from node 1 to node
n. Every node in the path is given a slot (in our implementation 2
bytes are assigned to each slot), which serves as the storage space for
all the information that needs to be sent to the network. A typical slot
entry includes the nodeID, the ID of the sensor to be sampled, and the
maximum number of retries to be attempted for the next hop.

In our implementation, the packet works as a cyclic buffer. When
a node receives the packet, it removes itself from the beginning and
shifts everyone to the left by one slot. Whenever a node in the path
receives a message, its node ID should be in the first packet slot. If
the node needs to return a measurement it will add it at the end of the
packet. If not, it takes no further action than forward the message to
the next node in the path whose ID is now placed in the first packet
slot. Following this procedure, when the packet comes back to the
basestation, it will contain the measurements in the same order as the
tour was traversed. This packet structure serves both as a command
and as a storage medium, and in order to discriminate between the
routing and the measuring part of the packet, special delimeters can be
used. An example of how the packet gets routed is given in Figure 4.

In this scheme we move measurements around as the packet travels
through the path. Another alternative would be to statically allocate
a specific slot for each node. The advantage of the dynamic scheme
compared to the static one, is that routing-only nodes – i.e., those
not contained in the measurement set – get completely removed after
being visited, making the packet shorter. This feature can improve
performance for some traversal methods.

4.2 Cutting a tour
Given that background on our path injection scheme, we can now

consider the problem of routes that do not fit in a packet.
Let us say that a packet can hold tours of maximum size P , i.e., that

the packet has enough space for P node slots, and the tour TG that we
get from Algorithm 1 is bigger that P . One approach is to cut the tour
TG into smaller parts, each of which will have maximum size P . Cuts
in the tour are going to be performed by re-routing intermediate edges
to the source.

Figure 5: Cutting a tour into smaller subtours.

Algorithm 2 uses dynamic programming (DP) to compute the opti-
mal cutting of a long tour TG into smaller tours of size ≤ P , so that
each one can fit in a single packet5. The algorithm computes a cost-
to-go function, J(i), that represents the cost of the best cutting of the
segment from the ith node to the end of TG. At completion, J(1) will
hold the best possible cost of cutting TG into parts of maximum size
P . We can obtain the optimal cuts with another pass over J in the
usual DP fashion.

Algorithm 2 Cutting a tour
∀i, J(i) = ∞
J(n) = L(n, n)
for i = n− 1 to 1 do

for j = 0 to P − 1 do
if i + j + 1 ≤ n then

J(i) = min(J(i), L(i, i + j) + J(i + j + 1))
end if

end for
end for

At the core of the computation is the local cost function L(i, j),
representing the minimum cost tour that fits in a packet of size P and
visits the subset of nodes of TG that are in the segment from i to j:
S → . . . → i → . . . → j → . . . → S. The local cost function
L(i, j) can also be computed efficiently: We first precompute a hop-
restricted distance function, d(u, v, k), representing the cost of the
shortest path from u to v that uses at most k hops. This function can
be computed by a standard DP. L(i, j) is then obtained by another
DP that iterates through the nodes of TG in the range [i, j], using
d(u, v, k) as the local cost function.

This algorithm does not modify the order in which the measuring
nodes (nodes of TG) are visited, but the paths followed in between
may differ. This is because a path with fewer nodes which may fit in
one packet may not have been picked due to being more expensive
in terms of cost. So, there can be cases where the algorithm may not
do any cuts at all, and just change the paths followed. For example,
consider the tour TG = S → a → B → c → d → E → f → S,
and the packet size P = 4. S is the basestation and the nodes in
capital letters form the measurement set R = {B, E}. It is possible
that the cutting algorithm gives a single tour, e.g., S → a → B →
g → E → S. This tour may be more expensive than TG, and that
is the reason it may not have been chosen by the TSP approximation,
but it does fit in a single packet. Another possible output could be
S → a → B → c → S and S → d → E → f → S, where
TG was divided into two smaller tours by simply short-cutting to the
root at nodes c and d. The cutting algorithm will dynamically pick the
cheapest of the possible choices.

The cost of the main DP algorithm is O(nP). Additionally, we
must consider the cost of precomputing the local cost function L. The
subfunction d(u, v, k) is computed in O(n2P). The L function itself
is computed in O(n3P). Thus, the total cost of the cutting algorithm
is O(n3P).

4.3 Multiple packets
As an alternative approach to cutting a tour that cannot fit in a single

5If we assume that the nodes in the network know the ID of the bases-
tation, we can exclude the basestation from the packet as an optimiza-
tion, but this is not a requirement for the algorithms described.

packet, one can use a “train” of multiple packets to inject the path to
the network. We have implemented this approach by using two fields
in the packet header that indicate the total length of the packet-train
and the current packet’s offset in the train. Upon receiving all packets
of the train, a node can reconstruct a virtual “big” packet containing
the whole path, process it, break it up again into a train and forward it.
Notice that even if for some reason packets arrive in a different order,
we can reconstruct the proper order by the header information. In ev-
ery step we treat the packet-train as one big packet. However the cost
of sending a packet-train over a link will be proportional to the number
of packets it contains. One thing to note is that by using the policy de-
scribed in Section 4.1, a packet-train can become shorter while getting
routed on the path, because of the removal of the routing-only nodes.

4.4 Hybrid: cutting with multiple packets
Simple cutting of a tour does not allow us to reach nodes that are

more than P hops away, and forces us to use a small number of (po-
tentially) expensive edges when collecting data from faraway nodes.
Multiple packets, on the other hand, can reach faraway nodes, but may
be wasteful when collecting data from a large number of nodes. In
this section, we use dynamic programming to combine the strengths
of these two approaches.

This hybrid algorithm is similar to the cutting DP procedure in Al-
gorithm 2, but instead of restricting cuts to be of length P , a cut can
consist of multiple packets which can have a total length up to n. We
must also modify the local cost function L(i, j) to allow for the use of
multiple packets to visit the subset of TG that is in the range [i, j]. A
simple approach for computing the multiple packet version of L(i, j)
is to first run the algorithm we used in Section 4.2, setting the packet
size to P ; then, we run the same algorithm with a packet of size 2P ,
computing the edge costs accordingly6, then for 3P , and so on. Fi-
nally, we define L(i, j) to be the minimum over all of these packet size
options.7 The final computational cost of this algorithm is O(n5). The
paths obtained by the two previous approaches are strictly more costly
than this one, since the hybrid algorithm finds the optimal cut that
could use one or more packets per section. In Section 6 we will assess
the merits of the various schemes in practice on a real network graph.

5. RECOVERING FROM FAILURES
Having dealt with the practical issue of finite-sized packets, we now

turn our attention to a subtler practical issue: the dynamics of real net-
works. For purposes of route selection we assumed that the network
is semi-static, but connectivity changes do occur in wireless sensor
networks. Link qualities can change and nodes can fail. We want our
data gathering approach to remain robust in the face of these events,
even if we expect the dynamics of the network to be relatively modest
over time.

If after a certain number of retries specified by the quality of the
link – a bad link means more retries are required – a node wasn’t able
to successfully transmit a message, it has to assume a failure of either
the link, or the node to which it wants to transmit a message.

To resolve failures we propose two different schemes.

5.1 Backtracking
In this section we will describe the recovery technique of back-

tracking. Since the nodes do not have any knowledge of the network

6For every path we know which nodes are routing-only and will be
removed, so we can pre-compute how long the packet train traversing
a specific edge will be. Then the cost of that edge is calculated as the
basic cost of transmitting one packet times the number of packets in
the train.
7We can also use a modified version of the DP algorithm to compute
the multiple packet version of L(i, j) more efficiently.

X

Inaccessible nodes

X

X

(a) (b)

Figure 6: The bold edges indicate the initially computed tour. (a) During the

traversal a failure is encountered and the message backtracks to the root; a new mes-

sage is issued in the opposite direction than the tour was defined to gather data from

the unvisited part. (b) In case of multiple failures nodes can become inaccessible.

topology, if the path they are given fails, the simplest thing they can
do is trace back their steps. When a node encounters a failure, it initi-
ates backtracking which will send the message back to the root with as
much data as it has gathered, in the same path that it came from. The
information needed for backtracking can temporarily be stored in the
network: upon the arrival of a message, the receiving node can store
the ID of the sender, just for the duration of the query execution, and
then, during backtracking, nodes can use this “breadcrumb” informa-
tion to traverse the path backwards. When the basestation receives the
backtracked message, it can issue a message in the opposite direction
of the original tour, to attempt to reach the nodes that were missed in
the first round-trip. An example is presented in Figure 6(a).

Notice that in the case of multiple failures happening in a single
tour, some of the nodes may remain unvisited like the example in Fig-
ure 6(b). In this case, the user who issued the query can be notified
about the missing measurements. If this is not acceptable, a new tour
can be computed for the missing nodes taking into account the infor-
mation about the failures the previous run encountered.

The backtracking algorithm that we presented is a simple heuristic
to handle a small number of failures in the system. It offers full re-
covery for single failures per tour, but cannot retrieve nodes that fall
in between failures in a path. Notice however that the communication
cost of performing recovery with backtracking is bounded by a factor
of 2 from the cost of the tour, because every edge of the tour will be
traversed at most twice (one during forward processing and one during
backtracking).

We note that our description of backtracking assumes that there will
be no failures during the backtracking step itself. The assumption
here is that an edge traversed in the forward direction should not fail
during the running time of the query, during which it may need to be
traversed in the opposite direction. In case of such failures though,
after a suitable timeout the basestation can re-attempt the packet either
directly, or in the reverse direction.

5.2 Flooding
Another approach to recovery is to perform local flooding in case

a failure is detected. When a node A exhausts the number of retries
denoted in the packet, it will enter recovery mode and broadcast the
message in the hope that some node in the unvisited part of the path
will hear it. The flooding message contains a TTL (Time To Live)
number, which determines the depth of the flood. Upon reception
of a flooding message a node B examines it to check whether it is
itself part of the path or not. If it is not, it will continue the flood,
decrementing the TTL. Flooding terminates if TTL reaches 0.

If B is a member of the yet unvisited part of the path, it can make
different decisions as to what it should do with the packet. It can
either start sending the packet forward in the path, or send backwards
to retrieve any measurements that may lie between nodes A and B,
or wait to see if a forwarding message will come from some node

basestation

f
 l
o
o
d

f
 l

o
o

d

Initial normal execution

Reverse routing (local backtracking)

Resume forward execution

Flooding

failure

Figure 7: When a node detects a failure on the path it initiates a flood with small

depth, so that it will remain local. The nodes in the unvisited part of the path that

hear the flood backtrack on the path to get any data possible between the failure and

their position. If a forward and a backtracking message meet, the backtracking one

is killed.

preceding B in the path. An example of flooding based recovery is
demonstrated in Figure 7.

The more specific semantics of the flooding based recovery scheme
in the way that we actually implemented it, taking a conservative ap-
proach, are described in the following list.

• During normal execution, a node sends only forward
• When a forward sending fails (after specified retries), a recovery

bit is set in the packet, and the node broadcasts the packet. The
initiator of the flood is A and the part of the path that is still
unvisited is P .

• When a node B hears the flooding message, if B is not in P ,
and TTL > 0, then B continues the flood.

• If B ∈ P , and B heard the flood or a backtracked message
during recovery:

– If no measuring node exists in the path interval (A, B)
then B resumes forward execution.

– Once B has sent a normal-case, forward-directed mes-
sage, then B will never backtrack.

– If B has already backtracked then B takes no action for
the new flooding or backtracking message (i.e., backtrack
only once).

– If there exists a measuring node in interval (A, B), and
B hasn’t heard a forward message and B hasn’t already
backtracked, then B backtracks.

– If a backtracking message fails (after a specified number
of retries) then B resumes normal execution by sending a
message forward.

For the last two points of the above list, we chose to follow a conser-
vative approach targeted to the retrieval of as many measurements as
we can, without trying to optimize the cost. For example we could
possibly have less transmissions if B waited instead of instantly back-
tracking, because someone else preceding it may have heard the flood
and already initiated a forward execution. This would on average de-
crease communication cost, but it would increase the latency. In this
space there is some room for further investigation of the tradeoffs of
these parameters, and how they affect the recovery scheme.

Compared to backtracking, a flooding based scheme has the advan-
tage that it can recover from more than one failure in the current tour.
A disadvantage however is that the cost (number of messages sent)
is not theoretically bounded by a constant factor and depends on the
network topology. Also, TTL is a parameter that affects both the cost
and the recovered measurements.

6. EXPERIMENTAL RESULTS
We evaluated our proposed schemes via an implementation, con-

sisting of two separate components. The first involves several Matlab

2 4 6 8 10 12 14 16 18 20 22
0

500

1000

1500

2000

2500

packet size

co
m

m
un

ic
at

io
n

co
st

TSP approximation
hybrid
cutting
multiple packets

Figure 8: Communication cost of the 3 packet ad-

justment algorithms. This particular graph corre-

sponds to a measuring set of size 15 in a network of

54 nodes.

20 40 60 80 100 120 140 160
2

4

6

8

10

12

14

network size

pa
ck

et
 s

iz
e

hybrid 2.5 of optimal

cutting 2.5 of optimal

hybrid 1.5 of optimal

cutting 1.5 of optimal

Figure 9: Packet size required for reaching a con-

stant factor of the optimal cost, for networks of dif-

ferent size.

0 5 10 15 20 25 30

2

4

6

8

10

12

14

number of measuring nodes

pa
ck

et
 s

iz
e

hybrid 2.5 of optimal

cutting 2.5 of optimal

hybrid 1.5 of optimal

cutting 1.5 of optimal

Figure 10: Packet size required for reaching a

constant factor of the optimal cost for measuring sets

of different size.

5 10 15 20 25 30
20

40

60

80

100

120

140

160

Number of Measuring Nodes

N
um

be
r

of
 tr

an
sm

is
si

on
s

Hybrid vs Cutting: Communication Cost

cutting (uniform distribution)
hybrid (uniform distribution)
cutting (centralized distr.)
hybrid (centralized distr.)

Figure 11: Comparison of the cost of the cutting

and hybrid heuristics for measuring sets of various

sizes chosen by two different distributions from all

the network nodes.

5 10 15 20 25 30
0

200

400

600

800

1000

1200

1400

1600

Number of Measuring Nodes

N
um

be
r

of
 T

ra
ns

m
is

si
on

s

Backtracking vs Flooding: Communicatio Cost

Backtracking (5% failures)
Flooding (5% failures)
Backtracking (10% failures)
Flooding (10% failures)
Backtracking (15% failures)
Flooding (15% failures)

Figure 12: Comparison of the 2 recovery algo-

rithms for failures of rates 5%, 10% and 15% in

terms of communication cost. Notice that the back-

tracking lines practically coincide.

5 10 15 20 25 30
0

5

10

15

20

25

30

Number of Measuring Nodes

N
um

be
r

of
 L

os
t M

ea
su

re
m

en
ts

Backtracking vs Flooding: Lost Measurements

Backtracking (5% failures)
Flooding (5% failures)
Backtracking (10% failures)
Flooding (10% failures)
Backtracking (15% failures)
Flooding (15% failures)

Figure 13: Comparison of the 2 recovery algo-

rithms under conditions of failures with rates 5%,

10% and 15% in terms of the number of lost mea-

surements.

routines used to perform the optimization described in Section 3, as
well as to apply the packet size restriction of the network, using the
algorithms presented in Section 4. Each tour is stored in a file which
is subsequently sent to a Java interface that can parse it and inject the
proper packets into the network.

On the network side, our mote code is written in nesC, on the
TinyOS platform. This code implements the proper handling of the
routing messages, as well as the two different recovery modes, back-
tracking and local flooding.

For our simulation experiments we gathered connectivity data from
a real deployment, through TinyDB queries running for a number of
epochs. The connectivity data was given as input to the simulations,
thus modeling the dynamics of a real network. We chose to use the
public mote testbed at Intel Research Berkeley, which is remotely
available via the Mirage resource allocation system [1]. At the time,
the testbed consisted of 96 Mica2 nodes at fixed positions8. The en-
vironment of the deployment is relatively noisy, and includes human
activity as well as other radio traffic (802.11, cordless telephone head-
sets, cellular phones, etc).

6.1 Simulation Results
The results that we present in this section consist of two kinds of

simulations. The first are Matlab simulations of the network and algo-
rithms, the purpose of which is to provide an insight as of the behav-
ior of the algorithms under different packet requirements. The second
class of experiments uses the actual NesC code for the protocols, but

8These were recently replaced by MicaZ motes.

instead of running them on the live testbed we ran them within the
TOSSIM simulator, which simulates a network of TinyOS motes[18].
We focused on TOSSIM rather than the live testbed in order to be able
to control our experiments and validate their behavior.

Experiments were performed by picking random subsets, as the
measuring set, from the real network graph and computing the ap-
proximation of the optimal solution proposed in Section 3. The main
goal of our analysis is to compare the heuristics that we proposed in
Section 4, as well as evaluate our recovery algorithms in the cases of
failures.

The cutting and hybrid heuristics adjust long tours so that they can
fit within packets of a specified size. Figure 8 demonstrates how the
communication cost of the different algorithms converges rapidly to
the optimal as the size of the packet increases. The cost for using
multiple packets is also depicted in this graph, but it is omitted from
our subsequent experiments because it behaved very poorly. More ex-
tensive experiments on networks and measuring sets of different sizes
demonstrate that the required packet size appears to grow linearly with
the network size, as well as the measuring set size, and a relatively
small packet is sufficient to achieve a cost close to the optimal.

In terms of comparing the two main heuristics, cutting and hybrid,
as expected hybrid demonstrates a lower communication cost. These
results are verified by Figure 11 which was produced from experi-
ments on the TOSSIM simulator. The figure compares the packet ad-
justment heuristics (hybrid and cutting) for two different distributions
for picking the measuring set. One of them chooses uniformly from
all the network nodes, and the other favors nodes that are positioned
closer to the basestation.

These TOSSIM runs were performed by using packets of size 30
bytes. In our implementation the packet headers are of 8 bytes length,
and each node slot requires 2 bytes. Therefore this corresponds to
packets of 11 node slots.

Our approach is extremely effective compared to traditional data
gathering techniques when the number of nodes from which we want
to get measurements is small compared to the size of the network. For
the data depicted in figure 11, the total weight of the minimum span-
ning tree of the network is 145, where every edge weight represents
the number of expected retransmissions on that edge to achieve suc-
cessful communication. This means that even traversing the minimum
spanning tree once would inflict an expected cost of 145 messages.

We also performed experiments for our proposed recovery approach.
In addition to the previous setting, we pick a constant number of ran-
dom failures in the network, and perform TOSSIM simulations for
both our recovery algorithms. The TTL used by the flooding recov-
ery algorithm for the graphs that we present in this section is 3. This
value was chosen after an evaluation that we did for various flooding
depths, which we have omitted here due to space restrictions. For the
network that we are modeling 9 in TOSSIM a bigger flooding depth
did not add value to the recovery and even started to cause interference
phenomena.

Figures 12 and 13 present experimental results for the two recovery
approaches, corresponding to a 5%, a 10% and a 15% failure rate in
the network. Figure 12 displays the overall communication cost for
runs of various sizes for the measuring set. Each point in the graph is
an average across 20 different runs of the same measuring set size. As
the figure demonstrates, flooding is a more costly recovery technique
compared to backtracking. Also, the backtracking cost is more robust
to changes in the failure rate, since it is bounded by a constant factor of
the cost of the original route, whereas such guarantees do not hold for
flooding. In terms of the number of lost measurements, backtracking
appears to win again, although the losses for both algorithms increase
as the failure rate increases.

6.2 Discussion
Our Matlab experiments demonstrate that the cutting and hybrid

heuristics for adjusting long tours to finite packets, converge to the
optimal cost very fast, and for relatively small packet sizes. The
TOSSIM experiments helped us evaluate our recovery schemes. Back-
tracking appears to be very robust to failures, with bounded cost and
good recovery rates. We can always construct scenarios where back-
tracking loses to flooding, but in the network that we were simulating,
it appears to be the winner. One of the main reasons was the bad
quality of the communication links, which gave an advantage to back-
tracking which utilizes retries. This indicates that probably flooding
would benefit from retransmissions (aggressive flooding) which could
possibly include some acknowledgement scheme.

7. CONCLUSIONS AND FUTURE WORK
In this work we focused on optimizing the routing paths for data

gathering tasks that use source routing. Starting by assuming a semi-
static network topology, we defined the optimization problem that we
need to solve, and proved that it is NP-hard. We also provided a poly-
nomial time approximation algorithm, for which we proved that the
total cost of its solution is bounded by a 7

4
constant factor of the op-

timal cost. We presented the packet structure that is used to inject the
routing information into the network, and provided algorithms to ad-
just the communication paths so that they can be accommodated by
any specified packet size. Finally we provided heuristic solutions to

9The model is based on connectivity data gathered from the Mirage
testbed.

recover from failures in the network and presented experimental re-
sults on the performance of our algorithms.

In our future work we intend to consider additional recovery meth-
ods, and hope to provide theoretical guarantees on the cost of the re-
covery algorithms and the number of recoverable measurements.

Acknowledgments: We would like to thank Andreas Krause for
providing the data used in Figure 1. This work was supported by NSF
Grants 0326472 and 0205647, and a gift from Microsoft Corporation.

8. REFERENCES
[1] https://mirage.berkeley.intel-research.net/.
[2] http://www.cs.berkeley.edu/∼ameli/routing.pdf.
[3] D. Braginsky and D. Estrin. Rumor routing algorithm for sensor networks. In

ICDCS-22, 2002., 2002.
[4] D. Braginsky and D. Estrin. Rumor routing algorthim for sensor networks. In 1st

ACM international workshop on Wireless sensor networks and applications. ACM
Press, 2002.

[5] M. Charikar, S. Khuller, and B. Raghavachari. Algorithms for capacitated vehicle
routing. In 30th annual ACM symposium on Theory of computing. ACM Press,
1998.

[6] N. Christofides. Worst case analysis of a new heuristic for the traveling salesman
problem. Technical report, Carnegie Mellon University, 1976.

[7] R. Cristescu, B. Beferull-Lozano, and M. Vetterli. On network correlated data
gathering, 2004.

[8] R. Cristescu, B. Beferull-Lozano, M. Vetterli, D. Ganesan, and J. Acimovic. On the
interaction of data representation and routing in sensor networks. In ICASSP, 2005.

[9] D. De Couto, D. Aguayo, B. Chambers, and R. Morris. Performance of multihop
wireless networks: Shortest path is not enough. In HotNets-I. ACM SIGCOMM,
October 2002.

[10] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong. Model-driven
data acquisition in sensor networks. In VLDB, 2004.

[11] D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Estrin, and J. Heidemann.
Multi-resolution storage and search in sensor networks. ACM Transactions on
Storage (to appear), Aug. 2005.

[12] M. R. Garey and D. S. Johnson. Computers and Intractability – A Guide to the
Theory of NP-Completeness. Freeman, San Francisco, 1979.

[13] M. Haimovich and A. H. G. R. Kan. Bounds and heuristics for capacitated routing
problems. Mathematics of Operations Research, November 1985.

[14] S. T. Hedetniemi, S. M. Hedetniemi, and A. Liestman. A survey of gossiping and
broadcasting in communication networks. Networks, 1998.

[15] W. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive protocols for information
dissemination in wireless sensor networks, 1999.

[16] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: a scalable and
robust communication paradigm for sensor networks. In 6th annual international
conference on Mobile computing and networking, 2000.

[17] J. Kulik, W. R. Heinzelman, and H. Balakrishnan. Negotiation-based protocols for
disseminating information in wireless sensor networks. Wireless Networks, 2002.

[18] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate and scalable
simulation of entire tinyos applications. In Proc. ACM Conference on Embedded
Networked Sensor Systems (SenSys), Nov. 2003.

[19] X. Li, Y. J. Kim, R. Govindan, and W. Hong. Multi-dimensional range queries in
sensor networks. In 1st international conference on Embedded networked sensor
systems. ACM Press, 2003.

[20] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. The design of an
acquisitional query processor for sensor networks. In ACM SIGMOD, 2003.

[21] S. Madden and J. Gehrke. Query processing in sensor networks. Pervasive
Computing, 3(1), January-March 2004.

[22] T. Ralphs, L. Kopman, W. Pulleyblank, and L. Trotter. The capacitated vehicle
routing problem.

[23] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker. Ght:
a geographic hash table for data-centric storage. In 1st ACM international
workshop on Wireless sensor networks and applications. ACM Press, 2002.

[24] A. Scaglione and S. D. Servetto. On the interdependence of routing and data
compression in multi-hop sensor networks. In MobiCom ’02: Proceedings of the
8th annual international conference on Mobile computing and networking, pages
140–147, 2002.

[25] A. Woo, T. Tong, and D. Culler. Taming the underlying challenges of reliable
multihop routing in sensor networks. In SenSys ’03, pages 14–27, 2003.

[26] Y. Yu, B. Krishnamachari, and V. K. Prasanna. Energy-latency tradeoffs for data
gathering in wireless sensor networks. In INFOCOM, 2004.

