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ABSTRACT
As the diversity of sensornet use cases increases, the
combinations of environments and applications that will
coexist will make custom engineering increasingly im-
practical. We investigate an approach that focuses on
replacing custom engineering with automated optimiza-
tion of declarative protocol specifications. Specifically,
we automate network rendezvous and proxy selection
from program source. These optimizations perform pro-
gram transformations that are grounded in recursive
query optimization, an area of database theory. Our
prototype system implementation can automatically choose
program executions that are as much as three, and usu-
ally one order of magnitude better than original source
programs.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Net-
work Architecture and Design; H.2.4 [Database man-
agement]: Systems

General Terms
Algorithms, Design, Performance

Keywords
Sensor Networks, Network Optimization

1. INTRODUCTION
Networks are growing increasingly diverse – or equiva-

lently, diverse networks are increasingly inter-networked.
The causes of this diversity stem from both novel work-
load demands from above and new resource availability
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from below. Wireless sensornets exemplify the situa-
tion. From above, we are encountering new applica-
tions that exhibit audio processing, video-on-demand
and distributed feedback-based control. From below,
we are composing infrastructure from satellites, cellu-
lar networks, urban WiFi, and short-range radio like
802.15.4 and bluetooth.

Sensornet design methodology bears some resemblance
to the early pre-relational database systems. The lead-
ing methodology for addressing physical and workload
diversities in the network has been to engineer custom
network program implementations one environment at
a time. This approach may be difficult to scale; the
combinations of environments and applications that will
coexist is poised to outstrip the ability to address each
combination individually.

As an alternative approach, we show that sensornet
programs written as declarative specifications can be op-
timized by a database-inspired optimizer. Earlier work
showed declarative specifications can compactly express
many sensornet problems, from networking services such
as localization, routing and data dissemination to end-
user queries. Furthermore, these specification can be
compiled into operational systems that achieve com-
parable performance to traditional, imperatively pro-
grammed implementations [10].

In this work, we focus on networking optimizations
that address prototypical networking rendezvous and
proxy placement questions: Where should messages from
communicating parties rendezvous – via push, pull or
some of both? Who should hold the conversation state
of an ongoing communication? Should applications send
(application) data to routers, or conversely should routers
send (routing) data to applications? Sensornet system
builders often wrestle with these choices in concrete in-
stances to achieve better performance. Section 1.1 dis-
cusses some of these situations in detail. Our optimizer,
netopt, mitigates the need for case-by-case considera-
tion of rendezvous and proxy selection. This is timely
in the WSN environment, given increasingly diverse and
varying workloads and resources.
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In addition to the utility of our optimizations, a con-
ceptual contribution of our work is in exposing the con-
gruence between network design and recursive query op-
timization, a traditional topic in database theory. Specif-
ically, optimal network rendezvous and proxy selection
is roughly analogous to cost-based selection pushing in
the presence of recursive queries.

To examine the utility of our network optimizations,
we apply them to both simulation and testbed WSNs.
In simulation, gains are by as much as three orders of
magnitude. On testbed WSNs, gains are by as much
as one order of magnitude. In both settings, netopt
effectively identifies and executes better strategies.

Section 1.1 takes a closer look at our two chosen ap-
plication scenarios. Section 2 introduces our distributed
and recursive query language and offers initial attempts
at network optimization. Section 3 discusses the main
rendezvous optimization in detail. Section 4 extends
this to proxy placement optimization. Section 5 dis-
cusses their execution on our implementation platforms.
Section 6 reports on prototype implementation and de-
ployment of our optimizations.

1.1 Rendezvous and Proxies in WSNs
One predominant application class for WSNs is event

detection and distribution. In the naive variant, an
event source sends event notifications to the sink i.e.,
rendezvous only at the sink. Yet rendezvous at other
locations in the network is conceptually possible and
often beneficial. For example, if many events are gen-
erated but only a few are of interest to the sink, it may
be more energy efficient to pass the sink’s selection cri-
teria (part of the way) to the source. Furthermore,
in the case of multiple source and sink pairs, limited
node buffer space may preclude every pair from using
its preferred rendezvous. The optimization problem is
akin to ones encountered outside WSNs e.g., in Pub-
Sub [16] and Content Distribution Networks [26] where
it is known to correspond to the NP-complete facilities
location problem [11]. We show how netopt can au-
tomatically identify naive cases from program source,
rewrite them to expose rendezvous flexibility, and as-
sign lower cost rendezvous.

Recently, many common Internet services such as in-
teractive login, remote debugging and point to point
routing are being ported to sensornets. A challenge that
arises repeatedly is that of configuring state allocation
on storage-constrained platforms. Such state varies in
form and use, from interactive login sessions to routing
table entries. Should it reside at either endpoint, at in-
termediate proxies, or in packets? And who makes these
decisions? The service designer implementing some-
thing like interactive login will not know the needs and
constraints of a each specific deployment. On the other

1% Prepare f o r t r a n sm i s s i o n
2 message ( @Source , Source , Sink , Data ) :−
3 produce ( @Source , Data ) ,
4 nexthop ( @Source , Sink , Next ) .
5

6% Route message to next hop pa r en t
7 message ( @Next , Source , Sink , Data ) :−
8 message ( @Current , Source , Sink , Data ) ,
9 nexthop ( @Current , Sink , Next ) .

10

11% Rece i v e i f message i s o f i n t e r e s t
12 consume ( @Sink , Data ) :−
13 message ( @Sink , Source , Sink , Data ) ,
14 i n t e r e s t ( @Sink , Data ) .
15

16% What i s consumed?
17 consume ( @Sink , Data ) ?

Listing 1: Original BasicProg, event distribution
from source to sink with filtering by interest.

hand, the end system deployer can not be expected to
be intimately familiar with reconfiguring the protocols
of every packaged service. This leads to compromises,
in which conservative service designers minimize node
state at the expense of increasing in-flight packet state.
Since the radio is frequently the most power-intensive
hardware unit, the increased communications directly
decrease the overall network lifetime. We tackle this
problem with automated techniques for exposing and
optimizing proxy placement.

2. EXAMPLE PROGRAM OPTIMIZATION
Throughout this work, the deductive database pro-

gramming model of Datalog [24] is used as a means to
demonstrate the concept of automated analysis, rewrit-
ing and optimization. The specific dialect, netlog, is
convenient due to its immediate display of recursion,
which we heavy utilize. netlog is a subset of Over-
Log [19].1

This section presents an example application, and an
initial attempt to expose more rendezvous choices for
the application. A main tool used throughout the opti-
mizations, network selection pushing, is also introduced.

2.1 An Initial Program
Listing 1 introduces BasicProg, a netlog program

that implements multi-hop message routing from sources
to sinks with message filtering at sinks. The deductive
database programming model employs relations and de-
duction as its basic constructs. Each relation consists of
a set of tuples with the same number of attributes. Re-
lations in BasicProg are produce, consume, nexthop,
message and interest. Deduction is expressed as a set
of rules, each denoted by the symbol “:-” that indicates
the existence of derived tuples based on the existence of
other tuples. Each rule consists of a body, a set of condi-
tions that appear to the right of the deduction symbol,
1Unlike netlog, OverLog distinguishes between events and
stored tables.
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and a head, the newly deduced data that appears to the
left of the deduction symbol. Viewed operationally, this
model is extremely simple: relations are best thought
of as tables with columns in a database, tuples as table
rows with values assigned to columns, and rules simply
generate new table rows from existing table rows.

To extend to distributed systems, every tuple is stored
at the network node indicated by its first attribute, the
location specifier (denoted with the “@” symbol). Each
node holds a partition of each relation keyed on the first
attribute. For instance, a node’s partition of a relation
like nexthop can reflect its local routing table.2 When
a rule involves tuples across partitions, communication
between nodes occurs to access the necessary data. As
we shall see, much of the work in this paper is targeted
at automatically optimizing partition accesses.

In BasicProg, the produce relation contains pairs of
Source and Data attributes. When these tuples are
joined against nexthop tuples, initial message tuples
bound for Sink are generated (lines 2-4). Joining pro-
duces an output tuple every time there exist tuples in
the body that possess equal attribute values when the
attribute names are the same. Attributes with match-
ing names are join keys. For example, consider the first
rule of BasicProg: a message tuple’s first attribute
takes on some value Source only when there exist tu-
ples in produce and nexthop whose first attribute values
are both Source.

The data is routed via the second rule of BasicProg
by recursively defining the contents of the message re-
lation with respect to the nexthop relation. Intuitively,
message tuples are traversing the nexthop routing ta-
bles (lines 7-9). Upon arrival at the sink, the message
tuple, if it matches any tuples in interest, generates
consume tuples at the destination via the third rule of
BasicProg (lines 12-14). The query (denoted with “?”
symbol) indicates that a particular queried relation is
made user-visible. Here, the query asks for the consume
queried relation (line 17).

2.2 Pushing Selections One-Hop
As an example, consider a two node network x and y

represented by a previously-defined set of facts (some-
times called an “Extensional Database (EDB)”) D con-
sisting of three relations:

produce ( @y , f o o ) . nexthop ( @y , x , x ) .
i n t e r e s t ( @x , f o o ) .

The EDB is the set of relations that are never in the
head of any rule; its tuples are defined exogenously,
perhaps via a data structure in a persistent store. Con-
versely, the Intensional Database (IDB) is made of the
2Listing 1 assumes the tuples of nexthop are given to us; ear-
lier work showed how additional rules can be used to define
routing tables [10,20].

derived relations that occur in rule heads. The IDB of
D is:

message ( @y , y , x , f o o ) . message ( @x , y , x , f o o ) .
consume ( @x , f o o ) .

In BasicProg, produce and interest rendezvous at a
node x via sending of a message from some node y
to x. Conceptually, this rendezvous could also take
place at y as long as the query returns the same answer,
consume(@a, foo). To accomplish this, let interest send
its own “message” from x to y. We’ll call it message∗,
and use it in the following rules:

message ∗( @Current , Cur rent , Data ) :−
i n t e r e s t ( @Current , Data ) .

message ∗( @Current , Sink , Data ) :−
message ∗( @Next , Sink , Data ) ,
nexthop ( @Current , Sink , Next ) .

consume ( @Sink , Data ) :−
produce ( @Current , Data ) ,
message ∗( @Current , Sink , Data ) .

The first rule prepares interest tuples as message∗ tu-
ples. The second rule passes message∗ backward along
nexthop, and is similar to how message was routed in
Listing 1. The third rule derives consume. For the one-
hop network, these rules produce the desired result of
rendezvous at y, with the queried consume at x. As
a result, we have “pushed” the selection condition i.e.,
interest back to produce.

2.3 Pushing Selections into the Network
As the network topology grows to multiple hops, we

would like to add a bit more flexibility to this rewrite
attempt. At the moment, we must choose between ei-
ther endpoint, which is similar to a technique mentioned
in [20]. In a multi-hop network, rendezvous at any in-
termediary hop should be an option. We next provide
some intuition on how network selection pushing gen-
eralizes to the multi-hop case. A program’s network
execution can be visualized with a network derivation
graph. Figure 1a shows the network derivation graph
for BasicProg over a four hop linear network with nodes
x-y-z-w. Each network derivation graph node ρξ repre-
sents a horizontal partition of relation ρ at location ξ
(relation names are abbreviated by their first letter). A
directed edge leads from derivation input to derivation
output. For example, nz represents the rows of nexthop
that are stored at location z, and the edge from pw to
mw indicates that the program derives message at w
from produce at node w. A node with a fan-in greater
than one indicates a join among the node’s children, as
in the case of mz and the join of mw and nw.

We can push selections to achieve a different net-
work execution. Figure 1b shows the network derivation
graph resulting from an initial selection push. Here, the
join of message and interest is performed earlier, re-
sulting in subsequent message tuples already filtered
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Figure 1: Alternative executions of BasicProg. Exclamation marks indicate neighboring hosts are not
connected in the network topology.

by interest (denoted m − i). Conceptually, the “push-
ing down” of interest changes rendezvous of message
and interest from x to z. However, x and z are not
neighbors in the underlying network topology (as indi-
cated by the exclamation mark). Hence, they cannot
communicate directly with each other and the parti-
tions interestx and messagez cannot directly join. In
general, netlog programs require the following property
for proper distributed execution.

Definition 2.1. A rule is path-restricted if all head
and body relation partitions are located on the same host
or neighboring hosts in the underlying network topol-
ogy. A program is path-restricted if its rules are path-
restricted.

We assume that input programs are path-restricted,
and we would like to maintain the property for any
rewritten programs. Figure 1c suggests an alternate join
rearrangement that is path-restricted for interestx. It is
roughly the result of combining Listing 1 with the rules
in Section 2.2. producew is converted to message and
travels from w to z, interestx is converted to message∗
and travels from x to y to z. This leaves message∗z and
messagez ready to join at z.

However, the derivation of consumex involves z and
x that are not neighbors. To resolve this issue, we can
“package up” consumex as a new relation message∗∗
and send it along the network topology via a path we
already know about from z to x. Figure 1d shows this
as part of the fully path-restricted network derivation
graph with rendezvous at z. This is just one possi-
ble rendezvous choice. The “Meet-in-the-Middle” MiM
Rewrite we discuss next transforms input programs to
expose many possible rendezvous choices.

3. MiM Rewrite
The netopt network optimization architecture exe-

cutes in three stages:

• Analysis identifies optimization opportunities from
input programs. We show how to identify ren-
dezvous and proxy selection opportunities.

• Rewriting primes programs for optimization by trans-
forming input programs to optimizable variants.

• Decision Making selects optimized configurations.
The optimizer installs its chosen configuration by
simply filling in tables initialized by Rewriting to
list selected rendezvous and proxies.

This section first sets forth the correctness criteria
of any netopt optimization, and describes the MiM
Rewrite procedure precisely in terms of its analysis and
rewrite phases. Any netopt optimization must preserve
the intent of the original program. The intent is cap-
tured by the query.

Definition 3.1. Two programs P1, P2 are query equiv-
alent if, given any EDB, the contents of their queried
relations are equivalent.

Definition 3.2. A rewriter R : P1→P2 is query
preserving if for all programs P1, P2 is query equiv-
alent to P1.

Note that neither of these definitions constrains the con-
tents of the IDB in general, only the queried relations.

3.1 Analysis
Analysis identifies certain rules and relations as rewrite

components. We first introduce some terminology from
classic work in the deductive database literature [31].

Definition 3.3. A rule-goal graph contains one relation-
node for each relation and one rule-node for each rule.
A directed edge leads from rule-node R to relation-node
a if the head of rule R is relation a. A directed edge
leads from relation-node a to rule-node R if relation a
is in the body of rule R.

4



Definition 3.4. A rule with head relation a is a lin-
early recursive rule (LR rule) if a appears exactly
once in the body. It is an initializer rule if a does not
appear in the body.

Definition 3.5. A program is a linearly recursive
program (LR program) if every rule with head a is (1)
either an initializer rule or LR rule, and (2) for every
relation b in the body, b 6= a, relation-node b in the rule-
goal graph is not reachable from relation-node a.

Definition 3.6. A relation a is an LR relation if
a is the head of an LR rule. The other relations in the
body of the LR rule are base relations.

Without loss of generality, we can restrict our discus-
sion to scenarios in which the LR rule body contains
only one base relation.3 Our focus on networking pro-
grams leads us to consider the following type of LR rule.

R1 a (@bi , d1 , . . . , dNa−1 ) :−
a ( @a1 , . . . , aNa ) , b (@b1 , . . . , bNb ) .

In the rule, the value bi determines the new location
specifier. Therefore, the partition of the head a is po-
tentially different from the partition of the body a upon
every recursion. Hence, we can interpret the base re-
lation b as defining a network for the LR relation a to
“hop along”. Both LR and base relation identification
can be accomplished by traversing the rule-goal graph.

Looking at the attribute variables in the example,
note that each di can correspond to any ai or bi to get
data values from the input to the output. Furthermore,
bi’s can correspond to ai’s to capture join conditions
between a and b.

Lastly, we are only interested in recursive relations
that can (possibly indirectly) derive the queried relation
because only they can impact query equivalency.

Definition 3.7. Given queried relation c and LR re-
lation a, a rule R is an answer rule if (1) a is in the
body of R but not the head, and (2) in a rule-goal graph
traversal, rule-node R can reach relation-node c.

Given a program and queried relation, Analysis iden-
tifies LR and base relations, and LR, initializer and an-
swer rules.

3.2 Rewriting
Using the rules and relations identified in Analysis,

Rewriting invokes the MiM Algorithm. The MiM Algo-
rithm transforms LR program P to a query equivalent
program PMiM . The advantage of PMiM over P is that
its rendezvous can be tuned by Decision Making by fill-
ing in tuples for a special rendezvous relation.
3When this is not so, it is straightforward to rewrite the
program to include a rule that derives a single base relation
by joining multiple base relations.

A preliminary procedure of the MiM Algorithm, com-
mon in the deductive database literature [2], canonical-
izes the input program. First, recursive relation a is
renamed a ans in every answer rule for a. Second, for
each rule, each variable is renamed to a unique variable
name that does not appear elsewhere in the program.
Third, a binding list for each recursive relation a is pro-
duced. A binding list α is a sequence of “b”s (bound)
and “f”s (free), with each character representing an at-
tribute of a. An attribute of a is bound (“b”) if possible
values are (1) already known since they are join keys
with EDB relations, and (2) useful since the join hap-
pens in an answer rule. Informally, the binding list is
a template that guides the search for derivations that
might actually matter to the queried relation. For sake
of space, we describe the algorithm only as it applies to
the following type of answer rule where c is the head
and e is in the EDB.

R0 c ( @c1 , . . . , cNc ) :−
e ( @e1 , . . . , eNe ) , a ( @a1 , . . . , aNa ) .

In this basic yet common case, the binding list α is as-
signed as follows: αi is “b” if ai joins with some ej . Oth-
erwise αi is “f”. Furthermore, with some trivial variable
reordering, we can safely assume that α is a sequence of
“b”s followed by a sequence of “f”s.

With these preliminaries, the core MiM Algorithm in
Listing 2 is invoked. The shorthand notation it uses al-
lows us to present MiM Algorithm compactly as a series
of rule manipulations and variable list rearrangements.
A term with a bar (“ ¯ ”) represents a list of variables,
and consists of a letter and optionally a digit, e.g., a1.
The letter indicates that the size of the list is the num-
ber of attributes of the corresponding relation e.g., a1 is
a variable list of size Na. The digit is just an identifier.

To manipulate variable lists, we use three functions.
unique takes as input a list size and returns as output
a list of distinct variables that do not appear anywhere
else in any rule. boundlist takes as input a variable list
for a and returns the prefix of the input for which α is
“b”. Conversely, freelist returns the suffix of the input
for which α is “f”.

Each variable list originates from either (1) the input
program P or (2) the function unique. Lastly, a term
may have a subscript “b” or “f” to represent the applica-
tion of the function boundlist or freelist respectively.
For example, a1b = boundlist(a1). In such case, the
length of a1b may be less than that of a1.

The MiM Algorithm generates new rules and intro-
duces new relations a ans, a∗ and a∗∗. In networking
settings, tuples of a, a∗ and a∗∗ can be thought of as
messages. Each message consists of a message header
(some prefix of attributes) and message payload (re-
maining suffix of attributes). The header may change
on every recursion but the payload does not.
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Figure 2: Steps of MiM Algorithm

INPUT: A LR input program P with a binding list α for each recursive
relation a. Recursive rules for a take the form:

R1 a (a1) :− a (a2) , b (b) .

OUTPUT: An output program PMiM having all the rules of P , with
additional EDB relation r (rendezvous) and with each rule R1 replaced
by rules R1.1, R2, R3.1, R4.2, R5 and R6 as defined below.

PROCEDURE:

1. Invert recursion order. Generate Pinv , a version of P that processes
derivations via “pull” rather than “push”. The rules of Pinv are the rules of
P with each rule R1 replaced by three rules:

R2 a∗(a0b ,a0b ) :− . . . % answer rule dependent, refer to text

R3 a∗(a2b ,a0b ) :− a∗(a1b ,a0b ) , b (b) .
R4 a a n s (a0b ,a3f ) :− a∗(a3b ,a0b ) , a (a3) .

w i t h a0b = . . . % answer rule dependent, refer to text
and a3 = unique(Na).

2. Hybridize recursion order. Generate Phyb by combining Pinv and P . In
addition, add rendezvous relation r and modify selected rules to:

a. Limit derivations of the queried relation to the rendezvous point.
Replace R4 with:

R4.1 a a n s (a0b ,a3f ) :− a∗(a3b ,a0b ) , a (a3) , r (a3b ) .

b. Limit “push” execution to before the rendezvous and limit “pull”
execution to after the rendezvous. Replace R1 and R3 with:

R1.1 a (a1) :− a (a2) , b (b) , −r (a2b ) .

R3.1 a∗(a2b ,a0b ) :− a∗(a1b ,a0b ) , b (b) , −r (a1b ) .

3. Localize for network processing. Generate PMiM by modifying Phyb to
ensure network topology path restrictions. This enables correct distributed
execution. Replace rules R4.1 with:

R4.2 a∗∗(a3b ,a0b ,a3f ) :− a∗(a3b ,a0b ) , a (a3) , r (a3b ) .

R5 a∗∗(a1b ,a0b ,a3f ) :− a∗∗(a2b ,a0b ,a3f ) , b (b) .
R6 a a n s (a0b ,a3f ) :− a∗∗(a0b ,a0b ,a3f ) .

Listing 2: MiM Algorithm

The MiM Algorithm consists of three main steps traced
by Figure 2. Figure 2a shows the input program as an
abstract network derivation graph in which messages of
a flow from source to sink. After arriving at the sink, a
generates a ans, which participates in answer rules (not
shown). More precisely, sources are locations where ini-
tializer rules generate a, and sinks are locations where
answer rules use a.

Step 1 inverts the recursive order of the original pro-
gram. Its objective is the same as to that of the Magic
Sets algorithm from database theory [5]: pushing selec-
tion past recursion. This is done by constructing a∗ to
recurse backward from sink to source (Figure 2b). In
networking terms, pushing down selections in this set-

ting can be thought of as a sink-initiated “pull” execu-
tion vs. the original source-initiated “push” execution.

In Step 1 of Listing 2, R2 is underspecified and we
complete its specification here. Recall that given a queried
relation c, α tells us that some attributes of a are already
bound to specific values in an EDB relation. These are
simply copied over to make a∗, a superset of a. In the
case of example R0, R2 takes the form:

a∗(a0b ,a0b ) :− e (e) . w i t h a0 = @a1 , . . . , aNa o f R0

Note that two copies of the join keys are made. The
first copy is like a message header that may need to go
through some number of recursive modifications to find
its join partners. The latter“pristine copy” is like a mes-
sage payload with a return address, used to remember
the original join keys for the answer rules.

Step 2 hybridizes the recursion order by combining
push and pull execution to “meet-in-the-middle”. It fur-
ther introduces the EDB relation r whose tuples indi-
cate the precise rendezvous meeting point between push
and pull. While a traverses forward from source and
a∗ traverses backward from sink, both stop at the ren-
dezvous point to derive a ans (Figure 2c). Whereas
Pinv pushes selection past recursion, Phyb pushes selec-
tion into a tunable middle point in the recursion.

Step 3 localizes the program for network processing by
ensuring that topology paths are respected. Essentially,
a ans is additionally packaged as a payload in another
message, a∗∗, and sent from rendezvous to sink. Upon
reaching the sink, a ans is unpackaged and can be used
in answer rules, just as in the original program.

Steps 1 and 2 are applicable to any LR Datalog pro-
gram. Step 3 is necessary for netlog programs that are
expected to run on networks of nodes. We next present
an example application of MiM Algorithm.

3.3 Example Application of MiM Algorithm
Listing 3 shows the result of a full application of the

MiM Algorithm on BasicProg. In the rewritten Ba-
sicProg of Listing 3, the precise rendezvous location
is chosen by simply filling in the rendezvous relation
e.g., with rendezvous(@b, a, foo). The original recur-
sion of message along nexthop is amended to include
a negated term, −rendezvous which modifies the in-
terpretation of message routing to be: “Route message
along nexthop until encountering rendezvous”(line 10).
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1% Prepare f o r t r a n sm i s s i o n
2 message ( @Source , Source , Sink , Data ) :−
3 produce ( @Source , Data ) ,
4 nexthop ( @Source , Sink , Next ) .
5

6% Route message to next hop pa r en t u n t i l r endezvous
7 message ( @Next , Source , Sink , Data ) :−
8 message ( @Current , Source , Sink , Data ) ,
9 nexthop ( @Current , Sink , Next ) ,

10 −r e n d e z v o u s ( @Current , Sink , Data ) .
11

12% Route i n t e r e s t back a long next hop u n t i l r endezvous
13 message ∗( @Current , Cur rent , Data ) :−
14 i n t e r e s t ( @Current , Data ) .
15 message ∗( @Current , Orig , Data ) :−
16 nexthop ( @Current , Sink , Next ) ,
17 message ∗( @Next , Orig , Data ) ,
18 −r e n d e z v o u s ( @Next , Sink , Data ) .
19

20% At rendezvous , j o i n message and i n t e r e s t and send
to S ink

21 message ∗∗( @Current , Sink , Data ) :−
22 message ( @Current , Src , Sink , Data ) ,
23 message ∗( @Current , Sink , Data ) ,
24 r e n d e z v o u s ( @Current , Sink , Data ) .
25 message ∗∗( @Next , Sink , Data ) :−
26 message ∗∗( @Current , Sink , Data ) ,
27 nexthop ( @Current , Sink , Next ) .
28 consume ( @Sink , Data ) :−
29 message ∗∗( @Sink , Sink , Data ) .
30

31% What i s consumed?
32 consume ( @Sink , Data ) ?

Listing 3: Rewritten BasicProg, message and
interest meet in the middle.
A similar negated term is applied to the routing back of
interest (line 18). Additionally, MiM Rewrite amends
BasicProg to deliver consume tuples in a multi-hop
fashion to the Sink (lines 21-29) according to network
path restrictions mentioned earlier.

Note that we have not specified nor constrained the
tuples in the rendezvous relation. The decision of what
to put there will be the task of Decision Making , dis-
cussed in Section 5. In the companion technical re-
port [8], we establish the correctness of MiM Rewrite
by proving the following theorem.

Theorem 3.8. The MiM Rewrite is query preserving
and path-restricted.

4. ADDITIONAL REWRITES
This section discusses two rewrites that address proxy

placement, and both extend naturally from MiM Rewrite.
Interestingly, in networking, proxy placement and ren-
dezvous selection are typically not seen as related, but
the connection is clear through the lens of query opti-
mization.

4.1 Session Proxies
Many protocols and services maintain per-conversation

session state at endpoints. However, a server may get
many simultaneous connections, or multiple services might
need to coexist. Either case may exhaust session state
buffer space. As a result, a systems builder may prefer

msg

client server

consume

client

msg

session

(a) Original stateful server

msg

msg**

msg*

client serverproxy client

msg

session

consume

(b) Session state at proxy

Figure 3: Abstract network derivation graphs for
session state placement alternatives. The “loop”
in 3a is stretched across the network to proxy
in 3b.

to offload the state to proxies (proxied server) or even to
shuttle the session state back and forth with the client
in each packet (stateless server).4 This conversion of
session state is applicable in many settings [27], and is
often handled manually in WSNs. We next show how
Session Rewrite can automatically and fluidly reassign
session state to endhosts, packets, or proxies by simply
filling in entries in a rendezvous relation.

Figure 3a shows the abstract network derivation graph
corresponding to a client-request/server-response sequence
with server responses based on session state. At the
server, both the current message and session help to
derive the next logical message and session. Also, the
queried relation in this case, consume, is actually at
the client; we are interested in the client’s status after
a roundtrip communication with the server. Before dis-
cussing Session Rewrite, we first define an extension to
the class of LR programs.

Definition 4.1. Two IDB relations a and b are lin-
early mutually recursive (LMR) if in the rule-goal
graph, there is exactly one distinct path from a to itself
that visits b one time before returning to a.

Definition 4.2. A program is a linearly recursive
program with linear mutual recursion (LR-LMR
program) if it is a LR program except for some relations
that are LMR.

Our primary interest in LR-LMR programs for session
state is when LMR relations a and b both participate
in their own LR rules, and one (say b) has LR rules for
which the location specifier does not change. In such
a scenario, a is analogous to messages, and b is analo-
gous to session state. It is this pattern upon which Ses-
sion Rewrite operates. For the example in Figure 3a,
message and session map to a and b respectively.

The main idea of Session Rewrite is to use MiM Rewrite
as a subprocedure, and its result is shown in Figure 3b.
We treat message as if it were the queried relation, and
apply MiM Rewrite to session as if it participated in
4Protocols that eschew endpoint state for packet state are
often termed stateless even though state exists in the pack-
ets.
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answer rules formessage. First, session generates bind-
ings at Server which get pushed down into message’s
recursion until some rendezvous r (the proxy). message’s
recursion also arrives at r, and MiM Rewrite operates
as before, returning message ans to Server. When this
occurs, answer rules may derive new message tuples.
Because message and session are LMR, this in turn
may derive new session tuples. The new session tu-
ples generate new bindings, and are resent from Server
back to r to seek additional joins with message. The
net effect is that r acts as proxy for Server’s session.

Proxy selection is determined by filling in the rendezvous
relation. Moreover, deciding among stateless, stateful
and state proxy protocol variants is as straightforward
as setting rendezvous to Client, Server or intermedi-
ate locations. The fully rewritten program after apply-
ing path-restrictions is shown in [8]. In [8], we prove
that our example generalizes via the following corollary
to Theorem 3.8.

Corollary 4.3. Session Rewrite is query preserving
and path-restricted for LR-LMR programs.

4.2 Routing Proxies
Just as servers can become overloaded with too much

session state, routers can likewise exceed their capacity
for holding routing state. One solution is to let packets
and proxies carry the routing state instead [18]. An-
other is to maintain routes only to a few resource-rich
proxies that in turn maintain many routes [13]. Our fi-
nal rewrite, Routing Rewrite, exposes these options: it
can reassign routing state to packets, proxies or some
mixture of the two by filling in the rendezvous relation.

Specifically, we apply Routing Rewrite to distance
vector routing (DVR) and source routing (SR) which
differ mainly in whether routing state resides in routers
or packets. The prototypical message routing rule we
have encountered thus far is line 7 of BasicProg (List-
ing 1). This resembles DVR, in that nodes sendmessage
tuples to seek joins with nexthop. Conversely, SR sends
nexthop tuples to seek joins with message. Routing
Rewrite transforms a DVR-style program to SR, or some
hybrid of DVR and SR.

Routing Rewrite is applied in the same way as Ses-
sion Rewrite except that the answer rules are set to
a’s LR rules (such as R1 in Listing 2). Consequently,
the base relations generate initial bindings, and the rest
proceeds as described for MiM Rewrite. For Listing 1
where message is the LR relation, this means nexthop
generates bindings and sends these backward according
to the nexthop relation. This relation “self-traversal” ef-
fectively mirrors what happens in networking when data
about the network (such as local connectivity informa-
tion) is sent on the network. The following result follows
from Theorem 3.8.

Corollary 4.4. Routing Rewrite is query preserv-
ing and path-restricted for LR programs.

As with the previous rewrites, Decision Making can
select among alternatives simply by filling in the rendezvous
table after Routing Rewrite has been applied to the
source program. To keep DVR, we set rendezvous to
the original sink. To convert to SR, we set rendezvous
to the source. To have some mixture of DVR and SR,
we set rendezvous to an intermediate location. The
correctness proof and final result of Routing Rewrite on
BasicProg are shown in [8].

5. DECISION MAKING
The preceding section covered the application of three

rewrites to netlog programs to expand their possible
rendezvous and proxy choices. We now turn to Decision
Making : searching for the optimal strategy.

Inputs of Decision Making are network link costs and
traffic profiles. Both the networking and database com-
munities have extensively studied the problem of gath-
ering such statistics [3, 15]. In the context of netlog,
input data are all represented as relations. This infor-
mation can be monitored regularly, and if sufficiently
different, can trigger re-optimization.

Outputs of Decision Making are tuples for the rela-
tions rendezvous initialized by Rewriting . We imple-
mented exhaustive search algorithms for each rewrite.
For MiM Rewrite, we also adapted a greedy heuristic
from the networking literature [23]. In principle, our
rewrite-specific optimizations are replaceable by a gen-
eral purpose dynamic programming optimizer, akin to
those used widely by databases [25].

A benefit of the netopt architecture is that the analy-
sis and rewrite to identify the optimization opportunity
are distinct from the policy side of optimization. We
have not focused on designing a better search algorithm
for any specific scenario. Rather, we adopt an extensible
framework which allows for the automated application
of specific algorithms as appropriate [12]. This permits
users to drop in custom optimizers that best suite the
task at hand.

6. PROTOTYPE EVALUATION
We built a prototype netopt system that performs

Analysis, Rewriting and Decision Making . The im-
plementation uses Evita Raced, an extensible database
optimizer [12], and the resulting programs run on the
declarative sensornet platform DSN [10]. Our proto-
type still requires some user-assistance to link together
the three steps. We evaluated the netopt prototype in
the WSN settings discussed in Section 1.1. We tested
on the Motelab testbed [21], as well as in simulation
and on the Emulab testbed [14]. While not wireless,
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Figure 4: Event distribution performance under
varying provisioning layouts and workloads.

Emulab networks provided greater control over network
topology than sensornet testbeds. We artificially lim-
ited Emulab hosts to resemble sensornet microservers.
To evaluate declarative programs on Emulab hosts, we
used P2 [19].

The objective of our experiments is to measure the
change in application performance over original, unop-
timized programs that do not adapt to workload and
resource changes. The metric to quantify performance
depends upon the setting. For event distribution, we
consider event notification delay. For other settings,
we consider energy usage. In all settings, we see op-
timized programs outperforming unoptimized original
programs. In event distribution, delay is decreased by
as much as three orders of magnitude. In other settings,
radio operations are decreased by as much as one order
of magnitude. The overhead of optimization is a man-
ageable increase in memory footprint for the installed
program, as we will see in Section 6.5.

6.1 Event Distribution Rendezvous
The goal of event distribution is to decrease event

notification delay of subscriber requests while working
within topology constraints. We tested by simulation
and on Emulab. For simulation, we randomly gener-
ated a 200 node topology. Some nodes are selected as
event publishers and others as event subscribers. Pub-
lishers and subscribers are placed at nodes of low edge
degree. While single base station scenarios (where all
subscribers originate at the base) are common, we are
observing that more dynamic distributed sensing-based
actuation scenarios are emerging, where sensors trigger
remote actuators, which may in turn trigger other sen-
sors [9]; these are the types of configurations that we
consider. There were 150 unique events. Each sub-
scriber expressed a weighted Zipfian demand for each
event. To experiment against varying workloads, we
varied the skew of the Zipfian distribution.

Each node was also assigned an amount of available
buffer space intended to reflect the capabilities of the
underlying hardware. This buffer space is intended for

caching of events from event publishers and interest no-
tifications from event subscribers – a node needs enough
marginal buffer space to serve as rendezvous for a pub-
lisher and subscriber pair. We considered two buffer
provisioning layouts that seem to mirror practice. The
first layout, Dispersed, has each node with an equal
amount of buffer space. The second, Concentrated, has
a few better-provisioned microserver-class nodes along-
side resource-constrained nodes. Well-connected nodes
were favored to receive available buffer space. The amount
of aggregate buffer space was the same in both cases.

We experimented with four rendezvous selection schemes.
The first, Original scheme, consisted of BasicProg in
Listing 1 in which all subscriber requests go directly
to the publishers with naive rendezvous. The remain-
ing three schemes all used the rewritten BasicProg pro-
duced by MiM Rewrite in Listing 3. They differed in
the Decision Making scheme employed. From the stand-
point of the rewritten BasicProg, each scheme fed in
its own rendezvous relation. The second, Random
scheme, consisted of randomly assigning event types to
available buffers. Here, resources were fully utilized, but
the workload is not considered during assignment. The
third, Optimized scheme, consisted of assigning content
items to available buffers such that subscriber requests
are serviced with lowest cost. The scheme used a greedy
heuristic (by order of demand weight) for this assign-
ment since the optimal assignment is known to be in
NP-Complete. The fourth, the Exhaustive scheme, im-
plemented the exponential version of the assignment al-
gorithm. While the running time of Exhaustive was
prohibitive on our test networks, we found that in the
small settings, Exhaustive made assignments that were
8-12% better than those of Optimized.

Figure 4 shows the results of Original, Random and
Optimized schemes under varying workloads and re-
sources. Under the Concentrated buffer layout in Fig-
ure 4a, Random and Optimized performed 1.3-1.4× and
1.5-1.6× better than Original respectively as the work-
load varies from slightly skewed to highly skewed. Under
the Dispersed layout in Figure 4b, Random and Op-
timized perform 0.95-1.2× and 2.3-24.4× better than
Original respectively.

We also ran the same experiments on ten node Em-
ulab networks. Random and Optimized outperformed
Original by 1.5-1.9× and 2.8-3.3× with Concentrated,
and by 1.2-2.3× and 6.4-480× with Dispersed. The
trends remained the same so the graphs are omitted.
These results indicate that MiM Rewrite can automati-
cally find lower cost rendezvous points given subscriber
workload and network resources.

6.2 Proxy Selection for a Single Service
We next tested the Session Rewrite, focusing on the
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Figure 5: Single service proxy selection

case of a single microserver running a single generic net-
worked service. We used a five hop (linear) Emulab net-
work with node four making requests to node zero via
nodes three, two and one. The linear network allowed
us to isolate the study to the hop distance, and exclude
fan-out considerations. The workload was varied from
100 to 1000 concurrent requests, which very well could
be the case for a microserver with many connected sen-
sors. Each request required 1Kb of session state. Two
buffer provisioning layouts were used, Even and Skew.
In Even, each node was allotted session buffer space of
15Mb, which was meant to represent prime main mem-
ory. In Skew, Node One was allotted 100MB for session
state, whereas the other nodes were allotted 15MB. The
Skew layout models a scenario in which a resource rich
proxy is located close to the server.

The optimization objective was to minimize the to-
tal data transfer while serving all requests, since radio
operations are often the most power-intensive activity.
Three schemes were compared. In the first, Stateful,
all session state was allocated at Node 0, regardless of
whether the node buffer constraint was surpassed. This
corresponds to the naive case of Figure 3a. In the sec-
ond scheme, Stateless, all session state was packaged in
request and response messages. A minimal amount of
buffer was allocated at Node 0 to service these state-
less requests. In the third scheme, Optimized, session
state was assigned to proxies so as to minimize the total
data transfer. This scheme tended to use as much buffer
available at proxies closer to the server, Node 0, before
using buffer further from the server. The Optimized
scheme ran the program shown pictorially in Figure 3b.

Figure 5 shows the memory allocation and data trans-
fer of each scheme under varying numbers of requests
and buffer layouts. As expected, Stateless maintained
an almost negligible amount of buffer usage across all
nodes regardless of the number of requests, while its
amount of data transfer grew very rapidly since it had
to package all of its request state in packets. Conversely,
as seen in Figure 5a, buffer usage under Stateful at Node
0 scaled with the number of requests, well surpassing the
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15MB constraint under 250 or more requests. On the
other hand, the amount of data transfer with Stateful
remained low even with many requests. Neither State-
ful nor Stateless took advantage of the potential to use
other nodes as proxies in the network, and therefore did
not act differently when buffer layouts change.

The Optimized scheme is able to take into account
varying buffer layouts. In Figure 5a, the “opt-even”
and “opt-skew” labels show the resulting memory al-
location on each node when the Session Rewrite opti-
mizes against Even and Skew layouts respectively. At
100 requests when the buffer limit is not yet reached,
Optimized behaves just like Stateful. At higher request
counts, the constraint is respected by the Optimized
scheme, and buffer is allocated from neighboring proxies
rather than at node zero. Each segment of the stacked
bars in Figure 5b indicates the amount of data trans-
fer as a result of session state held at the correspond-
ing proxy. For a given request workload, the optimized
version transfers less data than Stateless, but more data
than Stateful (while respecting buffer constraints). This
hybrid of stateless and stateful is a compromise when
buffer constraints are present. Furthermore, the opti-
mizer is able take advantage of the resource-rich proxy
in the Skew layout, and transfer lower amounts of data
(by using Node One) when buffer limits become an is-
sue at higher request counts. The use of proxies does
come at a cost: two bytes for both the buffer and in
each packet transfer are needed for the join parameters
which relink a request with its session state at the proxy.

6.3 Proxy Selection for Multiple Services
Next, we measured the Session Rewrite in a case with

multiple services competing for the same buffer space.
The optimizer attempts to minimize packets sent and
received. Four traditionally stateful services that have
been implemented on sensornets were chosen from the
literature: a network Reprogrammer, a network De-
bugger, an SNMP-like service, and an Interactive Shell
service [17, 33, 30, 6]. For each service, we estimated
the state required as the service’s RAM footprint as
reported in the literature. These were 0.15Kb, 1Kb,
1.2Kb and 2.2Kb for Reprogrammer, Debugger, SNMP,
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and Interactive Shell respectively. For testing purposes,
we ran placeholder programs.

These services are generally auxiliary to the main sen-
sornet application. Therefore, the typical usage model
is that it is highly desirable, though not critical, to de-
ploy these services alongside the main application. We
worked with a scenario in which the main application
consumed 8Kb. Given the mote platform we were using,
this left 2Kb main memory for our desired services [22].

We deployed Stateful, Stateless and Optimized pro-
grams on the Motelab testbed using DSN [10]. The
Stateful program consisted of the session state of all four
services plus the main application. The Stateless pro-
gram consisted of the main application, but no session
state. Rather, state is transported in packets, whose
data payload is a typical 20B in size [1]. The Optimized
program consisted of the main application plus a por-
tion of each service’s session state as allocated by the
optimizer, with the rest pushed into packets. In each
case, requests are made from a base station node across
five hops to a node in the testbed that runs either State-
ful, Stateless or Optimized. The workload consisted of
varied distributions of calls made to each of the four
services. We considered three synthetic workloads: W1,
an evenly distributed workload; W2, a network monitor-
ing workload in which SNMP and Interactive Shell were
called two and three times more; and W3, a debugging
workload in which Debugger and Reprogrammer were
called two and ten times more.

The packets sent are shown in Figures 6. The num-
ber of packets sent for Optimal are 1.7-12.6× lower than
that for Stateless, with the difference increasing as the
workload becomes more skewed in W2 and W3 (Fig-
ure 6). Optimized allocates the most frequently called
services’ session state within the nodes’ memory con-
straints, thus lowering the amount of packet state nec-
essary.

6.4 Proxy Selection for Routing State
Lastly, we look at routing state placement in the sen-

sornet, and measure the ability of Routing Rewrite and
optimization to choose routing state proxies. We chose
a Motelab network of four hops starting from the base
station. The buffer is constrained such that nodes only
have space for a limited number of routing entries, vary-
ing from three to eleven. A typical sensornet routing
services may only contain four entries [1]. The base sta-
tion sends to nine destinations located four hops away
in the network according to a Zipfian distribution.

Figures 7 demonstrate the results of Source Routing
(SR), Distance Vector Routing (DVR), Caching, and
Optimized. SR is essentially stateless, and is able to
route with very few available routing entries, albeit at
more packets sent. On the other hand, DVR only routes

when it has enough space for all nine destinations (such
that semantics were equal). Caching uses the hybrid
approach of SR as the default case and residual space
for DVR routing entries as requests arrive. Optimized
considers the workload such that the hotter destinations
receive higher priority as DVR entries. As a result, it
tends to achieve the lowest number of packets sent at
all routing table sizes.

6.5 Optimization Overhead
The overhead of optimization is primarily an increase

in program rule count, resulting in larger memory foot-
prints of optimized programs. Table 1 shows the op-
timized programs’ memory usage when programs are
compiled with DSN. For most cases, the increase is man-
ageable – in the 8% to 63% range. The outlier is Rout-
ing where the rewrite meta-application is more complex
and produces many more rules than the original pro-
gram. In all cases, the programs fit comfortably on the
target platform [22].

Table 1: Optimization Overhead in KB
Optimization ROM % Inc. RAM % Inc.

Rendezvous 25.2 13 3.4 63
Session 27.4 8 4.9 44
Routing 32.1 36 6.5 185

7. RELATED WORK
Related work stems from both networking and databases.

Prior work in network protocol optimization generally
focuses on packet processing performance on the single
node, usually by adapting techniques from general com-
piler optimization to increase single-node packet pro-
cessing performance: inlining, outlining, code cloning,
rearranging branches, and IPC to function call conver-
sion [7, 4] . On the other hand, our focus is automated
multi-node protocol optimization.

Several efforts have attempted to enable greater net-
work flexibility. Active networks research moved aggres-
sively to introduce greater programmability into net-
works [32]. Our work introduces a limited amount of
network reprogramming, driven by optimizer decisions
rather than node-level code injections. Like our work, i3
identifies rendezvous and proxy selection as fundamen-
tal to network design, and provides great flexibility for
their selection [28]. Unlike our work, i3 does not aim to
optimize their selection from program source.

The network optimization mechanisms introduced in
this work can be viewed as generalizations of query pro-
cessing and optimization mechanisms familiar to the
database community. Changing rendezvous is concep-
tually very similar to reordering database join opera-
tions. System R popularized the ideas of optimizing
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join ordering with respect to disk IO, CPU, and table
statistics [25]. Like [29], the current work fundamen-
tally adopts the same optimization framework, extended
to the networked setting. We significantly broaden the
scope of what can be reordered, and thus what reorder-
ing is capable of by viewing “application data” and “net-
working data” under the same lens.

In the past, deductive database query optimization
focused on combining “push” with “pull” query process-
ing [31]. The main result was the Magic Sets algorithm
that transforms programs to take advantage of the ben-
efits of pull processing while executing in a push con-
text [5]. The work of [20] extended this to the networked
setting, specifically applying an entirely pull processing
approach to the example of routing as in Section 4.2. In
contrast, this work suggests that hybrids between top-
down and bottom-up processing offer the best cost for
many practical networking scenarios.

We suspect it is possible to generalize MiM Rewrite
to all recursion, just as algorithms for LR have been
subsumed by the Magic Sets algorithm [31]. However,
our experience indicates that LR is the most common
recursion, especially in networking. This also echoes the
remarks of [31] for traditional Datalog.

8. CONCLUSION
As sensornet workloads and resources continue to di-

versify, one-size-fits-all protocols are increasingly infea-
sible, while custom solutions require careful crafting for
each environment. We investigated automatic program
analysis, rewriting and optimization of network proto-
cols along dimensions of rendezvous and proxy selection.
This work naturally leads to further opportunities such
as dynamic reoptimization, application to non-netlog
programs, and new optimizations within the optimiza-
tion architecture. Our initial study indicates that under
a variety of sensornet settings, an informed optimizer
can choose program executions that are much better
than that of the original source program.
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