
Database Systems for E�cient Access to Tertiary Memory�

Sunita Sarawagi

Computer Science Division

University of California, Berkeley

Abstract

Tertiary storage devices have long been in use for
storing massive amounts of data in �le-oriented mass
storage systems. However, their use in database
systems is relatively new. Database systems associate
more structure to the data than just raw sequence of
bytes. Hence if they are allowed control of the tertiary
memory devices, they can greatly reduce access cost
by doing more informed caching, query optimization
and query scheduling. However, most conventional
database systems are designed for data stored on
magnetic disks. Accesses to tertiary storage devices
are slow and non-uniform compared to secondary
storage devices. Therefore, inclusion of tertiary
memory as an active part of the storage hierarchy
requires a rethinking of conventional query processing
techniques. In this project, our aim is to design a
database system that can use its knowledge of the
layout of data on storage devices to increase the speed
of running queries.

1 Introduction

Applications manipulating large volumes of data are
growing in number: earth observation systems [12],
[13], historical data base systems, statistical data
collections and image and video storage systems [10]
are a few examples. For these applications, we
need e�ective hardware and software solutions for
storing, retrieving, and managing massive amounts of
data. In spite of the falling price-line of magnetic
disks, tertiary memory devices are still an order of
magnitude cheaper than magnetic disks. This often
makes them a viable alternative for storing data over
a terabyte in size. To get cost-e�ective performance,
the slow yet cheap tertiary storage devices are often
used in conjunction with faster magnetic disks that
act as caches for hot data.

As regards software alternatives, the �rst option
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is to directly use a mass storage �le system interface
like unitree (Figure 1a). Most �le systems provide
only a byte oriented interface to the underlying data.
This means that the functionalities o�ered by a
data management system are not available to the
applications. The second easy option is to build a
database management system on top of an existing
�le system (Figure 1b). Examples of systems of
this are given in [4] and [2]. These systems use
the underlying �le system to get transparent access
to data stored on tertiary memory and store only
the metadata information in the database. For both
these above options, the �le system controls the
movement of data to and from the disk cache and the
tertiary memory. Typically, replacements policies like
LRU and weighted LRU [9] are used for managing
the disk cache. These policies have been known to
be ine�cient for conventional database systems and
are more so for tertiary memory databases because
of the higher I/O cost on tertiary storage devices.
Database systems have more semantic information
about the data and the kind of queries posed and
hence allowing the database system to exercise control
of the caching between the disk and tertiary memory
can yield better I/O performance. This brings
us to the third alternative where the disk cache
is directly under the control of a database system
(Figure 1c). postgres [6] is one of the pioneer
projects in this regard. postgres includes a Sony
optical jukebox as an additional level of the storage
hierarchy. The postgres storage manager can move
data transparently between a disk cache and the
jukebox using the LRU replacement strategy. While
this prototype implements the storage manager for
tertiary memory, a lot of issues related to tertiary
memory speci�c performance optimization still remain
unexplored. Inclusion of tertiary memory devices in
the storage hierarchy requires a rethinking of many
design decisions made for a conventional database
system. Many database researchers [1, 11, 5, 8] have
reached consensus regarding the need of a database
system specially optimized for manipulating data
stored on a tertiary memory device. In this paper,
we will see how we modi�ed the design of an existing
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Figure 1: Available software alternatives.

database system to optimize for accessing data stored
on tertiary memory.

Outline of the paper We will start by bringing
out the di�erence in the characteristics of a tertiary
memory devices and magnetic disks that makes it nec-
essary to change conventional database systems. We
will then argue how a conventional database system
can lead to miserable performance on data stored on
tertiary memory (Section 2). We will then present the
design of our tertiary memory database and contrast
it with a conventional database system (Section 3).
In Section 4, we will present the extensions made to
an existing relational database system namely post-

gres to support the new architecture. In Section 5
we present future work and discuss alternative ap-
proaches. Finally, we make concluding remarks in Sec-
tion 6.

2 Tertiary memory devices on

conventional system

Tertiary memory devices have very di�erent character-
istics than magnetic disks. A typical device consists
of a large number of storage units, a few read-write
drives and even fewer robot arms to switch the stor-
age units between the shelves and drives. The storage
units are either tape cartridges or optical disk platters.
We will use the term media to refer to a storage unit.
In Table 1 we compare several tertiary memory devices
with a magnetic disk. The characteristics shown are
exchange time (time to unload one storage unit from
the drive and then load a new unit and get it ready
for reading), maximum seek time, data transfer rate,
transfer time for 128 KB of data and the ratio between
the worst case time (exchange time + full seek time +

transfer time) and best case time (only transfer time)
to access and read 128 KB of data from tertiary mem-
ory. From the last columnwe note that magnetic disks
are a relatively uniform storage medium when com-
pared with tertiary memory. Worst case access times
are only a factor of three larger than best case times
whereas some tape oriented devices have three orders
of magnitude more variation. This makes it crucial to
carefully optimize the order in which data blocks are
accessed on these devices. Most disk-based database
management systems use the number of pages trans-
ferred from the disk to main memory as a measure
of the I/O cost and the optimizer tries to reduce this
cost. For tertiary memory systems it is very impor-
tant to reduce the number of media loads/unloads and
the seek overhead by suitably reordering the I/O. Re-
ordering I/O is often more e�ective in improving over-
all performance than trying to eliminate I/O. As we
will see next, this makes database systems that were
originally designed for data stored on magnetic disks
very ine�cient for tertiary memory data.

Figure 2 shows a block diagram of postgres, a
typical conventional database system. postgres uses
a process-per-user architecture, in which a di�erent
server process is started for each user. These servers
have a shared pool of pages in the magnetic disk cache.
Except for locks controlling shared resources, each
user process runs independently of others, requesting
data from the disk cache as and when they need
data from tertiary memory. If the data is not
already cached, a request is sent to the tertiary
memory device. Each server process can query
data on arbitrary storage media, and there is no
communication between the server processes regarding
the order in which data pages are requested. Thus,
the tertiary storage device might have to support a
fairly random sequence of data requests. The device
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Storage Exchange full seek Data transfer transfer time Worst/best

device time (sec) time (sec) rate (KB/sec) for 128 KB access (sec)

Optical disk 8 0.3 500 0.256 32.4

Helical scan tape 6 135 4000 0.032 4406
Optical tape >60 90 3000 0.043 3488

Magnetic disk - .06 4250 0.03 3

Table 1: Comparative study of the characteristics of di�erent storage devices.

scheduler can do local reordering of I/O requests that
are pending and avoid unnecessary media switches
by batching requests on the same media together.
However, the amount of reorganization that it can do
is very limited because it has no idea about other data
that are required by the currently running queries.
Also, the server process has no idea about the storage
media that are currently loaded or the pages that
are in cache and does not modify its data requests
according to the cache state or the tertiary memory
state. Lack of global planning and coordination can
thus lead to bad I/O performance on the tertiary
memory device.

3 Our Approach

We follow an integrated approach to disk cache
management, tertiary memory I/O scheduling and
query processing (Figure 3). This is in contrast to
conventional database systems described earlier where
these tasks are handled by independent functional
units. The system consists of a centralized scheduler
that knows about the state of the tertiary memory
(the storage media currently loaded, the current head

position etc.), has knowledge of the semantic contents
of cache (not just physical page addresses) and knows
about all the queries in the system and what data they
access. Instead of queries requesting data to be fetched
from tertiary memory to the disk, the scheduler infers
the data required by a query in advance, caches the
data in the disk cache and then schedules the query
for execution. The decisions made by the scheduler
are aimed towards making the query execution process
globally e�cient. The scheduler uses its knowledge
of the state of I/O system and the executing queries
to judiciously batch I/Os from several queries and
combine the execution of similar queries.

3.1 Query Processing in the new

architecture

In general, a query accesses data that is spread
arbitrarily across many storage media. We divide
relations that spread over multiple storage media or
are not placed contiguously on tape into fragments.

A fragment is the part of a relation that can
be transferred without incurring additional media
switches and seeks | thus fragmentation is a mech-
anism to expose the layout of a relation on tertiary
memory. Data is fetched from disk to tertiary mem-
ory in units of fragments instead of whole relations.
Hence the size of the fragment is important to perfor-
mance. The best fragment size for a particular setup
is a function of the average request size, the latency of
�rst access and the transfer cost. When the fragment
size is small, we make greater number of I/O requests
and the latency of �rst access is incurred too many
times. When the fragment size is large, the transfer
overhead is higher because we might be transferring
more data than we need. This is a standard problem
that arises in all caching systems and it is easy to �nd
rule of thumb values of the best fragment size based
on estimates of the latency of �rst access (measured
in terms of media switch cost and seek cost), the data
transfer rate and the average size of data requests.

An arriving query is processed in multiple stages.
In the �rst stage, the query on the base relation is
broken down into independent subqueries on the base
fragments. For instance, a join query between relation
R and S where relation R consists of fragments
R1, R2 and R3 is broken down into three join
queries between fragment R1 and S, R2 and S, and
R3 and S respectively. We �x the maximum size
of the fragment such that all data required by a
subquery can be held totally in the cache. This
means that the optimizer can view the subquery like
a regular query on secondary memory and optimize
accordingly. However, optimizing each subquery
separately this way can cause a lot of time to be
spent in the optimization process, especially when
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Figure 2: Architecture of a conventional database system.

the number of fragments is large. This problem
can be easily removed by noting that most of the
subqueries of a query are expected to be identical,
so the optimizer can reuse the optimized plan for
one subquery repeatedly for other subqueries with
identical structure. There are some limitations to this
model of breaking query into independent subqueries
as described above. This will be discussed in Section 5.

At the end of this phase, we get a set of independent
subqueries and the scheduler has to optimize the order
in which fragments required by the query are fetched
from tertiary memory.

3.2 Responsibilities of the Scheduler

The scheduler has a collection of such subqueries
which are pending execution. The scheduler then
decides the following:

1. What fragments are to be fetched next from
tertiary memory to disk.

2. If the disk cache is full, what fragment should be
evicted from the disk cache to make space for the
newly fetched fragment

3. What subqueries on the cached fragments should
be scheduled next for execution. When schedul-
ing subqueries for execution it tries to combine
subqueries that can be computed together. For
instance, if there are two subqueries which do
sequential scan on the same base relation, the
scheduler combines the execution of such queries.

These decisions are guided by global consideration
and are based on the state of the tertiary memory and
the magnetic disk cache. We will next describe how
the scheduler makes the decisions to fetch and evict
fragments between the disk cache and the tertiary
memory.

3.3 Fragment fetch and eviction

policies

When deciding what fragment to fetch next the sched-
uler is faced with the following situation. There are a
collection of pending subqueries each of which requires
one or more fragments for processing next. Of the
fragments required, some may already be in the disk
cache and others may need to be fetched from tertiary
memory. Of the fragments to be fetched from tertiary
memory some may reside on storage media which are
already loaded on the drives and others may be resid-
ing on the shelves. First, the scheduler has to decide
whether it should choose a fragment from the cur-
rently loaded media or load a new media for fetching
a fragment. Then, it has to decide what fragment it
should evict from the disk cache to make space for the
newly fetched fragment. These decision depends on
a number of factors: the tertiary memory character-
istics, the nature and number of pending queries and
the size of the disk cache. Since �nding the optimal
solution is intractable, we studied a number of di�er-
ent heuristics which made intuitive sense. A simula-
tion modeling various tertiary memory devices, cache
sizes and query and database characteristics was im-
plemented. The simulation helped us study the per-
formance bottlenecks that arise for di�erent tertiary
memory devices and workloads, get an estimate of
the best performance achievable and design good poli-
cies for fetching and evicting fragments. A qualita-
tive summary of the e�ect of the three main factors
(the tertiary memory characteristics, cache size and
the workload) is presented next. More details on the
simulator and quantitative results appear in [7].

Tertiary memory characteristics The important
characteristics of the tertiary memory that in
uence
the policies used for fragment fetch and eviction are
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the number of drives, the date transfer rate, the media
load/unload time, and the seek costs (the �xed seek
overhead and the seek rate). Modeling the e�ect of
the tertiary memory is complicated by the presence of
a wide variety of tertiary storage products with widely
varying performance characteristics. For some tertiary
memory devices the data transfer bandwidth is low,
so that reducing number of bytes transferred is more
important. For others, the latency of �rst access is
high making it more important to reduce the number
of I/O requests. In Table 2 we present the performance
characteristics of a few tertiary memory products to
illustrate the wide variation in the cost metrics. This
diversity in performance makes it important for the
fragment movement policies to be a function of the
tertiary memory characteristics and thus be applicable
to a wide range of storage devices.

Workload Characteristics The sizes and number
of objects in a database system can vary considerably.
When a query requires fetching many small objects
it is more important to use a policy that reduces
latency of �rst access, i.e., the media load/unloads
and the seek cost. On the other hand, if a query
requires fetching of large objects, the transfer cost is
the main bottleneck and it is important to employ
policies that reduce the transfer cost. The number
of queries currently pending de�nes the load level on
the system and also a�ects the relative performance
of various policies.

Size of the disk cache When the cache size is
large compared to the total size of queried fragments,
it is easy to optimize for I/O by fetching all the
queried fragments on the currently loaded media
before unloading it. When the cache is a limited
resource, it becomes necessary to favor fetching of
those fragments that join with cached fragments and
thus complete all queries on the cached fragment even
if the fragment will require an additional load/unload
operation. This means that in order to avoid evicting
fragments from cache which have queries on them we
might have to unload media which contain fragments
which have pending queries on them.

In designing a policy for caching fragments on the
disk cache, our goal was to choose a policy that
generalizes to diverse tertiary devices and application
domains and is sensitive to changes in the load level
and reference pattern of queries. To enforce this, we
incorporate provisions in the database system to store
information about the performance characteristics of
the particular tertiary storage device used, the average
size of database relations and the size of the disk
cache available to the database system. The system
monitors the current load and uses this information
along with the stored information to decide on the
policy to use for fragment fetch and eviction.
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Sony WORM Exabyte EXB120 Metrum RSS-600 Sony DMS

classi�cation small optical jukebox small tape library large tape library large tape library

switch time (sec) 8 171 58.1 39

transfer rate (MB/sec) 0.8 0.47 1.2 32
seek rate (MB/sec) - 36.2 115 530

seek start (sec) 0.5 16 20 5.0

number of drives 2 4 5 2
platter size (GB) 3.27 5 14.5 41

number of platters 100 116 600 320

total capacity (GB) 327 580 8700 13120

Table 2: Tertiary Memory Parameters.

4 Implementation of the new

architecture

We are extending the postgres relational database
system to implement a tertiary memory database
system. In the old architecture all users �rst submit
queries to a master process called the POSTMASTER
which spawns o� one postgres process for each user
session. In the new set up, queries are submitted
�rst to a newly-implemented scheduler process. The
scheduler maintains a number of slave postgres

processes. These processes are of two types:

� One set is used for transferring data from the
tertiary memory to the disk cache. The number
of processes of such type is equal to the number of
drive controllers present in the tertiary memory
device. This way it is possible to employ all
the drives of the tertiary memory in parallel for
transferring data. Submitting multiple requests
to multiple drives this way also help hide some
of the latency of media load/unload operation |
when one drive is transferring data, the robot arm
is free and can be employed for switching media
on some other drive.

� A second set of slave backends is used for
executing the subqueries on data that is cached
on magnetic disks. Since these processes work
concurrently with the data-transfer processes I/O
on tertiary memory can be e�ectively overlapped
with query execution. The number of backends
employed for running queries is �xed based on
the number of users submitting queries to the
scheduler.

Implementation Status Two tertiary memory de-
vices, a Sony optical jukebox and an HP magneto-
optical jukebox have already been interfaced with

postgres. Initial estimates with the prototype yield
dramatically faster performance compared to process-
ing queries using conventional techniques.

5 Future Work

5.1 Extending the query processing

architecture

The architecture described so far has a number of
limitations when we try to use it for general query
processing. These problems along with the proposed
solutions are listed below.

� Redundant processing: Although breaking queries
into independent subqueries is favorable for re-
ducing I/O costs to tertiary memory, we may pay
higher processing cost for some queries. E.g., for
a hash join, if the probe relation is broken into
n fragments, then for each probe fragment the
hash table has to be built n times. To reduce
this overhead, when the scheduler tries to select
a subquery from the disk cache for execution, it
tries to combine subqueries that share computa-
tion. This will be treated as a part of the general
multiple query optimization to be handled by the
scheduler.

� Result ordering: For some queries the order
of the result tuples is important and executing
subqueries independently is not possible. One
solution to this problem is to partition the query
into subqueries based on ranges of values chosen
to �t in the disk cache and execute these queries
one after another. The other approach is to use
the earlier method of executing as independent
subqueries but store the result of each subquery
in a temporary �le to be sorted at the end.
These two approaches, along with others, will
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be evaluated for their e�cacy in running ordered
queries.

� Unknown data requirement: For some query
processing methods it is not possible to know all
the fragments required by a query in advance.
Such queries need to be executed in multiple
phases. For instance, when doing a select on
a relation with one of the attributes a large
object (stored as another fragment), we �rst
do a select on the base relation, get a list of
large objects to be fetched and fetch them in
any order in the second phase. Similarly, for
unclustered index scans with low selectivity, it
might be very wasteful to fetch all the fragments
of the relation before scanning the index tree(s).
This problem can again be solved by two-phase
execution. In the �rst phase, the scheduler is
asked to fetch only the index tree(s). In the
second phase, the index tree(s) are scanned and
only fragments found to contain qualifying tuples
are scheduled for fetching. Another solution to
the unclustered index scan problem is to maintain
two-tier indexing as suggested in [3].

5.2 Evaluating alternative approaches

So far we have assumed that the database system has
full control of the tertiary memory and is the only
application using it. This may not be true in many
existing systems. Managing massive storage systems
is expensive; hence these systems are usually shared
by many applications. We intend to evaluate the
applicability of the optimization techniques when a
database system is just one of the clients of the �le
system managing the tertiary memory instead of the
sole user of it. Getting good performance in such a
con�guration may still be possible, but the �le system
has to be extended to provide some additional facilities
and hooks used by the database system. Some of
the features that are desirable for enabling e�cient
operation of the database system are listed below.

� The database system should be able to know the
layout of its relation on tertiary memory | for
instance the �le system should be able to tell the
database what part of a relation resides on what
storage media and if the storage media is tape,
what is the seek overhead involved in accessing
the �rst byte of the fragment.

� The storage system should be able to provide
estimates of a few cost parameters of the ter-
tiary storage device e.g., the time needed to
load/unload a storage unit, the data transfer rate

and the seek cost.

� The database system should be able to reserve a
few drives for its own use and should be able to
dictate what storage unit should be loaded next
and the duration for which it should be loaded.

� The database system should be able to control
what fragments should be evicted from the disk
cache and should be able to infer the total space
available to it for caching on the disk cache.

6 Conclusions

In this paper we �rst presented the limitations of the
current options available to a user for accessing data
stored on a tertiary storage system. We then presented
the design of a database system that is optimized
for accesses to a tertiary storage system. The main
features of the system can be summarized as follows:

� We take a more uni�ed and aggressive approach
to reducing I/O on tertiary memory. Our system
consists of a centralized scheduler that knows
about the state of the tertiary memory, the disk
cache and the queries present in the system. The
scheduler then submits queries for execution and
controls the caching from the disk to the tertiary
memory in a globally optimal fashion.

� We used the notion of a fragment to reveal the
layout of the relation on tertiary memory to the
query optimization and cache management mod-
ules. Data is moved to and from the disk cache
and the tertiary memory in units of fragments.
This avoids small random I/Os, common in many
conventional query execution methods thereby
dramatically improving the performance of ter-
tiary memory.

� We further optimize tertiary memory I/O costs
by carefully scheduling the order in which these
fragments are fetched from tertiary memory and
evicted from the disk cache. We developed a
fragment fetch policy that performs well under
a wide range of tertiary memory characteristics,
workload types, cache sizes and system load
and adapts dynamically to changes in these
parameters. These policies import a few model
parameters for each tertiary memory device and
are thus designed to be portable across a wide
variety of tertiary memory devices.

We are in the process of extending the postgres

database system to handle the new cache management
and query optimization strategies. Our next project
is to extend the model so as to handle multi-way
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joins and sort-merge joins and design the multiple
query optimizer. Finally, although the simulation has
given us useful insights into performance optimization
of tertiary memory, we would like to measure the
performance of this new architecture on real-life
workloads.
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