EFFICIENT EVALUATION OF EXPRESSIONS IN A RELATIONAL ALGEBRA

Robert M.

Pecherer

Department of Electrical Engineering and Computer Sciences

and the Electronics

Research Laboratory

University of California, Berkeley, California 94720
(415) 454-5427

The retrieval of information from a relational data base is treated as the evaluation of relation-defining

expressions in an algebra over the data base relations.
advantages over previously defined relational algebras.
a wide variety of storage structures. An algorithm for

schema for a large and important class of expressions is derived.

An algebra is introduced that offers computational

A very general storage model is assumed which admits
O(nlogyn) division is described, and a rapid evaluation
Finally, techniques are explored for tran-

lating an algebraic expression into an equivalent expression that is inherently "quicker" to evaluate.

I. INTRODUCTION

In a relational data base system, the user logically
views large quantities of formatted data as stored

in time-varying, finite relations of assorted de-
grees. Updates to and retrievals from his collection
of data are often specified in a descriptive, non-
procedural language such as DSL-ALPHA [1], SEQUEL
[2], SQUARE [3], DAMAS [4], or QUEL [5]. The
physical representation of user relations and pro-
cedural solutions to non-procedural user requests

are the main problem of the system designer, and as
yet, efficient implementation techniques are largely
unexplored. The presence of multiple users, multiple
views and security and integrity constraints com-
plicate the problem and are not discussed. Here,

we consider only the formation of response relations
(retrievals), so that the time-varying nature of

the data base is ignored.

At present, there are three main approaches to the
decomposition of non~-procedural retrievals:

(1) Iterative decomposition by tuple subsitution {[5].
In the retrieval statement, the tuples of one
relation are substituted to produce one or more
simpler statements with data values replacing
variables. By repeated application, all varia-
bles are removed and the statements can be
directly processed. This approach is further
discussed in [4, 5, 6].

(2) Translation to an algebraic expression employing
relational operators on the data base relations.
By implementing the operators, the expression is
evaluated to produce the response relation.
This suggestion is pursued in [7, 8].

(3) Compilation to a set of procedures in a hier-
archical or network-oriented language. This

approach is followed in DIAM [9].

The first method has been implemented in the INGRES
[5, 6] project at Berkeley. The third approach has
been proposed by Senko [9] and by Tsichritzis [10].
The feasibility of the second approach has been
demonstrated with a translator from the non-proce-
dural language ALPHA to a relational algebra by

Codd [7], and an APL implementation of this algebra
by Palermo [8). This paper investigates efficiency
considerations for the second approach, building on
Palermo [8]. Results are applicable to algebraic ex-
pressions generated by the Codd Reduction Algorithm
(CRA) [7] and to algebraic expressions in general.
The reader is assumed to be familiar with [7], espe~
cially the CRA and the retrieval language ALPHA.

We are concerned here with 2 factors:
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(i) efficient implementation procedures for the
operators of a relational algebra, and

(ii) translation of algebraic expressions to
equivalent algebraic expressions which are
inherently "quicker" to evaluate.

The paper is divided into 4 sections. The first
introduces definitions and terminology, and describes
the relational algebra whose implementation we study
here. The second discusses techniques for the effi-
cient implementation of this algebra; results are
presented for arbitrary algebraic expressions and for
the class of expressions produced by the CRA. The
third describes a number of efficiency results obtain-
able by translation to equivalent expressions, and
the last section offers a summary and conclusion.

II. DEFINITIONS AND TERMINOLOGY FOR A RELATIONAL
ALGEGRA

The definitions and terminology are similar to Codd
{1, 7, 11, 12]. The relational algebra defined here
is derived from [7], but employs fewer, more powerful
operators; the differences will be noted.

Relations

A domain D is set; a domain is simple if its members
are not themselves sets. Let Dl""’Dn be domains.

D is a subset of the

l,..., o

Cartesian Product Dlx...XDn

n-nary relation or relation
of R are called n-tuples or
an n-tuple, r{i] designates
ith artribute of r, for 1 <

A relation R over D
and is said to be an

of degree n. The members

simplz tuples. If r is
the i h domain value or
i<n. If A= al,..,ak

is a list of integers such that 1 5-aj <n for

j 1,...,k, then A is a domain identifying list for
any n-nary relation, and r[A] designates the k-tuple

(r[al],...,r[ak]). If r is an n-tuple and s an m~

tuple, ¥ Sdesignates the ntm~tuple (r[l],...r[nl,s[1],
...y,s[m]). A relation is first-normal or normal if
each of its domains is simple. All relations con-
sidered here are assumed to be normal. In the sequel,
deg(R) denotes the degree of relation R; the size of
a relation is the number of tuples it contains.

A Relational Algebra

Any relational algebra consists of operators which
map relations or pairs of relations to relations, and
a set of relations closed under the operators. The
following definitions apply only to normal relations.
Note that tuple attributes are identified by position.



Definition (2.1) Let L be a domain identifying list
for relation R. The projection ﬂL(R) is defined

by:
nL(R) = {r{L): r € R}.

pefinition (2.2) Let R and S be relations of degree
n and m respectively. The product R*S is a set
of ntm-tuples defined by:
R*s = {fs: r ER A s €5},

Definition (2.3) Let R and S be relations, and r
and s tuple variables for R and S respectively.
Let f be a 0-1 function specified as a Boolean
combination of terms of the form

x8y

where 8 is one of {=, #, <, <, >, >}, and each x
and y 1s an arithmetic expression involving tuple
attributes r{i] and s[j], simple functions (such
as log, sin, etc.) of attributes, and constants.
The joii R[f]S is the set of tuples in R*S for
which the function f is equal to "1." e.g.,
R[f]S = {f5: r€ERAsE SN f(r,s) = 1},

In (2.3), the symbols "r" and "s" always refer to the

left and right operands respedtively in the binary

join; this is simply a syntactic convenience.

pefinition (2.4) Let R be a relation, r a tuple
variable for R, and g a Boolean function such as
"f" in join, but referencing only attributes of r.
The restriction R[g)] is the set of tuples in R
for which g is equal to "1,"
Rlgl = {r: r € RAg(xr) = 1].

Definition (2.5) Let R and S be relations of degree
n and m respectively; let A and B be domain iden-
tifying lists for R and S respectively, both of
length k<n and both without repetition. Let A be
a domain identifying list for R complementary to A
and in increasing order (viz. n=5, A=1,4,3 then
A=2,5). The division R[A:B]S designates a subset
of n-k~tuples in mK(R) as follows:

R[AB]S = {r[A]: r € RAVs € sqr' €R
[r[E] = r'[E]IA ' {A] = s[B]]}

A more revealing definition and numerous examples of
division are given in [7); a minor difference is that
in our definition, when S is vacuous, R[A*B]S = HX(RL

whereas in Codd's, R[A“B]S is the empty relation. A
third possibility is to make division by a vacuous
relation undefined. Our definition is more consist-
ent with the intended correspondence between division
in the algebra and testing for universal quantifica-
tion in a first-order predicate calculus (see [7, 8]
for a discussion). For our purposes, algebraic
expressions are assumed to be over non-empty
relations, so that the difference in definition is

of no concern.

Comparing the above definitions to Codd's Relational
Algebra [7], projection and product are identical,
as is division when the divisor relation is mon-empty.
For join and restriction, Codd's notation is such
that the only Boolean functions allowed are conjunc-
tions of 6-comparisons of attribute values, with all
8's the same. Our definitions are motivated by the
belief that the relations of an implemented system
will reside in a slow secondary memory, and the in-
put of tuples from R and S to form R[f]S (or from
just R to form R{g]) is expected to be more time-
consuming than application of the function f (or g).
So that the retrieval of (say)

iFs: rer Ase s (el11=s[1]"/ r[21#s12]))

may be expected to proceed more quickly by evaluating
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R[r[1] = s[1] \/r[2] # s[2]]s
than by evaluating
R{r[1]) = s[1]]S and R[r[2] # s{2]1S

and forming their union.
for restriction.

A similar argument applies

Codd's algebra includes the set operations of union,
intersection and relative complement; the following
identities indicate that the latter 2 are not
necessary:

(2.6) ROs=m  (RIr[1] = s[1]A...
A r[n] = s[nlls)
(2.7) R ~8 = (R[r[1l] # s[1lv...Vr[n] # s{n]l1S)
[n+1,...,2n:1,...,n}S
where deg(R) = deg(S) = n and S is non-empty

Union cannot be obtained from the other operators
since it produces relations with domains which are
supersets of the operand relation domains, and none
of the other operators can achieve this. Allowing
disjunctions in the definitions of the Boolean
functions "f" and "g" (for join and restriction)
eliminates the primary need for union. If the union
of two compatible relations must be formed, we pre-
sume this to take place external to the algebra;
implementation of union will not be discussed.

The five operators defined here are not a mipnimal set
since

(2.8) R*S = R[r[1] = s[1] V r[1] # s[1]]S, and
(2.9) Rlgl = wl,...’n(R[r[l] = g{1llA...
Arin] = s[nl/ glR)
where deg(R) = n.

No computational advantage is indicated by eliminating
product and restriction operators, and in fact, imple-
mentation of restriction of a relation by a projection
of a join of the relation with itself is probably a
poor idea.

In the next section, a storage framework for relations
and time approximations for evaluation of the opera-
tors are introduced. A fast way to perform division
is derived, and a very fast evaluation technique for
an important class of algebraic expressions is
demonstrated.

III. EFFICIENCY IN THE IMPLEMENTATION OF RELATIONAL
OPERATORS

In this section, we proceed as if our only goal is
the evaluation of syntactically correct expressions
in the relational algebra over a fixed set of stored

data base relations R,,...,R_ of sizen,,...,n .
1 P 1 P

Correct evaluation of each operator requires examina-
tion of every tuple of each operand relation, however,
since a relation is a set with no specified order
properties, the order in which tuples are examined is
of no logical consequence to the result. For the
evaluation of certain operators, the retrieval order
of tuples in the operand relation(s) can affect the
time required. To demonstrate this, we make the
following assumptions:

(3.1) All relations (data base, intermediate, result)
are maintained in a slow secondary memory as
tables of tuples; the order in which they are
stored is the only order in which they can be

retrieved.



(3.2) All tuples of a relation are encoded in a
fixed-length field. The time required to
retrieve every tuple of a single relation is
proportional to its size.

(3.3) Application of Boolean functions to tuples is
performed in primary memory by a single
processor in an amount of time which is in-
significant compared to the input time for
the operand relations or the output time for

the result.

We are concerned with the relative efficiency of
evaluating the operators for different retrieval
orders. We approximate the amount of time required
as a function of the size of the operands. When the
time is specified as "0(f(n))," this indicates that
the actual time T(n) is proportional to f(n), or
equivalently,

(3.4) lim T()/f(n) =

>

where K is a proportionality constant (nonzero).

The evaluation of Ri[g] requires time O(ni) since

every tuple of Ri must be retrieved for testing with
g. The evaluation of Ri*Rj requires time O(ni*nj)

since ni*n, tuples must be output. We assume that

evaluation of Ri[f]R also requires time O(ni*nj)

]

since every tuple of R *Rj must be formed and tested

i
by f. These values are independent of the retrieval
order of the operand relations except for certain
simple Boolean functions which do not concern us here
We are concerned with projection and division, for
which different (known) storage orders require dif-

ferent evaluation times.

The evaluation of nL(Ri) (when L is not a permutation

of the sequence "1,...deg(Ri)") is complicated by the
fact that the result is a set without duplicate
If it is known that R

tuples. is sorted on the

i

domains of L, all tuples r in R, with the same value

i
of r[L] appear sequentially when Ri is retrieved.

The storage of duplicate tuples can be avoided with
comparisons between consecutively retrieved tuples
(not by scanning all previously stored tuples), so
in this case, ﬂL(Ri) can be evaluated in time O(ni).

The best method we have found for evaluating WL(Ri)

when R, is unsorted is by a simultaneous sort-and-

i
project procedure that eliminates domains not in L
and duplicate tuple values. This method is dominated
by the sorting time which we take to be O(nilogzni)

(see Knuth [13], pp. 361-376).
assumptions, we have that:

(3.5)

Under the given

nL(Ri) can be evaluated in time O(ni) if each

subset of R, with the same projection r[L] is

i
consecutively retrievable.

The amount of time to evaluate Ri{Ar'B]R.j depends not
only on n, and “j’ but also on the size of the result.

In the following derivation, we assume n 3_nj, and

i
that s[B] assumes nj distinct values as s ranges over
R,-
3

From the definition, we have that for each r in Ri:
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(3.6) r[Al€ Ri[A%B]Rj /s € R, 3 r' € R, [r[A)
= ' [A]A r'[A] = s[B])
(3.7) r[a] ¢ Ri[AeB]Rj «3 s€E RJ.\/r' e Ri[r[K]

# r' A1V r'[A] # s[B]]
To verify the condition on the right hand side (rhs)
of (3.6) requires time nj*O(ni) since there are n,
tuples in Rj’ and it requires time O(ni) to find r
in Ri'
requires time O(ni) since every tuple of Ri must be

checked. If m is the size of the result, m is
bounded from below by 0 and above by ni/nj since

To verify the condition on the rhs of (3.7)

for each t in the result, there must be nj tuples

ZyseeesZy in Ri with z fK] = [K]
these tupies cannot satisfy the necessary condition
for any other t' in R [A+ B]R This yields the time
approximation:

(3.9) m*nj*O(n Y+ (n —m)*O(n )
for the total evaluation, whlch is O(n ) over the

t, and

range of m. Clever programming can produce smaller
values for K in (3.4) for division, but the O(ni)

approximation is valid.

When it is known that R; is sorted on A, A and R.j on
B, then for each t in Ri[A%B]Rj, (at least) nj con-
4 Will have z[A] =

t, and within this subset, the nj tuples that satis-

secutively retrievable tuples in R

in the rhs of (3.6) will appear in
The fol-

fy the role of r'
the same order as the nj tuples of Rj'

lowing example illustrates this:

(3.9) Example: Ri[2,3%1,2]Rj
(unsorted R,, R.)
1 J
R 1 2 3 R, 1 2
i = = = % = £
A X 1 z 3
o} 4 3 X 1
B 2 3
c X 1
A Z 1
A Z 3
B X 2
B Z 1
(Ri sorted on 1,2,3; Rj sorted on 1,2)
Ri Rj

N M
W N

QOO WEE B> |k
NP NN}M NNX N
WH WHN WFEP W

Having achieved this arrangement of the operand
relations, evaluation of Ri[A%B]Rj can be performed

with a sequential scan of R, since no tuple of Ri

i
has to be compared to more than one tuple of Rj'

The cost of sorting both Ri and Rj is O(nilogzni)



since ni > nJ, and since the division can then be
performed in O(n }, the total time is O(n 1°g2ni)’
i and Rj.

For an arbitrary algebraic expression, this technique
and the sort-project technique for projection guar-
antee that any projection or division can be
evaluated in time O(nlogzn) where n is the size of

the projected or divided relation. And under the
given assumptions, we also have that:

(3.10) Ri[A*B]Rj can be evaluated in O(ni) if each

which is superior to O(n ) for unordered R

subset of Ri with the same projection r[A]

is consecutively retrievable, and the tuples
of each subset are retrievable in the same
order as the tuples of Rj.

For an important class of algebraic expressions
involving projections and divisions, the conditions
in (3.5) and (3.10) can be achieved in the inter-
mediate results of evaluation at no extra cost. The
Codd Reduction Algorithm (CRA) generates the class
from a restricted set of ALPHA expressions (see [7]
for details of the CRA and ALPHA); the general form
is:

*, %
(3.11) ﬁL(Gk+l(...Gk+ ((Rl - Rk+q)[g])"'))
in which G (X) is either the projection
L (x)
l""mkﬁj

or the division

X[mk+j+l""’mk+j+1 * l,...,deg(Rk+j)]Rk+j

where mi = deg(Rl) + ... + deg(Ri_l).

We refer to such expressions as "CRA~expressions."
Suppose the evaluation is performed by producing
TO,...,Tq,W where:

T, = (Rl*...*Rk*...*Rk+q)[g]
Ty = Giag (Tp)

Tq = Gk+1(Tq-1)

W = ﬂL(Tq) .

; i = R k., . *
When g is identically true, Ti R1 cee Rk+q—i for

= R %, , . %
a-3+1 = R MRy
is generated as

i=0,...,q; each Gk+j produces T

k., %
Rl e Rk+j' 1f TO

R.*...%R )% * *

( 1%ee Rk) (Rk 1 (Rk 2 (...(Rk )))) ,then for every
€ = R.k,,.% *

t Tl R1 . Rk 10 the subset t Rk appears

from T _

sequentially in T,., so the conditions in (3.5) are

0
met; if Rk+q is unaltered, the conditions in (3.10)

are also met. can then be applied to T

Gk+q 0 in
time proportional to its size. If Rk+q—l is un-
altered and the tuples of Tl are stored in the order

that the tuples of T, are sequentially scanned, T

0
meets the conditions also, so again,

1

Gk+q—l can be

applied in time proportional to the size of T

lebq-1" "+ Bk
such projection or division can proceed in time
proportional to the size of the operand. When g is

1

Repeating the procedure for G 1’ each
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any Boolean function, the same argument applies to
* % *x, %
subsets of R1 ‘e Rk+q""’R1 e Rk+1’ so that

again, the projections and divisions proceed quickly.
Only for the last projection "W = = (T )" can the
condition in (3.5) fail.

The importance of this technique is that 0(n) pro-
cedures for every division and projection (except the
last) are available without any rearrangement of the
data base relations. The CRA-expressions can
represent complex queries over many relations; rapid
evaluation is critical to the performance of the
entire system.

IV. EFFICIENCY BY TRANSLATION TO AN EQUIVALENT
EXPRESSION

Complex queries to an information retrieval system
are so time-consuming that even if they represent a
small fraction of the total queries, their effect
could seriously degrade the response time for simpler
requests, Examination of the general CRA-expression
*, %
4.1) ‘nL(Gk+1(...Gk+q((R1 ces Rk+q)[g])"'))
indicates 2 reasons why complex queries require so
much time:

k. % i -

(i) The product relation R1 .o Rk+q is ex
ceedingly large, perhaps too large to be
stored in secondary memory.

(ii) The restriction "g" and each projection and

division require at least a sequential scan
of every tuple left by the application of the
previously applied operators.

The previous section discussed operator implementa-
tion; in this section, properties of the operators
are exploited to produce equivalent expressions
which reduce the size of the product space and
eliminate certain projections and divisions. The
translation of an expression to a more easily eval-
uated expression is expected to proceed mechanically,
but guided by accumulated statistics on the data base
relations and previous evaluations, and possibly with
user interaction. This work was stimulated by
Palermo [8].

Palermo [8] has shown that in (4.1),

(4.2) For 1 < i < k, any domain of Ri not referenced
in "L" or "g" can be projected out prior to
evaluation without affecting the result.

(4.3) For k < i < k + q, any domain of Ri not

"g" can similarly be projected

is a projection and not a

referenced in
out provided G

division. i
This allows us to rewrite (4.1) as

(4.4) L'(Gk+1("'G (OY (R ) S .

ane))

by (e (8

where each projection LI

in R

(Rl) eliminates domains
i in accordance with (4.2) and (4.3), and L',
\ \] : s
Gk+ and g' are derived from L, Gk+j and g in (4.1)
to reflect the altered positions of the relevant
domains. The new expression (4.4) requires less
space to evaluate, but the time to perform projec-

tions indicates that this transformation should be
used cautiously.
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