
Learning and Verifying Quantified Boolean Queries by
Example

Azza Abouzied∗, Dana Angluin∗, Christos Papadimitriou∗∗,
Joseph M. Hellerstein∗∗, Avi Silberschatz∗
∗Yale University, ∗∗ University of California, Berkeley

azza@cs.yale.edu, angluin@cs.yale.edu, christos@cs.berkeley.edu,
hellerstein@cs.berkeley.edu, avi@cs.yale.edu

ABSTRACT
To help a user specify and verify quantified queries — a
class of database queries known to be very challenging for
all but the most expert users — one can question the user on
whether certain data objects are answers or non-answers to
her intended query. In this paper, we analyze the number of
questions needed to learn or verify qhorn queries, a special
class of Boolean quantified queries whose underlying form is
conjunctions of quantified Horn expressions. We provide op-
timal polynomial-question and polynomial-time learning and
verification algorithms for two subclasses of the class qhorn
with upper constant limits on a query’s causal density.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages—query lan-
guages; I.2.2 [Artificial Intelligence]: Automatic Pro-
gramming—program synthesis, program verification; I.2.6
[Artificial Intelligence]: Learning—concept learning

Keywords
quantified boolean queries, qhorn, query learning, query ver-
ification, example-driven synthesis

1. INTRODUCTION
It’s a lovely morning, and you want to buy a box of choco-

lates for your research group. You walk into a chocolate store
and ask for “a box with dark chocolates — some sugar-free
with nuts or filling”. However, your server is a pedantic lo-
gician who expects first-order logic statements. In response
to your informal query he places in front of you a hundred
boxes! Despite your frustration, you are intrigued: you open
the first box only to find one dark, sugar-free chocolate with
nuts and many other varieties of white chocolates that you
didn’t order. You push it aside, indicating your disapproval,
and proceed to the second. Inside, you are wondering: Is
there hope that I can communicate to this person my needs
through a sequence of such interactions?

Everyday, we request things from each other using infor-
mal and incomplete query specifications. Our casual inter-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2066-5/13/06 ...$15.00.

actions facilitate such under-specified requests because we
have developed questioning skills that help us clarify such
requests. A typical interlocutor might ask you about cor-
ner cases, such as the presence of white chocolates in the
box, to get to a precise query specification by example. As
requesters, we prefer to begin with an outline of our query
— the key properties of the chocolates — and then make
our query precise using a few examples. As responders, we
can build a precise query from the query outline and a few
positive or negative examples — acceptable or unacceptable
chocolate boxes.

Typical database query interfaces behave like our logi-
cian. SQL interfaces, for example, force us to formulate
precise quantified queries from the get go. Users find quan-
tified query specification extremely challenging [2, 13]. Such
queries evaluate propositions over sets of tuples rather than
individual tuples, to determine whether a set as a whole sat-
isfies the query. Inherent in these queries are (i) the grouping
of tuples into sets, and (ii) the binding of query expressions
with either existential or universal quantifiers. Existential
quantifiers ensure that some tuple in the set satisfies the ex-
pression, while universal quantifiers ensure that all tuples in
the set satisfy the expression.

To simplify the specification of quantified queries, we built
DataPlay [2]. DataPlay tries to mimic casual human inter-
actions: users first specify the simple propositions of a query.
DataPlay then generates a simple quantified query that con-
tains all the propositions. Since, this query may be incorrect,
users can label query results as answers or non-answers to
their intended query. DataPlay uses this feedback on ex-
ample tuple-sets to fix the incorrect query. Our evaluation
of DataPlay shows that users prefer example-driven query
specification techniques for specifying complex quantified
queries [2]. Motivated by these findings, we set out to answer
the question: How far can we push the example-driven query
specification paradigm? This paper studies the theoretical
limits of using examples to learn and to verify a special sub-
class of quantified queries, which we call qhorn, in the hope
of eventually making query interfaces more human-like.

1.1 Our contributions
We formalize a query learning model (§2) where users

specify propositions that form the building blocks of a
Boolean quantified query. A learning algorithm then asks
the users membership questions: each question is an example
data object, which the user classifies as either an answer or
a non-answer. After a few questions, the learning algorithm
terminates with the unique query that satisfies the user’s

49



responses to the membership questions. The key challenge
we address in this paper is how to design a learning algo-
rithm that runs in polynomial time, asks as few questions
as possible and exactly identifies the intended query.

We prove the following:

1. Learning quantified Boolean queries is intractable: A
doubly exponential number of questions is required (§2).
Within a special class of quantified Boolean queries
known as qhorn (§2.1), we prove two subclasses are
exactly and efficiently learnable: qhorn-1 (§2.1.3) and
its superset role-preserving qhorn (§2.1.4) with constant
limits on causal density (Def. 2.6).

2. We design an optimal algorithm to learn qhorn-1 queries
usingO(n lgn) questions where n is the number of propo-
sitions in a query (§3.1).

3. We design an efficient algorithm to learn role-preserving
qhorn queries using O(kn lgn+nθ+1) questions where k
is query size (Def. 2.5), and θ is causal density (§3.2).

We also formalize a query verification model where the user
specifies an entire query within the role-preserving qhorn
query class. A verification algorithm then asks the user a
set of membership questions known as the verification set.
Each query has a unique verification set. The verification
algorithm classifies some questions in the set as answers and
others as non-answers. The query is incorrect if the user
disagrees with any of the query’s classification of questions
in the verification set. We design a verification algorithm
that asks O(k) membership questions (§4).

2. PRELIMINARIES
Before we describe our query learning and verification al-

gorithms, we first describe our data model — nested rela-
tions — and the qhorn query class.

Definition 2.1. Given the sets D1, D2, ..., Dm, R is
a relation on these m sets if it is a set of m-tuples
(d1, d2, ..., dm) such that di ∈ Di for i = 1, ...,m. D1, ..., Dm
are the the domains of R.

Definition 2.2. A nested relation R has at least one
domain Di that is a set of subsets (powerset) of another
relation Ri. This Ri is said to be an embedded relation of
R.

Definition 2.3. A relation R is a flat relation if all its
domains D1, ..., Dm are not powersets of another relation.

For example, a flat relation of chocolates can have the
following schema:

Chocolate(isDark, hasFilling, isSugarFree,

hasNuts, origin)

A nested relation of boxes of chocolates can have the fol-
lowing schema:

Box(name, Chocolate(isDark, hasFilling,

isSugarFree, hasNuts, origin))

In this paper, we analyze queries over a nested relation with
single-level nesting, i.e. the embedded relation is flat. The
Box relation satisfies single-level nesting as the Chocolate

relation embedded in it is flat. To avoid confusion, we refer
to elements of the nested relation as objects and elements

of the embedded flat relation as tuples. So the boxes are
objects and the individual chocolates are tuples.

Definition 2.4. A Boolean query maps objects into ei-
ther answers or non-answers.

The atoms of a query are Boolean propositions such as:

p1 : c.isDark, p2 : c.hasFilling,
p3 : c.origin = Madagascar

A complete query statement assigns quantifiers to expres-
sions on propositions over attributes of the embedded rela-
tion. For example:

∀c ∈ Box.Chocolates (p1) ∧
∃c ∈ Box.Chocolates (p2 ∧ p3)

(1)

A box of chocolates is an answer to this query if every
chocolate in the box is dark and there is at least one choco-
late in the box that has filling and comes from Madagascar.

Given a collection of propositions, we can construct an
abstract Boolean representation for the tuples of the nested
relation. For example, given propositions p1, p2, p3, we
can transform the chocolates from the data domain to the
Boolean domain as seen in Figure 1.

 
 

 Box  origin
 isSugar

 Free
 is

 Dark
 has
 Filling

 has
 Nuts

 Global
 Ground

 Madagascar  1  1  1  0

 Belgium  1  0  0  1

 Germany  1  1  1  1

 Europe’s
 Finest

 Belgium  1  1  0  0

 Belgium  0  1  0  1

 Sweden  0  1  1  1

Box 
(S) 

p
1
:is 

Dark 

p
2
: 

has 
Filling 

p
3
: origin = 

Madagascar 

x
1
 x

2
 x

3
 

S
1
 

1 1 1 

0 0 0 

1 1 0 

S
2
 

1 0 0 

1 1 0 

Figure 1: Transforming data from its domain into a
Boolean domain.

Thus, each proposition pi is replaced with a Boolean vari-
able xi. We rewrite the Boolean query (1) as follows:

∀t ∈ S (x1) ∧
∃t ∈ S (x2 ∧ x3)

where S is the set of Boolean tuples for an object. This
Boolean representation allows us to create learning and ver-
ification algorithms independent of the data domain or of
the actual propositions that the user writes.

To support this Boolean representation of tuples, how-
ever, we assume that (i) it is relatively efficient to con-
struct an actual data tuple from a Boolean tuple and that
(ii) the true/false assignment to one proposition does not
interfere with the true/false assignments to other proposi-
tions. The propositions pm : c.origin = Madagascar and
pb : c.origin = Belgium interfere with each other as a
chocolate cannot be both from Madagascar and Belgium:
pm → ¬pb and pb → ¬pm.

With three propositions, we can construct 23 possible
Boolean tuples, corresponding to the 23 possible true or false
assignments to the individual propositions, i.e. we can con-
struct 8 different chocolate classes. With n propositions, we
can construct 2n Boolean tuples.

There are 22n possible sets of Boolean tuples or unique
objects. With our three chocolate propositions, we can con-
struct 256 boxes of distinct mixes of the 8 chocolate classes.

50



Since, a Boolean query maps each possible object into an

answer or a non-answer, it follows that there are 222
n

dis-
tinguishable Boolean queries (for n = 3, about 1077). If
our goal is to learn any query from n simple propositions
by asking users to label objects as answers or non-answers,
i.e. asking membership questions, then we would have to

distinguish between 222
n

queries using Ω(lg(222
n

)) or 22n

questions.
Since this ambitious goal of learning any query with few

membership questions is doomed to fail, we have to constrain
the query space. We study the learnability of a special space
of queries, which we refer to as qhorn.

2.1 Qhorn
Qhorn has the following properties:

1. It supports if-then query semantics via quantified Horn
expressions: ∀t ∈ S (x1 ∧ x2 → x3). A Horn expression
has a conjunction of body variables that imply a single
head variable. The degenerate headless Horn expression
is simply a quantified conjunction of body variables (∃t ∈
S(x1 ∧x2)) and the degenerate bodyless Horn expression
is simply a single quantified variable (∀t ∈ S(T→ x1) ≡
∀t ∈ S(x1)).

2. It requires at least one positive instance for each Horn
expression via a guarantee clause. Thus, we add the
existential clause ∃t ∈ S (x1 ∧ x2 ∧ x3) to the expression
∀t ∈ S (x1 ∧ x2 → x3) to get a complete query. Note
that the expression ∃t ∈ S (x1 ∧ x2 → x3) is implied by
its guarantee clause ∃t ∈ S (x1 ∧ x2 ∧ x3).

We justify the naturalness of guarantee clauses with the
following example: consider a user looking for a box
of only sugar-free chocolates. Without the guarantee
clause, an empty box satisfies the user’s query. While
such a result is logical, we contend that most users would
not consider the result as representative of sugar-free
chocolate boxes.

3. It represents queries in a normalized form: conjunctions
of quantified (Horn) expressions.

We use a shorthand notation for queries in qhorn. We
drop the implicit ‘t ∈ S’, the ‘∧’ symbol and the guarantee
clause. Thus, we write the query

∀t ∈ S (x1 ∧ x2 → x3) ∧ ∃t ∈ S (x1 ∧ x2 ∧ x3)∧
∀t ∈ S (x4) ∧ ∃t ∈ S (x4) ∧ ∃t ∈ S (x5)

as ∀x1x2 → x3 ∀x4 ∃x5.

2.1.1 Qhorn’s Equivalence Rules

R1 The query representation ∃x1x2x3 ∃x1x2 ∃x2x3 is
equivalent to ∃x1x2x3. This is because if a set con-
tains a tuple that satisfies ∃x1x2x3, that tuple will also
satisfy ∃x1x2 and ∃x2x3. An existential conjunction
over a set of variables dominates any conjunction over
a subset of those variables.

R2 The query representation ∀x1x2x3 → h ∀x1x2 →
h ∀x1 → h is equivalent to ∀x1 → h ∃x1x2x3 → h.
This is because h has to be true whenever x1 is true
regardless of the true/false assignment of x2, x3. Thus
a universal Horn expression with body variables B and

head variable h dominates any universal Horn expres-
sion with body variables B′ and head variable h where
B′ ⊇ B.

R3 The query representation ∀x1 → h ∃x1x3 is equivalent
to ∀x1 → h ∃x1x3h. Again, this equivalence is because
h has to be true whenever x1 is true.

2.1.2 Learning with Membership Questions
A membership question is simply an object along with

its nested data tuples. The user responds to such a question
by classifying the object as an answer or a non-answer for
their intended query.

Given a collection of n propositions on the nested relation,
the learning algorithm constructs a membership question in
the Boolean domain: a set of Boolean tuples on n Boolean
variables x1, ..., xn — a variable for each proposition. Such a
set is transformed into an object in the data domain before
presentation to the user.

For brevity, we describe a membership question in the
Boolean domain only. As a notational shorthand, we use 1n

to denote a Boolean tuple where all variables are true. We
use lowercase letters for variables and uppercase letters for
sets of variables.

The following definitions describe two structural proper-
ties of qhorn queries that influence its learnability:

Definition 2.5. Query size, k, is the number of expres-
sions in the query.

Definition 2.6. Causal Density, θ, is the maximum
number of distinct non-dominated universal Horn expres-
sions for a given head variable h.

Conceptually, universal Horn expressions represent causa-
tion: whenever the body variables are true, the head variable
has to be true. If a head variable has many universal Horn
expressions, it has many causes for it to be true and thus
has a high causal density.

The following inequality between causal density, θ and
query size k holds: 0 ≤ θ ≤ k. We would expect users’
queries to be small in size k = O(n) and to have low causal
density θ.

A query class is efficiently learnable if (i) the number of
membership questions that a learning algorithm asks the
user is polynomial in the number of propositions n and query
size k and (ii) the learning algorithm runs in time polynomial
in n and k. Question generation needs to be in polynomial
time to ensure interactive performance. This requirement
entails that the number of Boolean tuples per question is
polynomial in n and k. A query class is exactly learnable if
we can learn the exact target query that satisfies the user’s
responses to the membership questions.

Due to the following theorem, qhorn cannot be efficiently
and exactly learned with a tractable number of questions
(even when query size is polynomially bounded in the num-
ber of propositions (k = n) and causal density has an upper
bound of one (θ = 1)).

Theorem 2.1. Learning qhorn queries where variables
can repeat r ≥ 2 times requires Ω(2n) questions.

Proof: See full version of this paper [1].
Qhorn’s intractability does not mean that we cannot con-

struct efficiently and exactly learnable qhorn subclasses. We
describe two such sub-classes:

51



2.1.3 Qhorn-1
Qhorn-1 defines certain syntactic restrictions on qhorn.

Not counting guarantee clauses, if a query has k distinct
expressions (1 ≤ k ≤ n) and each expression i has body
variables Bi and a head variable hi, such that B = B1∪ ...∪
Bk is the collection of all body variables and H = {h1, ...hm}
is the set of all head variables then the following restrictions
hold in qhorn-1:

1. Bi ∩Bj = ∅ ∨Bi = Bj if i 6= j
2. hi 6= hj if i 6= j
3. B ∩H = ∅

The first restriction ensures that different head variables
can either share the exact same set of body variables or have
disjoint bodies. The second restriction ensures that a head
variable has only one body. Finally, the third restriction
ensures that a head variable does not reappear as a body
variable. Effectively, qhorn-1 has no variable repetition: a
variable can appear once either in a set of body variables
or as a head variable. The following diagram labels the
different components of a qhorn-1 query.

!
!

! x1x2  " x4  

# x1x2  " x5  
#   x3   " x6  
 

Universal head variable 

Existential head variables 

Body variables Existential variables 

!

!

Existential variables 

Existential head variables Body variables 

Universal head variable 

# x3   " x6  # x1x2  " x5   ! x1x2  " x4  
  

!

!

Existential Horn Expressions Universal Horn Expressions 

!

Non-head variables: x1, x2, x3, x5, x6 

Body variables 

Head variable 

# x3x5x6 # x1x2x5  # x2x3x4 ! x1x2  " x4  
  !

Existential Conjunctions Universal Horn Expressions 

!

Figure 2: The different components of a qhorn-1 query.

Note that qhorn-1 queries have a maximum query size
k of n and have a causal density θ of at most one. From
an information-theoretic perspective, Ω(n lgn) membership
questions are required to learn a target query in qhorn-1 [1].

2.1.4 Role-preserving qhorn
In role-preserving qhorn queries, variables can repeat

many times, but across universal Horn expressions head vari-
ables can only repeat as head variables and body variables
can only repeat as body variables. For example, the follow-
ing query is in role-preserving qhorn

∀x1x4 → x5 ∀x3x4 → x5 ∀x2x4 → x6 ∃x1x2x3 ∃x1x2x5x6

while the following query is not in role-preserving qhorn

∀x1x4 → x5 ∀x2x3x5 → x6

because x5 appears both as a head variable and a body vari-
able in two universally quantified Horn expressions. Existen-
tial Horn expressions in role-preserving qhorn are rewritten
as existential conjunctions and variables do not have roles in
these conjunctions. Thus, existential conjunctions can con-
tain one or more head variables (e.g. ∃x1x2x5x6 in the first
query). The following diagram labels the different compo-
nents of a role-preserving qhorn query.

Both query size and causal density play a role in the be-
havior of learning and verification algorithms. Once we re-
move the syntactic restriction of variables appearing at most
once, the size of a target query instance is no longer polyno-
mially bounded in n. Thus, the complexity of learning and
verification algorithms for role-preserving qhorn queries is
parameterized by k, θ and n. We would expect user queries

!
!

! x1x2  " x4  

# x1x2  " x5  
#   x3   " x6  
 

Universal head variable 

Existential head variables 

Body variables Existential variables 

!

!

Existential variables 

Existential head variables Body variables 

Universal head variable 

# x3   " x6  # x1x2  " x5   ! x1x2  " x4  
  

!

!

Existential Horn Expressions Universal Horn Expressions 

!

Non-head variables: x1, x2, x3, x5, x6 

Body variables 

Head variable 

# x3x5x6 # x1x2x5  # x2x3x4 ! x1x2  " x4  
  !

Existential Conjunctions Universal Horn Expressions 

!

Figure 3: The different components of a role-preserving
qhorn query.

to have low causal densities and to be small in size. Provided
that θ has a constant upper bound, then we can efficiently
learn role-preserving queries.

3. QUERY LEARNING

3.1 Learning qhorn-1

Theorem 3.1. O(n lgn) questions are sufficient to learn
qhorn-1 queries in polynomial time.

Proof: The learning algorithm breaks down query learning
into a series of small tasks. First, it classifies all variables
into either universal head variables or existential variables
(Fig. 2 describes qhorn-1 terminology). Second, it learns
the body variables (if any) for each universal head variable.
Finally, it learns existential Horn expressions. We show that
each task requires at most O(n lgn) membership questions
(Section 3.1.1, Lemmas 3.2 and 3.3), thus proving that the
learning algorithm asks O(n lgn) questions.

3.1.1 Learning universal head variables
The simplest learning task is to determine whether a vari-

able is a universal head variable. Suppose we have three
variables: x1, x2, x3. To determine if x1 is the head of a uni-
versal Horn expression, we ask the user if the set {111, 011}
is an answer. By setting the other variables (x2, x3) to be
always true, we are setting all potential body variables of x1
to true. We are also neutralizing the effect of other unknown
head variables on the outcome of a membership question. If
the set {111, 011} is an answer, then we are sure that x1
is not a universal head variable because it can exist with a
false value as long as at least one tuple has a true value for
it. If the set is a non-answer, then we learn that x1 is a
universal head variable.

We need one question to determine whether a variable is
a universal head variable and we need O(n) time to generate
each question — the time to construct a set with two tuples
of size n. Thus, we learn which variables are universal head
variables, U , and which variables are existential variables,
E, in polynomial time.

3.1.2 Learning body variables of universal Horn ex-
pressions

Definition 3.1. Given a universal head variable h and a
subset of existential variables V ⊆ E, a universal depen-
dence question on h and V is a membership question with
two tuples: 1n and a tuple where h and V are false and all
other variables are true.

If a universal dependence question on h and V is an an-
swer, then we learn that a subset of h’s body variables is in
V . This is because when the conjunction of body variables
is not satisfied, the head variable can be false. We say that

52



h depends on some variables in V . If the question is a non-
answer, then we learn that h’s body variables are a subset
of E − V ; h has no body variables in V because in qhorn-1,
h can have at most one body.

The most straightforward way to learn the body variables,
B, of one universal variable is with O(|E|) = O(n) univer-
sal dependence questions: we serially test if h depends on
each variable e ∈ E. This means we use O(n2) questions to
determine the body variables for all universal variables. We
can do better.

We perform a binary search for h’s body variables in E. If
h has B body variables, we ask O(|B| lgn) instead of O(n)
questions to determine B. Suppose we have four variables
x1, x2, x3, x4 such that x1 is a universal head variable and
all other variables are existential variables. x2, x3, x4 are
potential body variables for x1. If the set {1n, 0n} is a non-
answer then x1 is independent of all other variables and it
has no body. If the set is an answer, we divide and conquer
the variables. We ask if x1 universally depends on half the
variables, {x2, x3}, with the set {1n, 0001}. If the set is a
non-answer then we eliminate half the variables, {x2, x3},
from further consideration as body variables. We know that
a body variable has to exist in the remaining half and since,
x4 is the last remaining variable, we learn the expression
∀x4 → x1. If the set {1n, 0001} is an answer, then we know
at least one body variable exists in {x2, x3} and we continue
the search for body variables in {x2, x3}, making sure that
we also search the other half {x4} for body variables.

Lemma 3.2. O(n lgn) universal dependence questions are
sufficient to learn the body variables of all universal head
variables.

Proof: Suppose we partition all variables into m non-
overlapping parts of sizes k1, k2, ..., km such that

∑m
i=1 ki =

n. Each part has at least one body variable and at least one
universal head variable. Such a query class is in qhorn-1 as
all body variables are disjoint across parts and head vari-
ables cannot reappear as head variables for other bodies or
in the bodies of other head variables.

Given a head variable hi, we can determine its body vari-
ables Bi using the binary search strategy above: we ask
O(|Bi| lgn) questions (it takes O(lgn) questions to deter-
mine one body variable). For each additional head variable,
h′i, that shares Bi, we require at most 1 lgn questions: we
only need to determine that h′i has one body variable in
the set Bi. Thus to determine all variables and their roles
in a part of size ki with |Bi| body variables and |Hi| head
variables we need O(|Bi| lgn + |Hi| × 1 lgn) = O(ki lgn)
questions. Since there are m parts, we ask a total of
O(
∑m
i=1 ki lgn) = O(n lgn) questions.

Since universal dependence questions consist of two tuples
we only need O(n) time to generate each question. Thus, the
overall running time of this subtask is in polynomial time.

3.1.3 Learning existential Horn expressions
After learning universal Horn expressions, we have estab-

lished some non-overlapping distinct bodies and their uni-
versal head variables. Each variable in the remaining set
of existential variables, can either be (i) an existential head
variable of one of the existing bodies or (ii) an existential
head variable of a new body or (i) a body variable in the
new body. We use existential independence questions to dif-
ferentiate between these cases.

Definition 3.2. Given two disjoint subsets of existential
variables X ⊂ E, Y ⊂ E,X ∩ Y = ∅, an existential in-
dependence question is a membership question with two
tuples: (i) a tuple where all variables x ∈ X are false and
all other variables are true and (ii) a tuple where all vari-
ables y ∈ Y are false and all other variables are true.

If an independence question between two existential vari-
ables x and y is an answer then either:

1. x and y are existential head variables of the same body
2. or x and y are not in the same Horn expression.

We say that x and y are independent of each other. Two
sets X and Y are independent of each other if all variables
x ∈ X are independent of all variables y ∈ Y . Conversely, if
an independence question between x and y is a non-answer
then either:

1. x and y are body variables in the same body or
2. y is an existential head variable and x is in its body or
3. x is an existential head variable and y is in its body

We say that x and y depend on each other. If sets X and
Y depend on each other then at least one variable x ∈ X
depends on one variable y ∈ Y .

Given an existential variable e, if we discover that e de-
pends on a body variable b of a known set of body variables
B, then we learn that e is an existential head variable in the
Horn expression: ∃B → e.

Otherwise, we find all existential variables D that e de-
pends on. We can find all such variables with O(|D| lgn)
existential independence questions using the binary search
strategy of Section 3.1.2.

Knowing that D depends on e only tell us that one of
the following holds: (i) A subset H of D are existential
head variables for the body of e ∪ (D − H) or (ii) e is a
head variable and D is a body. To differentiate between
the two possibilities we make use of the following rule: If
two variables x, y depend on z but x and y are independent
then z is a body variable and x, y are head variables. If we
find a pair of independent variables h1, h2 in D, we learn
that x must be a body variable. If we do not find a pair of
independent variables in D then we may assume that x is
an existential head variable and all variables in D are body
variables.

After finding head variables in D, we can determine the
roles of the remaining variables in D with |D| = O(n) inde-
pendence questions between h1 and each variable d ∈ D−h1.
If h1 and d are independent then d is an existential head
variable, otherwise d is a body variable.

Our goal, therefore, is to locate a definitive existential
head variable in D by searching for an independent pair of
variables.

Definition 3.3. An independence matrix question
on D variables consists of |D| tuples. For each variable
d ∈ D, there is one tuple in the question where d is false
and all other variables are true.

Suppose we have four variables x1, ..., x4; D = {x2, x3, x4}
and D depends on x1. {1011, 1101, 1110} is a matrix ques-
tion on D. If such a question is an answer then there is
at least a pair of head variables in D: the question will al-
ways contain a pair of tuples that ensure that each head and
the body is true. For example if x2, x4 are head variables
then tuples {1011, 1110} in the question satisfy the Horn
expressions: ∃x1x3 → x2, ∃x1x3 → x4. If at most one vari-

53



able in D is a head variable, then there is no tuple in the
matrix question where all body variables are true and the
head variable is true and the question is a non-answer. For
example, if only x4 is a head variable, then the tuple, 1111
that satisfies the Horn expression ∃x1x2x3 → x4 is absent
from the question.

Lemma 3.3. Given an existential variable x and its de-
pendents D, we can find an existential head variable in D
with O(|D| lg |D|) independence matrix questions of O(|D|)
tuples each if at least two head variables exist in D.

Algorithm 1 Get Head

x: an existential variable
D: the dependents of x, |D| ≥ 1
D1 ← D,D2 ← ∅, D3 ← ∅
while D1 6= ∅ do

if isAnswer(Ask(MatrixQuestion(x, D1))) then
if |D1| = 2 ∧D2 = ∅ then return D1

else if |D1| > 2 ∧D2 = ∅ then
Split D1 into D1 (1st half) and D3 (2nd half)

else if |D2| = 1 then return D2

else
Split D2 into D2 (1st half) and D3 (2nd half)
D1 ← D1 −D3

end if
else

if D3 = ∅ then return ∅
else if |D3| = 1 then return D3

else
Split D3 into D2 (1st half) and D3 (2nd half)
D1 ← D1 ∪D2

end if
end if

end while

Proof. Consider the ‘GetHead’ procedure in Alg. 1 that
finds an existential head variable in the set D of dependents
of variable x. The central idea behind the ‘GetHead’ pro-
cedure is if the user responds that a matrix question on D1

(D1 ⊆ D) is an answer, then a pair of head variables must
exist in D1 and we can eliminate the remaining variables
D−D1 from further consideration. Otherwise, we know that
at most one head variable exists in D1 and another exists in
D −D1 so we can eliminate D1 from further consideration
and focus on finding the head variable in D −D1.

Each membership question eliminates half the variables
from further consideration as head variables. Thus, we re-
quire only O(lg |D|) = O(lgn) questions to pinpoint one
head variable.

Then, we ask O(|D|) questions to differentiate head from
body variables in D. If we do not find head variables in |D|
then we may assume that x is a head variable and all vari-
ables in D are body variables. Once we learn one existential
Horn expression, we process the remaining existential vari-
ables in E. If a variable depends on any one of the body
variables, B, of a learned existential Horn expression, it is a
head variable to all body variables in B.

Suppose a query has m distinct existential expressions
with k1, ..., km variables each, then

∑m
i=1 ki < n. The

size of each set of dependent variables for each expression
i is ki − 1. So the total number of questions we ask is∑m
i=1

(
O(ki lgn) +O(lg ki) +O(ki)

)
= O(n lgn)

Note, however, that each matrix question has O(|D|) =
O(n) tuples of n variables each and therefore requires O(n2)

time to generate. If we limit the number of tuples per ques-
tion to a constant number, then we increase the number of
questions asked to Ω(n2) [1].

3.2 Learning role-preserving qhorn
Since some queries are more complex than others within

the role-preserving qhorn query class it is natural to allow
our learning algorithm more time, more questions and more
tuples per question to learn the more complex target queries.
One can argue that such a powerful learning algorithm may
not be practical or usable as it may ask many questions with
many tuples each. If we assume that user queries tend to be
simple (i.e they are small in size k (Def. 2.5) and have low
causal densities θ (Def. 2.6)), then such an algorithm can be
effective in the general case.

Role-preserving qhorn queries contain two types of ex-
pressions: universal Horn expressions (∀x1x2... → h) and
existential conjunctions (∃x1x2...) (Fig. 3 describes role-
preserving qhorn terminology). In this section, we show that
we can learn all universal Horn expressions with O(nθ+1)
questions and all existential conjunctions with O(kn lgn)
questions1. Since run-time is polynomial in the number of
questions asked, our run-time is poly(nk) and poly(nθ) re-
spectively. By setting a constant upper limit on the causal
density of a head variable we can learn role-preserving qhorn
queries in poly(nk) time.

We employ a Boolean lattice on the n variables of a
query to learn the query’s expressions. Fig. 4 illustrates
the Boolean lattice and its key properties. Each point in
the lattice is a tuple of true or false assignments to the vari-
ables. A lattice has n + 1 levels. Each level l starting from
level 0 consists of tuples where exactly l variables are false.
A tuple’s children are generated by setting exactly one of the
true variables to false. Tuples at l have out-degree of n− l,
i.e. they have n− l children and in-degree of l or l parents.
A tuple has an upset and a downset. These are visually il-
lustrated in Fig. 4. If a tuple is not in the upset or downset
of another tuple, then these two tuples are incomparable.

!

Levels 
0 

1 

2 

3 

n = 4 

Upset of 
0011 

Downset 
of 0011 

top 

bottom 

out-degree 

"#$degree!

Figure 4: The Boolean lattice on four variables.

The gist of our lattice-based learning algorithms is as fol-
lows:

1. We map each tuple in the lattice to a distinct expression.
This mapping respects a certain generality ordering of
expressions. For example, the lattice we use to learn
existential conjunctions maps the top tuple in the lattice

1We show lower bounds of Ω(n
θ
θ−1) for learning universal

Horn expressions and Ω(nk) for learning existential conjunc-
tions in [1]

54



to the most specific conjunction ∃x1x2...xn; tuples in
the level above the bottom of the lattice map to the
more general conjunctions ∃x1, ∃x2, ..., ∃xn (§3.2.2).
The exact details of this mapping for learning universal
Horn expressions and learning existential conjunctions
are described in the following section.

2. We search the lattice in a top-to-bottom fashion for the
tuple that distinguishes or maps to the target query ex-
pression. The learning algorithm generates membership
questions from the tuples of the lattice and the user’s
responses to these questions either prune the lattice or
guide the search.

3.2.1 Learning universal Horn expressions
We first determine head variables of universal Horn ex-

pressions. We use the same algorithm of (§3.1.1). The al-
gorithm uses O(n) questions. We then determine bodyless
head variables. To determine if h is bodyless, we construct
a question with two tuples: 1n and a tuple where h and all
existential variables are false and all other variables are true.
If the question is a non-answer then h is bodyless. If h is not
bodyless then we utilize a special lattice (Fig. 5) to learn h’s
different bodies. In this lattice, we neutralize the effect of
other head variables by fixing their value to true and we fix
the value of h to false.

Definition 3.4. A universal Horn expression for a given
head variable h is distinguished by a tuple if the true vari-
ables of the tuple represent a complete body for h.

Thus, each tuple in the lattice distinguishes a unique uni-
versal Horn expression. For example, consider the target
query:

∀x1x4 → x5 ∀x3x4 → x5 ∀x1x2 → x6
∃x1x2x3 ∃x2x3x4 ∃x1x2x5 ∃x2x3x5x6

In the target query, the head variable x5 has two universal
Horn expressions:

∀x1x4 → x5 ∀x3x4 → x5

In Fig. 5, we marked the two tuples that distinguish x5’s uni-
versal Horn expressions: 100101 and 001101. Notice that the
universal Horn expressions are ordered from most to least
specific. For example the top tuple of the lattice in Fig. 5 is
the distinguishing tuple for the expression ∀x1x2x3x4 → x5.
While the bottom tuple is the distinguishing tuple for the
expression ∀x5. Our learning algorithm searches for distin-
guishing tuples of only dominant universal Horn expressions.

A membership question with a distinguishing tuple and
the all-true tuple (a tuple where all variables are true) is
a non-answer for one reason only: it violates the universal
Horn expression it distinguishes. This is because the all-true
tuple satisfies all the other expressions in the target query
and the distinguishing tuple sets a complete set of body
variables to true but the head to false. More importantly,
all such membership questions constructed from tuples in
the upset of the distinguishing tuple are non-answers and
all questions constructed from tuples in the downset of the
distinguishing tuple are answers. Thus, the key idea behind
the learning algorithm is to efficiently search the lattice to
find a tuple where questions constructed from tuples in the
upset are non-answers and questions constructed from tuples
in the downset are answers.

!

!x1x2x3x4 " x5 

!x5 

!x3x4" x5 !x1x4" x5 

111101 

Head 
variables 
x5 x6!
!

Non-head 
variables 
x1 x2 x3 x4!
!

 

Set x5 to 
false to find 
body 
variables  

 
 
Set remaining 
head variables 
to true to 
neutralize 
influence 

Search roots for more bodies for!x5!

Distinguishing 
Tuples 

Questions constructed from the 
downset of a distinguishing 
tuple are answers 

Questions constructed from 
the upset of a distinguishing 
tuple are non-answers 

Figure 5: Learning bodies for a given head variable

Given a head variable h and n (non-head) variables, we
use a Boolean lattice on n variables (with h = 0 and all
other head variables set to true). We construct a member-
ship question with a tuple t from the lattice and the all-true
tuple — a tuple where all variables, including the head vari-
able, are true. We begin by describing how we can use the
lattice to find just one set of body variables that determine
h with O(n) questions. We start at the top of the lattice,
we construct a question from the top tuple and proceed as
follows:

1. If the question is an answer, then it does not contain an
entire set of body variables that determine h. We prune
its downset. We move to the next tuple on the same level
of the lattice.

2. If the question is a non-answer then some of the true
variables in t form a body and we move down the lattice
(skipping previously pruned tuples). If all of t’s children
are answers, then t is a universal distinguishing tuple for
the head variable h.

Once we find a body, we can safely eliminate its upset.
Any body in the upset is dominated (Rule 2) by the discov-
ered distinguishing tuple. Looking at Fig. 5, we notice that
the upset simply contains all tuples where all body variables
of the distinguishing tuple are true. The remaining lattice
structure is rooted at tuples where one of the body variables
is false. Since two incomparable bodies need to differ on at
least one body variable, we set one body variable to false
and search the resulting sub-lattices for bodies.

Theorem 3.4. O(nθ) membership questions, where θ is
the causal density of the given head variable h, are sufficient
to the learn the θ universal Horn expressions of h.

Proof: Let bi denote the number of body variables for each
distinguishing tuple ti found. Initially we set b0 to n and we
search the entire lattice or the n sub-lattices rooted at the
tuples where exactly one Boolean variable is false. In Fig. 5
those are the tuples at level 1: {011101, 101101, 110101,
111001}.

If the first distinguishing tuple found has |B1| true vari-
ables, then we need to search |B1| sub-lattices for bodies.
For example, after finding the distinguishing tuple 001101,
we continue searching for more distinguishing tuples from
|B1| = 2 roots: {110101, 111001}.

Suppose we find a second distinguishing tuple: 100101
with B2 body variables; then we need to search for

55



more bodies in the sub-lattices rooted at tuples where
one of each body variable from the distinct bodies
are set to false. Our new |B1| × |B2| roots are:
{010101, 011001, 101001, 111001}. These search roots are
illustrated in Fig. 5.

In the worst case, we ask O(n) questions to find a body.
Thus to determine all θ expressions for a universal head
variable, an upper bound on the number of questions, Q, is:

Q ≤ (n) + (|B1|+ n) + (|B1| × |B2|+ n) + ...+
(|B1| × |B2| × ...× |Bθ|)

Q ≤ nθ +

θ∑
b=1

(

b∏
i=1

|Bi|) ≤ nθ +

θ∑
i=1

(ni) = O(nθ)

Since there are O(n) head variables and for each head
variable we ask O(nθ) questions to determine its univer-
sal Horn expressions, we learn all universal Horn expression
with O(n× nθ) = O(nθ+1) questions.

3.2.2 Learning existential conjunctions
To learn existential conjunctions of a query we use the full

Boolean lattice on all n variables of a query (including head
variables).

Definition 3.5. An existential conjunction C is distin-
guished by a tuple if the true variables of the tuple are the
variables of the conjunction.

Thus, each tuple in the lattice distinguishes a unique exis-
tential conjunction. For example, consider the target query:

∀x1x4 → x5 ∀x3x4 → x5 ∀x1x2 → x6
∃x1x2x3 ∃x2x3x4 ∃x1x2x5 ∃x2x3x5x6

The conjunction ∃x2x3x5x6 is distinguished by the tuple
011011 in a six-variable Boolean lattice.

Existential conjunctions are ordered from most to least
specific on the lattice. For example, the top tu-
ple 111111 of a six-variable lattice is the distinguish-
ing tuple for the expression ∃x1x2x3x4x5x6; the tuples
{00001, 000010, 000100, 001000, 010000, 100000} at level five
of the lattice are the distinguishing tuples for the expressions
∃x6, ∃x5, ∃x4, ∃x3, ∃x2, ∃x1 respectively.

Our learning algorithm searches for distinguishing tuples
of a normalized target query. For example, the target query
above is normalized to the following semantically equivalent
query using (Rule 3):

∀x1x4 → x5 ∀x3x4 → x5 ∀x1x2 → x6
∃x1x2x3x6 ∃x2x3x4x5 ∃x1x2x5x6 ∃x2x3x5x6 (2)

This query has the following dominant conjunctions (which
include guarantee clauses):

∃x1x4x5 ∃x1x2x3x6 ∃x2x3x4x5 ∃x1x2x5x6 ∃x2x3x5x6

A membership question with all dominant distin-
guishing tuples of a query is an answer: all ex-
istential conjunctions (including guarantee clauses) are
satisfied. For example, a question with the tuples:
{100110, 111001, 011110, 110011, 011011} is an answer for
the target query above (2).

Replacing a distinguishing tuple with its children results
in a non-answer: the existential conjunction of that tuple is
no longer satisfied. For example replacing 011011 with its

children {001011, 010011, 011001, 011010} results in a mem-
bership question where none of the tuples satisfy the expres-
sion ∃x2x3x5x6.

Replacing a distinguishing tuple with any tuple in its up-
set that does not violate a universal Horn expression still
results in an answer.

Thus, the learning algorithm searches level-by-level from
top-to-bottom for distinguishing tuples by detecting a
change in the user’s response to a membership question from
answer to non-answer. The efficiency of the learning algo-
rithm stems from pruning : when we replace a tuple with its
children, we prune those down to a minimal set of tuples
that still dominate all the distinguishing tuples.

We describe the learning algorithm (Alg. 2) with an ex-
ample and then prove that the learning algorithm runs in
O(kn lgn) time (Theorem. 3.5)2.

Algorithm 2 Find Existential Distinguishing Tuples

T ← {1n} . The top tuple.
D ← {} . D is the set of discovered distinguishing tuples.
while T 6= ∅ do

T ′ ← {}
for t ∈ T do

C ← Children(t)
C ← RemoveUniversalHornViolations(C)
T ← T − {t}
if isAnswer(Ask(D ∪ T ∪ C ∪ T ′)) then

T ′ ← T ′ ∪Prune(C, T ∪D)
else

D ← D ∪ {t}
end if

end for
T ← T ′

end while
return D

Algorithm 3 Prune

T : the tuples to prune
O: other tuples
K ← {} . K is the set of tuples to keep.
Split T into T1 (1st half) and T2 (2nd half).
while T1 ∪ T2 6= ∅ do

if isAnswer(Ask(T1 ∪K ∪O)) then
Split T1 into T1 (1st half) and T2 (2nd half).

else
if |T2| = 1 then

K ← K ∪ T2

else
Add 1st half of T2 to T1. Set T2 to 2nd half of T2.

end if
end if

end while
return K

Suppose we wish to learn the existential conjunctions
of the target query listed in (2). We use the six-variable
Boolean lattice with the following modification: we remove
all tuples that violate a universal Horn expression. These
are tuples where the body variables of a universal Horn
expression are true and the head variable is false. For
example, the tuple 111110 violates ∀x1x2 → x6 is therefore
removed from the lattice.

2In [1], we prove the algorithm’s correctness and provide a
lower bound of O(nk) for learning existential conjunctions.

56



Level 1: We start at the top of the lattice. Since
the tuple 111111 will satisfy any query, we skip to level
one. We now construct a membership question with
all the tuples of level 1 (after removing the tuples that
violate universal Horn expressions: 111110, 111101):
111011, 110111, 101111, 011111. If such a question is a
non-answer, then the distinguishing tuple is one level
above and the target query has one dominant existential
conjunction: ∃x1x2x3x4x5x6.!

! !

Tuples that violate universal Horn 
expressions are removed from the lattice 

Children of 111111  

Pruned set of tuples: After pruning the children of 
111111, these tuples remain. They dominate all 
distinguishing tuples  

If the question is an answer, we need to search for tuples
we can safely prune. So we remove one tuple from the ques-
tion set and test its membership. Suppose we prune the
tuple 110111, the question is still an answer since all con-
junctions of the target query are still satisfied: the remaining
set of tuples still dominate the distinguishing tuples of the
target query.

We then prune 011111. This question is a non-answer
since no tuple satisfies the clause ∃x2x3x4x5. We put
011111 back in and continue searching at level one for
tuples to prune. We are left with the tuples: 111011,
101111 and 011111. Note that we asked O(n) questions
to determine which tuples to safely prune. We can do
better. In particular, we only need O(lgn) questions for
each tuple we need to keep if we use a binary search strategy.

Level 2: We replace one of the tuples, 111011, with its
children on level 2: {011011, 101011, 110011, 111001}. Note,
that we removed 111010 because it violates ∀x1x2 → x6.
As before we determine which tuples we can safely prune.
We are left with {110011, 111001}.

Tuples that violate universal Horn 
expressions are removed from the lattice 

Children of 111011 Pruned set of tuples 

A membership question with all the tuples 
highlighted in yellow is an answer 

Similarly we replace 101111 with its children on level
2: {001111, 100111, 101011, 101110}. We did not con-
sider 101101 because it violates ∀x3x4 → x5. We can
safely prune the children down to one tuple: 101110.
We then replace 011111 with its children on level 2
and prune those down to {011011, 011110}. At the
end of processing level 2, we are left with the tuples:
{110011, 111001, 101110, 011011, 011110}. We repeat this
process again now replacing each tuple, with tuples from
level 3.

Level 3: When we replace 011110 with its children
{010110, 011010, 001110}, we can no longer satisfy
∃x2x3x4x5. The question is a non-answer and we learn
that 011110 is a distinguishing tuple and that ∃x2x3x4x5
is a conjunction in the target query. Note that we did
not consider the child tuple 011100 because it violates the
universal Horn expression ∀x3x4 → x5. We fix 011110 in all
subsequent membership questions.

! !

Replacing 011110 with its children results in a non-
answer: we learn that ‘011110’ is a distinguishing 
tuple 

Remove tuples that violate 
universal Horn Expressions. 

Fix distinguishing tuple in all following membership questions 
! x2x3x4x5 

When we replace 011011 with its children
{001011, 010011, 011001, 011010}, we can no longer satisfy
∃x2x3x5x6. The question is a non-answer and we learn
that 011011 is a distinguishing tuple and that ∃x2x3x5x6
is a conjunction in the target query. We fix 011011 in all
subsequent membership questions.

When we replace 111001 with its children
{011001, 101001, 110001}, the question is a non-answer,
and we learn that 111001 is distinguishing tuple and that
∃x1x2x3x6 is a conjunction in the target query. Note that
we did not consider the tuple 111000 because it violates
∀x1x2 → x6. We fix 111001 in all subsequent membership
questions.

We can replace 101110 with the children
{001110, 100110, 101010}. Note that the child 101100
is removed because it violates ∀x1x4 → x5. We can safely
prune the children down to one tuple 100110.

When we replace 110011 with its children
{010011, 100011, 110001}, we can no longer satisfy
∃x1x2x5x6. Thus, the question is a non-answer and
we learn that 110011 is a distinguishing tuple. Note that
we did not consider the tuple 110010 because it violates
∀x1x2 → x6.

At this stage, we are left with the following tu-
ples: {110011, 100110,111001,011011,011110}. At this
point, we can continue searching for conjunctions in the
downset of 100110 which is the distinguishing tuple for a
known guarantee clause for the universal Horn expression:
∀x1x4 → x5. As an optimization to the algorithm, we do
not search the downset because all tuples in the downset are
dominated by 1001103.

!

After pruning the children of ‘101110’, only ‘100110’ is left. Since ‘100110’ is a 

distinguishing tuple for!!x1x4x5 the guarantee clause of!"x1x4#x5, we do not continue 
down the lattice.  

The algorithm terminates with the following distinguishing tuples. 

The learning algorithm terminates with the following dis-
tinguishing tuples {110011, 100110, 111001, 011011, 011110}
which represent the expressions:

∃x1x2x5x6 ∃x1x4x5 ∃x1x2x3x6 ∃x2x3x5x6 ∃x2x3x4x5

Theorem 3.5. The lattice-based learning algorithm asks
O(kn lgn) membership questions where k is the number of
existential conjunctions.

Proof: Consider the cost of learning one distinguishing
tuple tl at level l. From the top of the Boolean lattice to tl,
there is at least one tuple ti at each level i (0 < i < l) that
we did not prune and we traversed down from to get to tl.

3We can relax the requirement of guarantee clauses for uni-
versal Horn expressions and our learning algorithms will still
function correctly if they are allowed to ask about the mem-
bership of an empty set.

57



Let Ni be the set of ti’s siblings. At each level i, we asked at
most lg |Ni| questions. |Ni| = n− (i− 1) or the out-degree
of Ni’s parent. In the worst-case, l = n, and the cost of
learning tl is

∑n
i=1 lg(n − (i − 1)) ≤

∑n
i=1 lgn = O(n lgn).

With k distinguishing tuples we ask at most O(kn lgn) ques-
tions.

4. QUERY VERIFICATION
A query verifier constructs a set of membership questions

to determine whether a given query is correct. The verifier
will not find an alternate query if the query is incorrect.
Thus, while query learning is a search problem — a learner
searches for the one correct query that satisfies the user’s
responses to membership questions; query verification is the
decision problem — a verifier decides if a given query is
correct or incorrect given the user’s responses to membership
questions.

Our approach to query verification is straightforward: for
a given role-preserving qhorn4 query qg, we generate a veri-
fication set of O(k) membership questions, where k is the
number of expressions in qg. Note that our learning al-
gorithm for role-preserving qhorn queries asks O(nθ+1 +
kn lgn) questions. If the user’s intended query qi is seman-
tically different from the given query qg, then for at least
one of the membership questions M in the verification set
qg(M) 6= qi(M).

Proposition 4.1. A user’s intended query qi is seman-
tically different from a given query qg iff qi and qg have dis-
tinct sets of existential (Def. 3.5) and universal (Def. 3.4)
distinguishing tuples.

Suppose we try to learn the two role-preserving qhorn
queries qi and qg. If qi and qg are semantically different,
then our learning algorithm will terminate with distinct sets
of existential(Def. 3.5) and universal(Def. 3.4) distinguishing
tuples for each query. The verification set consists of mem-
bership questions that detect semantic differences between
two queries by detecting differences in their respective sets of
distinguishing tuples5. Fig. 6 lists six types of membership
questions from which the verification algorithm constructs a
verification set for a given query.

Theorem 4.2. A verification set with all membership
questions of Fig. 6 surfaces semantic differences between the
given query qg and the intended query qi by surfacing dif-
ferences between the sets of distinguishing tuples of qg and
qi.

Proof: Case 1: qi and qg have different sets of dominant
existential distinguishing tuples then by Lemma 4.3, ques-
tions A1 and N1 surface differences in the sets of dominant
existential distinguishing tuples of qg and qi.

Case 2: qi and qg have different sets of dominant universal
distinguishing tuples then

1. Both qi and qg classify h as a head variable. qi has a
dominant universal Horn expression Ci : ∀Bi → h (B is
a set of body variables) and qg has dominant universal
Horn expressions of the form ∀Bg → h.

4Since qhorn-1 is a sub-class of role-preserving qhorn, our
verification approach works for both query classes.
5In [1], we describe how we normalize a given query and
extract dominant distinguishing tuples from its expressions.

(a) If for any Bg in qg, Bi ⊂ Bg or Bi ⊃ Bg then by
Lemmas 4.4 and 4.5 questions A2 and N2 will surface
this difference.

(b) If for all Bg in qg, Bi and Bg are incomparable then
either (i) Ci’s guarantee clause dominates qg’s ex-
istential expressions and qg’s set of existential dis-
tinguishing tuples does not have the distinguishing
tuple for Ci’s guarantee clause (See Case 1) or (ii)
Ci’s guarantee clause is dominated by an existential
expression in qg and by Lemma 4.6 question A3 sur-
faces the difference.

2. h is a head variable in qi but is a non-head variable in
qg then by Lemma 4.7 question A4 surfaces the differ-
ence.

Lemma 4.3. Let Di be the set of qi’s dominant existential
distinguishing tuples and let Dg be the set of qg’s dominant
existential distinguishing tuples; membership questions A1
and N1 surface Di 6= Dg.

Proof: An existential distinguishing tuple represents an
inflection point: all questions constructed with tuples in the
distinguishing tuple’s upset are answers and all questions
constructed with only tuples in the rest of the lattice are
non-answers. We use this feature to detect if Di 6= Dg.

First, we define the following order relations over Di and
Dg:

1. Dg ≤ Di if for every tuple ti ∈ Di, there exists a tuple
tg ∈ Dg such that tg is in the upset of ti.

2. Dg ≥ Di if all tuples in Dg are in the downset of Di.
3. Dg||Di, otherwise, i.e. they are incomparable.

Since Dg 6= Di only the following cases are possible:
Case 1: Dg||Di or Dg > Di: Dg or membership question

A1 is a non-answer to the user’s intended query qi. The user
will detect the discrepancy as Dg is presented as an answer
in qg’s verification set.

Case 2: Dg < Di. Suppose all tuples in Dg are in the
upset of one of Di’s tuples. Let Dg(t) be the set of distin-
guishing tuples where we replace t ∈ Dg with its children.
There are |Dg| = O(k) such sets. These sets form mem-
bership questions N1. For any t ∈ Dg, Dg(t) is always a
non-answer to qg. However, for at least one tuple t, Dg(t)
is an answer to qi. This is because if Dg < Di then at least
one of Di’s tuples is a descendant of one of Dg’s tuples, in
which case Dg(t) is still in the upset of that tuple and thus
an answer. The user will detect the discrepancy as Dg(t) is
presented as a non-answer in qg’s verification set.

Like existential distinguishing tuples, universal distin-
guishing tuples represent an inflection point. All tuples
in the upset of the universal distinguishing tuple are non-
answers (as all of h’s body variables are true but h is false).
All descendants of the universal distinguishing tuple are an-
swers (as no complete set of h’s body variables is true).

Let ti be qi’s universal distinguishing tuple for an expres-
sion on the head variable h. Let tg be one of qg’s universal
distinguishing tuples for expressions on the head variable h.
We define the following order relations between ti and tg:

1. ti ≤ tg if ti is in the upset of tg.
2. ti ≥ tg if ti is in the downset of tg.
3. ti||tg if ti and tg are incomparable.

Consider two distinct (dominant) tuples tg1 and tg2 of the
given query. By qhorn’s equivalence rules(§2.1.1) queries tg1

58



Answers Non-Answers 

 Membership Questions 
# of 

Questions 
Tuples / 

Question 
 

A1 Distinguishing tuples for all dominant existential expressions (including guarantee clauses 
and existential Horn expressions)1 

!!!! !!!! 
A2 For each dominant universal Horn expression: 

(i) a tuple where all variables are true 
(ii) Children of the distinguishing tuple 

!!!! !!!! 

A3 For each dominant existential expression on ! variables such that there are one or more 
universal Horn expressions !!! ! !!!!! ! ! where !! ! ! for ! ! !! !: 
(i) a tuple where all variables are true 
(ii) Search roots: a tuple where one body variable from each body !!!!! is false and all 
other variables in ! are true and ! is false  

!!!! !!!!! 

A4 (i) A tuple where all variables are true 
(ii) A tuple for each non-head variable ! such that ! is false and all other variables are true !!!! !!!! 

 

 Membership Questions 
# of 

Questions 
Tuples / 

Question 
 

N1 For each distinguishing tuple in A1 
that is not due to a guarantee 
clause: 
(i) Children of the distinguishing 
tuple1 
(ii) All other tuples from A1 

!!!! !!! ! !! 

N2 For each dominant universal Horn 
expression: 
(i) a tuple where all variables are 
true 
(ii) The distinguishing tuple 

!!!! !!!! 

 

1
1In constructing these questions, we do not violate universal Horn expressions: i.e. we set a head variable to true if the existential expression contains a body for the head variable 

 
 

Figure 6: Membership questions of a verification set.

and tg2 are incomparable (tg1 ||tg2). Consequently, for any
two distinct tuples both ti < tg1 and ti > tg2 cannot hold.

Lemma 4.4. Membership question A2 detects ti > tg.

Proof: Suppose, qg has one universal distinguishing tuple
tg such that ti > tg. Then the membership question A2 that
consists of the all-true tuple and tg’s children is an answer
for qg as none of tg’s children have all the body variables set
to true, so the head variable can be false. If ti > tg then
qi’s universal Horn expression on h has a strict subset of
the body variables represented by tg. Therefore, in at least
one of tg’s children, all of ti’s body variables are set to true
and h is still false. Thus, A2 is a non-answer to qi. For all
other universal distinguishing tuples tg of qg, either ti > tg
or ti||tg. If ti||tg then A2 is still an answer.

Lemma 4.5. Membership question N2 detects ti < tg.

Proof: Suppose, qg has one universal distinguishing tuple
tg such that ti < tg. Then the membership question N2 that
consists of the all-true tuple and tg is a non-answer for qg as
tg has all body variables set to true but the head variable
h is false. If ti < tg then qi’s universal Horn expression on
h has a strict superset of the body variables represented by
tg. Therefore, tg does not have all body variables set to true
and h can be false. Thus, N2 is an answer to qi.

For all other universal distinguishing tuples tg of qg, either
ti < tg or ti||tg. If ti||tg then N2 is still a non-answer.

Lemma 4.6. If
• h is a head variable in qi and qg.
• qi has a dominant universal Horn expression ∀M → h

which qg does not have.
• qg has universal Horn expressions ∀B1 → h ...∀Bθ → h.
• Bi||M for i = 1...θ
• qg has an existential expression on C variables (∃ C)

such that C ⊇M and C ⊃ Bi for i = 1...θ
then A3 surfaces a missing universal Horn expression
(∀M → h) from qg.

Proof: Consider qg’s universal Horn expressions whose
guarantee clauses are dominated by ∃ C:

∀B1 → h, ∀B2 → h, ...∀Bθ → h

such that Bi ⊂ C for i = 1...θ. To build A3, we set one
body variable from each of B1, ..., Bθ to false, the remaining
variables in C to true and h to false. There are |B1|×|B2|×
... × |Bθ| = O(nθ) such tuples. A3 now consists of all such
tuples and the all-true tuple.

A3 acts like the search phase of the learning algorithm
that looks for new universal Horn expressions(§3.2.1). A3
is a non-answer for qi as at least one of the tuples has all
variables in M set to true (because M ||Bi for i = 1...θ) and
h to false, thus violating ∀M → h.

Lemma 4.7. If h is a head variable in qi but not in qg
then question A4 surfaces the difference.

Proof: The all-true tuple satisfies all existential expres-
sions in qg. For each body variable x in qg, A4 has a tuple
where x is false and all other variables are true. If x is a
head variable in qi, then A4 should be a non-answer.

This concludes the proof of Theorem. 4.2

5. RELATED WORK
Learning & Verifying Boolean Formula: Our work

is influenced by the field of computational learning theory.
Using membership questions to learn Boolean formulas was
introduced in 1988 [3]. Angluin et al. demonstrated the
polynomial learnability of conjunctions of (non-quantified)
Horn clauses using membership questions and a more pow-
erful class of questions known as equivalence questions [4].
The learning algorithm runs in time O(k2n2) where n is the
number of variables and k is the number of clauses. Interest-
ingly, Angluin proved that there is no PTIME algorithm for
learning conjunctions of Horn clauses that only uses mem-
bership questions. Angluin et al.’s algorithm for learning
conjunctions of Horn formula was extended to learn first-
order Horn expressions [12, 10]. First-order Horn expres-
sions contain quantifiers. We differ from this prior work in
that in qhorn we quantify over tuples of an object’s nested
relation; we do not quantify over the values of variables. Our
syntactic restrictions on qhorn have counterparts in Boolean
formulas. Both qhorn-1 and read-once Boolean formulas [5]
allow variables to occur at most once. Both role-preserving
qhorn queries and depth-1 acyclic Horn formulas [9] do not
allow variables to be both head and body variables.

Verification sets are analogous to the teaching sequences of
Goldman and Kearns [8]. A teaching sequence is the small-
est sequence of classified examples a teacher must reveal to
a learner to help it uniquely identify a target concept from
a concept class. Prior work provides algorithms to deter-
mine the teaching sequences for several classes of Boolean
formula [6, 8, 14] but not for our class of qhorn queries.

Learning in the Database Domain: Two recent
works on example-driven database query learning techniques
— Query by Output (QBO) [17] and Synthesizing View Defi-

59



nitions (SVD) [7] — focus on the problem of learning a query
Q from a given input database D, and an output view V .
There are several key differences between this body of work
and ours. First, QBO and SVD perform as decision trees;
they infer a query’s propositions so as to split D into tuples
in V and tuples not in V . We assume that users can provide
with us the propositions, so we focus on learning the struc-
ture of the query instead. Second, we work on a different
subset of queries: QBO infers select-project-join queries and
SVD infers unions of conjunctive queries. Learning unions
of conjunctive queries is equivalent to learning k-term Dis-
junctive Normal Form (DNF) Boolean formulae [11]. We
learn conjunctions of quantified Horn formulae. Since our
target queries operate over objects with nested-sets of tuples
instead of flat tuples, we learn queries in an exponentially
larger query and data space. Finally, QBO and SVD work
with a complete mapping from input tuples to output tuples.
Our goal, however, is to learn queries from the smallest pos-
sible mapping of input to output objects, as it is generally
impractical for users to label an entire database of objects
as answers or non-answers. We point out that we synthesize
our input when constructing membership questions, thus we
can learn queries independent of the peculiarities of a par-
ticular input database D.

Using membership (and more powerful) questions to learn
concepts within the database domain is not novel. For exam-
ple, Cate, Dalmau and Kolaitis use membership and equiv-
alence questions to learn schema mappings [16]. Staworko
and Wieczorek use example XML documents given by the
user to infer XML queries [15]. In both these works, the
concept class learned is quite different from the qhorn query
class.

6. CONCLUSION & FUTURE WORK
In this paper, we have studied the learnability of a spe-

cial class of Boolean database queries — qhorn. We be-
lieve that other quantified-query classes (other than con-
junctions of quantified Horn expressions) may exhibit differ-
ent learnability properties. Mapping out the properties of
different query classes will help us better understand the lim-
its of example-driven querying. In our learning/verification
model, we made the following assumptions: (i) the user’s
intended query is either in qhorn-1 or role-preserving qhorn,
(ii) the data has at most one level nesting. We plan to de-
sign algorithms to verify that the user’s query is indeed in
qhorn-1 or role-preserving qhorn. We have yet to analyze
the complexity of learning queries over data with multiple-
levels of nesting. In such queries, a single expression can
have several quantifiers.

We plan to investigate Probably Approximately Correct
learning: we use randomly-generated membership questions
to learn a query with a certain probability of error [18].
We note that membership questions provide only one bit
of information — a response to membership question is ei-
ther ‘answer’ (1) or ‘non-answer’ (0). We plan to examine
the plausibility of constructing other types of questions that
provide more information bits but still maintain interface
usability. One possibility is to ask questions to directly de-
termine how propositions interact6 such as: “do you think
p1 and p2 both have to be satisfied by at least one tuple?”
or “when does p1 have to be satisfied?”

6We thank our anonymous reviewer for this suggestion.

Finally, we see an opportunity to create efficient query re-
vision algorithms. Given a query which is close to the user’s
intended query, our goal is to determine the intended query
through few membership questions — polynomial in the
distance between the given query and the intended query.
Efficient revision algorithms exist for (non-quantified) role-
preserving Horn formula [9]. The Boolean-lattice provides
us with a natural way to measure how close two queries are:
the distance between the distinguishing tuples of the given
and intended queries.

7. ACKNOWLEDGMENTS
Partial funding provided by NSF Grants CCF-0963922,

CCF-0916389, CC-0964033 and a Google University Re-
search Award.

8. REFERENCES
[1] A. Abouzied et al. Learning and verifying quantified

boolean queries by example. arXiv:1304.4303 [cs.DB].

[2] A. Abouzied, J. Hellerstein, and A. Silberschatz.
Dataplay: interactive tweaking and example-driven
correction of graphical database queries. In UIST,
2012.

[3] D. Angluin. Queries and concept learning. Mach.
Learn., 2(4):319–342, 1988.

[4] D. Angluin, M. Frazier, and L. Pitt. Learning
conjunctions of horn clauses. In COLT, 1990.

[5] D. Angluin, L. Hellerstein, and M. Karpinski.
Learning read-once formulas with queries. J. ACM,
40(1):185–210, 1993.

[6] M. Anthony et al. On exact specification by examples.
In COLT, 1992.

[7] A. Das Sarma et al. Synthesizing view definitions from
data. In ICDT, 2010.

[8] S. A. Goldman and M. J. Kearns. On the complexity
of teaching. In COLT, 1991.

[9] J. Goldsmith and R. H. Sloan. New horn revision
algorithms. J. Mach. Learn. Res., 6:1919–1938, Dec.
2005.

[10] D. Haussler. Learning conjunctive concepts in
structural domains. Mach. Learn., 4(1):7–40, 1989.

[11] M. J. Kearns and U. V. Vazirani. An introduction to
computational learning theory. MIT Press, Cambridge,
MA, USA, 1994.

[12] R. Khardon. Learning first order universal horn
expressions. In COLT, 1998.

[13] P. Reisner. Use of psychological experimentation as an
aid to development of a query language. IEEE Trans.
on Soft. Eng., SE-3(3):218–229, 1977.

[14] A. Shinohara and S. Miyano. Teachability in
computational learning. New Gen. Comput.,
8(4):337–347, 1991.

[15] S. Staworko and P. Wieczorek. Learning twig and
path queries. In ICDT, 2012.

[16] B. ten Cate, V. Dalmau, and P. G. Kolaitis. Learning
schema mappings. In ICDT, 2012.

[17] Q. T. Tran, C. Chan, and S. Parthasarathy. Query by
output. In SIGMOD, 2009.

[18] L. G. Valiant. A theory of the learnable. CACM,
27(11):1134–1142, 1984.

60


	Introduction
	Our contributions

	Preliminaries
	Qhorn
	Qhorn's Equivalence Rules
	Learning with Membership Questions
	Qhorn-1
	Role-preserving qhorn


	Query Learning
	Learning qhorn-1
	Learning universal head variables
	Learning body variables of universal Horn expressions
	Learning existential Horn expressions

	Learning role-preserving qhorn
	Learning universal Horn expressions
	Learning existential conjunctions


	Query Verification
	Related Work
	Conclusion & Future Work
	Acknowledgments
	References



