Retrieval Efficiency Using Combined Indices

by

Michael Stonebraker*

Abstract

The problem considered here involves choosing the best set
of indices for indexing a file on a secondary storage device
where space may be limited. For a general class of queries and
a specific index organization, approximations to the expected
retrieval time for any choice of indices are developed. Subject
to the simplifying assumptions the best selection of indices is
obtained for several cases, both where the number of possible
lists is constrained and where it is not. The examples indicate

that retrieval time is quite sensitive to the choice made.

*Department of Electrical Engineering and Computer Science,
University of California, Berkeley.

243



Introduction

We propose to treat the problem of choosing the redundant
information about a file located on a secondary storage device
of constrained size so that the file can be accessed in a
reasonable fashion. Work of a similar nature (though not related
to the current study) is reported in [1,2,3]. In order to
specify a precise problem, we make certain sets of assumptions
concerning the file, the queries, and the storage mediunm.

In particular, suppose the file, F, consists of N records
{Oi}, 1<i<N, each containing a value for m attributes, e.g. Oj=
(ali,aZi,...,ami). We shall assume that 43 is real for all i,j
and is bounded in the following sense. For any i and all j, aij
cB; where Bj is a bounded interval of the real line. It is as-
sumed that no relations are permitted between records in the file
(i.e. the file is normalized [4]) and that the entire data base
consists of a single file. However, the extension of the analysis
presented to multifile data bases appears straightforward. We
shall also assume that the N records are uniformly distributed
over the subspace of Euclidian m space, leBzx...me. Hence, in
any range Ry for attribute i, there are (Ri/Bi)N records. More-
over, (Ri/Bi)(Rj/Bj)N records simultaneously have attribute i

in R; and attribute j in R If information to the contrary were

J'.
known, another distribution could be used, However, it would com-

plicate the analysis to follow. Also, the file could be coded

7/

244



in such a fashion as to more nearly satisfy this assumption.

We make the following assumptions concerning the file activity.
First, we shall ignore insertions, deletions, and record updates
and will be solely concerned with retrieval. Second, queries will
be made from an on line terminal and will be satisfied rapidly.
(Clearly, the batching of queries would give the storage structure
designer a different set of problems than might otherwise exist.)
Third, queries shall conform to the following format:

GET[aij, ieV for all j such that alchl,azchz,...,anchn] (1)
Here, Rj, l<i<n, are bounded intervals of the real line, R;cBj,
nsm, and V is a subset of the positive integers less than m+l.
Thus, the values of a subset of attributes are required for all
records which have a value for attribute 1 in a range, Ry, attri-
bute 2 in a range RZ’ etc.

This query structure is chosen for several reasons. First, it
~contains as a subset frequently used and well understood query
sets. For example, retrieval by a primary key, e.g. attribute 1,
would require R;=Bj for 2<i<n, V to be all m attributes, and Ry
could either be a single point or a range of values, if partial
keys were allowed. Second, if the set of Boolean combinations
of pairs of the form (attribute--range of values) is the query
set allowed the user, a member of it may be processed into dis-
junctive normal form by an intermediate process and the storage
structure presented with a number of commands of the form (1).

The overall query could then be satisfied by a union of the indi-

245



vidual responses. Lastly, it is possible to process some queries
based on a first order predicate calculus [5] into terms of the
form (1). For example, suppose a file has records with three
attributes, part number, supplier number and city of supplier
(suitably coded). The query "find all suppliers in the same

city as the supplier of part #Z'" can be readily decomposed into
two retrievals of the form (1). Hence, (1) may well be a useful
primitive for complex query sets.

It is furthermore assumed that query activity is adequately
represented by the condition that {Rl,...,Rn} are mutually inde-
pendent random variables and that

prob[R;=B,]=1-P;

prob[R;<B;]1=P;.
Hence, P; represents the probabi}ity that attribute i appears non
trivially in a query. Denote by S; the length of the interval
R;j, and assume

E[S;[R;#B;1=G;.
Hence, the expected size of the requested range is Gi given that
attribute i appears non trivially. (Note that {P;,G;}, 1lsisn,
can either be computed from monitored data or estimated by a data
base administrator.) It should be clearly noted that the indepen-
dence assumption cannot easily be removed, and the analysis to
follow is applicable only in situations where this assumption is
reasonable.

Now, several assumptions must be made concerning the storage

246



medium, We assume it is a rotating storage device with a seek
time, Cl’ and a transfer time per four bytes, C,. The particular
values of C; and C; depend, of course, on the specific device

used. We assume that the records of the file will be stored
sequentially and that redundant indexed lists may also be con-
50T b
Here, ajj is the value for attribute i of record j and Tj is a

structed. An indexed list for attribute i has the form {(ai

pointer to the j-th record of the sequential file. We assume that
this list would be sorted into ascending order of attribute i and

a bucket approach followed with all records within a certain range
stored together.1 Therefore, B, will be divided into buckets of

a size, 2;, yet to be determined. Each bucket would contain a
pointer and the value of attribute i1 for all records with attribute
i in the required range. Combined indexed lists of two attributes
are also allowed. These would be of the form {(aji,aki,Ti)} and
would be stored in two dimensional buckets of size lszk. Indexed
lists of any number of attributes are acceptable. The two questions
of interest in this study are:

1. If the number of indexed lists is unrestricted, what
is the best choice of 1lists?

2. If only k indexed lists are allowed, what is the best
choice of lists?

1There are, of course, many reasons why a multilevel structure
might be chosen in practice and no apriori division of B; into
buckets declared. Analysis of such structures often involves
details of a particular device and appears to be exceedingly
complex. The assumption chosen represents a simple approximation
that avoids both problems.

247



The criterion of 'best'" shall be to minimize the mean time
necessary to access the redundant lists to obtain pointers to
all potentially relevant records. This criterion is chosen for
two reasons. First, in many cases the CPU time required to pro-
cess the query may be small compared to retrieval time. Hence,
the response time would depend on the speed of obtaining the
required information from secondary storage. Secondly, any stor-
age organization would require accessing the contents of all rel-
evant records for a given query. Thus, it is appropriate to min-
imize the extra time required to search redundant lists. With
these considerations in mind, we can now turn to analysis of the
above two questions.

Computation of Retrieval Times

In order to proceed we have to make assumptions concerning the
Yedge effects'. Because 2j may not divide the length of Bj exact-
ly, there will be one odd-sized bucket. 1In all that follows we
shall ignore this irregularity. Hence, the formulas to follow
are only approximately correct and valid technically only in the
case that 1j divides Bj exactly.

For a single indexed 1list for attribute j, there is a proba-
bility 1-Pj that attribute j appears trivially and no retrieval from
secondary storage is needed. With probability P., the number of

buckets retrieved has an expected value of 1+Gj/2j. Hence the

expected time required assuming that all pointers and attribute

248



values require four bytes is:

E(rj) = Pj(1+Gj/£j)(C1+2C2N2j/Bj) (2)
Here, zj/Bj is the expected percentage of the records falling in
an individual bucket. Hence, the last factor represents the
expected time to retrieve the contents of a bucket. If n simple
lists are formed, it is evident (because all Ri's are independent)
that the total expected time, E(t), to retrieve all necessary

buckets for a query of the form (1) is:

E(1) =j;:2=1pj (1+Gj/1j)(C1+2C2sz/Bj) (3)
It is easily shown that (3) is minimized if zj is chosen as

2j = BT B 770N . (4)
This minimum time is

By () =j§=lc1pj (1+/ZC;NG37TTBS) (5)

The first question then becomes: Can a time smaller than (5) be
obtained by using a more complex directory?
If a combined index is formed with attribute i and j, then

the expected retrieval time with probability Pi(l-Pj) is
(1+Gilli)(Bj/£i)(C1+SCZN£i£j/BiBj).

With probability Pj(l-Pi) it is
(1+Gj/2j)(Bi/£i)(C1+3C2Nzi£j/BiBj)

and with probability Pin it is
(1+Gi/£i)cl+cj/2j)(C1+3C2N£i£j/BiBj)‘

Hence, the expected time, E(rij), to access the list associated

249



with the i-th and j-th attributes is
E(Tij) = (C1+3C2Nlilj/BiBj)(Pin(l+Gi/gi)(l+Gj/gj)+ (6)
Pi(l-Pj)(1+Gi/1i)(Bj/zj)+Pj(l-Pi)(1+Gj/zj)(Bi/zi))

The best values for £; and 23 present analytical difficulties.

However, we can solve for them in one special case. If P;=P.=1,

J
then both attributes appear non trivially in each query and the

best choice for li and L3 can easily be found as

g = fxw'(3127“"cj
L= ?WG?TE;‘
where W=BiBjC1/3C2N and hence
- 3 - 3
Emin(Tij) = Cy(1+ /GiGJJW) . (7)

A combined list will be advantageous if the above is less than

C1 (1+/TC;NG;7C B;) 2 + €y (1+/7C;NG7TTB) %
Although cases can be constructed where this is not true (for
example, G;=B,, Gj=Bj, and GiGj/W=1.S), they represent somewhat
unusual device and file characteristics. All other more general
cases of (6) involve analytical difficulties. Hence, we will make
an additional assumption in order to proceed further.

Thus, we shall not find the 24 and Lj which minimize (6) but
rather those which minimize the following variant (which is ob-
tained by requiring all boxes to be searched if R;=B; and Rj=Bj).

E*(Tij) = Clpin(1+2izj/W)(1+Qi/£i)(1+Qj/£j)

Here, Qi = Gi+Bi(1-Pi)/Pi. The best choice of £jand lj are

1y = QGG
1y - G

250



(which are safely less than Bi and Bj for all but the smallest
values of Pi and Pj)' Substituting the above values into (6)
yields after some rearrangement

— 3 3 e
B in(Ti5) = CoPiPj (1+VR5Q57/W) " -Cp (1-P;) (1-P5) (3F) (1+/W/Q;Q;)
(8

Here, F=C2N/C1. If nominal values of N=106, C1=75 msec, C2=.02
3-—_
msec, P;j=.5, and Pj=.5 are chosen, then /Qin/W >9 and (8) may

be approximated by

Enin(Tgy) = C1P;P5(QsQy/W) - Cy(1-P;)(1-P5) (3F) (9)
Let Ui=PiGi/Bi' Thus, (g9) may be written as
Emin(Tij) = 3FCp((Uj+1-P3) (U;+1-P5)-(1-P;) (1-P5)) (10)

The above approximate analysis can be performed for a combined
list of any size. In this case (8) is replaced by the following
more general version written for a combined list of attributes

1,...,h but easily transformed for arbitrary attributes.

; +]1 +
Enin(T1,...,0) = C1P1---Ph(1§ /(h+1)FQ1...Qh/Bl...Bh)h 1 )
(11
-Cy(1-P1) ... (1-Py) (h+1)F(1+" VB .. B,/ (h* 1) FQ, - - -Qp)
Again, if
Bty (h+1)FQ...Qy/By. . .By >> 1 (12)
(11) can be simplified to
' h h
Emin(Tl,...,h) ) (h+l)FC1(]1I(Ui+(1'Pi)) ) g(l'Pi)) (13)

Note that (12) becomes less accurate as h increases and may be
reasonable for moderate h only in situations where N is very

large or C, is small.

251



We shall now examine some sample cases for insight from these
computations. First, we shall assume a situation where (12) is
reasonable and where n=3. A single list must include all three
attributes. If three lists are permissible, then three simple
indexed lists can be used. However, there are three choices if
two lists are allowed; one can group any twe of the attributes
together.2

Table 1 indicates the retrieval time (computed from (13))
for each possibility in four cases. Case 1 shows one attribute
with a much higher value of U than the other two. Hence, as the
first three entries in the right hand portion of the table indi-
cate, the two attributes with less query activity should be
grouped together if two lists are allowed. Case 2 indicates a
situation where the spread in the U's is not as large and here,
it is advantageous to group the active attribute with one of the
others. Case 3 is a situation where two attributes are more
active than a third and they should be grouped together. The final
case indicates a situation where all U's are equal. Here, the
two more frequently referenced attributes should be grouped to-
gether.

However, note that in two of the four cases, one would be
even better off choosing one indexed list with all three attri-
butes, a most surprising conclusion. Also, if three lists are

available, it is advantageous to use them in only one case.

2Although it is possible for an attribute to appear in two or
more indices, we will not investigate that possibility.

252



We shall now consider a situation where (12) is not an accur-
ate statement. In particular, if N=105, C1=75 msec, and C2=.02
msec, then F=26.7. Using (11) we will reconsider the four cases
of Table 1. The results are indicated in Table 2.

Here, in all four cases the best choice is three indexed 1lists
if space is available. Also, in two cases the same choice of
indices should be made, if two lists are allowed, as in the sit-
uation of Table 1. In cases 1 and 4 a slight improvement is ob-
tained by making another choice. Note that a single indexed list
is never preferred.

Clearly, the examples indicate that the best choice of indexed
lists varies in unexpected ways with query conditions. Moreover,
retrieval times can vary markedly with the particular choice made.

Additional effort is in order on several aspects of the prob-
lem considered. First, the best choice of indices can only be
made for specific examples. A search for more general results
which suitably explain the above examples is needed. Also, a way
to avoid the many approximations made in this paper would be de-
sirable. Lastly, further effort should avoid some of the more
unreasonable assumptions made in this simplistic analysis. Among
these are the suppositions that the R's are mutually independent
and that updates are ignored. However, the analytic complexity
that would result might preclude obtaining any general insight
except by simulation for a specific device. An example of this

approach is [6].

253



References

Lowe, T.C., '"The Influence of Data Base Characteristics and
Usage on Direct Access File Organization'", JACM 15, No. 4,
October 1968, 535-548.

Lum, V.Y., "Multi-attribute Retrieval with Combined Indices",
CACM 13, No. 11, November 1970, 660-665.

Mullin, J.K., "Retrieval-Update Speed Tradeoffs Using Com-
bined Indices'", CACM 14,No. 12, December 1971, 775-776.

Codd, E.F., "A Relational Model of Data for Large Shared
Data Bases', CACM 13, No. 6, June 1970, 377-387.

Codd, E.F., "A Data Base Sublanguage Founded on the Relational
Calculus'", Proc. 1971 ACM-SIGFIDET Workshop on Data Descrip-
tion, Access and Control, San Diego.

Senko, M.E., "Semi-Operational Evaluation of File Modeling

Techniques', Information Sciences Department, IBM Research
Laboratory, San Jose, February, 1971.

254



P0°8
PL°8T
PE el
P0°2¢

(1) .3+
(¢1) g+
AHPV.M

P6° L PZ°6
PY°9 P0O° 8T
P9°TI1 PO PT
PZ V¢ PL°Z¢E
(!¢Ly).1 (12,34
(£21) .1

SAWT] TeASTJIISY JOo uostaedwo) y

PZ"8
P0° 81
PLZT
P8°ve

ANPu.m+
(!11) .1

1 91qel

PL*L
P8°8
PL° 2T
P8° pe

(£1) 3+
mNHPuam

8/1
v/1
v/1
v/1

00v/T ¥/1

00v/T v/¢

oov/T ¢v/1

00tv/1 /1

0091/IDds=p

00v/1 2/1
00t/c v/¢
00%v/1 ¥/¢
00v/1 z/1

00¥/1
oov/¢
00¥/¢
0v/1

L TR

o~

o9sed

255



8L°
68°
Z8°
S6°

(%1)g+
(¢1)g+
(Ty)a

¢ °1qel

SOWTI] [BASTI1dY 3FO uostxedwo) Jayianj y

10°¢ IT°1
00°1 IT°1
62°1 SZ°1
¢0°¢ 8¢ 1

SO0°T
I1°1
v0°1
1e°1

(C1)q+
(!Tu)g

€T°1
96°
v0°1

T¢€°1

(S1)3+
(¢Tuyg

(spuodas ur saurl

8/1 00v/T ¥/1
v/1 00%/T v/¢
v/T 00%/1 ¢/1
v/T 00%/1 v/1

oov/t z/1

00v/c v/¢

o00v/1 v/¢

00¥/T 2/1

11R)

00¥/1
00v/¢
oot/¢
ov/1

- NV =

osed

256



